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dermatology

Summary
Plasma is an ionized gas that consists of positively and negatively charged particles, 
neutral atoms, and photons. Recent developments in plasma sources have made it 
possible to generate room-temperature plasma in the “open air”, thus enabling the 
application of plasma in vivo. Using nonthermal plasma, active agents can be effi-
ciently delivered to target cells without creating thermal damage. Also known as cold 
atmospheric pressure plasma (CAP), nonthermal atmospheric pressure plasma offers 
innovative medical applications. In this context, it has also gained wide attention in 
the field of dermatology. The complex and variable mixture of active agents in plasma 
– predominantly reactive oxygen and nitrogen species (ROS, RNS) – can control or 
trigger complex biochemical reactions, achieving the desired effects in a dose-depen-
dent manner. The objective of the present review is to present potential applications 
of plasma in dermatology and analyze its potential mechanisms of action.
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Introduction
Plasma is the fourth state of matter, consisting of charged 
particles (electrons and ions), neutral atoms, and photons; 
it has a net neutral charge. In general, it can be created by 
adding energy to a gas or gas mixture. Artificial plasma can 
be classified based on gas pressure (low-pressure vs. atmo-
spheric pressure plasma) or based on temperature (thermal/
hot vs. nonthermal/cold). Medical applications initially used 
plasma in thermal equilibrium; it relied on thermal energy 
for tissue removal, cauterization, and disinfection of ther-
mally stable medical instruments. It was therefore not suita-
ble for heat-sensitive substances, much less in vivo therapy. 
Recent advances in new plasma sources, which are able to 
generate CAP in open space under atmospheric pressure and 
at almost room temperature, has allowed for direct contact 
between plasma and the human body without causing ther-
mal damage [1–3]. The fact that various CAP sources are 

currently being CE-certified as medical devices and that re-
levant clinical trials have been published is likely to further 
promote the use of plasma in routine clinical practice [4–6]. 
In general, the medical application of man-made CAP can 
be divided into two main types: direct plasma therapy and 
indirect plasma therapy, depending on the excitation mode 
[7]. Two basic principles of CAP sources are commonly used 
in experimental research and practical application: dielectric 
barrier discharges (DBD) and atmospheric pressure plasma 
jets (APPJ) (Figure 1), which are also the main CAP sources 
used for the presentation of potential plasma applications in 
this article. From a practical point of view, both DBD and 
APPJ devices have their advantages and disadvantages. When 
using DBD – a direct plasma source – the treatment area is 
larger but the device has to be held at close distance to the 
target surface. In addition, the current generated passes th-
rough the body as the treated tissue acts as one of the plasma 
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electrodes. When using APPJ – an indirect plasma source – 
the distance between the device and the area to be treated is 
not as critical. Here, active agents are generated and precisely 
transported into small structures without the body having to 
act as a plasma electrode. However, the treatment of larger 
areas requires moving the plasma jet, which is inconvenient 
and results in inhomogeneous application [6–8]. Fortunately, 
cold atmospheric pressure plasma jet arrays able to treat lar-
ger areas are currently being studied as shown in Figure 1. 
Furthermore, liquid irradiated by plasma for a specified time, 
known as plasma-activated medium (PAM), has comparative 
biological effects and relatively long-lasting reactive species. 
PAM functions like plasma chemotherapy, thus broadening 
the potential applications of plasma. Therefore, both the di-
rect and indirect interaction of plasma with biological targets 
offer an innovative therapeutic approach in clinical applica-
tion [9, 10].

A number of fundamental research and clinical trials 
have demonstrated the huge clinical potential of plasma, in-
cluding sterilization of living and nonliving surfaces [11–13], 
promotion of wound healing, as well as treatment of cancer 
[10, 14–16] and various skin diseases [4, 17–19]; the use of 
plasma is also characterized by good tolerability and biocom-
patibility [3, 20, 21]. Plasma affects biochemical processes 
of the organism through its active components, consisting of 
chemically active particles such as ROS and RNS, ultravio-
let radiation (UVR), charged particles (positive and negative 
particles), as well as excited-state and metastable particles. 
ROS and RNS, primarily O2

–, OH, O3, H2O2, NO, and NO2, 
dominate the biological effects depending on composition 
and concentration [22]. UVR doses are typically too low to 
have direct biological effects. Given the lack of effective mea-
surement methods, our knowledge of the impact of excited 
states and metastable particles is very limited.

Using different discharge parameters – including wor-
king gas species, gas flow, and treatment time – a mixture 
of active agents, characterized by different composition and 

concentration, can be generated that results in relevant bio-
logical responses. A series of cell and animal experiments 
have shown that the interaction is time- or dose-dependent. 
While short-time or low-dose plasma treatment can cause ra-
pid sterilization, cell stimulation, promotion of proliferation 
and migration, as well as repair of damaged DNA, long-time 
or high-dose plasma treatment results in lethal cell damage 
(irreversible DNA damage, cell cycle arrest, stop of cell pro-
liferation) and even cell death by apoptosis [6, 7]. Thus, CAP 
can be utilized for disinfection and wound healing at low 
dose, and for treating proliferative diseases at high dose.

Effects of CAP on wound healing

Cutaneous wound healing is a complicated process involving 
various cells and cytokines. It is divided into an inflammat-
ory, a proliferative, and a remodeling phase. Because of the 
complexity and multiple phases of wound healing, it is ea-
sily affected by internal and external disturbances, which 
may lead to chronic or even nonhealing wounds [7, 23]. Not 
only do chronic/nonhealing wounds cause medical problems, 
they also represent a worldwide economic burden. In this con-
text, common conditions include diabetic foot ulcers, pressure 
sores, cancerous ulcers, and postoperative wound infections.

Cold atmospheric pressure plasma exerts its beneficial 
effects on chronic/nonhealing wounds through various me-
chanisms.

Effects of CAP on colonizing microorganisms

Almost all cutaneous wounds are colonized with bacteria. 
Chronic/nonhealing wounds are characterized by the per-
sistence of bacteria as well as biofilm formation, which both 
impair wound healing. The most common bacteria are sta-
phylococci, including methicillin-resistant Staphylococcus 
(S.) aureus (MRSA), and anaerobic bacteria; they account for 
20 % to 50 % of chronic wound cases [7]. The first step of 

Figure 1 Images of various CAP devices used by our team. Floating electrode dielectric barrier discharge (FE-DBD) (a). 
Atmospheric pressure plasma jet (APPJ) (b). Atmospheric pressure plasma jet arrays (c).
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treatment is thorough debridement to remove necrotic tissue 
and exudate, which are conducive to bacterial growth. Simul-
taneously, systemic or topical antimicrobial agents should be 
used to eliminate the excessive bacterial burden. However, the 
use of antimicrobial agents is often limited by hypersensitivity 
to antibiotics and the increasing development of drug- 
resistant or multidrug-resistant bacteria. Therefore, novel 
alternatives that improve chronic wound care are strongly 
needed. CAP can effectively inactivate broad-spectrum infec-
tious microorganisms within minutes through various mecha-
nisms, without causing allergic skin reactions or resistance to 
plasma damage [13, 24]. It has been proposed that bacterial 
inactivation occurs by producing the following: a viable but 
nonculturable (VBNC) state; peroxidative damage of lipids, 
proteins, and DNA; programmed cell death in bacteria; di-
rect mechanical cell lysis due to electrostatic pressure [11, 
12]. Changes in environmental conditions induced by plasma, 
such as pH, also lead to the inactivation of biomolecules [25]. 
Clinical trials have established that CAP treatment reduces 
the bacterial load and promotes wound healing [3, 26].

Effects on cells involved in wound healing

Cells involved in the wound healing process include kerati-
nocytes, fibroblasts, endothelial cells, and immune cells.

Adequate doses of plasma can promote keratinocyte and 
fibroblast proliferation and migration, and induce expression 
of genes relevant to wound healing, such as type I collagen, 
transforming growth factors (TGF-ß1/2), and alpha-smooth 
muscle actin (α-SMA) [27]. Studies indicate that plasma can 
improve vascularization of the wound site. Plasma-mediated 
ROS, RNS, and fibroblast growth factor-2 (FGF2) release 
from fibroblasts can promote endotheliocyte migration, pro-
liferation, and tube formation [28, 29]. Moreover, cutaneous 
oxygen saturation and microcirculation can be enhanced, 
which improve vascular shear stress contributing to new an-
giogenesis. New vascular networks and enhanced capillary 
blood flow increase local oxygen saturation and nutrient sup-
ply, thus also promoting wound healing [30, 31]. In addition 
to the skin, the immune system also plays an essential role 
in the regeneration process. In vitro studies have indicated 
that short-term plasma treatment produces some stimulating 
effects that cause immune cells to proliferate and function 
actively, thus supporting the antimicrobial defense in remo-
ving pathogens. Furthermore, the chronic inflammation of 
chronic/nonhealing wounds can be transformed into an acu-
te wound healing process.

In short, plasma treatment of wound sites reduces the bac-
terial load, promotes the action, proliferation, and migration 
of cells related to wound healing, improves angiogenesis, and 
increases local microcirculation for sufficient oxygen and nu-
trient supply. All of the above lead to improved wound healing.

Effects of CAP on skin cancer

Plasma exerts antitumor effects by inhibiting cell metastasis, 
inducing lethal DNA damage and cell cycle arrest, and cau-
sing apoptotic cell death of malignant proliferative cells. The 
therapeutic effects of plasma are not limited to cultured can-
cer cells in vitro – such as melanoma, breast, and colorectal 
cancer cells [8] – but have also been demonstrated in animal 
models [6, 15, 32, 33]. When irradiated by plasma or injected 
with PAM, mice with subcutaneously transplanted cancer 
cells exhibited an extended lifespan. They showed significant 
inhibition of local tumor growth and reduced tumor volume, 
without plasma-induced damage to the surrounding normal 
cells. In addition to direct cytotoxic effects on cancer cells, 
plasma can also stimulate immune function in vivo, which 
facilitates tumor regression [34]. It has been reported that 
plasma treatment may induce immunogenic cell death (ICD) 
in tumor cells and thus initiate specific systemic antitumor 
immune responses [35]. Moreover, plasma therapy also exhi-
bits cytotoxic effects against cells that have become resistant 
to conventional therapies, thus revealing its significant supe-
riority [14]. Plasma can selectively kill malignant cells with 
no obvious effects on normal cells if treatment duration and 
dose are appropriate; thus, cancer cells are much more vul-
nerable to plasma. The mechanisms underlying this selective 
killing are explained as follows: Cancer cells are characte-
rized by a more active metabolic status, resulting in higher 
basal ROS and RNS levels and making these cells more su-
sceptible to the oxidative stress added by plasma [14]. It has 
recently been shown that cancer cells tend to express more 
aquaporins (AQPs), thereby facilitating ROS transmembrane 
diffusion. This may be a plausible mechanism for the signi-
ficant and selective increase in intracellular ROS in cancer 
cells [36]. Moreover, plasma appears to primarily affect cells 
in the DNA replication phase, which is the case for a large 
percentage of cancer cells [15]. In a clinical study, patients 
with squamous cell carcinoma of the head/neck region sho-
wed improvement in cancerous ulcerations and a reduction in 
tumor proliferation after plasma treatment [37]. The synergi-
stic effects achieved by combining plasma and nanoparticles 
have demonstrated superior efficacy [16, 38]; this is reflected 
by increased cell death and enhanced selectivity of plasma 
in the presence of nanoparticles. In light of the above, skin 
cancers such as cutaneous squamous cell carcinoma and me-
lanoma respond favorably to plasma and may potentially be 
suitable indications.

Effects of CAP on psoriasis

Psoriasis is a chronic, relapsing, immune-mediated disease 
that primarily affects the skin and joints; there has been a 
worldwide increase in prevalence. To date, there is still no 
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therapy capable of curing or completely controlling the con-
dition. Key pathogenetic events in psoriatic lesions include 
aberrant terminal differentiation and hyperproliferation of 
epidermal keratinocytes, marked inflammatory infiltration, 
and pathological angiogenesis [39]. The excessive growth 
of keratinocytes in psoriatic lesions is similar to the cha-
racteristic malignant proliferation of tumor cells. The suc-
cess of plasma therapy in cancer suggests its potential role 
in the treatment of psoriasis. The assumption that plasma 
may be a therapeutic option for psoriasis is primarily based 
on three considerations: First, plasma can be directly irra-
diated on skin lesions in a manner similar to phototherapy, 
with both regimens known to induce ROS [40]. In addition, 
they both inhibit hyperproliferation and induce apoptosis in 
lesional epidermis resulting in the resolution and clearance 
of plaques. Cell culture experiments have demonstrated that 
long-term treatment can induce cell cycle arrest and apopto-
sis of HaCaT keratinocytes [18, 41]. Besides, downregulation 
of the expression of surface molecules, such as E-cadherin 
and epidermal growth factor receptor (EGFR), decreases 
the stimulatory and proliferative effects of inflammatory 
cytokines [42]. Secondly, there is evidence supporting the 
notion that ROS/RNS possess immune-regulatory proper-
ties and play a protective role in immune-mediated inflam-
matory diseases [43]. It has been shown that ROS improve 
imiquimod-induced psoriasis in a murine model and enhance 
regulatory T-cell function. In addition, high exogenous levels 
of NO from plasma have antiproliferative effects and play 
an important role in the resolution of chronic inflammato-
ry processes [43]. Thirdly, psoriatic skin is characterized by 
strong AQP3 expression, similar to cancer cells, which pro-
motes transmembrane diffusion of active agents contained in 
plasma, thus facilitating their selective action [44]. Further-
more, clinical trials have found that plasma treatment inhi-
bits inflammatory infiltration and angiogenesis in psoriatic 
lesions [19].

Effects of CAP on atopic dermatitis

Atopic dermatitis (AD) is a common inflammatory skin di-
sease, characterized by a chronic relapsing and remitting 
course and associated with severe pruritus. Various factors 
are thought to be involved in the pathogenesis, including 
genetic background, impaired skin barrier, immune system 
imbalance, and microbial superantigens [45].

The skin of AD patients is either colonized with patho-
genic or potentially pathogenic microorganisms, or shows 
an imbalance in the microbial community, which can trig-
ger or aggravate the disease [45]. Within minutes after plas-
ma treatment, there is a significant reduction in S. aureus 
colonization; other effects include marked improvement in 
erythema and pruritus [3]. Recently, a mouse model of atopic 

dermatitis induced by 2,4-dinitrochlorobenzene (DNCB) 
showed a good therapeutic response to plasma [46]. These 
promising results favor CAP as an outstanding therapeutic 
option for AD patients.

Effects of CAP on pruritus

An unpleasant sensation, pruritus is a common symptom 
associated with various dermatological and systemic disea-
ses that frequently fails to respond to treatment [47]. Plas-
ma treatment has been reported to have beneficial effects on 
pruritus in AD. It has been suggested that some pruritic der-
matoses may be aggravated by the colonization of pathogenic 
microorganisms. For instance, in AD and prurigo nodularis 
patients, S. aureus can induce increased expression of IL-31, 
which exacerbates the pruritic reaction mediated by IL-31 
receptors [48, 49]. Through its bactericidal effects, plasma 
thus contributes to reducing the pruritus caused by pathoge-
nic microorganisms [3].

Ultraviolet B (UVB) phototherapy is commonly used to 
treat pruritus. Although the intensity of UVB radiation and 
its spectral composition depend on the plasma source, the 
latter can be designed to increase UVB radiation in order to 
achieve the desired antipruritic effects. Even though a pros-
pective, randomized controlled clinical trial showed no gre-
ater reduction in pruritus following plasma treatment, the 
marked potential of antipruritic plasma therapy should not 
be denied. Considering that the study was self-controlled and 
that possible systemic antipruritic effects of plasma cannot 
be ruled out, it remains to be seen whether its therapeutic 
effects are insignificant or not [17].

Others

The bactericidal and fungicidal effects of plasma indicate its 
possible benefit in bacterial and fungal skin diseases, inclu-
ding folliculitis, impetigo, acne, onychomycosis, and tinea 
pedis [3]. Given that plasma can inactivate promastigotes of 
Leishmania major, it may also be a potential therapeutic op-
tion for cutaneous leishmaniasis. Treatment of Hailey-Hailey 
disease has also been reported [7].

Conclusions

CAP has been shown to be successful in various medical ap-
plications. Using a suitable plasma source, the desired pur-
pose of plasma therapy – bactericidal and fungicidal effects, 
regulation of cell functions, or induction of apoptosis – can 
be achieved for various diseases, as shown in Figure 2. As the 
outermost organ of the body, the skin is amenable to plas-
ma treatment. Plasma can be directly applied to skin lesions, 
providing immediate therapeutic effects. It also enhances the 
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penetration of transcutaneous substances, thereby avoiding 
the side effects associated with systemic medications. Recent-
ly, micron-sized plasma devices have been investigated, which 
can be utilized inside the body in a manner similar to PAM. 
Both achieve effects equivalent to CAP. Micron-sized plasma 
devices can be inserted into lesions or body cavities, where 
they have been shown to exhibit improved infiltrating capa-
bility and to destroy metastatic tumor cells. All of the above 
shows that plasma treatment holds enormous application and 
development prospects.

Although there has been considerable progress in the 
understanding of the biological effects induced by plasma 
(dominated by ROS and RNS), the precise molecular mecha-
nisms underlying these effects still required further research. 
In addition, only Mann et al. have described obligatory basic 

criteria for different CAP sources intended for medical ap-
plication. Currently, there is no standardized set of technical 
data for different plasma sources. Various plasma devices 
from different laboratories use a diverse array of discharge 
parameters and use active agents of various composition 
and concentration [50]. This hampers the transferability of 
results as well as the comparison of research conducted by 
different groups. In the future, there will be a great need for 
more controllable therapeutic strategies, larger clinical trials, 
and confirmation of long-term biological safety.
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