


**Continue**

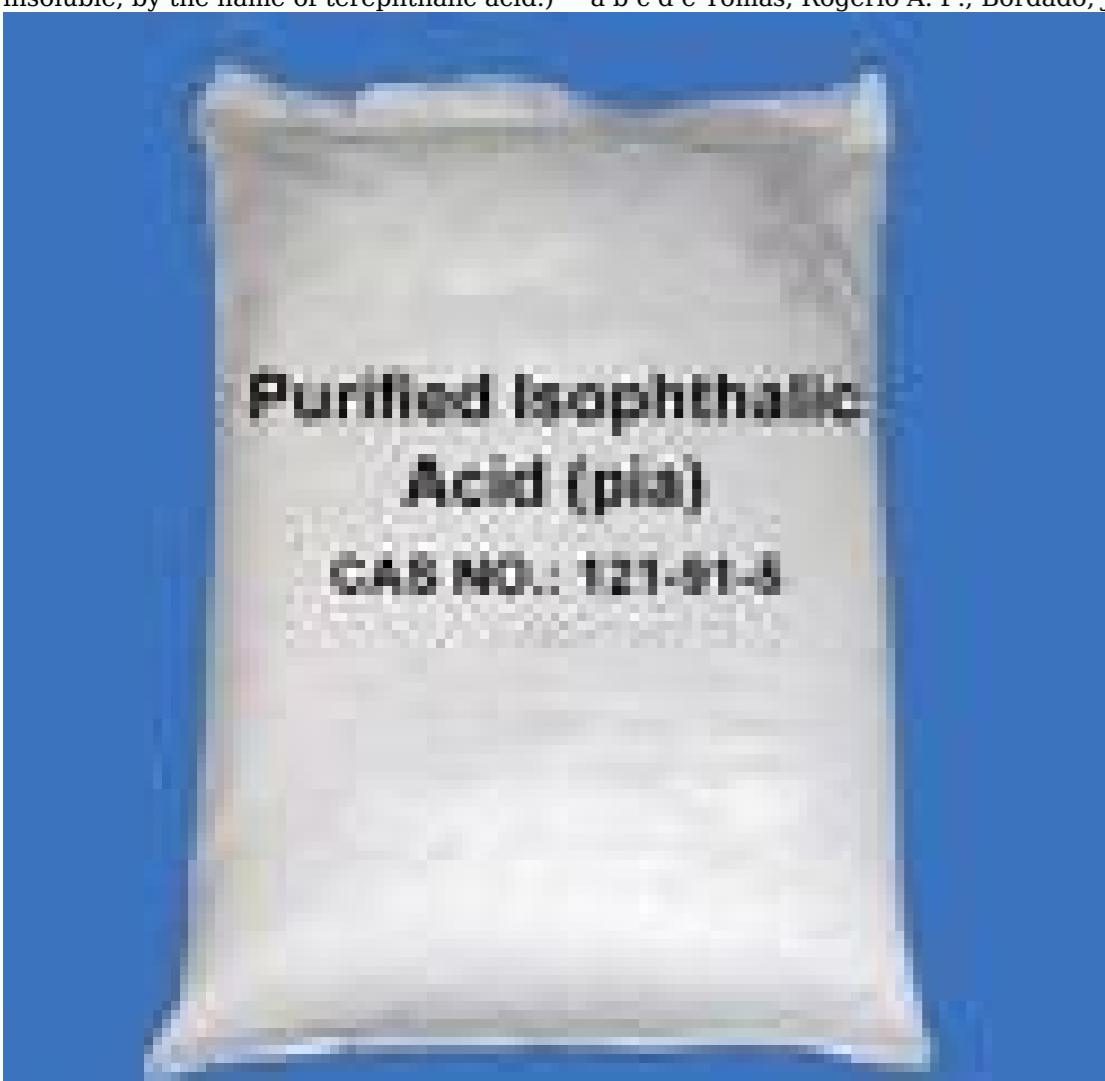
## Terephthalic acid production pdf

### Terephthalic acid derivatives. Terephthalic acid ph. Terephthalic acid producers. Terephthalic acid structural formula.

Download PDF Abstract: Aqueous hydrolysis is used to chemically recycle polyethylene terephthalate (PET) due to the production of high-quality terephthalic acid (TPA), the PET monomer. PET hydrolysis depends on various reaction conditions including PET size, catalyst concentration, reaction temperature, etc. So, modeling PET hydrolysis by considering the effective factors can provide useful information for material scientists to specify how to design and run these reactions. It will save time, energy, and materials by optimizing the hydrolysis conditions. Machine learning algorithms enable to design models to predict output results. For the first time, 381 experimental data were gathered to model the aqueous hydrolysis of PET. Effective reaction conditions on PET hydrolysis were connected to TPA yield. The logistic regression was applied to rank the reaction conditions. Two algorithms were proposed, artificial neural network multilayer perceptron (ANN-MLP) and adaptive network-based fuzzy inference system (ANFIS). The dataset was divided into training and testing sets to train and test the models, respectively. The models predicted TPA yield sufficiently where the ANFIS model outperformed. R-squared (R<sup>2</sup>) and Root Mean Square Error (RMSE) loss functions were employed to measure the efficiency of the models and evaluate their performance. From: Hossein Abedolsoltan [view email] (v1) Sat, 29 Jan 2022 20:51:36 UTC (1,266 KB) Terephthalic acid Names Preferred IUPAC name Benzene-1,4-dicarboxylic acidpara-Phthalic acid[PTAPA BDC Identifiers CAS Number 100-21-0 Y 3D model (3mol) Interactive image 3DMet B00943 Beilstein Reference 1909333 ChEBI CHEBI:15702 Y CHEMBL CHEMBL1374420 ChemSpider 7208 Y ECHA InfoCard 100-002-573 EC Number 202-830-0 Gmelin Reference 50561 KEGG C06337 PubChem CID 7489 RTECS number WZ0875000 UNII 657KZ40BQ N CompTox Dashboard (EPA) DTIXSID6026080 InChI InChI=1S/C8H6O4/c9-7(10)5-1-2-6(4-3-5)8(11)2/h1-4H,(H,9,10) (H,11,12)Key: KKEYFWRCBN1PAC-UHF2FAOYAF SMILES O=C(O)c1ccc(C(=O)=O)cc1 Properties Chemical formula C8H6O4 Molar mass 166.132 g·mol<sup>-1</sup> Appearance White crystals or powder Density 1.519 g/cm<sup>3</sup>[1] Melting point 300 °C (572 °F; 573 K) Sublimes[1] Boiling point Decomposes Solubility in water 0.065 g/L at 25 °C[2] Solubility polar organic solvents aqueous base Acidity (pKa) 3.54, 4.34[3] Magnetic susceptibility (χ) -83.5 × 10<sup>-6</sup> cm<sup>3</sup>/mol[4] Structure Dipole moment 2.6D [5] Thermochemistry[6] Std enthalpy of formation (ΔH<sub>298</sub>) -816.1 kJ/mol Hazards GHS labelling: Pictograms Signal word Warning Hazard statements H315, H319, H335 Precautionary statements P261, P264, P271, P280, P302+P352, P304+P340, P305+P351+P338, P312, P321, P322+P313, P362, P403+P233, P405, P501 Flash point 260 °C (500 °F; 533 K)[9] Autoignition temperature 496 °C (925 °F; 769 K)[9] Threshold limit value (TLV) 10 mg/m<sup>3</sup>[7] (STEL) Lethal dose or concentration (LD, LC): LD50 (median dose) >1 g/kg (oral, mouse)[8] Safety data sheet (SDS) MSDS sheet Related compounds Related carboxylic acids Phthalic acid Isophthalic acid Benzoic acid p-Toluic acid Related compounds p-Xylene Polyethylene terephthalate Dimethyl terephthalate Supplementary data page Terephthalic acid (data page) Except where otherwise noted, data are given for materials in their standard state (at 25 °C (77 °F), 100 kPa, N<sub>2</sub> vent). What is YN? Infobox references Chemical compound Terephthalic acid is an organic compound with formula C<sub>8</sub>H<sub>6</sub>O<sub>4</sub>. This white solid is a commodity chemical, used principally as a precursor to the polyester PET, used to make clothing and plastic bottles. Several million tons are produced annually.[8] The common name is derived from the turpentine-producing tree *Pistacia terebinthus* and phthalic acid. History Terephthalic acid was first isolated (from turpentine) by the French chemist Amédée Cailliot (1805–1884) in 1846.[10] Terephthalic acid became industrially important after World War II. Terephthalic acid was produced by oxidatively p-xylene with dilute nitric acid. Air oxidation of p-xylene gives p-toluic acid, which resists further air-oxidation. Conversion of p-toluic acid to methyl p-toluate (CH<sub>3</sub>CO<sub>2</sub>CH<sub>3</sub>) opens the way for further oxidation to monomethyl terephthalate, which is further esterified to dimethyl terephthalate. In 1955, Mid-Century Corporation and ICI announced the bromide-promoted oxidation of p-toluic acid to terephthalic acid. This innovation enabled the conversion of p-xylene to terephthalic acid without the need to isolate intermediates.



Amoco (as Standard Oil of Indiana) purchased the Mid-Century/ICI technology.[11] Synthesis Amoco process In the Amoco process, which is widely adopted worldwide, terephthalic acid is produced by catalytic oxidation of p-xylene.[11] The process uses a cobalt-manganese-bromide catalyst. The bromide source can be sodium bromide, hydrogen bromide or tetrabromoethane. Bromine functions as a regenerative source of free radicals. Acetic acid is the solvent and compressed air serves as the oxidant. The combination of bromine and acetic acid is highly corrosive, requiring specialized reactors, such as those lined with titanium. A mixture of p-xylene, acetic acid, the catalyst system, and compressed air is fed to a reactor.




Mechanism The oxidation of p-xylene proceeds by a free radical process. Bromine radicals decompose cobalt and manganese hydroperoxides. The resulting oxygen-based radicals abstract hydrogen from a methyl group, which have weaker C-H bonds than does the aromatic ring. Many intermediates have been isolated. p-xylene is converted to p-toluic acid, which is less reactive than the p-xylene owing to the influence of the electron-withdrawing carboxylic acid group. Incomplete oxidation produces 4-carboxybenzaldehyde (4-CBA), which is often a problematic impurity.[11][12][13] Challenges Approximately 5% of the acetic acid solvent is lost by decomposition or "burning". Product loss by decarboxylation to benzoic acid is common. The high temperature diminishes oxygen solubility in an already oxygen-starved system. Pure oxygen cannot be used in the traditional system due to hazards of flammable organic-O<sub>2</sub> mixtures. Atmospheric air can be used in its place, but once reacted needs to be purified of toxins and ozone depleters such as methylbromide before being released. Additionally, the corrosive nature of bromides at high temperatures requires the reaction be run in expensive titanium reactors.[14][15] Alternative reaction media The use of carbon dioxide overcomes many of the problems with the original industrial process. Because CO<sub>2</sub> is a better flame inhibitor than N<sub>2</sub>, a CO<sub>2</sub> environment allows for the use of pure oxygen directly, instead of air, with reduced flammability hazards. The solubility of molecular oxygen in solution is also enhanced in the CO<sub>2</sub> environment. Because more oxygen is available to the system, supercritical carbon dioxide (Tc = 31 °C) has more complete oxidation with fewer byproducts, lower carbon monoxide production, less decarboxylation and higher purity than the commercial process.[14][15] In supercritical water medium, the oxidation can be effectively catalyzed by MnBr<sub>2</sub> with pure O<sub>2</sub> in a medium-high temperature. Use of supercritical water instead of acetic acid as a solvent diminishes environmental impact and offers a cost advantage. However, the scope of such reaction systems is limited by the even harsher conditions than the industrial process (300–400 °C, >200 bar).[16] Promoters and additives As with any large-scale process, many additives have been investigated for potential beneficial effects. Promising results have been reported with the following.[11] Ketones act as promoters for formation of the active cobalt(III) catalyst. In particular, ketones with α-methylene groups oxidize to hydroperoxides that are known to oxidize cobalt(II). 2-Butanone is often used. Zirconium salts enhance the activity of Co-Mn-Br catalysts. Selectivity is also improved.[11] N-Hydroxyphthalimide is a potential replacement for bromide, which is highly corrosive. The phthalimide function by formation of the oxyl radical. Guanidine inhibits the oxidation of the first methyl but enhances the usually slow oxidation of the toluic acid. Alternative routes Terephthalic acid can be prepared in the laboratory by oxidizing many para-disubstituted derivatives of benzene, including caraway oil or a mixture of cymene and cuminol with chromic acid. Although not commercially significant, there is also so-called "H" process of Rauhut and Klemm after a 1906 patent filed in 1907. The process is similar to the above but uses a cobalt catalyst.

PROCESS FOR PREPARATION OF TEREPHTHALIC ACID  
By  
Kelly Knight Miller

A THESIS  
Submitted to  
Michigan State University  
in partial fulfillment of the requirements  
for the degree of  
Chemistry - Master of Science  
2015

16.42 ^ a b c d Sheehan, Richard J.  
"Terephthalic Acid, Dimethyl Terephthalate, and Isophthalic Acid". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a26\_193. ^ a b Haynes, p.  
16.29 ^ Cailliot, Amédée (1847). "Etudes sur l'essence de térbenthine" [Studies of the essence of turpentine]. Annales de Chimie et de Physique. Série 3. 21: 27–40. Terephthalic acid is named on p. 29: "Je désignerai le premier de ces acides, celui qui est insoluble, sous le nom d'acide téréphthalique." (I will designate the first of these acids, which is insoluble, by the name of terephthalic acid.) ^ a b c d e Tomás, Rogério A. F.; Bordado, João C. M.; Gomes, João F. P. (2013).



"p-Xylene Oxidation to Terephthalic Acid: A Literature Review Oriented toward Process Optimization and Development". Chemical Reviews. 113 (10): 7421–69. doi:10.1021/cr300298j. PMID 23767849. ^ Wang, Qinbo; Cheng, Youwei; Wang, Lijun; Li, Xi (2007). "Semicontinuous Studies on the Reaction Mechanism and Kinetics for the Liquid-Phase Oxidation of p-Xylene to Terephthalic Acid". Industrial & Engineering Chemistry Research. 46 (26): 8980–8992. doi:10.1021/ie0615584. ^ Xiao, Y.; Luo, W.-P.; Zhang, X.-Y.; et al. (2010). "Aerobic Oxidation of p-Toluic Acid to Terephthalic Acid over T(p-C)PPMnCl/Co(OAc)<sub>2</sub> Under Moderate Conditions". Catalysis Letters. 134 (1–2): 155–161.

|                                                           |    |
|-----------------------------------------------------------|----|
| 5.6.1. Furanic Acid Derivatives                           | AE |
| 5.6.2. Benzophenone and Benzic Acid Derivatives           | AF |
| 5.6.3. Phenylbenzimidazole Derivatives                    | AG |
| 5.6.4. Phenol Derivatives                                 | AH |
| 5.6.5. Phenylbenzene Derivatives                          | AI |
| 5.6.6. Phenol Derivatives                                 | AH |
| 5.6.7. Catalyst Description                               | AH |
| 6. Operational Optimization Studies                       | AI |
| 7.1. Oxidation of p-Xylene to Terephthalic Acid Synthesis | AL |
| 7.2. Oxidation in Sub- and Supercritical Water            | AL |
| 7.3. Alternative Catalyst Systems and Co-catalysts        | AM |
| 7.4. Carbon Dioxide Use as Co-oxidant                     | AO |
| 7.5. 2,2,2-Triethylhexyl Phosphonium Iodide               | AP |
| 7.6. Heterogeneous Systems                                | AS |
| 7.7. Associated Content                                   | AT |
| 7.8. Author Information                                   | AT |
| 7.9. Author Information                                   | AT |
| 7.10. Notes                                               | AT |
| 7.11. Graphs                                              | AT |
| 7.12. Acknowledgments                                     | AU |
| 7.13. References                                          | AU |

In the end, p-toluic was oxidized by air to monomethyl terephthalaldehyde, which was esterified with methanol, leading to dimethyl terephthalaldehyde (DMT). It is worth highlighting that, in PET's first years, its polymers were all made from DMT. The Dynamit Nobel solution allowed researchers to overcome the resistance of p-toluic acid to oxidation but came with an increased operating cost due to the many steps required in esterification by methanol. It ended with commercialization of the AMOCO process [10,11,12] in the late 1970s. Currently, the most widespread technology for producing terephthalic acid is the Mid-Century process, which consists of the direct liquid phase catalytic oxidation of p-xylene with air in the presence of a transition-metal catalyst, usually in a homogeneous reaction medium. This process depends on the operating conditions and catalysts used (see below). The resistance of p-toluic acid to oxidation was first discovered and overcome in 1955 by the Mid-Century Corp [10,11,12] and ICI. The process was developed by Standard Oil, Indiana, and later, AMOCO, with some input from ICI. In the AMOCO process, the oxidation of p-xylene occurs in the liquid phase using acetic acid as solvent, oxygen as an oxidant, and a combination of three ions as homogeneous catalysts: cobalt, bromide, and manganese. The reactor operates at temperatures of ca. 175–225 °C and at pressures of 15–30 bar. The metallic ion source can be obtained from various salts of cobalt and manganese, preferably the acetate metal salts, while hydrobromic acid, sodium bromide, or tetrabromomethane can be used as a bromide ion source. It is preferable to use the first option. During the reaction, the terephthalic acid that is formed ends up in a solid form due to its low solubility in acetic acid. Overall, the reaction achieves conversion of more than 98% of p-xylene with ca. 95% selectivity towards terephthalic acid between 8 and 24 h. Although high conversion and selectivity are obtained, the pure terephthalic acid should not have more than 25 ppm of 4-carboxybenzaldehyde (4-CBA); therefore, purification of the crude terephthalic acid must be performed after the reaction, by dissolving the crude terephthalic acid in hot water in the presence of a palladium catalyst, to reduce the 4-CBA to p-toluic acid [13]. The last intensive review of this topic was published in 2013, and since then, several important studies and reports have been published throughout the years [14]. Therefore, this review will summarize the new advances that have emerged since 2014. The use of biomass as a source for chemical production is a "hot topic" and has been the subject of study and review in recent years: While the reaction conditions are substantially cleaner, avoiding the use of bromides and acetic acid, the pathway is long, including several different reactions [15,16]. Another major feature is the availability of pure p-xylene from the other isomers. As demonstrated by Wang et al. [17], the production of p-xylene is still a challenge. Most catalytic systems tend to perform poorly when applied to the other isomers, and there is also a need to address the difficulty of separation [18]. A final major positive point is the possibility of bypassing toluic acid during synthesis, one of the hardest compounds to oxidize during the process. The liquid phase oxidation of p-xylene is very promising. As described above, the AMOCO process is a homogeneous catalytic system that, despite having excellent yields, utilizes acetic acid as a solvent and bromide compounds, such as hydrobromic acid (HBr) or sodium bromide (NaBr); this creates a hazardous reaction environment that is highly corrosive, and bromide compounds are not only non-environmentally friendly, but also harmful and dangerous to health. Therefore, research has been conducted to discover new catalytic systems that are less corrosive and more environmentally friendly for the oxidation of p-xylene.

To better understand the developments that took place before this review, these articles summarize what has been published in the field of the homogeneous catalysis of p-xylene [1,14,19]. In 2014, Plekhotov et al. [20] studied the possibility of oxidizing p-xylene to terephthalic acid using molecular oxygen as an oxidant with acetate salts of cobalt(II) and manganese(II) as the presence of N-hydroxyphthalimide (NHPI), and using acetic acid as a solvent. As reported before, the catalytic systems of NHPI-Co(II) have a good synergistic effect; it is therefore interesting to study this reaction. Without Mn(II)'s presence, the reaction performed at 65 °C for 3 h led only to the intermediate products p-toluicaldehyde and p-toluic acid. However, the initial reaction rate and conversion were higher than when the reaction was performed in the presence of a cobalt(II) and manganese(II) bromide salt catalysts. Upon adding manganese acetate as a catalyst, the authors observed a slight increase in conversion (35–40%), selectivity for p-toluic acid (85–89%), and oxidation rate (4.1–4.6 mol·L<sup>-1</sup>·h<sup>-1</sup>). Since p-toluic acid is known to have an electron withdrawal effect on the methyl group at the p-position, Plekhotov tested the same system at 90 °C for the oxidation of p-toluic acid, where similar conversion was obtained when compared to the oxidation of p-xylene [20]. Over 3 h, with the selectivity of terephthalic acid of 93%, later at 100 °C with a new cobalt(II) azo-dyed dihydronaphthalene complex (Co(II)-DHN) [21]. The oxidation reaction occurred in the presence of air, formed on a long-term basis, obtaining a high conversion of 95% with a selectivity of 98% and a conversion time of 10 h. Interestingly, this type of catalyst is extremely promising, obtaining a high conversion of 98% with a selectivity of 95%.

Wang et al. [22] reported the production of p-xylene and terephthalic acid through the bio-based conversion of isoprene and acrolein. During the process of the production of p-xylene, an oxidized product was obtained: 4-methylbenzaldehyde. Since this "by-product" is part of the reaction route of producing terephthalic acid, its oxidation was investigated. The reaction could have been performed using KMnO<sub>4</sub>, but due to its toxicity and environmental impact, an alternative path was taken. In 2016, Mendes et al. [23] reported the use of an iron(II)-C-scorpionate complex (Figure 3) for the oxidation of p-xylene at low temperatures and in the presence of 30% H<sub>2</sub>O<sub>2</sub>. The most impressive result occurred with 10 pmol of catalyst in acetonitrile, nitric acid in a ratio [n(acid)/n(catalyst)] of 10, at 35 °C. After only 5 min, a total yield of 21.8% of oxygenated products, representing a TOF of 1.3 × 10<sup>2</sup> h<sup>-1</sup>, was formed. However, the main product was p-toluicaldehyde, far from the last oxidation product of TPA (see Scheme 2). The presence of nitric acid improved the reaction yield of the aldehyde formation, but the highest value was found for p-xylene, probably due to steric limitations that can exist with the ortho- and meta- positions.

The mechanism for the reaction with this type of catalyst is thought to be a free-radical mechanism due to the monofunctional product and lack of ring hydroxylation (Scheme 2).

The changes in the oxidation state of the metal center (+2/+3) detected by XPS also supports the authors' hypothesis. Inspired by enzymes such as methane monoxygenase and toluene 4-monooxygenase. Antunes and co-workers [24] reported non-heme iron(III) complexes bearing bis-(2-pyridylmethyl)amine (BMPA) and derivatives (Figure 4) as catalysts for the selective oxidation of aromatic compounds by H<sub>2</sub>O<sub>2</sub>. The authors tested the most active catalyst for the oxidation of toluene [Fe(BMPA)Cl<sub>3</sub>] with several other aromatic compounds, including p-xylene, with the following conditions: 50 °C, 24 h, 0.77 mol L<sup>-1</sup> of substrate, 7.7 × 10<sup>-3</sup> mol L<sup>-1</sup> of catalyst, and H<sub>2</sub>O<sub>2</sub> (0.77 mol L<sup>-1</sup>). The result obtained for the xylene oxidation was in line with that obtained with toluene, and the main products for both reactions were, respectively, 2,5-dimethyl-2-cyclohexen-1-one and 2-methyl-2-cyclohexen-1-one. This shows that preferable oxidation occurs on the aromatic ring instead of the methyl groups. The authors explained that such a result can be associated with the presence of hydroxyl radicals, formed via a radical mechanism through the autoxidation process with a highly electrophilic oxo-metal transient species reacting with the arene n-system. Another interesting aspect of this study is the fact that for toluene oxidation, the increase in temperature (25 to 50 °C) increased the selectivity for benzaldehyde, meaning that the selectivity for methyl oxidation increased. Since only a study at 50 °C was performed for p-xylene, it would be interesting to compare the result with lower and higher temperatures to see if the same behavior is observed. In the end, p-xylene oxidation led to a total yield of 16% with 42% selectivity for the main product, resulting from oxidation of the aromatic ring. The other complexes (Figure 4B–D) were not tested for the oxidation of p-xylene and were only tested of the oxidation of toluene, whereby the authors obtained similar or lower yields when compared to the other complex. In the same line of work, Kwong et al. reported [25] the application of the osmium(VI) nitride complex (Figure 5) for alkylbenzene oxidation in H<sub>2</sub>O<sub>2</sub> and obtained similar results. The reaction was performed at a lower temperature, 23 °C, with 6.25 mM of the catalyst, and 1.25 M of p-xylene in a mixture of CH<sub>2</sub>Cl<sub>2</sub>/CH<sub>3</sub>CO<sub>2</sub>H (5.2 v/v). After 25 min, a 98% yield was obtained, based on an induction period of 0.3 h and an oxidation time of 5 h. p-xylene conversion achieved 84.9%, with a yield of p-toluic acid of 80.2%, representing a selectivity of 94.6%. In 2016, Wang and Tong [22] reported the production of p-xylene and terephthalic acid through the bio-based conversion of isoprene and acrolein. During the process of the production of p-xylene, an oxidized product was obtained: 4-methylbenzaldehyde. Since this "by-product" is part of the reaction route of producing terephthalic acid, its oxidation was investigated. The reaction could have been performed using KMnO<sub>4</sub>, but due to its toxicity and environmental impact, an alternative path was taken. In 2016, Mendes et al. [23] reported the use of an iron(II)-C-scorpionate complex (Figure 3) for the oxidation of p-xylene at low temperatures and in the presence of 30% H<sub>2</sub>O<sub>2</sub>. The most impressive result occurred with 10 pmol of catalyst in acetonitrile, nitric acid in a ratio [n(acid)/n(catalyst)] of 10, at 35 °C. After only 5 min, a total yield of 21.8% of oxygenated products, representing a TOF of 1.3 × 10<sup>2</sup> h<sup>-1</sup>, was formed. However, the main product was p-toluicaldehyde, far from the last oxidation product of TPA (see Scheme 2). The presence of nitric acid improved the reaction yield of the aldehyde formation, but the highest value was found for p-xylene, probably due to steric limitations that can exist with the ortho- and meta- positions.

The mechanism for the reaction with this type of catalyst is thought to be a free-radical mechanism due to the monofunctional product and lack of ring hydroxylation (Scheme 2).

The changes in the oxidation state of the metal center (+2/+3) detected by XPS also supports the authors' hypothesis. Inspired by enzymes such as methane monoxygenase and toluene 4-monooxygenase. Antunes and co-workers [24] reported non-heme iron(III) complexes bearing bis-(2-pyridylmethyl)amine (BMPA) and derivatives (Figure 4) as catalysts for the selective oxidation of aromatic compounds by H<sub>2</sub>O<sub>2</sub>. The authors tested the most active catalyst for the oxidation of toluene [Fe(BMPA)Cl<sub>3</sub>] with several other aromatic compounds, including p-xylene, with the following conditions: 50 °C, 24 h, 0.77 mol L<sup>-1</sup> of substrate, 7.7 × 10<sup>-3</sup> mol L<sup>-1</sup> of catalyst, and H<sub>2</sub>O<sub>2</sub> (0.77 mol L<sup>-1</sup>). The result obtained for the xylene oxidation was in line with that obtained with toluene, and the main products for both reactions were, respectively, 2,5-dimethyl-2-cyclohexen-1-one and 2-methyl-2-cyclohexen-1-one. This shows that preferable oxidation occurs on the aromatic ring instead of the methyl groups. The authors explained that such a result can be associated with the presence of hydroxyl radicals, formed via a radical mechanism through the autoxidation process with a highly electrophilic oxo-metal transient species reacting with the arene n-system. Another interesting aspect of this study is the fact that for toluene oxidation, the increase in temperature (25 to 50 °C) increased the selectivity for benzaldehyde, meaning that the selectivity for methyl oxidation increased. Since only a study at 50 °C was performed for p-xylene, it would be interesting to compare the result with lower and higher temperatures to see if the same behavior is observed. In the end, p-xylene oxidation led to a total yield of 16% with 42% selectivity for the main product, resulting from oxidation of the aromatic ring. The other complexes (Figure 4B–D) were not tested for the oxidation of p-xylene and were only tested of the oxidation of toluene, whereby the authors obtained similar or lower yields when compared to the other complex. In the same line of work, Kwong et al. reported [25] the application of the osmium(VI) nitride complex (Figure 5) for alkylbenzene oxidation in H<sub>2</sub>O<sub>2</sub> and obtained similar results. The reaction was performed at a lower temperature, 23 °C, with 6.25 mM of the catalyst, and 1.25 M of p-xylene in a mixture of CH<sub>2</sub>Cl<sub>2</sub>/CH<sub>3</sub>CO<sub>2</sub>H (5.2 v/v). After 25 min, a 98% yield was obtained, based on an induction period of 0.3 h and an oxidation time of 5 h. p-xylene conversion achieved 84.9%, with a yield of p-toluic acid of 80.2%, representing a selectivity of 94.6%. In 2016, Wang and Tong [22] reported the production of p-xylene and terephthalic acid through the bio-based conversion of isoprene and acrolein. During the process of the production of p-xylene, an oxidized product was obtained: 4-methylbenzaldehyde. Since this "by-product" is part of the reaction route of producing terephthalic acid, its oxidation was investigated. The reaction could have been performed using KMnO<sub>4</sub>, but due to its toxicity and environmental impact, an alternative path was taken. In 2016, Mendes et al. [23] reported the use of an iron(II)-C-scorpionate complex (Figure 3) for the oxidation of p-xylene at low temperatures and in the presence of 30% H<sub>2</sub>O<sub>2</sub>. The most impressive result occurred with 10 pmol of catalyst in acetonitrile, nitric acid in a ratio [n(acid)/n(catalyst)] of 10, at 35 °C. After only 5 min, a total yield of 21.8% of oxygenated products, representing a TOF of 1.3 × 10<sup>2</sup> h<sup>-1</sup>, was formed. However, the main product was p-toluicaldehyde, far from the last oxidation product of TPA (see Scheme 2). The presence of nitric acid improved the reaction yield of the aldehyde formation, but the highest value was found for p-xylene, probably due to steric limitations that can exist with the ortho- and meta- positions.

The mechanism for the reaction with this type of catalyst is thought to be a free-radical mechanism due to the monofunctional product and lack of ring hydroxylation (Scheme 2).

The changes in the oxidation state of the metal center (+2/+3) detected by XPS also supports the authors' hypothesis. Inspired by enzymes such as methane monoxygenase and toluene 4-monooxygenase. Antunes and co-workers [24] reported non-heme iron(III) complexes bearing bis-(2-pyridylmethyl)amine (BMPA) and derivatives (Figure 4) as catalysts for the selective oxidation of aromatic compounds by H<sub>2</sub>O<sub>2</sub>. The authors tested the most active catalyst for the oxidation of toluene [Fe(BMPA)Cl<sub>3</sub>] with several other aromatic compounds, including p-xylene, with the following conditions: 50 °C, 24 h, 0.77 mol L<sup>-1</sup> of substrate, 7.7 × 10<sup>-3</sup> mol L<sup>-1</sup> of catalyst, and H<sub>2</sub>O<sub>2</sub> (0.77 mol L<sup>-1</sup>). The result obtained for the xylene oxidation was in line with that obtained with toluene, and the main products for both reactions were, respectively, 2,5-dimethyl-2-cyclohexen-1-one and 2-methyl-2-cyclohexen-1-one. This shows that preferable oxidation occurs on the aromatic ring instead of the methyl groups. The authors explained that such a result can be associated with the presence of hydroxyl radicals, formed via a radical mechanism through the autoxidation process with a highly electrophilic oxo-metal transient species reacting with the arene n-system.

reactor were used: an opposed-flow reactor and a tubular reactor, depicted in Figure 12. The opposed-flow reactor consists of a PX pipe that is concentric with the catalyst pipe, and both point upwards, where they meet the downward flowing stream of heated H<sub>2</sub>O + O<sub>2</sub>. All reactants should be efficiently mixed in the middle section of the reactor, after which they flow upwards to the outer section (concentric tube configuration) until the NaOH quench. In the tubular reactor, all reactants and solvents are mixed at the top of the reactor, which then lets the mixture flow downwards, where the NaOH quench solution is rapidly cooled at the bottom. The residence times for the opposed-flow reactor were not calculated accurately, but the authors considered that they should be around 2.3–3.3 s at 380 °C and 7.4–11.9 s at 330 °C, whereas in the tubular reactor, they were 5.8 s at 380 °C and 19.2 s at 330 °C. The opposed-flow showed, at first, that at 330 °C, the extension of the reaction was very small, mainly due to the low activity of the catalyst. When the temperature was increased to 380 °C, the production of TPA increased, but an interesting result was obtained. Changing the retention time did not alter the yield obtained of TPA, which was constant even when it was decreased by a factor of 2. As explained by the authors, this suggests that most of the product is formed at the beginning of the reaction alongside the intermediates, which will later burn or decompose. An important factor alongside geometry is the mixing of the reactants and the catalyst, for which it has been reported that efficient mixing tends to provide a high rate of reaction. Since the opposed-flow reactor already achieves efficient mixing and is not suited to alterations, a tubular reactor was used to test the importance of this parameter. Therefore, four different reactors, with different entrances of the reactants (without and with different T-pieces) and fed a biphasic mixture, were tested with different mixing efficiencies. The results confirmed the theory that the reactor where the mixing was the best achieved the highest reactor of TPA when compared with the others (90% vs. 30%).

Upon comparing the different reactors, the tubular with the best mixing achieved higher TPA selectivity with lower CO<sub>2</sub> yield when compared with the opposed-flow reactor despite achieving similar selectivity, as a high increase in CO<sub>2</sub> is associated with this type of reactor [74]. Subramaniam and his co-workers simulated a greener spray process to produce TPA and compared it to the conventional AMOCO process. Economic analysis and life cycle assessment were conducted, and comparisons drawn between the two processes. The AMOCO process is a well-known process and is described in the introduction of this review. The spray process simulated by the authors consisted of a spray reactor in which the liquid phase, containing dissolved PX, and the catalyst (the same as in the AMOCO process) in acetone, are dispersed as fine droplets via a nozzle into a vapor phase containing O<sub>2</sub>. This reactor operates at 200 °C and 15 bar pressure, and the resulting stream is later sent to a three-stage crystallizer, a centrifuge, and a dryer, producing a high-purity TPA in one step (<25 ppm 4-CBA and <5 ppm TA) and avoiding the need for a later purification unit. The off-gas unit is similar to the one in the AMOCO process. The economic evaluation of both systems, including the variations of the spray process with various amounts of acetic acid in the feed, revealed (with the cost adjusted to June 2012) that the spray process is 20% of the equivalent plant to the conventional spray reactor, which is equivalent to the cost of the spray process. In the spray process, the cost of the catalyst is around 10 times higher compared to the AMOCO and a similar plant at its lowest, an investment of USD 241 million and USD 136 million, respectively, would be required, representing 90% and 45% of the investment necessary to implement the AMOCO process. This difference is mainly due to the more efficient hydrodynamic action in the spray process. The environmental analysis and simulations showed that when comparing the VOC emissions of a real BP plant with the emissions of this process, the latter produces half the emissions reported by BP. It is also important to note that the major contributor, which is not reported in the TRIR data, is acetic acid, which represents 40 times more emissions than methanol. In terms of CO<sub>2</sub> emissions, the spray process with the same acetic acid input emits only 23% compared to the AMOCO process, and this value increases up to 91% when the acetic acid input increases 10 times more. In the end, the overall spray process has been proven to provide both economic and environmental benefits when compared to the AMOCO process [75]. For almost 10 years, several developments in the oxidation of p-xylene have been reported with catalytic systems, homogeneous or heterogeneous, that could change the industrial process and make it greener. Homogeneous systems apply several times the catalysts and/or conditions of the AMOCO process, while other systems provide other changes such as the presence of metal catalysts, the absence of acetic acid, the application of green oxidants, or even the use of ozone. Typically, the systems are not strong enough to achieve full oxidation from p-xylene to TPA, and have toolic acid as a stop product. Heterogeneous systems tend to necessitate a higher input of energy but can achieve a longer oxidation chain when starting with p-xylene, but they also have a high stopping point for toolic acid. Overall, homogeneous systems tend to be able to convert with less energy input but with no possibility of reusability, while heterogeneous systems can be more sustainable in terms of catalyst reuse. Nevertheless, most of the systems suffer from the same challenge: the oxidation of p-toluic acid. One of the biggest challenges in the process of p-xylene oxidation to TPA (Scheme 1) is the activation of p-toluic acid. Not only does it have low solubility in some solvents, decrease the possibility of conversion into further oxidized products, but the electronic withdrawal effect on the aromatic ring also leads to high deactivation, making it hard to oxidize the second methyl group. As depicted in Scheme 1, terephthalic acid is the sixth consecutive oxidation product of p-xylene. Thus, in designing new sustainable TPA production routes, the use of green peroxides (e.g., H<sub>2</sub>O<sub>2</sub>) as oxidant agents could require an initial high concentration of such species, which could lead to inhibition of the catalyst process, including the catalyst itself, is crucial to accomplish the above aims while overcoming the highlighted issues. As reported in this work, huge developments in different synthetic strategies have been made in recent years, and further developments will come from the intense research activity devoted to reaching the sustainable oxidation of p-xylene to TPA. Writing—an original draft preparation, H.M.L.; writing—review and editing, L.M.D.R.S.M.; funding acquisition, L.M.D.R.S.M. All authors have read and agreed to the published version of the manuscript. This work was partially supported by the Fundação para a Ciência e a Tecnologia (FCT), through projects UIDB/00110/2020 and UIDP/00110/2020 of the Centro de Química Estrutural, and through project LA/P/0056/2020 of the Institute of Molecular Sciences. H.M.L. thanks the Fundação para a Ciência e a Tecnologia (FCT) for funding his PhD, grant number 2021-04926-BD. The authors declare no conflict of interest. 2,4-DMP—2,4-dimethylphenol; 2,5-DMP—2,5-dimethylphenol; 4-CBA—4-carboxybenzaldehyde; 4-CTA—crude terephthalic acid; BMIMBr—bis(2-methylimidazolium bromide; BMPA—bis(2-pyridylmethyl)amine; BTC—benzeneboroxalate; CIT—citrate treatment; DFT—density functional theory; DHMB—di-hydroxymethyl benzene; DMF—dimethylformamide; DMT—dimethyl terephthalate; EPR—electron paramagnetic resonance spectroscopy; HMPA—4-hydroxymethylbenzoic acid; HT—hydrothermal treatment; MCM—Mobil composition of matter; MOF—metal-organic framework; NHPI—N-hydroxypythalimide; PET—polyester terephthalate; PID—proportional-integral-derivative; PX—p-xylene; r.t.—room temperature; SC—supercritical; TA—p-toluic acid; TBHP—tert-butyl hydrogen peroxide; TOF—turnover frequency; XPS—X-ray photoelectron spectroscopy. Fadzil, N.A.M.; Rahim, M.H.A.; Maniam, G. A brief review of para-xylene oxidation to terephthalic acid as a model of primary C-H bond activation. Chin. J. Catal. 2014, 35, 1641–1652. [Google Scholar] | CrossRef|PTA market value worldwide 2015–2029 | Statista. Available online: (accessed on 14 December 2022). Global Purified Terephthalic Acid (PTA) Market to Grow to. Available online: (accessed on 14 December 2022). Purified Terephthalic Acid Market Size, Share, Trends & Forecast. Available online: (accessed on 14 December 2022). PTA global market volume 2015–2029 | Statista. Available online: (accessed on 14 December 2022). Ciamician, G.; Silber, P. Chemische Lichtwirkungen. XXII. Autoxydationen. I. Ber. Dtsch. Chem. Ges. 1912, 45, 38–43. [Google Scholar] | CrossRef|Green Version|Stephens, H.N. Oxidations in the benzene series by gaseous oxygen II. Chem. Lett. 1926, 48, 2920–2922. [Google Scholar] | CrossRef|Raghavendrachar, P.; Ramachandran, S. Liquid-Phase Catalytic Oxidation of p-Xylene. Ind. Eng. Chem. Res. 1992, 31, 453–462. [Google Scholar] | CrossRef|Sheehan, R.J. Terephthalic Acid, Dimethyl Terephthalate, and Isophthalic Acid. Ullmann's Encycl. Ind. Chem. 2011, 26, 193. [Google Scholar] | CrossRef|Saffer, A.; Barker, R.S. Preparation of Aromatic Polycarboxylic Acids. U.S. Patent 233816, 6 May 1958. [Google Scholar] | CrossRef|Saffer, A.; Barker, R.S. Process for the production of aromatic polycarboxylic acids. U.S. Patent 3776949, 31 March 1959. [Google Scholar] | CrossRef|Saffer, A.; Barker, R.S. Oxidation Chemical Process. U.S. Patent 3089906, 14 May 1963. [Google Scholar] | CrossRef|Scheirs, J.; Long, T.E. Modern Polyesters: Chemistry and Technology of Polyesters and Copolymers. John Wiley & Sons: Hoboken, NJ, USA, 2003; p. 750. [Google Scholar] | CrossRef|Tomás, R.F.; Bordado, J.C.M.; Gomes, J.F.P. p-Xylene Oxidation to Terephthalic Acid: A Literature Review Oriented toward Process Optimization and Development. Chem. Rev. 2013, 113, 7421–7469. [Google Scholar] | CrossRef|Volanti, M.; Cespi, P.; Passarini, F.; Neri, E.; Cavani, F.; Missey, P.; Fozz, D. Terephthalic acid from renewable sources: Early-stage sustainability analysis of a bio-PET precursor. Green Chem. 2019, 21, 885–896. [Google Scholar] | CrossRef|Wan, Y.; Lee, J.M. Toward Value-Added Dicarboxylic Acids from Biomass Derivatives via Thermocatalytic Conversion. ACS Catal. 2021, 11, 2524–2560. [Google Scholar] | CrossRef|Wang, D.; Zhang, J.; Dong, P.; Li, G.; Fan, X.; Yang, Y. Novel Short Process for p-Xylene Production Based on the Selectivity Intensification of Toluene Methylation with Methanol. ACS Omega 2022, 7, 1211–1222. [Google Scholar] | CrossRef|Chakinala, N.; Chakinala, A.G. Process Design Strategies to Produce p-Xylene via Toluene Methylation: A Review. Ind. Eng. Chem. Res. 2021, 60, 5331–5351. [Google Scholar] | CrossRef|Karanahov, E.A.; Maksimov, A.L.; Zolotukhina, A.V.; Vinokurov, V.A. Oxidation of p-Xylene. Russ. J. Appl. Chem. 2018, 91, 707–727. [Google Scholar] | CrossRef|Plekhanov, A.L.; Kuschik, O.V.; Opeida, I.O.; Kompaniets, M.A. Catalytic oxidation of p-xylene with molecular oxygen in the presence of N-hydroxypythalimide. Russ. J. Appl. Chem. 2014, 87, 982–985. [Google Scholar] | CrossRef|Wei, X.Y.; Wang, X.M.; Li, N.; Qin, S.Y. Synthesis, O2-binding ability and catalytic oxidation performance of cobalt(II) complexes with dihydroxamic acid functionalized N-pivot lariat ethers. Chin. Chem. Lett. 2015, 26, 100–102. [Google Scholar] | CrossRef|Wang, F.; Tong, Z. Solely Bio-Based Polyethylene Terephthalate (PET): Conversion of Bio-based Isoprene and Acrolein to p-Xylene and Terephthalic Acid. Chem. Mater. 2016, 28, 5538–5541. [Google Scholar] | CrossRef|Mendes, M.; Ribeiro, A.P.C.; Alegria, E.C.B.A.; Martins, L.M.D.R.S.; Pombiro, A.J.L. Liquid phase oxidation of xylenes catalyzed by the tripodal C-scorpionate iron(II) complex [FeC2(k3-HC)pz3]. Polyhedron 2017, 125, 151–155. [Google Scholar] | CrossRef|Silva, G.C.; Carvalho, N.M.F.; Horn, A.; Lachter, E.R.; Antunes, O.A.C. Oxidation of aromatic compounds by hydrogen peroxide catalyzed by mononuclear iron(III) complexes. J. Mol. Catal. A Chem. 2017, 426, 564–571. [Google Scholar] | CrossRef|Kwong, H.K.; Lo, P.K.; Hsiao, H.; Lau, K.C.; Tse, T.R. Highly Selective and Efficient Ring Hydroxylation of Alkylbenzenes with Hydrogen Peroxide and an Osmium(VI) Nitrito Catalyst. Angew. Chem. Int. Ed. 2017, 56, 12260–12263. [Google Scholar] | CrossRef|Lindhorst, A.C.; Schütz, J.; Netscher, T.; Bonath, W.; Kühn, F.E. Catalytic oxidation of aromatic hydrocarbons by a molecular iron–NHC complex. Catal. Sci. Technol. 2017, 7, 1902–1911. [Google Scholar] | CrossRef|Goula, K.A.; Shiramizu, M.; Lattner, J.R.; Saha, B.; Vlachos, D.G. Preparation of aromatic oxygenates for the production of terephthalic acid. Appl. Catal. A Gen. 2018, 552, 98–104. [Google Scholar] | CrossRef|Pan, H.; Li, S.; Shu, M.; Ye, Y.; Cui, Q.; Zhou, Z. P-Xylene catalytic oxidation to terephthalic acid by ozone. ScienceAsia 2018, 44, 212–217. [Google Scholar] | CrossRef|Sutradhar, M.; Roy Barman, T.; Alegria, E.C.B.A.; Guédron, P.; Alva, M.P.C.; Alva, C.M.; Kou, H.Z.; Pombiro, A.J.L. Cu(II) complexes of N-rich arylhydroxides: Magnetism and catalytic activity towards microwave-assisted oxidation of xylenes. Dalton Trans. 2019, 48, 12839–12849. [Google Scholar] | CrossRef|Zhang, Q.; Hu, H.; Wang, H.; Zhang, Z.; Chen, C. Efficient catalytic oxidation of methyl aromatic hydrocarbon with N-alkyl pyridinium salts. RSC Adv. 2019, 9, 38891–38896. [Google Scholar] | CrossRef|PubMed|Green Version|Hwang, K.C.; Sagadevan, A.; Kundu, P. The sustainable room temperature conversion of p-xylene to terephthalic acid using ozone and UV irradiation. Green Chem. 2019, 21, 6082–6088. [Google Scholar] | CrossRef|Jiang, D.; Zhang, Q.; Yang, Y.; Liu, Y.; Zhang, C.; Fu, Z. Regulating effects of anthraquinone substituents and additives in photo-catalytic oxygenation of p-xylene by molecular oxygen under visible light irradiation. Renew. Energy 2021, 174, 928–938. [Google Scholar] | CrossRef|Valange, S.; Védrine, J.C. General and Prospective Views on Oxidation Reactions in Heterogeneous Catalysts. Catalysts 2018, 8, 483. [Google Scholar] | CrossRef|Green Version|Qin, Z.-Z.; Su, T.-M.; Jiang, Y.-X.; Ji, H.-B.; Qin, W. Preparation of W-modified FeMo catalyst and its applications in the selective oxidation of p-xylene to terephthalaldehyde. Chem. Eng. J. 2014, 242, 414–421. [Google Scholar] | CrossRef|Kim, D.S.; Shin, Y.H.; Lee, Y.W. Synthesis of terephthalic acid by catalytic partial oxidation of p-xylene in supercritical carbon dioxide. Chem. Eng. Commun. 2014, 202, 78–84. [Google Scholar] | CrossRef|Mueller, R.; Li, Y.X.; Hampson, A.; Zhong, S.; Harris, C.; Marrs, C.; Rachwal, S.; Ulas, J.; Nielsen, L.; Rogers, G. Benzoxazinones as potent positive allosteric AMPA receptor modulators: Part I. Bioorg. Med. Chem. Lett. 2011, 21, 3923–3926. [Google Scholar] | CrossRef|PubMed|Hehir, N.L.; Kim, J.; Eddaloui, M.; Chen, B.; O'Keeffe, M.; Yaghi, O.M. Rod packings and metal-organic frameworks constructed from rod-shaped secondary building units. J. Am. Chem. Soc. 2005, 127, 1504–1518. [Google Scholar] | CrossRef|Li, Y.; Duan, D.; Wu, M.; Li, J.; Yan, Z.; Wang, W.; Zi, G.; Wang, J. One-step synthesis of 2,5-dihydroxypythalimide acid by the oxidation of p-xylene over M-MCM-41 (M = Fe, Fe/Cu, Cu) catalysts. Chem. Eng. J. 2016, 301, 777–783. [Google Scholar] | CrossRef|Fang, J.; Martins, L.M.D.R.S.; Ribeiro, A.P.C.; Carabeiro, S.A.C.; Figueiredo, J.L.; Pombiro, A.J.L. Supported C-Scorpionate Vanadium(IV) Complexes as Reusable Catalysts for Xylene Oxidation. Chem.—Asian J. 2017, 12, 1915–1919. [Google Scholar] | CrossRef|Samanta, S.; Srivastava, F. Thermal catalysis vs. photocatalysis: A case study with the effect of activation of aromatic and benzylic CH bonds to oxygenated products. Appl. Catal. B Environ. 2017, 218, 621–636. [Google Scholar] | CrossRef|Nicolae, S.; Neatu, F.; Florea, M. Selective catalytic oxidation reaction of p-xylene on manganese–iron mixed oxide materials. Comptes Rendus Chim. 2018, 21, 354–361. [Google Scholar] | CrossRef|Li, Y.; Wu, M.; Chen, D.; Jiang, L.; He, J.; Luo, Z.; Wang, Y.; Wang, J. One-step highly selective oxidation of p-xylene to 4-hydroxymethylbenzoic acid over Cu-MOF catalysts under mild conditions. Mol. Catal. 2019, 477, 110542. [Google Scholar] | CrossRef|Karanahov, E.; Maximov, A.; Zolotukhina, A.; Vinokurov, V.; Ivanov, E.; Glotov, A. Manganese and Cobalt Doped Hierarchical Mesoporous Halloysite-Based Catalysts for Selective Oxidation of p-Xylene to Terephthalic Acid. Catalysts 2020, 10, 7. [Google Scholar] | CrossRef|Green Version|Partenheimer, W. The effect of zirconium in metal/bromide catalysts during the autoxidation of p-xylene: Part I. Activation and changes in benzaldehyde intermediate formation. J. Mol. Catal. A Chem. 2003, 206, 105–119. [Google Scholar] | CrossRef|Partenheimer, W. The effect of zirconium in metal/bromide catalysts on the autoxidation of p-xylene: Part II. Alternative metals to zirconium and the effect of zirconium on manganese(IV) dioxide formation and precipitation with pyromellitic acid. J. Mol. Catal. A Chem. 2003, 206, 131–144. [Google Scholar] | CrossRef|Shimizu, A.; Tanaka, K.; Ogawa, H.; Matsuo, Y.; Fujimori, M.; Nagamori, Y.; Hamachi, H.; Kimura, K. An Industrial Process for Adipic Acid Production by the Liquid-Phase Oxidation of Cyclohexanone with Molecular Oxygen. Bull. Chem. Soc. Jpn. 2003, 76, 1993–2001. [Google Scholar] | CrossRef|Cavani, F.; Ferroni, L.; Frattini, A.; Lucarelli, C.; Mazzini, A.; Raabova, K.; Alini, S.; Accorinti, P.; Babini, P. Evidence for the presence of alternative mechanisms in the oxidation of cyclohexanone to adipic acid with oxygen, catalyzed by Keggin polyoxometalates. Appl. Catal. A Gen. 2011, 391, 118–124. [Google Scholar] | CrossRef|Trindade, M.M.; Neatu, S.; Bocin, A.; Counsell, J.; Cavani, F.; Florea, M.; Neatu, F. The Role of Acidity in Terephthalic Acid Synthesis from Renewable Carbon Source. ChemCatChem 2020, 12, 6248–6258. [Google Scholar] | CrossRef|Xu, L.; Chen, D.; Jiang, H.; Yuan, X. Efficient oxidation of p-xylene to terephthalic acid by using N-dihydroxypyromellitimide in conjunction with Co-benzeneboroxalate. Appl. Catal. A Gen. 2020, 599, 117569. [Google Scholar] | CrossRef|Wang, Q.N.; Sun, X.; Feng, Z.; Feng, Z.; Zhang, P.; Zhang, Y.; Li, C. V-O/O Linkages in VAgO xMixed Oxides for the Selective Oxidation of p-Xylene to p-Methyl Benzaldehyde. ACS Catal. 2022, 12, 3323–3332. [Google Scholar] | CrossRef|Sarmah, K.; Mukhopadhyay, S.; Maji, T.K.; Pratihar, S. Switchable Bifunctional Bistate Reusable ZnO-Cu for Selective Oxidation and Reduction Reaction. ACS Catal. 2019, 9, 732–745. [Google Scholar] | CrossRef|Dutta, M.; Bania, K.K.; Pratihar, S. A Remote 'Imidazole'-Based Ruthenium(II) Para-Cymene Pre-catalyst for the Selective Oxidation Reaction of Alkyl Arenes and Alcohols. Chem.—Asian J. 2020, 15, 926–932. [Google Scholar] | CrossRef|Green Version|Zhang, J.; Du, J.; Zhang, C.; Liu, K.; Yu, F.; Yuan, Y.; Duan, B.; Liu, R. Selective Oxidation of Alkenylarenes to the Aromatic Ketones or Benzaldehydes with Water. Org. Lett. 2022, 24, 1152–1157. [Google Scholar] | CrossRef|Dankiewicz, W.; Zimnicka, M. Negative ion gas-phase chemistry of arenes. Mass Spectrom. Rev. 2016, 35, 123–146. [Google Scholar] | CrossRef|Mohammadian, R.; Karimi Alavieh, M.; Kamyar, N.; Amini, M.M.; Shaabani, A. Metal-organic frameworks as a new platform for molecular oxygen and aerobic oxidation of organic substrates: Recent advances. Polymers 2018, 156, 174–187. [Google Scholar] | CrossRef|Urgoita, G.; Martin, R.S.; Herrero, M.T.; Dominguez, E. Recent Advances in Homogeneous Metal-Catalyzed Aerobic C–H Oxidation of Benzylic Compounds. Catalysts 2018, 8, 640. [Google Scholar] | CrossRef|Green Version|Zhu, W.; Gunnar, B.T. Advances in Rhodium-Catalyzed Oxidative Arene Alkenylation. Acc. Chem. Res. 2020, 53, 920–936. [Google Scholar] | CrossRef|George, K.; Kannadasan, S. Advancements in the Functionalization of Aryl C-sp<sup>2</sup> and Alkyl C-sp<sup>3</sup> of Toluene Derivatives via C–H Activation. Curr. Org. Chem. 2021, 25, 1783–1822. [Google Scholar] | CrossRef|Dietzel, P.D.C.; Morita, Y.; Blom, R.; Fjellvåg, H. An in situ high-temperature single-crystal investigation of a dehydrated metal-organic framework compound and field-induced magnetization of one-dimensional metal-oxo chains. Angew. Chem. Int. Ed. Engl. 2005, 44, 6354–6358. [Google Scholar] | CrossRef|PubMed|Rosli, N.L.; Kim, J.; Eddaloui, M.; Chen, B.; O'Keeffe, M.; Yaghi, O.M. Rod packings and metal-organic frameworks constructed from rod-shaped secondary building units. J. Am. Chem. Soc. 2005, 127, 1504–1518. [Google Scholar] | CrossRef|PubMed|Hehir, N.L.; Kim, J.; Eddaloui, M.; Chen, B.; O'Keeffe, M.; Yaghi, O.M. Rod packings and metal-organic frameworks constructed from rod-shaped secondary building units. J. Am. Chem. Soc. 2005, 127, 1504–1518. [Google Scholar] | CrossRef|PubMed|Li, Y.; Duan, D.; Wu, M.; Li, J.; Yan, Z.; Wang, W.; Zi, G.; Wang, J. One-step synthesis of 2,5-dihydroxypythalimide acid by the oxidation of p-xylene over M-MCM-41 (M = Fe, Fe/Cu, Cu) catalysts. Chem. Eng. J. 2016, 301, 777–783. [Google Scholar] | CrossRef|Fang, J.; Martins, L.M.D.R.S.; Ribeiro, A.P.C.; Carabeiro, S.A.C.; Figueiredo, J.L.; Pombiro, A.J.L. Supported C-Scorpionate Vanadium(IV) Complexes as Reusable Catalysts for Xylene Oxidation. Chem.—Asian J. 2017, 12, 1915–1919. [Google Scholar] | CrossRef|Samanta, S.; Srivastava, F. Thermal catalysis vs. photocatalysis: A case study with the effect of activation of aromatic and benzylic CH bonds to oxygenated products. Appl. Catal. B Environ. 2017, 218, 621–636. [Google Scholar] | CrossRef|Nicolae, S.; Neatu, F.; Florea, M. Selective catalytic oxidation reaction of p-xylene on manganese–iron mixed oxide materials. Comptes Rendus Chim. 2018, 21, 354–361. [Google Scholar] | CrossRef|Li, Y.; Wu, M.; Chen, D.; Jiang, L.; He, J.; Luo, Z.; Wang, Y.; Wang, J. One-step highly selective oxidation of p-xylene to 4-hydroxymethylbenzoic acid over Cu-MOF catalysts under mild conditions. Mol. Catal. 2019, 477, 110542. [Google Scholar] | CrossRef|Karanahov, E.; Maximov, A.; Zolotukhina, A.; Vinokurov, V.; Ivanov, E.; Glotov, A. Manganese and Cobalt Doped Hierarchical Mesoporous Halloysite-Based Catalysts for Selective Oxidation of p-Xylene to Terephthalic Acid. Catalysts 2020, 10, 7. [Google Scholar] | CrossRef|Green Version|Partenheimer, W. The effect of zirconium in metal/bromide catalysts during the autoxidation of p-xylene: Part I. Activation and changes in benzaldehyde intermediate formation. J. Mol. Catal. A Chem. 2003, 206, 105–119. [Google Scholar] | CrossRef|Shimizu, A.; Tanaka, K.; Ogawa, H.; Matsuo, Y.; Fujimori, M.; Nagamori, Y.; Hamachi, H.; Kimura, K. An Industrial Process for Adipic Acid Production by the Liquid-Phase Oxidation of Cyclohexanone with Molecular Oxygen. Bull. Chem. Soc. Jpn. 2003, 76, 1993–2001. [Google Scholar] | CrossRef|Cavani, F.; Ferroni, L.; Frattini, A.; Lucarelli, C.; Mazzini, A.; Raabova, K.; Alini, S.; Accorinti, P.; Babini, P. Evidence for the presence of alternative mechanisms in the oxidation of cyclohexanone to adipic acid with oxygen, catalyzed by Keggin polyoxometalates. Appl. Catal. A Gen. 2011, 391, 118–124. [Google Scholar] | CrossRef|Trindade, M.M.; Neatu, S.; Bocin, A.; Counsell, J.; Cavani, F.; Florea, M.; Neatu, F. The Role of Acidity in Terephthal