Wildland

Fire Hydraulics

Myth or Math

Author: Richard W. Hoffmann, Sr. Creator of: Wildland Fire Hydraulics Slide-Rule and Android and iOS Phone Apps

'The Technology to Take the <u>HEAT</u>!'™ HFT Fire & Rescue Technologies & Equipment, LLC

...for your crew's SAFETY!

<u>Question</u>:

"Is it truly possible to increase any wildland fire progressive hoselay nozzle flow from 60 GPM, a full 25%, to 75 GPM, that results in 56% more 'Knock-Down'? We're talking <u>UPHILL</u> on a 32% Grade... with the same 10 GPM laterals every 200' ft... for 1,100' feet... at an incredible 500' ft and 83% further than today's "Standard" methodology. The 'unquestioned' method that is severely <u>limited</u> to 600' feet in length without compromising Nozzle Pressure (NP) and unable to pump a full 639' feet <u>HIGHER IN HEAD</u>. Let alone able to deploy a 75 GPM <u>Attack</u> nozzle (at 1,066% more 'Knock-Down' than a 10/23 GPM lateral) to combat an '<u>ESCAPE</u>' at any point of the hoselay simply by converting the secondary 'Supply' line into 'Attack' mode in moments!"

And now, upon the invention of the Android and iOS phone apps, PLUS, the glovebox 'Safety-Backup' Slide-Rule, <u>TOTAL</u> Engine Pressure (EP) <u>can be</u> <u>calculated in mere seconds</u>! Never before has such a complicated process been so simplified that any 'Rookie' can live their dream to be a Driver/Operator. Fully able to "produce effective fire streams" at "the rated flow of the nozzle" at every step of a hoselay, especially "<u>HEN-WAY</u>" methodology, to keep our crews <u>SAFE</u>!

"Again, would you agree these technologies would exponentially improve wildland firefighter S<u>AFETY</u>?" These are the essentials!

Indeed, one of the GREATEST Fire Service <u>SAFETY</u>' Breakthroughs' ever!

'In Remembrance and Honor of all those who have fought and fallen before us. May their souls rest in everlasting peace as we support their families and their dearest loved ones until the end of time.'

> HFT Fire and Rescue Technologies and Equipment, LLC 'The Technology to Take the HEAT!' ™ Richard W. Hoffmann, Sr., CEO/Author/Patented Inventor 123 SW Oregon Trail Drive Dallas, OR 97338 (877) HOSEROLLER [467-3765]

<u>https://HydrauylicsApp.com</u> - <u>http://BurnOver.HoseRoller.net</u> - <u>rich@hftfire.com</u>

Preface

After 275 years of international research and development, for the first time in Fire Service history, a **TOTAL** wildland fire <u>Engine Pressure (EP) hydraulics calculator</u> is finally available. A world's first to accurately calculate Friction Loss (FL) of each [Gallons Per Minute (GPM)] <u>affected section of a wildland hoselay</u>, Nozzle Pressure (NP), and (+) or (-) Head (H) to estimate **REQUIRED** Engine Pressure (EP) to" <u>Produce effective fire streams</u>" at "<u>the rated</u> <u>flow (GPM) of the nozzle...</u>" to ensure firefighter SAFETY. Engine Pressure (EP) calculated in mere seconds as mandated per NFPA 1002, Chapter 8, Wildland Fire Driver/Operator training standards to ensure all Emergency Services Instructors (per NFPA 1041) are OSHA 29 CFR 1910.156(C)(1) and (C)(2) compliant. MOTIVE: Exponentially improve wildland firefighter **SAFETY** at all phases of any progressive wildland fire hoselay.

Development of both the <u>Android</u> and <u>iOS phone apps</u> was not the end, but the beginning to invent the world's only 21st-century mathematical Slide-Rule [SAFETY BACK-UP] to ensure every Driver/Operator can accurately and quickly estimate proper Engine Pressure (EP) in **REAL-TIME**. This allows the fire officer to balance incident mitigation, resource coordination, and crew supervision more effectively while continuously keeping up with the hoselay progression as calculation data and results change with every added 100' foot length.

The integration of US Geographic Survey (USGS) phone apps (GAIAGPS.com and ZOLEO satellite tracking and 'SOS' emergency notification), the Automatic Vehicle Location (AVL) technology with triple redundancy of the Global Positioning System (GPS), Cellular Site, and VHF radio triangulation can determine the 24/7 location of any fire apparatus in even the most remote areas of the North American continent. We can now finally begin to meet the requirements of the <u>"Holy Grail of Wildland Firefighting</u>"; Section 5 of the <u>"Wildfire Management Technology Advancement Act of 2018</u>" within the "Natural Resources Management Act" that passed into law in February 2019.

• "Develop and operate a tracking system to remotely locate the positions of fire resources, including, at a minimum, any fire resources assigned to Federal Type 1 wildland fire incident management teams."

The further integration of the HFT Fire and Rescue Technologies and Equipment, LLC, Wildland Fire Engine Pressure Hydraulics Calculator, and USGS hardcopy and phone app topographical maps determines all Engine Pressure (EP) calculations. Accurately estimated (+) or (-) Head pressure improves the success to produce SAFE Nozzle Pressure (NP) and water protection for every firefighter on the line while simultaneously monitoring and locating personnel by bearing and distance from any fire apparatus (as a <u>BENCHMARK</u>). This will meet these firefighter SAEFTY requirements we've struggled to achieve and secure for decades! Page 2 of 53

Table of Contents

Preface
Definitions
The "LAW" – NFPA 1002 and 1041 and OSHA 29 CFR 1910.1565
Part I – For the 'Experienced' Wildland Fire Driver/Operator
USGS Map - 'GAIA Maps' and ZOLEO Satellite for <u>ALL</u> First Responders!] 7
Chapter I: " <u>Standard</u> " Method and Purpose
Chapter II: The "HEN-WAY" Deployment Methodology
Chapter III: The Hydraulics Phone App
Chapter IV: The Mechanical Hydraulics Slide-Rule
Chapter V: Mop-Up and Overhaul calculations
Part II – For the 'ROOKIE' Wildland Fire Driver/Operator
Chapter VI: The Basics – Definitions of Terms
Chapter VII: The Breakdown
Chapter VIII: The Calculations
Supporting References [Accepted Friction Loss (FL) Tables, etc.]
National Wildfire Coordinating Group (NWCG.gov) Table 3.3
Hose Deployment – 'Moment' vs. 'Total' Energy Required
The Greatest Pre-connect Hose Load Ever (HoseRoller.net)
About the Author

'Fight the Fire and <u>NOT</u> the Hose!'...with 'Garden Hose Technology'

<u>wild·land</u>

noun

\ wī(-ə)l(d)- land \ **Definition of** *wildland*

: land that is uncultivated or unfit for cultivation

<u>fire</u>

/ˈfī(ə)r/

noun 1. 1.

combustion or burning, in which substances combine chemically with oxygen from the air and typically give out bright light, heat, and smoke.

hy · drau · lics

/hīˈdrôliks/

noun

1.

noun: hydraulics; plural noun: hydraulics

the branch of science and technology concerned with the conveyance of liquids through pipes and channels, especially as a source of mechanical force or control.

<u>Question</u>: "How do these terms apply to OSHA's General Duty Clause to ensure the integrity of firefighter safety? "

OSHA GENERAL DUTY CLAUSE: SECTION 5(a)(1)

Each employer shall furnish to each of his employees employment and a place of employment which are free from recognized hazards that are causing or likely to cause death or serious physical harm

This includes the prevention and control of the hazard of workplace violence

<u>NFPA 1002 – Standard for Fire Apparatus Driver/Operator</u> <u>Professional Qualifications</u>

Chapter 8 Wildland Fire Apparatus

<u>8.1 General</u>:

The job performance requirements defined in Section 8.1 and 8.2 shall be <mark>met <u>PRIOR TO</u> qualifying as a driver/operator – wildland fire apparatus.</mark>

8.2 Operations:

8.2.1 **Produce <u>effective</u> fire streams** given the sources provided in the following list so that the pump is engaged, all pressure-control and vehicle safety devices are set, <u>the rated flow</u> of the nozzle is achieved, and the apparatus is monitored for potential problems:

- (1) Water tank
- (2) Pressurized source
- (3) Static Source

(A) Requisite Knowledge. Hydraulic calculations for FRICTION LOSS AND FLOW using both the WRITTEN FORMULAS and estimation methods, safe operations of the pump, correct apparatus placement, personal safety considerations, problems related to small diameter or dead-end mains and low-pressure and private water supply, hydrant coding systems, and reliability of static sources.

NFPA 1041 - Standard for Fire and Emergency Services Instructors Professional Qualifications

<u>1.1 Scope</u>:

The Standard identifies <mark>minimum Job Performance Requirements (JPR's) for all Fire and</mark> Emergency Services Instructors up to and including Live Fire Instructor in Charge.

<u>1.2.2 Purpose</u>:

The intent of the standard shall be to <u>ensure that (all) personnel</u> serving as <u>Fire and</u> Emergency Services Instructors</u> up to and including Live Fire Instructor in Charge <u>are</u> qualified.

Occupational Safety and Health Administration Firefighter Training Standards

<mark>29 CFR 1910.156(c)(1)</mark>

The employer shall provide training and education for all fire brigade members commensurate with those <u>duties and functions</u> that fire brigade members are <u>expected to perform</u>. Such training and education shall be <u>provided</u> to fire brigade members <u>before</u> they perform fire brigade emergency activities. Fire brigade leaders and <u>training instructors</u> shall be provided with training and education which is <u>more comprehensive</u> than that provided to the general membership of the fire brigade.

29 CFR 1910.156(c)(2)

The employer shall assure that training and education are conducted frequently enough to assure that each member of the fire brigade is able to perform the member's assigned duties and functions satisfactorily and in a safe manner so as not to endanger fire brigade members or other employees.

One of the **goals of this <u>recordkeeping rule</u>** is to improve the completeness and accuracy of injury and illness data collected by employers and reported to OSHA. When workers are

<mark>discouraged</mark> from reporting occupational injuries and illnesses, the <mark>information gathered and</mark> reported is <u>incomplete</u> and <u>inaccurate</u>.

The rule includes *three* provisions that are intended to address this issue:

(1) An employer's procedure for reporting work-related injuries and illnesses must be reasonable and must not deter or discourage employees from reporting

(2) Employers must inform employees of their <mark>right to report work-related injuries and</mark> illnesses FREE FROM RETALIATION

<mark>(3) An employer may not retaliate against employees for reporting work-related injuries or</mark> illnesses

Section 11(c) of the OSH Act already prohibits employers from <u>retaliating</u> against employees for reporting work-related injuries or illnesses This rule explicitly incorporates the prohibition against retaliation into <u>Section 1904.35</u> of the recordkeeping rule with respect to retaliation against employees for reporting work-related injuries or illnesses (at 29 CFR 1904.35(b)(1)(iv)). The purpose of this provision is to improve the completeness and accuracy of injury and illness data by allowing OSHA to issue citations to <u>employers who retaliate</u> against their employees for reporting an injury or illness and thereby discourage or deter accurate reporting of work-related injuries or illnesses.

Why does OSHA address retaliation in this rule? Isn't it already against the law to retaliate against an employee for reporting a workplace injury or illness?

Significant concerns were raised during the comment period that the new electronic reporting requirements in the final rule could lead to increased incentives to take retaliatory action that would discourage workers from reporting their work-related injuries or illnesses. OSHA acknowledges these concerns. Although section 11(c) of the <u>OSH Act already prohibits any</u> person from <u>DISCHARGING OR OTHERWISE DISCRIMINATING AGAINST AN EMPLOYEE</u> who reports a fatality, injury, or illness, OSHA may not act under section 11(c) unless an employee files a complaint with OSHA within 30 days of the retaliation. In contrast, <u>under the final rule</u>, if OSHA finds evidence that an employee has been retaliated against for reporting an injury or illness, OSHA will be able to cite an employer for retaliation <u>EVEN IF THE EMPLOYEE DID</u> NOT FILE A TIMELY 11(C) COMPLAINT. Often the point of retaliating against an employee who reports an injury or illness is to intimidate both the employee and other workers from reporting. This new rule gives OSHA an important new tool to ensure that employers maintain accurate injury and illness records because it gives OSHA the ability to <u>protect workers who</u> have been subject to retaliation for reporting work-related injuries or illnesses, even when they <u>cannot</u> or will not speak up for themselves by filing an 11(c) complaint.

What forms of "retaliation" does this rule prohibit?

The rule prohibits employers from taking adverse action against employees for reporting work-related injuries or illnesses. Adverse action is action taken by the employer that would discourage a reasonable employee from reporting a work-related illness or injury accurately. Examples of adverse action include:

- **<u>Discharge</u>**, demotion, or denying a substantial bonus or another significant benefit
- Assigning the employee "points" that could lead to future consequences
- <u>Demeaning or embarrassing the employee</u> (for example, requiring an employee who reports an illness or injury to wear a fluorescent orange vest for a week)
- Threatening to penalize or otherwise discipline an employee for reporting
- Requiring employees to take a drug test for reporting without a legitimate business reason for doing so.
- Pass <u>ANY</u> Wildland Fire "Standard" method training and/or hiring Fire Academy course upon the use of this downloadable spreadsheet at <u>http://calculator.hydraulicsapp.com</u>

www.GAIAGPS.com is the best' support' Android and Apple (iOS) USGS phone app. It provides two (2) sets of topographical contour lines and instant access to the latest Satellite imagery to view current features such as new access roads, exposures, fuel conditions, etc.

The advantage of this support phone app is the elevation is exceptionally accurate, but ONLY if the maps are downloaded <u>before</u> the imminent loss of an internet connection and/or cellular service typical in remote areas. ALWAYS install all maps within your initial attack REGION and immediately upon any out of county assignment while en route. This procedure will ensure you can view the necessary contour lines to determine elevation change accurately and then, therefore, <u>ESTIMATE</u> (+) HEAD pressure.

In this example, there are eight (8) forty-

foot (40') contour lines between 'Engine 1' and the 'Attack Nozzle' 1,000 feet up the hoselay. The elevation change is 320 feet or (+) 139 PSI HEAD pressure [320' X 0.434 PSI/ft]. This is added to the **Friction Loss (FL)**, **Appliance loss (A)**, and **Nozzle Pressure (NP)** <u>subtotal</u> (predetermined by method and number of laterals operating]. Both the HFT Fire Hydraulics phone apps and Slide-Rule calculate the <u>TOTAL</u> Engine Pressure (EP) in <u>REAL-TIME</u> and at any point of the hoselay progression.

Below are informational pages for each waypoint that provides the' legal' coordinates and elevation (above sea level) that verify the change in vertical feet to then confirm the (\pm) HEAD pressure that both the HFT Fire Hydraulics phone apps and the Slide-Rule calculate.

41.45 mi, 163°S from me 38.15150, -120.44096 Elevation: 2,501 ft

41.28 mi, 164°S from me 38.15365, -120.44289 Elevation: 2,818 ft

Please note elevation change (data) from 'Engine 1' at 2,501 feet to the Attack Nozzle at 2,818 feet. These waypoints ESTIMATE 320 feet at (+) 139 PSI HEAD pressure, which shall be compensated at the pump, without exceeding the maximum 400 PSI (as all apparatus are governed) and remain within the internationally accepted formula established 'SAFE' limitations of our equipment. This 400 PSI maximum pressure limits the progression of any hoselay as the required Nozzle Pressure (NP) is then impossible to achieve. To attempt to do so is to endanger our crew members upon direct violation of 29 CFR 1910.156 negligently.

The "<u>Topo Maps</u>" USGS phone app (left) provides the distance and bearing from your fire apparatus to your crew members (Attack Nozzle) at all times. This is an extremely important tool to further enhance the 24/7 fire resource location accountability requirement that is now mandated by Section 5 of the <u>"Wildfire Management</u> <u>Technology Advancement Act of 2018</u>" within the "Natural Resources Management Act" on 3/12/2019.

However, a distinct <u>disadvantage</u> of this app is the inaccurate DECEPTIVE elevation (2,573 ft.) even though the maps are downloaded PRIOR to arriving on the scene. These phone app author(s) accept <u>NO LIABILITY</u> of this lack of reliability. It is therefore <u>NOT</u> recommended.

Under ALL conditions, (+) HEAD pressure is only ever an ESTIMATION at best... and then ONLY upon counting the contour lines (20' or 40' – <u>KNOW the scale</u> of your map!) either up or downslope within the USGS (hardcopy or digital) map area, and then only upon the direct communication from fire crew members who report their exact (legal) location accordingly.

In either case, if the phone app fails, the mechanical Hydraulics Slide-Rule and the reference of a hardcopy USGS map of this direct area can also be utilized to determine elevation change. Until then, our ability to accurately estimate Engine Pressure (EP) is severely compromised regardless of equipment or hoselay configuration implemented in the field.

This author emphasizes both phone apps and the Slide-Rule are merely tools and shall be utilized at the same risk as a four-function mathematical calculator, USGS map(s), and notepaper to estimate Engine Pressure (EP) upon the internationally accepted formulas taught in colleges and universities and implemented worldwide for over 140 years. For the first time, ALL driver/operators can now efficiently execute this '<u>requisite knowledge</u>' requirement before and during the operation of any wildland fire apparatus, but especially in <u>REAL-TIME</u> to meet ALL NFPA 1002, Chapter 8, Section 8.2.1 mandates, including when to <u>STOP</u>. Page 8 of 53

"Wildland Fire Hydraulics – Myth or Math" – HFT Fire and Rescue Tech. and Equip., LLC $\ensuremath{\mathbb{C}}$ 2016-2020

Chapter I: Purpose

We must consider the recommendations of the National Fire Protection Association (NFPA) that OSHA has mandated to ensure firefighter safety as they directly relate to minimum training and education and equipment standards. This ensures wildland firefighter SAFETY is never compromised under any conditions.

NFPA 1002 - Chapter 8 was written to ensure every wildland fire apparatus driver/operator has '<u>requisite knowledge</u>' in the proper methodology to calculate Engine Pressure (EP) accurately. This is the only manner 'to produce an effective fire stream... at the rated flow of the nozzle.' The instructors must meet NFPA 1941 (JPR) Standards as anything less is in direct violation of all these mandates and have, therefore, created a SEVERE FIREFIGHTER SAFETY RISK. A risk that must always be prevented; and immediately addressed and never compromised to maintain SAFE fireline operations per 29 CFR 1910.156(c)(1) and (2) accordingly.

The purpose of this manuscript is to describe in technical detail the proper use and full application of the world's first-ever <u>TOTAL</u> Engine Pressure (EP) Wildland Fire Hydraulics Calculator. The mechanical Slide-Rule was created to be stored in the glove box as the **'SAFETY**' (back-up) measure when the phone apps experience battery failure. Not only can they accurately predetermine the most complex variable of this equation:

[Friction Loss (FL) = (GPM/100)^2 * Coefficient * Length/100' (per <u>affected</u> section)]

Avail. Pressure to <u>400</u> :	<u>116</u>	MAX.
Max. <u>HEAD</u> in Feet:	266	26.6%
Max. Length @ 33% Grd:	800	Grd.

...but both phone apps and the mechanical slide-rule are the first to include ALL four (4) variables. [Nozzle Pressure (NP), Friction Loss (FL), Appliance Loss (A), and (+) HEAD (H) to accurately calculate <u>TOTAL</u> Engine Pressure (EP)]. Again, in mere seconds in the field when and where it truly counts! This allows every driver/operator to keep up with the <u>REAL-TIME</u> adjustments at any point of any wildland fire progressive hoselay configuration ["<u>Standard</u>" (left), "<u>Whaling</u>" (original), and the breakthrough "<u>HEN-WAY</u>" methods] AND when to <u>STOP</u> when the 400 PSI maximum Engine Pressure is exceeded.

Page 9 of 53

[&]quot;Wildland Fire Hydraulics – Myth or Math" – HFT Fire and Rescue Tech. and Equip., LLC © 2016-2020

Now let's take a closer look at the proper methodology and application of the wildland fire version of the hydraulics calculation process. As much as you may have learned, while seated at a desk long ago, this is extremely challenging to accomplish in the field. You know, as a fire apparatus driver/operator, the complexity of this formula to execute in the field is nearly impossible. We have been forced to accept we neither have the time nor resources to compute such a complicated methodology on the fireline when other priorities are in the wake. Especially when personnel has many times already advanced the hoselay up to several lengths, leaving any result obsolete.

We are only left to never catch up with the continual forward progression to ensure proper nozzle pressure is established and maintained at every stage of the hoselay as mandated by law to secure minimum (nozzle pressure) firefighter safety. We can only 'hope' to produce an effective fire stream yet never honestly know when the maximum 400 PSI a Type III engine can produce (EP) has been fully exhausted.

Therefore, many are left confused about why the ISO ratings to qualify a Type III engine is limited to only 1,200' of 1 ½" inch hose and 600' feet of 1" inch hose. The Friction Loss (FL) simply cannot support another inch. As a result, fire personnel can be unknowingly placed in **DANGER** when these limits are breached. Ignorance of the direct effect of these <u>irrefutable laws of physics</u> is never an excuse for 100% preventable burn injuries or even death when required Nozzle Pressure (NP) is not even attainable.

The mechanical Slide-Rule and both the Android and iOS phone apps have been solely created to immediately indicate the required Engine Pressure (EP) in <u>REAL-TIME</u> and up to and including the point in which <u>ALL FORWARD PROGRESSION SHALL</u> <u>IMMEDIATELY CEASE AND DESIST</u>. If the maximum 400 PSI, a fire engine has been governed to pump (within the limits of our equipment safely) is breached: <u>STOP</u>!

This instruction manual is the first to ensure (ALL) Fire and Emergency Services
 Instructor(s) secure the <u>Job Performance Requirements</u> (JPRs) under NFPA 1041 –
 1.2.2 to train fire apparatus driver/operators the technologies under NFPA 1002 –
 8.2.1 to 'produce an effective fire stream at the rated capacity of the nozzle,'
 without 'endangering fire brigade members' upon 29 CFR 1910.156(c)(1) & (2)

As every fire protection system worldwide [i.e., Hydrant, standpipe, and interior fire sprinkler systems, etc.] has been precalculated and constructed upon this strict, unforgiving internationally accepted formula and methodology, we too must adhere to:

[Friction Loss (FL) = (GPM/100)^2 * Coefficient * Length/100' (per affected section)]

...based upon the viscosity of water at normal temperatures and pressures, the proper application/methodology shall never be disregarded nor deviated from upon any (alleged) circumstance EVER. This is further evidenced going back well into the 1800s upon proper application as inspired by the countless fire disasters of that era that lead to the development of the systems relied upon as we almost take for granted today.

Let's compare the *(deceptive)* change in **Engine Pressure (EP) at** <u>406 PSI</u> required for a 900' foot "<u>Standard</u>" hoselay configuration with all FOUR (4) 10 GPM 1" laterals operating (<u>276 PSI</u>) at 300' feet <u>HEAD</u> (+130 PSI) on a 33% Grade to the same configuration advanced only 100' to 1,000' ft. (<u>284 PSI</u>) at 320' <u>HEAD</u> (+139 PSI) (as

illustrated) is <u>only 17 PSI more to</u> <u>423 PSI</u>. Now compare these results when we advance <u>only</u> 100' feet more to 1,100' feet, (FL) <u>increases (50 PSI at 32%) to 488 PSI</u>!

Once 400 PSI is breached, WHITE LETTERS over RED, YOU SHALL STOP! Thus, it <u>appears</u> only these options are available:

 Insert the necessary portable booster pump(s) in series at specific locations and proper distances to compensate for all four (4) CALCULATED pressure loss variables ["<u>NP</u>" + "<u>FL</u>" + "<u>A</u>," and (<u>+</u>) "<u>HEAD</u>"] affecting this end result or...

← Standard											
SET OPTIONS	Feet	PSI									
HEAD	320	139									
Length	1000	RESET									
Attack	20/60C	25/ 75C									
Overhaul	10/23C	10/23C									
Laterals											
7											
6											
5											
4	423	486									
3	413	474									
2	395	454									
1	372	426									
0	345	394									

2. Wait until the total number of laterals for mop-up/overhaul procedures are reduced to the point in which the flow rates, and therefore the total Friction Loss (FL) within each <u>affected section</u> of hose has diminished, <u>BEFORE</u> a <u>CALCULATED</u> decision can be made to proceed. Yet many still ask,

"How can adding only one (1) 100' foot length of hose be that big of a deal!?!"

Let's look at reality. In the same way, one can increase the height of a triangle drawn on a piece of paper, the point (nozzle) never changes. It is instead the width and resulting surface area at the base that exponentially increases. We are adding a new lateral! That's five and not only four (4)! This exponentially increases the water flow in

Page 11 of 53

the first <u>AFFECTED SECTION</u> of two hundred feet (200') of hose supplying water from the engine to the first 1" lateral that is supplying water to that first <u>10 GPM</u> overhaul nozzle. Hence in the example provided, we are now flowing <u>110 GPM at 58 PSI Friction Loss (FL)</u> to supply the Attack nozzle at <u>60 GPM</u> (to protect your crew) <u>PLUS five (5), 10 GPM</u>, 1" laterals in the first <u>AFFECTED SECTION</u> of 1 ½" hose (trunk/attack line). <u>100 GPM</u> is then flowing in the next <u>AFFECTED SECTION</u> at <u>48 PSI Friction</u> Loss (FL), etc., etc. for a total of 340 PSI (NP + FL+ A) <u>BEFORE</u> adding (+) <u>HEAD</u> pressure! This leaves only **60 PSI** (to 400 PSI Max)

or 137' feet of HEAD pressure that limits the 1,100' feet hoselay to a 12.5% Grade!

Any <u>SAFETY</u> concerns to <u>ONLY</u> pump LESS THAN <u>one-half</u> (<½) the 26.6% Grade, and therefore, <u>NOT</u> 'produce an effective fire stream at the rated flow of the nozzle?'

The driver/operator is mandated (by law and common sense) to cease ALL forward progression BEFORE the evidenced Maximum 400 PSI Engine Pressure (EP) is exceeded! If not, the fire crew is irresponsibly, immediately placed in <u>GRAVE DANGER</u> upon evidenced GROSS NEGLIGENCE upon incompetence!

Yet many ask, "When am I, or am I ever required to install a booster pump to support the rest of the hoselay?"

Hence, the invention of "<u>Hoffmann's</u> <u>Extraordinary New-Way</u>" ('<u>HEN-WAY</u>') wildland fire hoselay deployment system/ configuration described in **Chapter 2** is to

← Standard												
SET OPTIONS	Feet	PSI										
HEAD	340	148										
Length	1100	RESET										
Attack	20/ <mark>60C</mark>	25/ <mark>75C</mark>										
Overhaul	10/23C	10/23C										
Laterals												
7												
6												
5	488	563										
4	477	550										
3	457	528										
2	431	497										
1	401	461										
0	368	422										

address this very unforgiving issue as never before in Fire Service history upon the inquiry: Page 12 of 53

"Is not <u>Friction Loss</u> a direct mathematical function of <u>Gallons Per Minute</u>?"

Both the <u>Android</u> and <u>iOS phone apps</u> and the mechanical slide-rule calculate minimum Engine Pressure (EP) with the total number of laterals operating. A second list to indicate minimum '**OVERHAUL**' Engine Pressures (EP) when containment is **(believed to be)** 'satisfactorily' achieved. This significantly reduces wear and tear on equipment and resources and still warns (color-coding remains) when '**ATTACK**' pressure may be required.

By briefly reducing a 20/60 GPM or 25/75 GPM nozzle from '<u>ATTACK</u>' mode at 60 or 75 GPM to the 'OVERHAUL' operations at 20 or 25 GPM, the Total Engine Pressure must be recalculated. The gallons per minute (GPM) is reduced to one-third (1/3rd) and the Friction Loss (FL) component is reduced to 1/9th. A whole section of this book is dedicated to assisting the reader to understand this side of the overall Engine Pressure (EP) calculation process more fully.

Hence the (legal) need of both Phone Apps and the Slide-Rule to accurately calculate Engine Pressure (EP) for the SAFETY of your crew (your greatest resource). The are counting on you to meet and exceed **OSHA – 29 CFR 1910.156(c)(1) and (2)** upon the guidelines of **NFPA 1002 and NFPA 1041.** These Laws of Physics are instructed at every 'reputable' fire training/hiring academy, college, and university worldwide for more than a century.

May I inquire, "If every Type III engine is governed to produce a maximum of 400 PSI, yet your (desired) hoselay configuration requires far more than what is possible to support, would you not agree you are in direct violation of OSHA's General Duty Clause: Section 5(a)(1) if you make such a GROSSLY NEGLIGENT attempt to perform!?!"

This is the exact reason why the certified specifications of any "Type 3" Wildland Fire Engine has always only ever required twelve (12) 100-foot lengths of 1 ½" hose and only six (6) 100-foot lengths of 1" hose! 400 PSI can only support a typical 900 to 1,000-foot hoselay at a moderate slope/grade; with a few extra lengths of 1 ½" and 1" hose as spares onboard in the inevitable event that necessary replacement is necessary due to hose failure upon dragging every inch up steep, rough terrain. Learn how to prevent this issue at: <u>www.HoseRoller.net</u>

Since this standard was established many decades ago at the inception that fire apparatus are classified to meet ISO requirements, there's never been a need to increase this financial investment. Why would we budget these fire apparatus with more hose than what the pump can SAFELY pressurize even if it results in the inability to support our fireline personnel SAFELY in the performance of their job classification(s)?

To summarize, there are essentially only two (2) modes of operation:

Page 13 of 53

"Wildland Fire Hydraulics – Myth or Math" – HFT Fire and Rescue Tech. and Equip., LLC $\ensuremath{\mathbb{C}}$ 2016-2020

- Initial Attack, which has been described in all previous references made herein.
- <u>Mop-up/Overhaul operations</u> and its effect on TOTAL Engine Pressure (EP) upon significantly reduced water flow rates that results in reduced Friction Loss (FL).

An entire chapter is dedicated to addressing this need in which **the color-coding for each result is <u>NOT</u> changed from 'ATTACK' mode to emphasize the <u>WARNING</u> to the operator. If ATTACK mode is required to contain an unanticipated ESCAPE (slop-over) or severe BLOW-UP, communication to all personnel assigned on a given hoselay needs to be maintained to ensure all non-related overhaul nozzles can be temporarily suspended. Thus ensuring ALL nozzle(s) in the 'emergency' affected area are used to support those operations more effectively and much more SAFELY for all crew members.**

Please also read my article (attached) "Fire Hose Coil 'Bundle' Technology - Garden Hose Simplicity" for the most efficient hose deployment methodology that NEVER kinks under any circumstance EVER. It not only reduces the overall required effort to deploy any fire hose as much as 1/3 (per 100' <u>FULLY</u> deployed), but 200' feet can be fully charged in seconds in a footprint/confined space with less than 16 square feet. Additionally, you can also learn the impossible! How to fully charge a 2 ½" X 200' 'Blitz Line' within 10' of the rear of your apparatus... and be fully deployed... around right-angle turns... in which the nozzle person NEVER drags more than 25' of hose to the full length of the hose! That's CRAZY!

Other incredible enhancements in technology such as the Automatic Vehicle Location (AVL) equipment can confirm resource situational awareness 24/7/365. When used in conjunction with the suggested Geographical Positioning System (GPS) available on any smartphone, even our personnel are immediately displayed on any USGS map (i.e. "<u>GAIA</u> <u>Maps</u>"). This further assists a driver/operator to better determine estimated HEAD pressure (loss or gain) to calculate accurate Engine Pressure (EP). Done in <u>REAL-TIME</u> upon the continuous radio-communicated location of all fire-line personnel who check-in with their supervisor regarding lateral/overhaul operation status as required.

As a result, both phone apps perform outstandingly as secondary back-up devices to ensure **Section 5** of the <u>"Wildfire Management Technology Advancement Act of 2018</u>" that mandates ALL fire resources, fire apparatus, and equipment, but especially personnel assigned to any Federal Type 1 incident shall be immediately and continuously monitored to determine exact location and status at all times is completely supported and therefore fulfilled as well!

Chapter II: The "HEN-WAY" Hose Lay Deployment Methodology

The internationally accepted formula that has been implemented to install every water delivery system [Hydrant, Standpipe, Hose Cabinet, Sprinkler, Irrigation, etc.] on the planet for the past 115 years is:

[Friction Loss (FL) = (GPM/100)^2 * Coefficient * Length/100'] [within each and every individually (GPM) affected section]

...and the formula to calculate Wildland Fire Engine Pump Pressure (EP) is:

[Nozzle Pressure (<u>NP</u>) (+) <u>GRAND TOTAL</u> Friction Loss (<u>FL</u>) [<u>subtotal</u> of each 'OVERHAUL' Lateral as they <u>(GPM) affect</u> the <u>subtotal</u> of each <u>section</u> of 'ATTACK' line] (+) Appliance Loss (<u>A</u>) and (+) or minus (-) HEAD (<u>H</u>) (=) Engine Pressure (<u><</u>400 PSI)]

The "Standard" method at 60 GPM ('ATTACK') with 10 GPM laterals every 200' feet can only pump 1,000' feet at 26.6% Grade. But if only one (1) DECEPTIVELY INNOCENT length of hose is added a <u>FIFTH (5th) LATERAL</u> that causes a 110 GPM to flow through in the first 200' at the engine causes a <u>52 PSI or 32% INCREASE IN PUMP</u> <u>PRESSURE</u> to support 1,100'! This configuration now requires 340 PSI! That's only 60 PSI until breaching the maximum 400 PSI, leaving only 138 feet in (<u>+</u>) HEAD on a maximum <u>UNREALISTIC</u> 12.6% Grade.

At 1,200' the driver/operator is required to compensate for the Friction Loss of only one (1) more length at 349 PSI. This leaves only 51 PSI until breaching 400 PSI or only 118 feet in (\pm) HEAD on a maximum 9.7% Grade before ENDANGERING YOUR CREW with almost ZERO Nozzle Pressure (NP) if the slope remains at 26% or more!

But at 1,300' feet, all figures again exponentially increase now that **SIX (6) 10 GPM LATERALS at <u>416 PSI</u> is required!** That is a <u>FULL 16 PSI OVER THE MAXIMUM 400 PSI</u> BEFORE (<u>+</u>) HEAD PRESSURE IS EVEN achieved(!) ... if LESS THAN A ZERO PERCENT GRADE EXISTS (-2.6%). Even on **FLAT GROUND, THIS IS <u>NOT</u> POSSIBLE!**

And some forever scratch their head wondering why in the world would a Type III Wildland Engine be complemented with less than 1,200' feet of hose... EVER!?! Especially when they are the very ones who have done the (different methodology) calculations in the field **upon being INSTRUCTED (severely mislead) that 2,000' feet is possible!** As a result, many have <u>NEGLIGENTLY</u> placed their crews in <u>GRAVE DANGER!!!</u> It is a FACT that each (10 GPM) LATERAL incrementally increases the overall GPM within each affected section of hose PRIOR in the hose lay and most significantly at the source where the hose attaches at the pump. Some have misleadingly been taught to BELIEVE it only affects each length of hose leading up to the end.

The theory, use, and application of the "<u>HEN-WAY</u>" ["<u>H</u>offmann's <u>Extraordinary</u> <u>New – <u>WAY</u>"] wildland fire hoselay configuration/methodology exponentially exceeds every evidenced inherent limitation of the "<u>Standard</u>" method. A methodology never witnessed in Fire Service history!</u>

Upon flowing 60 GPM at the 'ATTACK' nozzle with 10 GPM laterals every 200' feet... at 600' feet and again at 1,000' feet, specific equipment is placed in the progressive hoselay to establish flow (supply) through dual (2) hose lines and not just one (1). Dual hose lines, as suggested as necessary by the USFS in Fig. 21 on Page 20 of their bible *(Basic Hydraulics - An Introduction to Fire Streams)*, significantly reduces the Friction Loss (FL) component by as much as 75% upon the lengths affected.

The "*Standard*" method is limited to 800' feet on a 33% Grade... yet the "*HEN-WAY*" can SAFELY pump 1,200' feet at the same slope! That's a **50% increase in hoselay length** at more than **THREE TIMES(3X) the 10% Grade.** The "*Standard*" can only begin to attempt this... thus placing the crew members in DANGER with evidenced inadequate Nozzle Pressure (NP) above a 10% slope.

The HEN-WAY eliminates the need to hand-carry an extremely heavy, essentially ineffective, and expensive PORTABLE PUMP over two (2) football field lengths upslope. Not to mention through heavy brush and timber (and back!) just to maintain proper nozzle pressure for a couple more hundred feet to attempt to secure firefighter SAFETY!

In the same manner before the invention of LDH was used for larger municipal fires; the advantage of establishing dual lines is that this procedure significantly reduces the total GPM through each length to about half. Roughly ½ GPM times (X) ½ GPM equals ¼ the TOTAL Friction Loss (FL) component. Meaning this fraction of the GPM squared reduces the total friction loss as much as 75%! Hence the results we begin to realize below.

More importantly, in the high country where slopes are horrendously steep, and the USFS/BLM/NPS refuses to GSA contract a nozzle of **no less than <u>75 GPM</u> for firefighter** <u>SAFETY</u>. The "HEN-WAY" allows personnel to <u>SAFELY</u> pump a <u>1,000' hoselay</u> <u>at a 34% Grade</u> with the same four (4) 10 GPM '<u>OVERHAUL</u>' laterals operating; and reduces the Friction Loss (FL) component 170 PSI at 67% LESS than the Standard method when advancing only 100' to <u>1,100' on a 32% Grade</u> ...as it can support a <u>1,200'</u> <u>hoselay at a 27% Grade</u> with <u>25% more water</u> than a 60 GPM nozzle to significantly <u>increase firefighter SAFETY!</u>

	III to use Palation I			lless Des Adieste	Oll Frick in dividual	CDMA Standard		
HFT-FIRE	" <u>Is not Friction t</u> hose is subject to <u>Standard</u> method <u>EXCEED</u> MAX 400	<u>.oss a direct matnem</u> o: [Friction Loss (FL) I, <mark>when advanced <u>C</u> PSI! The 'HEN-WAY</mark>	natical function of G = (GPM/100)^2 * C <u>ONLY</u> 100' to 1,100 (' can SAFELY pum	<u>allons Per Minute</u> ** L/100'] in whic ' increases (FL) +6 p 1,000' @ 34% (2 ² Each Individual 1 h "C" for 1 1/2" is 24 2 PSI /28% at <u>-15</u> PS Grd. and 1,100 ft. (+3	<u>GPM) affectea</u> <u>1</u> and 1" hose is SI for [<zero (0<br="">300' /+37% <u>MO</u></zero>	section of <u>150</u> . The 0]] HEAD to RE) @ 32%!	
75C GF 77 77 10 8 9 9 10 10 10 10 10 10 10 10 10 10 10 10 10	Standard Length PM FL A 13.5 5 13.5 5 13.5 5 13.5 5 13.5 5 13.5 5 13.5 5 15 17.3 15 21.7 15 31.7 0 26.5 15 31.7 0 15 15 31.7 0 15 15 31.7 0 15 sure (NP): 100 'HEAD'): 347 e to 400: 53 20: Feet: 121 12.1 32% Grd: 800	h 75C G 10 10 2 10 10 2 10 10 2 10 10 2 10 10 1 10 10 1 10 10 1 10 1	Standard Length PM FL A 1,100 75 13.55 5 1,000 85 17.3 5 800 95 21.7 5 600 05 26.5 5 400 15 31.7 5 200 25 37.5 0 0' 25 37.5 0 0' 25 37.5 0 0' 25 37.5 0 0' 25 37.5 0 0' 25 37.5 0 0' 25 37.5 0 0' 215 37.5 0 0' 216 283 25 0' 217 100 100 100 12 HEAD'): 415 3.13 210 In Feet: -355 -3.13 232% Grd: 800 Grd	h 75C 2 2 2 2 3 4 4 5 5 6 7 5 7 10 10 10 10 10 10 10 10 10 10 10 10 10	HEN-WAY Leng GPM FL A 1.10 75 13.5 15 1.00 43 4.3 5 80 53 6.6 15 60 53 6.6 5 60 53 6.6 5 60 63 9.4 5 20 73 12.6 0 0 73 12.6 0 0 Total: 93 45 0 Laterals FL: 7.5 41 Fore 'HEAD'I: 245 11X Sure to 400: 155 11X 5AD in Feet: 357 32 6: 32% Grd: 1.100 +3 32	29 CFR 00' Mandation 00' progression 00' FIREF 01' "NP", "FL", 02' added as of 01' 'ATTACK' 02' 'ATTACK' 02' 'DSI/ft. det 03' PSI/ft. det 04' The reg 05' MAXIMU 10' PSI/ft. det 10' DANGE 26' PRESSI 26' PRESSI	1910.156 tes <u>YOU</u> to ssion <u>at 4</u> <u>IGHTER 5</u> , and "A" pres one (1) variab operating at co and ' <u>OVERH</u> maining press <u>M 400 PSI</u> div termines the I onand then <u>RHAUL</u> ' inse <u>nly AFTER co Color-Coded</u> <u>R ZONE</u> in o <u>URE</u> is need or severe B	c)(1) & (2) <u>STOP</u> all <u>OO PSI</u> for <u>SAFETY!</u> sure losses are le for up to all once in both <u>AUL</u> ' modes. ure less the rided by 0.434 MAX (+) <u>HEAD</u> MAX Length. ents are to be <u>ontainment;</u> to indicate: case <u>FULL</u> led for an <u>BLOW-UP</u> !
HFT Fire & I	Rescue Tech. & Equ	ip., LLC - <mark>www.Hydr</mark>	raulicsApp.com - Co	pyright © 2016 - 2	2020 - ALL RIGHTS RES	SERVED - (877) H	HOSEROLLER	[467-3765]

The "Standard" method at 75 GPM ('ATTACK') can only begin to pump 1,000' feet at 12.1% Grade, and can <u>NEVER</u> pump an 1,100' hoselay that requires 415 PSI! That is 15 PSI <u>OVER</u> the maximum 400 PSI BEFORE (+) HEAD can even be considered! ... in that if LESS THAN A ZERO (0%) PERCENT GRADE EXISTS (-3.1%), FLAT GROUND IS STILL <u>NOT</u> EVEN POSSIBLE to begin to protect your crew... let alone provide them the PROPERLY CALCULATED Nozzle Pressure (NP) to do their job!

This incredible breakthrough of establishing dual lines is nothing new. The Federal agencies introduced this method in 1978 with the example to reach a small fire 3,000' from the engine. What I am introducing here has never before been achieved in Fire

Service history! All just by merely adjusting the application of a few specific pieces of equipment differently from multiple Type 3 engines that would already be on-scene yet without the weight of an expensive, ineffective Portable Pump upon the procedure to:

1. Attach two (2) 1 ½" hose lines at the engine; one for 'ATTACK' and a second for 'SUPPLY' line to be laid parallel and DRY/EMPTY waiting to be charged later.

Extend both while fighting the fire in that at 600' feet in that the 1,200' ft. of
 1 ½" hose complement of the first Type III engine at the scene will be exhausted.

3. Clamp the 'ATTACK' hose line; and remove the nozzle to expose the 1 ½" male coupling.

4. Attach two (2) 1 ½" double females to each exposed 1 ½" male. The first on the primary 'ATTACK' hose line and the second to the 1 ½" 'SUPPLY' line.

Connect each double female to each male of a reversed 1 ½" F X 1 ½" M (2)
 Gated-Wye

6. Connect an 1 ½" M X 1 ½" M double male to the 1 ½" F of the Gated Wye to re-reverse the threads back to a 'forward lay' direction

Connect an 1 ½" X 1" M' Tee' (water-thief) to supply the next 1" X 100' foot
 'OVERHAUL' lateral

8. Connect the last 1 ¹/₂" Gated-Wye now pointed in the correct direction to...

9. Connect both an 'ATTACK' hose line and a DRY/EMPTY 'SUPPLY' hose line to each discharge on the 1 ½" Gated-Wye in the same way as you did to connect both lines to the engine at the first 100' of the 'ATTACK' as performed in Step #1 above.

10. Replace the nozzle and open the valve to charge only the 'ATTACK' line. (Length on the side closest to the fire line).

11. Advance both lines as described in Step #2 above upon laying the second 'SUPPLY' hose line DRY/EMPTY but protected on the outside the fireline of Step #10.

12. Progress four (4) FULL dual lengths as you fight fire with the 1 ½" 'ATTACK' as you again lay 400' feet of DRY/EMPTY 'SUPPLY' hose lines until reaching 1,000' feet.

13. REPEAT step #3 and all steps following in the same manner, but taking note that if you're steeper territory than a 20% Grade, only the ATTACK line is attached and advanced from here.

Continue progression 100' feet at a time until all ENGINE PRESSURE (EP) is calculated to meet but NEVER breach 400 PSI. It is critical to keep in direct communication with ALL crews to verify the total number of laterals operating and the

accurate estimated (<u>+</u>) HEAD of the highest elevation nozzle using the latest USGS maps (phone app or hardcopy) within the hoselay accordingly.

You cannot get behind the wheel as a Driver/Operator and be expected to pump a hoselay SAFELY without the confirmed REQUISITE knowledge of hydraulics as required under NFPA 1002. Only this will meet the 29 CFR 1910.156 mandates. If members of your crew suffer burn injuries or even death, this very technology and equipment never before available can be used as evidence against you. An attorney can find you liable for any evidenced GROSS NEGLIGENCE upon alleged severe INCOMPETENCE for any procedure(s) in direct violation of the laws of physics as articulated herein!

Unfortunately, there are many wildland fire apparatus driver/operators who have spoken to me who <u>BELIEVE</u> and <u>BOASTED</u> that they have pumped a 2,000' foot or more hoselay as forever possible. All based on their <u>BELIEF</u> created upon a mathematical equation that (allegedly proves), <u>only</u> <u>331 PSI ENGINE PRESSURE is required <u>BEFORE</u> (<u>+</u>) HEAD in that they do <u>not</u> even realize they are <u>limited</u> to a 7.9% Grade!</u>

Yet in fact, 727 PSI is (mathematically PROVEN) required BEFORE the (+) HEAD is even considered! That is 327 PSI above the maximum 400 PSI what a Type III engine is capable of pumping to PROTECT our crews and equipment! AND yet this mathematical calculated application ERROR is 396 PSI LESS than the ACTUAL! Which is nearly the TOTAL MAXIMUM pressure, in and of itself, that an engine is governed to STOP for SAFETY!

Did someone lose site of the <u>Hazen-Williams formula</u> methodology invented in 1903 that has been used in every water delivery system designed, created, and utilized on the globe today!?! What about the **National Wildfire Coordinating Group (NWCG)** and its clear directives upon their instruction in <u>Section 3.3 Friction Loss</u> as it applies to <u>Section 3.4 Engine Pressure</u>? It is not clear that at any time, if less than the minimum required Engine Pressure (EP) is produced, a critical concern of **Occupational Health and Safety** arises as strictly enforced by and within the jurisdiction of <u>OSHA Section 5(a)(1) -</u> <u>General Duty Clause</u>!?!

How alarmed should the common layperson be when he/she discovers hundreds have been purposely misled and trained and hired to MIScalculate resulting Nozzle Pressure (NP) that is critically important to save their lives and property? What do you *think* a jury of your peers might believe upon learning these specific Laws of Physics and Standard Operating Procedures (SOP's) executed throughout the history of the fire service have been this severely disregarded? Would you not consider this a direct

Page 19 of 53

violation of the content of literally every 'Hydraulics' book ever published? Conversely, is there any reason you would <u>dis</u>trust the <u>Hazen-Williams formula</u> that has established merit for more than a century of direct application and implementation internationally since 1903?

Hence the reliance on what most of us count-on as '*our*' rule of thumb:

'With one arm fully extended, quickly increase the fire engine pump pressure until the nozzle-person rises a full thumbnail off the ground. Then and only then, back the throttle off half-a-turn. DONE!'

Perhaps it is time we can choose to live in the 21st century? ...to accept the true purpose and application and of this technology and utilize these incredible resources for the SAFETY of our personnel. Never before has TOTAL wildland fire-engine pump pressure been accurately estimated in mere seconds! Especially when your crews are out-of-site and many (unknown?) hose lengths up the fireline when the demonstrated performance of that pump operator is so heavily relied upon to at least be close to what they communicate they need.

More will be written in all these areas, including the countless advantages of the single greatest pre-connect hose load configuration that functions impeccably at EVERY INCIDENT type and allows immediate deployment with ZERO kinks every time! A configuration that even fully charges within 10 feet of the engine... in most limited or confined spaces... and delivers water at ALL phases of the deployment process as demonstrated on the YouTube video at <u>http://HoseRoller.net</u> and

http://BurnOver.HFTFire.com

Just ask Texas A & M University what <u>methodology</u> they have been teaching since I released my copyright to this very video in 2006. Three (3) firefighters could deploy three (3) pre-connects within ten (10') feet of the engine, each flowing 200 GPM in a matter of SECONDS(!) ...a deployment system at 600 GPM utilizing onboard water for 50 seconds directed more accurately than air support.

Lastly, learn how this 59-year-old man can fully charge 200 feet of 2 ½" hose within 10 feet of the rear of an engine... with NO kinks ever... flowing 500 GPM through an 18" Combination 'play-pipe'... and deploy this fully charged hose in any direction around right-angle and 180 degree turns until the FULL 200 feet hose has been FULLY deployed and yet NEVER drag the hose! **Please go to:** <u>http://NoDragHoseLoad.com</u>

Chapter III: The Phone Apps

The '<u>www.GAIAGPS.com'</u> phone app is used to pre-download literally any USGS map across the entire North American continent and beyond for an annual fee that is currently waived for <u>First Responders at a **\$19.99/yr VALUE!**</u> The "HEAD" pressure component of the calculation process is then determined by simply counting the number of contour lines. The given elevation change (either 20' interval isobars at lower, less steep areas... and 40' interval isobars at higher, and steeper terrain areas) is measured between the fire engine and the last confirmed (communicated location) or expected peak elevation 'waypoint' of our personnel at the highest nozzle anywhere within the hoselay.

Upon activating the "<u>HFT-Fire</u>" Wildland Fire Hydraulics Engine Pressure calculator phone app, the "<u>SET OPTIONS</u>" button (at the upper left of the display page with red lettering on gray background) is then tapped to be

← Stanc	lard	
SET OPTIONS	Feet	PSI
HEND	0	0
Length	1000	RESET

transported to a second page to enter only the hoselay length and positive (+) or negative (-) elevation change accordingly. Simply scroll up to enter the current length of

the hoselay indicated in 100' hose lengths as verified by the approximate distance between the engine and last indicated waypoint as communicated by personnel. Do the same to calculate HEAD (H) by scrolling up or down to select the calculated elevation change per the contour lines found on the '<u>GAIA Maps'</u> phone app display.

It is critical to keep track of the actual number of lengths of 'Attack-Line/'Trunk-Line' to accurately calculate the TOTAL of all four (4) variables [(NP) + (FL) + (A) before adjusting for (+) or (-) Head (H)] to determine accurate Engine Pressure (EP) in <u>REAL-TIME</u> accordingly. Next, the elevation is entered upon scrolling up (for uphill) upon the number of isobars counted up for positive (+) <u>HEAD</u> pressure <u>(LOSS)</u> and simply scrolling down (for downhill) for negative (-) <u>HEAD</u> pressure <u>(GAIN)</u> in increments of 20' intervals indicated as:

"0", then "(±) 20", then "(±) 40 x1" (to indicate one (1) contour line at (±) 40') then "(±) 60", then "(±) 80 x2" (to indicate two (2) contour lines at (±) 80') then "(±) 100", then "(±) 120 x3" (to indicate three (3) contour lines at (±) 120'), etc. ...up to "(±) 520 x13" (to indicate thirteen (13) contour lines at (±) 520') in that the elevation change in feet is followed by "x" (times) the numeral portion "Y" that indicates the total number of 40' elevation intervals in order to make this phone app a little more 'user-friendly' and therefore easier to accurately determine each Engine Pressure (EP) accordingly.

Upon selecting the "<u>ATTACK</u>" and "<u>SET</u>" keys, the phone app instantly calculates FULL Engine Pressure (EP). This is based on all four (4) variables listed above as presented on the first page that shows two (2) columns of Engine Pressure (EP) results per the nozzles selected in the field. The driver/operator then reads down the

← Standard										
SET OPTIONS	Feet	PSI								
HEAD	320	139								
Length	1000	RESET								
Attack	20/ <mark>60C</mark>	25/ <mark>75C</mark>								
Overhaul	10/23C	10/23C								
Laterals										
7										
6										
5										
4	423	486								
3	413	474								
2	395	454								
1	372	426								
0	345	394								

appropriate column by nozzle <u>FLOW</u> [GPM as "20/<u>60</u>C" or 25/<u>75</u>C] and then reads across upon the current number of laterals (row) operating at <u>10</u>/25C GPM for mopup/overhaul purposes in <u>REAL-TIME</u> at that particular length of progression of the wildland hoselay accordingly.

<u>TOTAL</u> Engine Pressure (EP) is calculated in each respective column in that all numeric values between 0 and 299 remain **bold black on a white background**. When the Engine Pressure (EP) reaches above 300 PSI and up to and including 399, the numeric characters become **bold red on a yellow background to indicate you**

Page 22 of 53

are quickly approaching the maximum 400 PSI that your engine will produce. But when the calculated Engine Pressure (EP) exceeds 400 PSI, the numeral characters become bold white on a red background to indicate <u>OSHA's General Duty Clause</u> <u>5(a)(1)</u> to ensure firefighter safety has been violated. The evidenced <u>required Nozzle</u>

Pressure (NP) is no longer possible.

To restore the phone app to its default settings, select **"RESET**" to reset the Engine Pressure (EP) calculator to all results to zero (0)] and begin the process as when first arriving on the scene.

← Standard										
SET OPTIONS	Feet	PSI								
HEAD	320	139								
Length	1000	RESET								
Attack	20/ 60C	1/2"T								
Overhaul	10/23C	1/4"T								

Only two (2) options are available to the Driver/Operator. The first, strategically position portable booster pump(s), or fire apparatus that can be safely driven upslope, in series to increase the minimum Nozzle Pressure as necessary. Secondly, the operator can wait for the number of laterals in use is reduced upon completion of mop-up/overhaul operations to then reduce flow (GPM) and, therefore, Friction Loss (FL) accordingly.

All examples within this manuscript are based upon a typical scenario found at the 2,600' elevation in the central Sierra Nevada Mountain range foothills below.

Chapter IV: The Mechanical Slide-Rule

To demonstrate the process of the HFT Fire Hydraulics Slide-Rule, we will use the example on Page 7 and 8 upon a 1,000' "<u>Standard</u>" 1 ½" hoselay with a 20/<u>60</u> GPM 'Attack' combination nozzle. We will compute for <u>ONLY two (2) of four (4) laterals</u> <u>operating</u> upon utilizing <u>10</u>/23 GPM combination nozzles; eight (8) USGS map contour lines at 40' each; to determine 320' of elevation and therefore 139 PSI "HEAD" pressure loss.

It is recommended this tool shall be maintained within each fire apparatus, as a back-up to the phone app, but with its own set of instructions in that the driver/operator shall:

1. "Select (insert) mode: ATTACK vs OVERHAUL"

2. "<u>Pull insert "OUT" to current Hoselay Length</u>" Pull out the appropriate insert ["<u>Standard</u>" or "<u>HEN-WAY</u>"] to the actual hoselay length indicated in 100' hose length intervals. Both columns are listed by nozzle type ["20/<u>60C</u>" or 25/75C] as the insert is extended until the hose

	Length	Length	10	00	1. Pull insert
D	Max. GPM	Max. GPM	100	<u>105</u>	2. Record Nu
da	Attack	Attack	60C	1/2"T	3. Rotate DI
ue	Overhaul	Overhaul	10/23C	1/4"T	Appliance
Sti	Laterals	Laterals			upon nun
	Operating	Operating			Nozzle Ty
	10	10			4. Again rota

lay length is clearly visible within the laminated window as above.

8 5. Read estimated ENGINE PRES 3. "Rotate DIAL "A" to (sub) TOTAL of 7 RED NEEDLE of Dial "A" on 'Fi Nozzle Pressure (NP) + Friction Loss (FL) + 6 5 Laterals N Appliance Loss (A) upon number of 284 238 No 4 Operating C 223 "Laterals" operating (row) by Nozzle Flow 2 256 99 (20/60C or 25/75C GPM) column to LEFT." 170 206 137 0 The accurate calculated SUBTOTAL of (NP) + Copyright © 2018 - HFT Fire & Rescue Tech. & Equip., LLC - Pate

Page 24 of 53

(FL) + (A) is then determined upon reading down the appropriate column by nozzle type and across by the current number of laterals operating at that particular phase of the hoselay evolution. The **Dial 'A'** setting, which represents a Type III engine pump pressure gauge that reads from "0" to "400" PSI, is then manually rotated until the red/black pressure needle lines up with this calculated SUBTOTAL of (NP) + (FL) +

(A) per the number of laterals in step #2. [Example 256 PSI for two (2) laterals operating

in the 1,000' ft. hoselay (as USGS map illustrated herein)].

4. "Again rotate Dial "A" until estimated (+) HEAD in FEET lines up with (sub) TOTAL of NP + FL + A of #3" Add (+) or subtract (-) calculated (or estimated) (+) HEAD Pressure at 0.434 PSI per foot or (+) 43.4 PSI per (+) 100 feet of elevation change. Hence, the preloaded USGS maps at "www.GAIAGPS.com" are such a powerful and necessary tool in the field.

> LEFT (counter-clockwise) of the а. red/black pressure needle is "BLUE" in measured increments of approx. 22 PSI positive (+) <u>HEAD</u> (<u>H</u>) pressure per 50' feet increased elevation.

RIGHT (clockwise) of the red/black b. pressure needle is "RED" in measured increments of approximately 22 PSI negative (-) HEAD (H) pressure per 50' feet in decreased elevation.

- c. The final step to determine accurate Engine Pressure (EP) per the internationally **recognized calculation method** is to again **rotate Dial 'A'** until the estimated elevation [(+) Blue for upslope; (-) Red for downslope] lines up with the first subtotal result from item #3.
- 5. <u>Read estimated ENGINE PRESSURE (EP) upon RED NEEDLE of Dial "A" on 'Fixed'</u> **GAUGE "B"**: Simply read the resulting accurately calculated Engine Pressure (EP) as indicated upon this final position of the red needle on the pressure gauge

← Stand	lard	
SET OPTIONS	Feet	PSI
HEAD	320	139
Length	1000	RESET
Attack	20/60C	25/ <mark>75C</mark>
Overhaul	10/23C	10/23C
Laterals		
7		
6		
5		
4	423	486
3	413	474
2	395	454
1	372	426
0	345	394

accordingly. Thus "<u>NP</u>" + "<u>FL</u>" + "<u>A</u>" [as one (1) predetermined <u>subtotal</u> result] + "<u>H</u>" = <u>Engine Pressure (EP)</u> [Example <u>395 PSI</u> Engine Pressure upon <u>two (2) laterals</u>

operating]

In other words, we just measured with a micrometer... marked it with chalk... and cut it with a chainsaw! We can now confirm this Engine Pressure (EP) upon verifying the same entries on the Phone App on page 14 above arrive at the result.

Never before has this technology been available to meet this SAFETY standard, but especially in mere seconds to maintain PROPER minimum Engine Pressure upon every length of hose in progression in <u>REAL-TIME</u>! ...BUT ESPECIALLY WHEN TO <u>STOP</u>!!!

Slide-Rule Reverse Side – "Standard" at 1000' and 1,100', then the "HEN-WAY" 1,100'

The backside of the slide rule shows not only how each section of a hoselay is directly affected upon accurately measured and anticipated water-flow rates per the number of laterals operating, but it also illustrates every dynamic of this mathematical process. This further supports a driver/operator's education of what he/she must be accountable and respect to be given the responsibility of each fireline crew member's safety. Sufficient Engine Pressure (EP) and resulting SAFE Nozzle Pressure (NP) can now be managed accordingly.

Please take this opportunity to review each of the highlighted details and directives to become fully aware of why it is so critical we pump the calculated Engine Pressure we pump. Until we grasp full knowledge, we will truly never understand why we must **CEASE and DESIST** all forward action when Laws of Physics PROVE we can proceed no more. It cannot be emphasized enough the liability each driver/operator is subjected to if he/she does not perform to these minimum NFPA training standards and procedures as articulated herein.

Page 26 of 53

Chapter V: Mop-Up/Overhaul mode

As an added benefit to both the iOS and Android Phone Apps and the mechanical Slide-Rule, the author has added the calculation process to determine Engine Pressure (EP) during **"Mop-Up"** or **"Overhaul"** operations. These results can ONLY be utilized AFTER **'Containment'** has been confidently achieved and declared by Incident Command.

As a result, the **'Attack'** nozzle flow rate can be reduced from 60 GPM to only 20 GPM, in that given this produces $1/3^{rd}$ of the original water-flow, the end result is $1/9^{th}$ the Friction Loss (FL) component as previously calculated. Upon this significant reduction in Friction Loss (FL), Engine Pressure (EP) can be equally significantly reduced in which more laterals may be placed in service. To do so, will further assist the efficient full extinguish of every smoldering ember that always has the potential of creating a 'slop-over' (a term to mislead the media we have an 'Escape). It can drastically affect fireline safety if specific, proper measures are not exercised to prevent otherwise.

Please note, although the <u>"Overhaul"</u> Engine Pressures (EP) is significantly reduced, the color-coding to indicate just how close a driver/operator is to exhausting maximum Engine Pressure (EP) is NEVER eliminated. Regardless of whether in <u>'ATTACK'</u> mode or <u>"Overhaul"</u> mode, this will always keep the Driver/Operator aware of the risk that adequate <u>'ATTACK'</u> Nozzle Pressure (NP) may not be readily or FULLY available if <u>'ATTACK'</u> mode needs to be resumed.

Therefore, this is more evidence that every effort should be made to ensure all personnel remains in direct radio communication, per the Emergency Action (contingency) Plan, to include the potential temporary shut down of all NONrelated/affected "Overhaul" nozzles. This will ensure the apparatus pump is still able to provide the minimum Engine Pressure (EP) to produce the minimum Nozzle Pressure (NP) required to mitigate any potential incident more efficiently and effectively.

Both the slide-rule and Phone Apps can independently select **"Overhaul"** mode to indicate these Engine Pressures (EP) accordingly. Corresponding colors always indicate in contrasting **BLACK**, **YELLOW**, and **RED** to effectively communicate and <u>WARN</u> the driver/operator these are NOT the Engine Pressure (EP) readings that will ever be adequate to produce the minimum Nozzle Pressure (NP) when engaging in and during severe fire behavior incidents and situations.

The following photographs are images of the Slide-Rule inserts and Phone App pages upon selecting "Overhaul" vs. "Attack" that clearly indicate "OVERHAUL" above each pressure result calculated. Again, these significantly reduced Engine Pressure (EP) results shall <u>never</u> be utilized or exercised at any time during the risk of any extreme fire behavior that may require immediate emergency mitigation procedures as deemed necessary. Please be extremely cautious to prevent confusing these results but primarily when engaged in aggressive fire attack when maximum pressure is required.

• **Standard "OVERHAUL"** Slide-Rule "overhaul" insert as:

1	Length	10	00	20	200		00	40	00	50	00	600		700		800	
	Attack	<u>20C</u>	<u>25C</u>														
	Overhaul	<u>10</u> /23C															
	Laterals																
	12																
	11																
	10																
	9																
3	8																
<u>ul</u>	7																
ha	6																
<u>/er</u>	5													<u>Over</u>	haul	<u>Over</u>	haul
Ó	4									<u>Over</u>	haul	<u>Over</u>	haul				
rd	3					<u>Over</u>	haul	<u>Over</u>	haul					<u>144</u>	<u>151</u>	<u>145</u>	<u>153</u>
da	2	<u>Over</u>	haul	<u>Over</u>	haul					<u>126</u>	<u>130</u>	<u>127</u>	<u>132</u>	<u>139</u>	<u>145</u>	<u>140</u>	<u>146</u>
an	1					<u>112</u>	<u>114</u>	<u>113</u>	<u>115</u>	<u>121</u>	<u>125</u>	<u>122</u>	<u>126</u>	<u>130</u>	<u>136</u>	<u>131</u>	<u>137</u>
Sta	0	<u>101</u>	<u>102</u>	<u>102</u>	<u>103</u>	<u>108</u>	<u>110</u>	<u>109</u>	<u>111</u>	<u>115</u>	<u>118</u>	<u>116</u>	<u>119</u>	<u>122</u>	<u>126</u>	<u>123</u>	<u>127</u>

	Length	<u>1gth</u> 900		1000		1100		1200		<u>1300</u>		<u>1400</u>		<u>1500</u>		<u>1600</u>	
	Attack	<u>20C</u>	<u>25C</u>	<u>20C</u>	<u>25C</u>	<u>20C</u>	<u>25C</u>	<u>20C</u>	<u>25C</u>	<u>20C</u>	<u>25C</u>	<u>20C</u>	<u>25C</u>	<u>20C</u>	<u>25C</u>	<u>20C</u>	<u>25C</u>
	Overhaul	<u>10</u> /23C	<u>10</u> /23C	<u>10</u> /23C	<u>10</u> /23C	<u>10</u> /23C	<u>10</u> /23C	<u>10</u> /23C	<u>10</u> /23C	<u>10</u> /23C	<u>10</u> /23C	<u>10</u> /23C	<u>10</u> /23C	<u>10</u> /23C	<u>10</u> /23C	<u>10</u> /23C	<u>10</u> /23C
	Laterals																
	12																
	11																
	10																
	9													<u>Over</u>	<u>haul</u>	<u>Over</u>	haul
	8									<u>Over</u>	<u>haul</u>	<u>Over</u>	<u>haul</u>				
<u>ul</u>	7					<u>Over</u>	haul	<u>Over</u>	haul					<u>281</u>	<u>302</u>	<u>282</u>	<u>304</u>
ha	6	<u>Over</u>	<u>haul</u>	<u>Over</u>	<u>haul</u>					<u>235</u>	<u>253</u>	<u>236</u>	<u>254</u>	<u>271</u>	<u>292</u>	<u>272</u>	<u>294</u>
<u>/er</u>	5					<u>198</u>	<u>211</u>	<u>199</u>	<u>213</u>	<u>227</u>	<u>243</u>	<u>228</u>	<u>245</u>	<u>255</u>	<u>275</u>	<u>256</u>	<u>277</u>
Ó	4	<u>168</u>	<u>178</u>	<u>169</u>	<u>179</u>	<u>191</u>	<u>203</u>	<u>191</u>	<u>205</u>	<u>213</u>	<u>228</u>	<u>214</u>	<u>230</u>	<u>229</u>	<u>254</u>	<u>230</u>	<u>255</u>
rd	3	<u>161</u>	<u>171</u>	<u>162</u>	<u>172</u>	<u>178</u>	<u>190</u>	<u>179</u>	<u>192</u>	<u>195</u>	<u>210</u>	<u>196</u>	<u>211</u>	212	<u>229</u>	<u>213</u>	<u>231</u>
da	2	<u>151</u>	<u>160</u>	<u>152</u>	<u>161</u>	<u>164</u>	<u>174</u>	<u>165</u>	176	<u>177</u>	189	<u>178</u>	<u>190</u>	<u>189</u>	204	<u>190</u>	205
an	1	<u>140</u>	<u>147</u>	<u>141</u>	<u>148</u>	<u>149</u>	<u>157</u>	<u>150</u>	<u>159</u>	<u>158</u>	168	<u>159</u>	170	168	<u>179</u>	<u>169</u>	<u>181</u>
St	0	<u>129</u>	<u>134</u>	<u>130</u>	<u>135</u>	<u>136</u>	<u>142</u>	<u>137</u>	<u>143</u>	<u>142</u>	<u>150</u>	<u>143</u>	<u>151</u>	<u>149</u>	<u>158</u>	<u>150</u>	<u>159</u>

HEN-WAY "OVERHAUL" Slide-Rule "overhaul" insert as:

	Length	100		200		300		4	00	50	00	6	00	70	00	80	00
-	Attack	<u>20C</u>	<u>25C</u>	<u>20C</u>	<u>25C</u>	20C 25C 2		<u>20C</u>	<u>25C</u>	<u>20C</u>	<u>25C</u>	20C 25C		<u>20C</u>	<u>25C</u>	<u>20C</u>	<u>25C</u>
	Overhaul	<u>10</u> /23C	<u>10</u> /23C	<u>10</u> /23C	<u>10</u> /23C	<u>10</u> /23C	<u>10</u> /23C	<u>10</u> /23C	<u>10</u> /23C	<u>10</u> /23C	<u>10</u> /23C	<u>10</u> /23C	<u>10</u> /23C	<u>10</u> /23C	<u>10</u> /23C	<mark>10</mark> /23C	<u>10</u> /23C
	Laterals																
	12												Ad	da			
	11												' <u>HEN-</u>	WAY'			
	10												bef	ore			
ul	9												proce	eding			
ha	8																
ver	7															·	
Ó	6																
٩Y	5		Ē											Over	haul	<u>Over</u>	haul
Ň	4	I	-							Over	Overhaul		haul				
z	3					Over	haul	Over	haul					133	131	142	145
Ξ	2	<u>Overhaul</u>		Overhaul						126	130	127	132	128	127	137	140
	1					112	114	113	115	121	125	122	126	123	120	132	134
	0	101	102	102	103	108	110	109	111	115	118	116	119	119	117	128	130

	<u>Length</u>	900		10	00	11	00	12	00	13	00	14	00	15	00	16	00
	Attack	<u>20C</u>	<u>25C</u>	<u>20C</u>	<u>25C</u>	<u>20C</u>	<u>25C</u>	<u>20C</u>	<u>25C</u>	<u>20C</u>	<u>25C</u>	<u>20C</u>	<u>25C</u>	<u>20C</u>	<u>25C</u>	<u>20C</u>	<u>25C</u>
	Overhaul	<u>10</u> /23C	<u>10</u> /23C	<mark>10</mark> /23C	<u>10</u> /23C	<u>10</u> /23C	<u>10</u> /23C	<u>10</u> /23C	<u>10</u> /23C	<u>10</u> /23C	<u>10</u> /23C	<mark>10</mark> /23C	<u>10</u> /23C	<u>10</u> /23C	<u>10</u> /23C	<mark>10</mark> /23C	<u>10</u> /23C
	Laterals				Ad	da							Ad	da			
	12				' <u>HEN-</u>	WAY'							' <u>HEN-</u>	WAY'			
ē	11		bef	ore	e 🚺						bef	ore					
e.	10				proce	eding							proce	eding			
<u>ul</u>	9													<u>Over</u>	<u>Overhaul</u>		haul
ha	8									<u>Overhaul</u>		<u>Overhaul</u>					
Ver	7				0		<u>Overhaul</u>		<u>haul</u>					212	214	221	228
Ó	6	<u>Over</u>	<u>haul</u>	<u>Overhaul</u>						186	189	195	202	205	208	214	221
٩Y	5					169	1737	178	1751	181	183	190	197	197	198	206	212
Ň	4	157	154	166	167	163	163	172	176	172	175	181	188	190	192	199	205
ż	3	153	148	162	162	156	155	165	169	167	168	176	182	182	182	191	196
Ξ	2	146	142	155	155	151	150	160	163	160	161	169	174	175	175	184	188
1	1	143	137	152	151	145	143	154	157	155	154	164	168	167	166	176	180
Ť	0	136	131	145	144	140	139	149	152	147	147	156	160	161	160	170	173

Please look below and compare the **"ATTACK"** mode at **423 PSI** (60C GPM Attack Nozzle upon a 1,000-foot hoselay with all four (4) 10 GPM laterals operating) is <u>UNSAFE</u> to pump... yet the **"OVERHAUL"** figure at **308 PSI** appears innocent. That's a **115 PSI** reduction in Engine Pressure (EP) now below the maximum 400 PSI threshold... but NOT during **"ATTACK"** or Emergency Operations! The <u>color-coding</u> remains to <u>WARN</u>:

The procedure takes literally only seconds to complete a two a fast and simple (2) step process. It is the Driver/Operator's responsibility to ensure proper mode has been selected, and the length of the hoselay and estimated elevation is selected accurately.

Tap "SET OPTIONS"; select '<u>ATTACK</u>'; select '<u>SET</u>'; and read '<u>ATTACK</u>' results.

SET OPTIONS PSI 320 139 SET LENGTH ELEVATION ESET 900 300 5/75C 0/23C 1000 320 x8 Latera 340 1100 Attack ○ Overhaul SET CANCEL 454 372 345

'ATTACK' selector

'<u>ATTACK</u>' mode

← Standard											
SET OPTIONS	Feet	PSI									
HEAD	320	139									
Length	1000	RESET									
Attack	20/60C	25/ 75C									
Overhaul	10/23C	10/23C									
Laterals											
7											
6											
5											
4	423	486									
3	413	474									
2	395	454									
1	372	426									
0	345	394									

Tap "SET OPTIONS"; select '<u>Overhaul</u>'; select '<u>SET</u>'; and read "OVERHAUL" results.

4 Standard SET OPTIONS Feet PSI HEAD 320 139 1000 RESET Length Attack 20/60C 25/75C Overhaul 10/23C 10/23C **OVERHAUL OVERHAUL** Laterals 7 6 5 4 308 318 311 3 301 291 2 300 1 280 287 0 269 274

<mark>'OVERHAUL"</mark> mode

Again, for the first time in Fire Service history, this resource dictates when and where to add a booster pump to re-establish and maintain an effective fire stream to ensure firefighter safety per NFPA 1002 8.1 & 8.2.1(A), NFPA 1041 1.1 & 1.2.2, and OSHA 29 CFR 5(a)1 & 1910.156(c)1 & 2 accordingly. <u>EVERY WILDLAND FIRE</u> <u>APPARATUS DRIVER/OPERATOR IS REQUIRED BY LAW TO UPHOLD THESE STANDARDS</u> <u>WITHOUT DEVIATION OR NEGLECT UPON OR UNDER ANY CIRCUMSTANCES EVER!</u>

Chapter VI: The Basics – Definition of Terms

As in all hydraulics calculations, wildland fire hydraulics is determined upon four (4) mathematical variables, that when totaled, accurately calculate proper Engine Pressure (EP). Proper (minimum) Engine Pressure (EP) is required to produce and maintain an effective fire stream at the rated water flow of the nozzle. These aspects are critical to ensure firefighter safety but especially upon the execution of any progressive wildland hoselay. The key is to keep up with the continuous progression of your crews but in <u>**REAL-TIME**</u> at literally every step of this critical fire suppression tactical operation.

To begin, we must always first consider the minimum required <u>Nozzle Pressure</u> (NP) of the "Attack-Nozzle" at the end connection of the hose before working our way back to the primary pump of the fire engine. Depending on the style of nozzle used (expressed in thread size and type), the internationally recognized NFPA standard requires a minimum of 50 PSI when utilizing a straight-bore "TIP" (T) style nozzle (listed by bore inside diameter and resulting GPM) and a minimum of 100 PSI for a "Combination" (C) style nozzle that produces both straight stream and fog patterns at variable flow rates expressed in Gallons Per Minute (GPM) accordingly.

The second consideration is <u>Friction Loss (FL)</u>. This is the most complex variable of the calculation process that is directly affected upon the amount of water flowing (GPM) through any individual section of any given pipe (or hose) at a specific diameter at the specified Nozzle Pressure (NP) at 50 PSI for a Straight-bore 'TIP' nozzle or 100 PSI for a Combination style nozzle presented as:

• Friction Loss (FL) = (GPM/100)^2 * Coefficient of the hose * Length of hose/100'

- Coefficient of 1 1/2" Hose Multiplier is 24
- Coefficient of 1" Hose Multiplier is <u>150</u>

In the simplest terms, given the viscosity of water at normal atmospheric temperatures and pressure, the flow rate (GPM) has a direct impact on this pressure loss. In regards to wildland firefighting, each section of an inch and a half (1 ½") "Attack-Line" or "Trunk-Line" in a hoselay is directly affected by the resulting flow (GPM) of the attack nozzle at the prescribed minimum required pressure <u>AND</u> the increased flow of water (GPM) in each affected section upon <u>ADDING</u> the flow of water (GPM) of each successive one-inch (1") by 100' lateral that is utilized for mop-up/overhaul purposes to Page 31 of 53

'secure' and 'anchor' the fire line of any given wildland fire today. A critical factor that increases the Friction Loss (FL) component in each individual affected and therefore unique section of hose exponentially that can <u>NEVER</u> be disqualified nor disregarded in this internationally accepted and instructed mathematical calculation process <u>EVER</u>.

Then, once the Friction Loss (FL) of each individually affected section of the "Attack-Line/Trunk-Line" is accurately determined per their unique flow rates (GPM), this <u>subtotal</u> Friction Loss (FL) of all sections is then added together to the combined <u>subtotal</u> Friction Loss (FL) of each individual one-inch (1") by 100' lateral currently in operation. The sum of these two (2) figures, therefore, represents the <u>GRAND TOTAL</u> Friction Loss (FL) variable that is necessary to accurately calculate the total proper Engine Pressure (EP) for the entire progressive hoselay accordingly.

In the simplest terms, the inquiry, <mark>"Is not Friction Loss a direct mathematical function of Gallons Per Minute?"</mark> ...is, therefore, a resounding and confirmed, "<u>Yes</u>!"

The third mathematical variable is <u>Appliance Loss (A)</u>. This is based upon the number of inline one and a half-inch $(1 \frac{1}{2}^{"})$ "Tees" necessary to connect and supply each one-inch $(1^{"})$ by 100' lateral utilized for mop-up/overhaul purposes. Again, in the same exact manner, a large boulder can slow the overall rate of water down a river or stream, each one-inch $(1^{"})$ water-restrictive stem/valve assembly that spans the full diameter within each of these one and a half $(1 \frac{1}{2}^{"})$ "Tee" causes an Appliance Loss (A) pressure loss determined at an estimated 5 PSI each in the same manner.

The final and fourth (4th) mathematical variable is the addition (+) or subtraction (-) of <u>HEAD pressure (H)</u>: This is the calculated increase of pressure [PLUS (+) upon the increase in elevation above the fire pump to the highest nozzle of the hoselay] or calculated decrease of pressure [MINUS (-) upon the decrease of elevation below the fire pump to the <u>first operating nozzle of a hoselay ONLY</u>!] upon the weight of water at 0.434 PSI per foot (<u>+</u>) elevation change.

For structure firefighting purposes, this is a no brainer by comparison in that each floor above or below the ground floor of a pumper is typically 10 feet; in which this figure is subsequently rounded off to 5 PSI per floor. Upon counting from the second (2nd) floor and going up from there, we add a <u>PLUS</u> (+) 5 PSI per floor. [(# Floor – one (1)) * 5 PSI] Conversely, when fighting basement fires, this amount is subtracted as a <u>MINUS</u> (-) 5 PSI per basement floor below the ground floor. [-1 * (# B. Floor) * 5 PSI] in

Both positive (+) and negative (-) HEAD are compensated at the pump upon the internationally accepted methodology to calculate Engine Pressure (EP) accordingly.

But when it comes to wildland fire fighting, this variable is not so easily calculated. The fire apparatus driver/operator must multiply **0.434 PSI/ft**. upon his/her '<u>best</u> <u>estimation</u>' of the change in elevation (The 'rise' over the given run of several hundred feet and more.) But this is often visually obstructed by vegetation and other land features that make this nearly impossible to determine at (+) or (-) 25% accuracy, to then be utilized to attempt to calculate proper Engine Pressure (EP) accurately.

But now, upon the <u>REAL-TIME</u> Geographic Positioning System (GPS) to verify the location of all personnel and resources (via radio communication due to the lack of an internet connection in remote areas) can be placed on a two (2) dimensional United States Geographic Survey (USGS) map. This is an extremely useful phone app that can be downloaded to any Android or iPhone (<u>www.GAIAGPS.com</u>) that not only identifies the (±) change in elevation in either 20 ft. or 40 ft. intervals, but In the same manner, a Land Surveyor measures all property lines from a known <u>BENCHMARK</u>, when standard GPS technology is utilized in conjunction with 'AVL' equipped fire apparatus, fire line safety is immensely enhanced! Personnel radio-notify their <u>REAL-TIME</u> situational awareness (best estimation of which contour line is near or above) from their 'AVL' fire vehicle (<u>BENCHMARK</u>). The benchmark that is monitored by dispatch and command staff that meets all safety criteria of Section 5 of the "<u>Wildfire Management Technology</u> <u>Advancement Act of 2018</u>" as well. A first in Fire Service history!

Let's again review the internationally recognized Engine Pressure (EP) calculation formula as stated below upon the adherence to the correct methodology. The <u>GRAND</u> <u>TOTAL</u> Friction Loss (FL) component is always based upon the water flow (GPM) in each individually affected section of hose that changes upon the placement and operational use of every successive one-inch (1") by 100' lateral utilized for mop-up/overhaul mitigation purposes accordingly.

Engine Pressure (EP) = Nozzle Pressure (NP) + <u>GRAND TOTAL</u> Friction Loss (FL) + Appliance Loss (A) + [(+) or (-)] HEAD (H)

It is a fire apparatus driver/operator's duty to accurately calculate and record each component upon as much confirmed intelligence that can be obtained in the field before adding all four (4) variables to calculate the actual Engine Pressure (EP) accurately. But especially upon the need in <u>**REAL-TIME</u>** to establish and maintain the required minimum Nozzle Pressure (NP) at every step in a wildland fire hoselay that truly meets and exceeds every directive enforced by the mandate of the <u>**OSHA Section**</u> <u>**5(a)(1)**</u> <u>**General Duty Clause**</u> umbrella to maximize firefighter safety under all conditions.</u>

The purpose of the world's FIRST ever Wildland Fire Engine Pump Pressure/Hydraulics Calculator is to establish and maintain this requirement at every phase of advancing in hoselay. Both a mechanical Slide-Rule and the Android and iOS format phone apps accomplish this in mere seconds. A huge breakthrough in fire line safety that has never been experienced in Fire Service history before!

And now that Automatic Vehicle Location (AVL) equipment (upon redundant Cellular, VHF, and satellite GPS positioning communication methods/systems) is being installed (in over 1,200 CAL FIRE units alone) to improve the situational awareness of our fire apparatus/ resources, we can now determine by bearing and distance from these **<u>BENCHMARKS</u>** that are monitored 24/7/365, our firefighters can now be located to almost the nearest square inch by allowing full Computer-Aided Dispatch connectivity and continuous radio communicated position updates expressed in longitude and latitude coordinates of our frontline fire response, **the** "<u>Holy Grail of Wildland</u> <u>Firefighting</u>" has finally been fulfilled!

Chapter VII: The Breakdown

Nozzle Pressure (NP) 'Pressure Loss':

As there are many nozzle types and manufacturers worldwide, there are truly only two (2) versions that need to be considered: Straight bore "Tip" (T) and "Combination" style nozzles (C).

Straight bore "Tip" (T) nozzles are listed by thread size (i.e. 1" NPT or 1 ½" NST) and inside diameter and flow rates expressed in Gallons Per Minute (GPM) at 50 PSI. 50 PSI must be continuously maintained at the end connection of the hose to produce the desired flow rate (GPM) to fight a fire both SAFELY and efficiently to ensure firefighter safety and therefore meet OSHA's General Duty Clause listed above. A 1 ½" NST thread ½" "Tip" style nozzle will flow 53 GPM at 50 PSI nozzle pressure. This has been established as the minimum size tip/flow rate determined by many state government agency fire departments before ever fully engaging a wildland fire advancing at a *"moderate rate of spread."*

and yet most federal agencies require 75 GPM flow rate Wildland "Combination" (C) style nozzles, on the other hand, require 100 PSI to establish and maintain the minimum flow rate (GPM) at the end connection of the hose to fight a fire both SAFELY and efficiently. All are again listed by thread size and type (i.e., 1" NPT or 1 ½" NST) at their minimum and maximum GPM flow rates (i.e. "10/23"; "20/60"; "25/75"; etc.) accordingly. These nozzles can transition from the lower flow rate (GPM) to the next and back and produce a fire stream that can be either in a straight-stream fashion (similar to a straight bore "Tip") or variable 'fog' pattern wide-angle fire stream.

In all cases, a quarter turn 'ball-valve' assembly at the hose/nozzle connection is the preferred method to initiate, adjust and then cease the rate of flow of both the straight-bore "Tip" and "Combination" style nozzles alike.

Friction Loss (FL) 'Pressure Loss':

To begin to fully understand how we determine this portion of the calculation process, we need to respect the internationally recognized calculation formula methodology. This formula has been utilized for more than a century to determine the minimum parameters for all our water fire protection systems (hydrants, sprinklers, etc.). The Great Chicago Fire and the San Francisco Earthquake of 1906 made it apparent that minimum flow rates and pressure standards were needed to prevent the 'conflagrations' experienced. The internationally recognized and respected basic hydraulics Friction Loss (FL) formula:

• Friction Loss = (<u>GPM</u>/100)² X (<u>Coefficient</u> of the Hose) X (<u>Length</u> at a specific flow rate)/100')

1. In that, the **<u>Coefficient</u>** for <u>1</u>["] diameter fire hose utilizes the multiplier of <u>150</u>...

2. In that, the **<u>Coefficient</u>** for **<u>1 ½</u>"** diameter fire hose utilizes the multiplier of **<u>24</u>**...

But before we begin to discuss the proper application of the formula necessary to complete this portion of the calculation process, we must first understand the physical dynamics involved to arrive at such a result.

First, let's consider any typical river or creek coursing down-stream. The water flow is fast and efficient at the top and in the middle of the primary flow area, yet much slower on the edges and therefore at the bottom as well. Friction loss (FL) is best understood as this component, given the measured viscosity of water under normal temperatures and atmospheric pressures, that when the water makes contact with the edges (in this case the bottom and sides) of its designated channel, 'eddies' are created as it moves downstream. The overall rate of flow is therefore reduced by this resulting friction.

In the exact same way, the inside diameter of a pipe, given its cylindrical shape, determines the surface area to volume ratio. Again given the measured viscosity of water, turbulence or 'eddies' are created at a predictable size and rate. The more water is forced through a given pipe, the larger these 'eddies' become. As these 'eddies' increase in size, the overall 'usable' inside diameter of the pipe is reduced. As the 'usable' diameter is exponentially reduced, its volume or capacity to flow water is then equally exponentially reduced regardless of a manufacturer's efforts to ensure the inside surface of the hose is created as smooth as possible.

Practically speaking, "What does all this mean?"

- This is why when we double (2X) the water flow (GPM) in a given pipe or hose, the Friction Loss (FL) component increases by a multiplier of two (2) squared... or four (4) times the amount.
- In that three (3) times the flow of water (GPM) in the same pipe is three (3) squared... or nine (9) times the amount of Friction Loss (FL).
- And yet, if we attempt to maintain the same flow rate (GPM) but in a pipe one-half (½) the original diameter of the first, the resulting Friction Loss (FL) component increases by a multiplier of 32 times!

Page 36 of 53

If we look at any internationally recognized Friction Loss (FL) table, per the supporting evidential exhibits attached, we find this consistently illustrated as true. This is why we experience such an incredible benefit by establishing a second dual/parallel 'Supply-Line' when attempting to flow large quantities of water over great distances from a hydrant to the fire. The Friction Loss (FL) component is calculated by squaring the fraction equal to "½" the GPM in each. So "½" the flow times (X) "½" the flow then results in "¼" the Friction Loss (FL) as the coefficient of the hose always remains constant. This results in a 75% reduction in Friction Loss (FL) when calculating the **TOTAL** necessary water pressure and resulting flow to complete the evolution, simply by adding just one (1) more parallel line.

Another example, to establish exposure protection from a more advantageous strategic location that may be over a great distance may call for laying yet a third (3rd) parallel 2 ½" Attack-line. In pressurizing a high flow (GPM) portable monitor nozzle (appliance), the Friction Loss (FL) component is reduced in that the equally divided "1/3" the flow (GPM) times (X) "1/3" the flow (GPM) results in "1/9" the Friction Loss (FL). This now results in an 89% reduction in the Friction Loss (FL) component when calculating the **TOTAL** Engine Pressure (EP) required with incidents of this magnitude.

The internationally recognized calculation methodology above has been respected and adhered to by all affected local, state/province, and federal entities requiring its proper application to establish adequate water fire protection worldwide for well over a century and a half.

This is where it gets a little dicey for the wildland fire apparatus driver/operator. He/she must calculate the rate of water (GPM) through each individually affected section of 1 ½" 'Attack-line'/'Trunk-line' utilized in a progressive hoselay. The rate of flow (GPM) in each individual section is directly affected by the actual flow rate (GPM) of the attack nozzle <u>PLUS</u> the flow rate (GPM) of all successive operating individual one-inch (1") by 100' laterals at specific intervals further up the 'Attack-line'/'Trunk-line'.

Chapter VIII: The Calculations

As previously outlined, all examples are a one and half inch (1 ½") by 1,000' 'Attack-Line'/'Trunk-Line' hoselay, with a 1 ½" 20/60 'Attack' combination nozzle flowing <u>60 GPM</u> at <u>100 PSI</u> Nozzle Pressure (NP). There is also a total of four (4) 1" by 100' laterals every 200', each equipped with a 10/23 GPM combination nozzle flowing <u>10</u> <u>GPM</u> for mop-up/overhaul purposes. The following breakdown is evidenced as follows:

Avail. Pressure to 400:

specific section only.

Max. HEAD in Feet:

Between 800' and 1,000' the 1 ½"
 20/60 'Attack' combination nozzle
 causes 60 GPM to flow through this 200'
 section at 8.6 PSI Friction Loss per 100'...
 or 17.2 PSI TOTAL Friction Loss (FL) in
 this specific 200' section of 1 ½" only.
 Between 600' and 800,' the 1 ½"
 20/60 'Attack' combination nozzle
 causes 60 GPM to flow through this 200'
 section is then ADDED to the additional
 10 GPM for the 1" by 100' lateral at 800'
 in that 70 GPM causes 11.8 PSI Friction
 Loss per 100'... or 23.6 PSI TOTAL

Friction Loss (FL) in this specific section **only.**

<u>Max. Length @ 33% Grd:</u> 800 Grd. 3. <u>Between 400' and 600'</u> the 1 ½" 20/60 'Attack' combination nozzle causes <u>60 GPM</u> to flow through this 200' section is then <u>ADDED</u> to the additional <u>10 GPM</u> for the 1" by 100' lateral at 800' and then <u>ADDED</u> to the additional <u>10 GPM</u> for the 1" by 100' lateral at 600' in that <u>80 GPM</u> causes <u>15.4 PSI</u> Friction Loss per 100'... or <u>30.8 PSI TOTAL</u> Friction Loss (FL) in this

MAX.

26.6%

116

266

4. <u>Between 200' and 400'</u> the 1 ½" 20/<u>60</u> 'Attack' combination nozzle causes <u>60 GPM</u> to flow through this 200' section is then <u>ADDED</u> to the additional <u>10 GPM</u> for the 1" by 100' lateral at 800' and then <u>ADDED</u> to the additional <u>10 GPM</u> for the 1" by 100' lateral at 600' and then <u>ADDED</u> to the additional <u>10 GPM</u> for the 1" by 100' lateral at 400' in that <u>90 GPM</u> causes <u>19.4 PSI</u> Friction Loss per 100'... or <u>38.8 PSI TOTAL</u> Friction Loss (FL) in this specific section <u>only.</u>

Page 38 of 53

5. <u>Between the Fire Engine and 200,'</u> the 1 ½" 20/<u>60</u> 'Attack' combination nozzle causes <u>60 GPM</u> to flow through this 200' section is then <u>ADDED</u> to the additional <u>10</u> <u>GPM</u> for the 1" by 100' lateral at 800'; and then <u>ADDED</u> to the additional <u>10 GPM</u> for the 1" by 100' lateral at 600'; and then <u>ADDED</u> to the additional <u>10 GPM</u> for the 1" by 100' lateral at 600'; and then <u>ADDED</u> to the additional <u>10 GPM</u> for the 1" by 100' lateral at 600'; and then <u>ADDED</u> to the additional <u>10 GPM</u> for the 1" by 100' lateral at 400'; and then <u>ADDED</u> to the additional <u>10 GPM</u> for the 1" by 100' lateral at 200'. <u>100 GPM</u> causes <u>24.0 PSI</u> Friction Loss per 100'... or <u>48.0 PSI</u> <u>TOTAL</u> Friction Loss (FL) in this specific section <u>only.</u>

The <u>subtotal Friction Loss (FL)</u> of each of the five (5) individually calculated sections of the 1 ½" 'Attack-Line'/'Trunk-Line' is determined by <u>ADDING each result of</u> <u>each individually affected section as</u> <u>17.2 PSI</u> + <u>23.6 PSI</u> + <u>30.80 PSI</u> + <u>38.8 PSI</u> + <u>48.0 PSI</u> to thus equal (=) <u>158.0 PSI</u>

It is then necessary to calculate the Friction Loss (FL) component for the water pressure loss of each 1" by 100' lateral per the internationally recognized formula and methodology above. Each 100' length with a 10/23 GPM combination nozzle flowing <u>10</u> <u>GPM</u> has a Friction Loss (FL) of <u>1.5 PSI each</u>. Since we have one at 200', a second at 400', a third at 600', and finally a fourth at 800':

The <u>subtotal</u> Friction Loss (FL) for all <u>four (4)</u> 1" by 100' laterals at <u>1.5 PSI</u> each is (=) <u>6.0 PSI</u>.

The **<u>GRAND TOTAL Friction Loss (FL)</u>** component required to accurately calculate proper Engine Pressure (EP) is proven by <u>adding the subtotal Friction Loss each of the</u> <u>five (5) individually affected sections of the 1 ½" 'Attack-Line'. We ADD this 158.0 PSI</u> <u>to the subtotal Friction Loss (FL) of all four (4) 1" laterals at 6.0 PSI</u> which equals (=) <u>164.0 PSI</u>.

Appliance Loss (A) Pressure Loss:

In the same manner that a large boulder restricts the flow of water in a river or creek, any parasitic obstruction within any plumbing and/or pipe or hose must also be considered to calculate for the Appliance Loss (A)

Given there are four (4) $1 \frac{1}{2}$ " X 1" 'Tees' (each with interior 'water-restrictive' valve stem assemblies) in the 1,000' hoselay above, we shall calculate each at <u>5 PSI</u> in that <u>four (4)</u> times (X) <u>5 PSI</u> equals (=) <u>20 PSI</u>

The <u>TOTAL PRESSURE LOSS</u> is the addition of the Nozzle Pressure (NP) [100 PSI], <u>PLUS</u> (+) the '<u>GRAND TOTAL' Friction Loss (FL)</u> of the 1 ½" Attack-line/Trunk-line [158 <u>PSI]</u> added to the '<u>subtotal' Friction Loss (FL)</u> of all four (4) 1" by 100' laterals [6 PSI] equals (=) <u>164 PSI PLUS</u> (+) <u>Appliance Loss (A)</u> at [20 PSI] which equals (=) <u>284 PSI</u>

This is the initial figure that the Slide-Rule and both phone apps provide. You will recall that this leaves only **<u>116 PSI</u>** of the 400 PSI maximum Engine Pressure (EP) that our fire apparatus can produce to SAFELY allow for the final component to be added - <u>**HEAD**</u> (<u>**H**</u>) pressure</u>. Dividing **116 PSI** by **0.434 PSI/ft** equals **266 feet**. Given this is over a **1,000' run, this is a 26.6% Grade.** Any steeper than this, the maximum amount of vertical elevation [(+) HEAD] will compromise the **OSHA General Duty Clause 5(a)(1)** requirement to establish and maintain an effective fire stream for firefighter safety.

The calculation for the maximum length at a 29% Grade, in a 1,000' run is 290'. 290' times (X) 0.434 PSI/ft equals 126 PSI. 400 PSI minus (-) 126 PSI equals **274 PSI** available to pump water. The calculations for 60 GPM 'Attack' and all four (4) laterals operating at 10 GPM requires 276 PSI at 900'. Given it is only 2 PSI more than the maximum at 274 PSI calculated, it would likely be safe enough to pump a 900' hoselay at a 29% grade. But nothing longer nor nothing steeper is possible without violating 29 CFR 1910.156 training and performance standards upon NFPA's 1002 to produce an effective fire stream at the rated flow/capacity of the nozzle... as every instructed is mandated to teach under NFPA 1041 Instructor Qualification Standards.

At this point, a hoselay 'Attack-line'/'Trunk-line' still cannot be SAFELY extended even one (1) more 100' length to 1,100' of 1 ½" 'Attack-Line/'Trunk-Line' even with only two (2) 1" laterals operating at 283 PSI. The HEAD pressure at this continuous rise-overrun for the next 100' distance will increase from 290' to 319 feet. When we multiply 319 times 0.434 PSI/ft, it equals 138 PSI in Total HEAD pressure loss. If we only have 117 PSI available before exhausting the maximum Engine Pressure (EP) at 400 PSI, we are therefore in direct violation of 29 CFR 1910.156 upon NFPA 1002 and 1041 Instructor Qualification Standards yet again.

The final concern, when establishing minimum Nozzle Pressure (NP) at the end of a 1,000' hoselay with up to four (4) laterals operating simultaneously, is when the resulting Friction Loss (FL) component is reduced as mop-up/overhaul operations are being completed and there are subsequently only three (3) 1" by 100' laterals operating yet four (4) water-restrictive "Tees" that remain in place. The end result is only <u>90 GPM</u> Page 40 of 53

flows through the first 400' of 1 ½" 'Attack-Line/'Trunk-Line' between the Fire Engine to next (2nd) operating lateral at 400' up the hoselay. This lowers the calculated <u>Grand</u> <u>Total Friction Loss (FL) variable a full</u> <u>10 PSI</u> because the Nozzle Pressure (NP), Friction Loss (FL) of both the 1 ½" and the 1" hose, and the appliance loss of four (4) "Tees" at 5 PSI each remains constant to arrive at the subtotal of <mark>274 PSI</mark>.

When only two (2) 1" by 100' laterals of the original four (4) total are operating, the end result is only **80 GPM** will be flowing through the first 600' of the 1 ½" 'Attack-Line/'Trunk-Line' between the Fire Engine to the next (3rd) 1" by 100' lateral operating. This again lowers the overall **Grand Total Friction Loss (FL)** variable a full **28 PSI** to **256 PSI**. (Nozzle Pressure (NP), Friction Loss (FL) of this reduced water-flow-rate within the 1 ½" and the 1" hose, and the appliance loss of four (4) "Tees" at 5 PSI each.)

Again when only one (1) 1" by 100' laterals of the original four (4) total are operating, the end result is only <u>70 GPM</u> flowing through the first 800' of the 1 ½" 'Attack-Line/'Trunk-Line.' This again lowers the overall <u>Grand Total</u> Friction Loss (FL) variable a full <u>51 PSI</u> to <u>233 PSI</u>. (Nozzle Pressure (NP), Friction Loss (FL) of this reduced water- flow-rate within the 1 ½" and the 1" hose, and the appliance loss of four (4) "Tees" at 5 PSI each)

If no 1" by 100' laterals of the original four (4) total are operating, the end result is only <u>60 GPM</u> flowing through the first 1,000'. Again lowering the overall <u>Grand Total</u> Friction Loss (FL) variable a full <u>78 PSI</u> to 206 PSI.

When considering **OVERHAUL** operations, when the 20/60 GPM nozzle is reduced to only 20 GPM and all other nozzles remain at 10 GPM, these figures exponentially change at a similar rate. But again, these Engine Pressure results shall **ONLY** be utilized during operations when you are confident an aggressive attack is significantly reduced. The color-coding of each result shall remain unchanged as a **WARNING** in the event of the need to escalate to 'ATTACK' mode. This is why it is critical to maintain radio contact with all Mop-Up/Overhaul nozzle operators to temporarily cease (shut-down) all 'unaffected' overhaul lines/laterals in place. This will divert ALL water (and subsequent increased nozzle pressure) to the area of the emergency but especially when the minimum required Engine Pressure (EP) to produce the minimum Nozzle Pressure, ensuring firefighter safety per 29 CFR 1910.156 of NFPA 1041, may be marginal at best.

(+) HEAD (H) Pressure Loss and/or Gain:

The subtotal of the Nozzle Pressure (NP), Friction Loss (FL) and Appliance (A) loss on the Slide-Rule and both phone apps, when subtracted from 400 PSI, instantly determines if the driver/operator can execute this possibility **<u>BEFORE</u>** it is attempted, to maintain firefighter safety.

Any USGS Topo Map immediately provides our GPS location on a grid map that illustrates isobars that indicate either 20' elevation gradients (at lower elevation areas) or 40' elevation gradients (at higher elevation areas). This allows us to count the accurate positive (+) or negative (-) changes in elevation between a driver/operator's (fire apparatus) location and an established waypoint(s).

Free Download Available at: FireDepartment.net

Friction Loss Calculator - 100 Feet of 1 1/2" Hose

1 0.0 51 6.2 101 24.5 151 201 97.0 251 151.2 301 21.7 301 22.4 302 152 55.4 202 97.9 251 153.4 302 153.5 352 27.4 333 22.03 353 22.13 153.6 302 22.13 354.6 303 22.13 354.6 303 22.13 354.6 304 22.13 354.7 305 22.13 354.7 305 22.13 354.7 305.7	GPM	FL	SPM	FL		GPM	FL	GPM	FL] [GPM	FL		GPM	FL	[GPM	FL	GPM	FL
2 0.0 52 6.5 102 25.0 152 55.4 202 97.9 152 152.4 302 232 333 333 295.1 4 0.0 54 7.0 104 26.0 154 56.9 204 99.9 254 154.8 304 221.8 354 300.8 5 0.1 55 7.3 105 26.5 155 57.7 205 100.9 255 154.3 306 224.7 356 304.2 7 0.1 57 7.8 107 27.5 157 59.2 207 102.8 58 308 227.7 305 306 224.7 356 304.3 304.0 301.0 301.0 302.2 308 307.6 301.0 311.0 311.0 311.0 311.0 311.0 311.0 311.0 311.0 311.0 311.0 311.0 311.0 311.0 311.0 311.0 311.0 311.0 <td>1</td> <td>0.0</td> <td>51</td> <td>6.2</td> <td></td> <td>101</td> <td>24.5</td> <td>151</td> <td>54.7</td> <td>11</td> <td>201</td> <td>97.0</td> <td>1</td> <td>251</td> <td>151.2</td> <td>ſ</td> <td>301</td> <td>217.4</td> <td>351</td> <td>295.7</td>	1	0.0	51	6.2		101	24.5	151	54.7	11	201	97.0	1	251	151.2	ſ	301	217.4	351	295.7
3 0.0 53 6.7 103 255 153 562. 203 98.9 251 153.6 304 220.8 353 490.1 5 0.1 55 7.3 105 265. 155 57.7 205 100.9 255 156.1 305 223.3 355 305.5 6 0.1 56 7.3 106 27.0 156 58.4 206 10.8 256 157.3 306 224.7 356 305.9 7 0.1 57 7.8 100 28.0 158 59.9 208 103.8 258 159.8 300 227.7 358 305.3 10 0.2 60 8.6 110 29.0 160 61.4 210 10.5 261 163.5 311 32.1 303 311 32.1 303 314 32.6 336 23.1 333 36.6 31.1 32.1 343 3	2	0.0	52	6.5		102	25.0	152	55.4	П	202	97.9		252	152.4		302	218.9	352	297.4
4 0.0 54 7.0 104 26.0 154 55.9 72 105 26.5 105 57.7 105 26.7 105 26.7 105 26.7 105 26.7 105 26.7 105 25.5 15.5 57.7 106 27.0 125 155.7 306 224.7 356 305.9 8 0.2 58 8.1 107 27.5 157 99.2 207 102.8 255 158.8 308 227.2 359 305.9 305.9 305.9 305.9 306.1 300.1 30.4 20.9 104.8 259 161.0 300 220.1 309.3 307.6 300.1 30.4 30.9 30.2 30.9 30.3 30.4	3	0.0	53	6.7		103	25.5	153	56.2	Ш	203	98.9		253	153.6		303	220.3	353	299.1
5 0.1 55 7.3 105 22.5. 155 150. 20.5. 23.3. 355 20.5. 6 0.1 56 7.5. 100 27.0. 156 58.4. 206 101.8. 256 157.3. 306 224.2. 355.9. 307.6 305.9 8 0.2. 58 8.1 108 28.0 158 59.9. 208 108.4. 259 16.0. 309 225.2 358.9 307.0 306 24.7.7 358 307.6 309 225.1 306.10 309 225.1 306.10 306.110.0 110.0 256 166.0 311 223.6 366.2 314.5 13 0.4 63 9.5 113 30.6 163 63.8 213 108.9 264 167.3 314 236.6 364 310.7 14 0.5 65 10.1 115 30.7 165 110.7 214 114.7 <td< td=""><td>4</td><td>0.0</td><td>54</td><td>7.0</td><td></td><td>104</td><td>26.0</td><td>154</td><td>56.9</td><td>П</td><td>204</td><td>99.9</td><td></td><td>254</td><td>154.8</td><td></td><td>304</td><td>221.8</td><td>354</td><td>300.8</td></td<>	4	0.0	54	7.0		104	26.0	154	56.9	П	204	99.9		254	154.8		304	221.8	354	300.8
6 0.1 56 7.5 106 27.0 115 58.4 206 101.8 256 157.3 30.0 224.7 356 90.12 8 0.2 58 8.1 100 27.5 157 59.2 207 102.8 257 158.5 307.6 209 104.8 258 158.5 308.2 27.7 358 309.3 10 0.2 60 8.6 110 29.0 106.6 6.4 210 105.8 200 102.2 310 220.6 303.3 303.3 105.2 310.4 62.9.9 111 29.6 161.6 62.2 211 105.7 322.6 366.0 313 235.1 363 162.2 111 105.6 53.1 122.8 136.0 105.2 105.0 105.0 105.0 105.0 105.0 105.0 105.0 105.0 105.0 105.0 105.0 105.0 105.0 105.0 105.0 105.0	5	0.1	55	7.3		105	26.5	155	57.7	Ш	205	100.9		255	156.1		305	223.3	355	302.5
7 0.1 57 7.8 107 27.5 157 59.2 207 102.8 257 158.5 307 226.2 357 357 358 307 226.2 357 358 307 227.2 358 307.2 258 307.2 258 307.2 258 307.2 257.2 358 307.2 257.2 358 307.2 257.2 358 307.2 257.2 358 307.2 257.2 358.3 307.2 257.2 358.3 307.2 257.2 358.3 307.2 257.2 358.3 308.2 257.1 157.3 307.2 257.3 357.3<	6	0.1	56	7.5		106	27.0	156	58.4	П	206	101.8		256	157.3	1	306	224.7	356	304.2
8 0.2 58 8.1 108 28.5 159.8 159.8 208 159.8 308 227.7 358 307.6 9 0.2 59 8.4 109 28.5 159 60.7 209 104.8 258 159.8 309.8 227.7 358 307.6 10 0.2 60 8.6 110 29.0 166 61.4 210 105.8 260 162.7 310 22.6 163.3 312 23.5 362 314.5 13 0.4 63 9.5 113 30.6 163 63.8 214 109.9 264 167.3 313 23.5.1 366 315.7 366 315.7 366 315.7 366 315.7 366 315.7 366 315.7 366 315.7 366 315.7 366 315.7 366 315.7 366 315.7 366 315.7 370 310.8 317 32.8	7	0.1	57	7.8		107	27.5	157	59.2	Ш	207	102.8		257	158.5		307	226.2	357	305.9
9 0.2 59 8.4 109 28.5 159 60.7 209 104.8 259 161.0 309 22.5 359 309.3 10 0.2 60 8.6 110 29.0 160 614 210 105.8 260 162.2 310 230.6 360 311 11 0.3 62 9.2 112 30.1 162 63.0 212 107.9 262 164.7 311 232.6 366 313 325.1 363 316.2 14 0.5 64 9.8 114 31.2 164 64.6 214 109.9 264 167.3 314 236.6 321.5 15 0.5 65 10.1 115 31.6 126.1 120.1 120.1 120.1 316 237.7 316 236.7 366 313.2 16 0.6 0.5 116 23.0 116.7 120.1 120.1	8	0.2	58	8.1		108	28.0	158	59.9	П	208	103.8		258	159.8		308	227.7	358	307.6
10 0.2 60 8.6 110 29.0 160 61.4 210 105.8 260 162.2 310 20.6 360 311.0 11 0.3 61 8.9 111 29.6 1616 62.2 211 107.9 262 164.7 312 233.6 363 314.3 13 0.4 63 9.5 113 30.6 163 63.8 212 107.9 262 164.7 312 233.6 363 314.3 30.6 363 314 30.6 66 314.0 314 30.6 66 214.1 10.9 264 167.3 314 236.6 364 319.7 15 0.6 66 10.1 117 32.9 166 66.1 216 113.0 267 171.1 317 319 242.2 366 323.3 16 0.6 61.14 119 34.0 166 65.2 219 115.1 269 173.7 319 242.2 367 323.2 373 328.2	9	0.2	59	8.4		109	28.5	159	60.7	П	209	104.8		259	161.0		309	229.2	359	309.3
11 0.3 61 8.9 111 29.6 161. 62.2 211. 106.9 261. 163.7 311. 23.1 361. 312. 363. 362. 314.5 12 0.3 62 9.2 1113. 30.6 162. 63.8 211. 108.9 263. 166.0 312. 233.6 363. 316.2 14 0.5 64 9.8 116. 32.3 166. 66.1 216. 110.9 266. 168.5 315. 238.1 365. 319.7 366. 321.5 15 0.5 66 10.5 116. 32.3 166. 66.1 216. 112.0 266. 169.8 316. 238.7 366.8 321.5 16 0.6 68 11.1 118. 34.4 168.6 67.7 218.1 114.1 268.8 172.4 318.242.7 368.8 325.0 19 0.9 69 11.4 119.3 35.1 177.7 170.2 221 117.2 271.7 176.3 <td< td=""><td>10</td><td>0.2</td><td>60</td><td>8.6</td><td></td><td>110</td><td>29.0</td><td>160</td><td>61.4</td><td>Ц</td><td>210</td><td>105.8</td><td></td><td>260</td><td>162.2</td><td>1</td><td>310</td><td>230.6</td><td>360</td><td>311.0</td></td<>	10	0.2	60	8.6		110	29.0	160	61.4	Ц	210	105.8		260	162.2	1	310	230.6	360	311.0
12 0.3 62 9.2 112 30.1 162 63.0 212 107.9 262 164.7 313 233.6 362 314.2 13 0.4 63 9.5 113 30.6 163 638 213 108.9 263 166.0 313 235.1 363 316.2 14 0.5 65 10.1 115 31.7 166 65.3 215 110.9 265 168.8 315 238.1 365 317.7 366 321.5 17 0.7 67 10.8 117 32.9 166 66.1 216 112.0 266 162.4 316 237.7 366 321.5 19 0.8 68 11.1 118 34.6 170 69.4 220 116.2 270 175.0 320 245.8 370 328.6 21 1.1 71 1.21 32.1 717.7 170 222 117.2 271 176.6 322 248.8 370 328.2 370 328.	11	0.3	61	8.9		111	29.6	161	62.2		211	106.9		261	163.5		311	232.1	361	312.8
13 0.4 63 9.5 113 30.6 163 63.8 213 108.9 263 166.0 313 235.1 363 316.2 14 0.5 64 9.8 114 31.7 166 65.3 214 109 264 167.3 314 236.6 365 315 15 0.5 65 10.1 115 31.7 166 66.1 216 112.0 266 169.8 315 233.7 366 312.3 316 237.7 366 312.3 316 659 217 113.0 267 171.1 312 241.2 367 323.3 18 0.8 68 11.1 118 33.4 168 67.7 218 116.1 260 173.7 319 244.2 369 326.4 21 1.1 71 121 321 35.1 171 70.2 221 117.2 271 176.6 322 245.8 370 333.9 34 34.4 374 331.3 333.9 34 </td <td>12</td> <td>0.3</td> <td>62</td> <td>9.2</td> <td></td> <td>112</td> <td>30.1</td> <td>162</td> <td>63.0</td> <td></td> <td>212</td> <td>107.9</td> <td></td> <td>262</td> <td>164.7</td> <td></td> <td>312</td> <td>233.<mark>6</mark></td> <td>362</td> <td>314.5</td>	12	0.3	62	9.2		112	30.1	162	63.0		212	107.9		262	164.7		312	233. <mark>6</mark>	362	314.5
14 0.5 64 9.8 114 31.2 164 64.6 214 10.99 264 167.3 314 23.6.6 344 318.0 15 0.5 65 10.1 115 31.7 165 65.3 215 110.9 265 168.5 315 238.1 366 317.7 16 0.6 66 10.1 118 32.3 166 66.1 217 113.0 267 171.1 317 24.12 367 323.3 19 0.5 69 11.4 119 34.0 169 68.5 219 115.1 269 177.0 319 24.2 368 322.0 20 1.0 70 118.1 124.1 125.1 171 70.2 221 117.2 271 176.3 322 428.8 370 328.6 213.3 373 128.2 248.8 370 323.2 224.8 370 322 248.8 372 372.7 323 256.5 375 375 325 225 117.5	13	0.4	63	9.5		113	30.6	163	63.8		213	108.9		263	166.0		313	235.1	363	316.2
15 0.5 65 10.1 115 31.7 165 65.3 215 110.9 265 168.5 315 238.1 366 319.7 16 0.6 66 10.5 116 32.3 166 66.1 121.0 266 168.3 316 239.7 366 321.5 17 0.7 67 10.8 117 32.7 166 66.9 217 113.0 266 177.7 319 244.2 369 326.8 20 1.0 70 11.8 120 34.6 170 69.4 220 115.2 270 175.0 320 245.8 370 328.2 21 1.1 71 1.2.1 121 35.7 172 71.0 222 118.3 272 176.3 321 247.3 371.3 333.33 337.5 23 1.3 73 1.28 123 35.7 177 71.8 222 117.3 277.1 72.2 274 180.2 324 251.9 373.3 333.7	14	0.5	64	9.8	1	114	31.2	164	64.6		214	109.9		264	167.3	I	314	236.6	364	318.0
16 0.6 66 10.5 116 32.3 166 66.1 216 112.0 266 117.1 317 241.2 367 368 315 18 0.8 68 11.1 118 33.4 168 67.7 218 114.1 268 172.4 318 241.2 368 325.0 19 0.9 69 11.4 119 34.0 169 68.5 219 115.1 269 173.7 319 244.2 368 325.0 20 1.0 70 11.8 120 34.6 170 69.4 220 116.2 270 175.0 322 245.8 370 328.6 21 1.1 71 121 35.7 172 71.0 222 118.3 273 176.9 322 248.8 373 333.9 22 1.2 75 13.5 125 37.5 175 73.5 225 121.5 275 181.5 322 253.5 375 337.5 337.5 25 <td>15</td> <td>0.5</td> <td>65</td> <td>10.1</td> <td></td> <td>115</td> <td>31.7</td> <td>165</td> <td>65.3</td> <td></td> <td>215</td> <td>110.9</td> <td>ľ</td> <td>265</td> <td>168.5</td> <td></td> <td>315</td> <td>238.1</td> <td>365</td> <td>319.7</td>	15	0.5	65	10.1		115	31.7	165	65.3		215	110.9	ľ	265	168.5		315	238.1	365	319.7
17 0.7 67 10.8 117 32.9 167 66.9 127 113.0 266 17.1.1 317 24.1.2 367 32.3.3 18 0.8 68 11.1 118 33.4 168 67.7 218 114.1 268 172.4 318 242.7 368 325.8 20 1.0 70 11.8 120 34.6 170 69.4 220 115.2 270 175.0 320 245.8 370 328.6 21 1.1 71 12.1 121 35.1 171 71.0 222 118.3 272 176.3 321 247.3 373 333.9 24 1.4 74 13.1 124 36.9 174 72.7 224 120.4 274 180.2 324 251.9 373.3 333.9 25 1.5 75.3 175 75.7 75.5 125 125.5 125.5 125.5 375.3 375.3 177 75.2 227 123.7 177 184.1	16	0.6	66	10.5		116	32.3	166	66.1		216	112.0		266	169.8		316	239.7	366	321.5
18 0.8 68 11.1 118 33.4 168 67.7 218 114.1 268 172.4 318 24.2 368 325.0 19 0.9 69 11.4 119 34.0 169 68.5 219 115.1 269 175.0 319 244.2 369 326.6 21 1.1 71 12.1 121 35.1 171 70.2 221 117.2 271 176.3 321 247.3 371 330.3 22 1.2 72 12.4 122 35.7 172 71.6 222 118.3 272 177.6 322 248.8 372 333.9 24 1.4 74 1.3 126 38.1 176 7.3 226 127.5 181.5 325 255.5 375 337.5 25 1.5 75 13.5 128 7.17 7.42 127 7.37 181.4 327	17	0.7	67	10.8		117	32.9	167	66.9		217	113.0		267	171.1		317	241.2	367	323.3
19 0.9 69 11.4 119 34.0 169 68.5 219 115.1 269 173.7 319 244.2 369 326.8 20 1.0 70 11.8 120 34.6 170 69.4 220 116.2 270 175.0 320 245.8 370 328.6 21 1.1 71 12.1 121 35.1 171 70.2 221 117.2 271 176.5 321 247.3 371 333.3 22 1.4 74 13.5 125 37.5 175 73.5 224 124 74 74 74.3 343.57 25 1.5 75 13.5 125 37.5 175 73.5 225 121.5 275 181.5 322 253.5 375 375.3 26 1.6 76 13.9 126 38.1 176 74.3 226 127.6 128.1 128.5 328 255.2 378 342.9 29 20 79 15.0 129	18	0.8	68	11.1		118	33.4	168	67.7		218	114.1		268	172.4		318	242.7	368	325.0
20 1.0 70 11.8 120 34.6 170 69.4 220 116.2 270 175.0 320 245.8 370 330.3 21 1.1 71 12.1 121 35.1 171 70.2 221 117.2 271 176.3 321 247.3 371 330.3 22 1.3 73 12.8 123 35.7 172 71.0 222 118.3 273 176.9 322 244.8 372 333.9 24 1.4 74 13.1 124 36.9 174 72.7 224 120.4 274 180.2 324 251.9 375 335.9 25 1.5 75 13.5 125 375.1 175 725 225 121.5 275 181.5 325 255.1 376 337.5 26 1.6 76 13.9 126 32.1 177 75.2 227 123.7 277 184.1 327 256.6 377 341.1 28 1.9 </td <td>19</td> <td>0.9</td> <td>69</td> <td>11.4</td> <td></td> <td>119</td> <td>34.0</td> <td>169</td> <td>68.5</td> <td> </td> <td>219</td> <td>115.1</td> <td>ľ</td> <td>269</td> <td>173.7</td> <td></td> <td>319</td> <td>244.2</td> <td>369</td> <td>326.8</td>	19	0.9	69	11.4		119	34.0	169	68.5		219	115.1	ľ	269	173.7		319	244.2	369	326.8
21 1.1 71 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.2 35.7 172 71.0 222 118.3 272 17.6 32.2 24.8.8 37.1 330.3 23 1.3 73 12.8 12.3 36.3 17.4 77.0 222 118.3 27.3 17.8 9 32.2 24.8.8 37.2 33.3.3 24 1.4 74 13.1 124 36.9 174 72.7 224 12.0.4 274 180.2 324 25.1.9 37.5 337.5 25 1.5 75 13.5 125 37.5 175 73.5 225 12.5 77.6 181.5 326 25.5.1 376 339.3 27 1.7 77 12.4 127 38.7 177 75.2 227 12.6 12.6 37.7 341.2 28 1.9 78 14.6 128 39.3 178 76.0 228 124.8 278 185.5 328	20	1.0	70	11.8		120	34.6	170	69.4	П	220	116.2		270	175.0		320	245.8	370	328.6
22 1.2 7.2 1.2.4 122 35.7 1.72 71.0 222 118.3 272 17.6 322 24.8 37.3 31.3 33.5 35.5 35.5 35.5 35.5 35.5 35.5 35.5 37.5 37.5 37.5 37.7 14.1 32.5 17.8 18.5 12.5 12.5 1	21	1.1	71	12.1		121	35.1	171	70.2	4	221	117.2		271	176.3		321	247.3	371	330.3
23 1.3 73 12.8 123 36.3 173 71.8 223 119.3 273 178.9 323 250.4 373 333.9 24 1.4 74 13.1 124 36.9 174 72.7 224 120.4 274 180.5 325 253.5 375 337.5 25 1.5 75 13.5 125 37.5 175 73.5 225 121.5 275 181.5 326 255.5 376 339.3 27 1.7 77 14.2 127 38.7 177 75.2 227 123.7 277 184.1 327 256.6 377 341.1 28 1.9 78 14.6 129 39.9 179 76.9 229 125.9 279 186.2 320 251.4 330 261.4 380 261.4 380 261.4 381 157 131 41.2 181 78.6 231 127.0 280 189.5 331 262.9 331 264.5 382 <td< td=""><td>22</td><td>1.2</td><td>72</td><td>12.4</td><td></td><td>122</td><td>35.7</td><td>172</td><td>71.0</td><td>П</td><td>222</td><td>118.3</td><td></td><td>272</td><td>177.6</td><td></td><td>322</td><td>248.8</td><td>372</td><td>332.1</td></td<>	22	1.2	72	12.4		122	35.7	172	71.0	П	222	118.3		272	177.6		322	248.8	372	332.1
24 1.4 74 13.1 124 36.9 174 72.7 224 120.4 274 180.2 324 251.9 374 355.7 25 1.5 75 13.5 125 37.5 175 73.5 225 121.5 275 181.5 325 253.5 375 337.5 26 1.6 76 13.9 126 38.1 176 74.3 226 122.6 276 182.8 326 255.1 376 339.3 27 1.7 77 14.2 127 38.7 177 75.2 227 123.7 277 184.1 327 256.6 377 341.1 28 1.9 78 1.46 129 39.9 179 76.9 229 127.0 280 188.2 330 261.4 380 346.6 31 2.3 81 15.7 131 41.2 181 78.6 231 128.1 281 133 26.1 333 264.5 382 350.2 33 <td>23</td> <td>1.3</td> <td>73</td> <td>12.8</td> <td></td> <td>123</td> <td>36.3</td> <td>173</td> <td>71.8</td> <td>И</td> <td>223</td> <td>119.3</td> <td></td> <td>273</td> <td>178.9</td> <td></td> <td>323</td> <td>250.4</td> <td>373</td> <td>333.9</td>	23	1.3	73	12.8		123	36.3	173	71.8	И	223	119.3		273	178.9		323	250.4	373	333.9
25 1.5 75 13.5 125 37.5 175 73.5 225 121.5 275 181.5 325 23.5 375 375 337.5 26 1.6 76 13.9 126 38.1 176 74.3 226 122.6 276 182.8 326 255.1 376 339.3 27 1.7 77 14.2 127 38.7 177 75.2 227 123.7 277 184.1 327 256.6 377 341.1 28 1.9 78 16.4 128 39.3 178 76.0 228 124.8 278 185.5 328 258.2 378 342.9 29 2.0 79 15.0 129 39.9 179 76.9 229 125.9 279 186.8 329 259.8 379 344.7 30 2.2 80 15.4 130 40.6 180 77.8 230 127.0 280 182.2 330 261.4 380 350.2 350.2 331	24	1.4	74	13.1		124	36.9	174	72.7		224	120.4		274	180.2		324	251.9	374	335.7
26 1.6 76 13.9 126 38.1 176 74.3 226 122.6 276 182.8 326 255.1 376 339.3 27 1.7 77 14.2 127 38.7 177 75.2 227 123.7 277 184.1 327 256.6 377 341.1 28 1.9 78 14.6 128 39.3 178 76.0 228 124.8 278 185.5 328 258.2 378 342.9 30 2.2 80 15.4 130 40.6 180 77.8 230 127.0 280 188.2 330 261.4 380 346.6 31 2.3 81 15.7 131 41.2 181 78.6 231 128.1 281 189.5 331 262.9 381 344.4 32 2.5 82 16.1 132 41.8 182 79.5 232 129.2 282 190.9 332 264.5 382 350.2 332 261.7 38	25	1.5	75	13.5		125	37.5	175	73.5		225	121.5		275	181.5		325	253.5	375	337.5
27 1.7 77 14.2 127 38.7 177 75.2 227 123.7 277 184.1 327 256.6 377 341.1 28 1.9 78 14.6 128 39.3 178 76.0 228 124.8 278 185.5 328 258.2 378 342.9 29 2.0 79 15.0 129 39.9 179 76.9 229 125.9 279 186.8 329 259.8 379 344.7 30 2.2 80 15.4 130 40.6 180 77.8 230 127.0 280 188.2 330 261.4 380 346.6 31 2.3 81 15.7 131 41.2 181 78.6 231 128.1 281 189.5 331 26.9 381 348.4 344.4 32 2.5 82 16.1 132 41.8 182 75.5 232 122.2 282 190.9 332 266.1 338 55.7 333 267.	26	1.6	76	13.9		126	38.1	176	74.3		226	122.6		276	182.8		326	255.1	376	339.3
28 1.9 78 14.6 128 39.3 178 76.0 228 124.8 278 185.5 328 258.2 378 342.9 29 2.0 79 15.0 129 39.9 179 76.9 229 125.9 279 186.8 329 259.8 379 344.7 30 2.2 80 15.4 130 40.6 180 77.8 230 127.0 280 188.5 330 261.4 380 346.6 31 2.3 81 15.7 131 41.2 181 78.6 231 128.1 189.5 331 26.5 382 350.2 33 2.6 83 16.5 133 42.5 183 80.4 233 130.3 283 192.2 333 266.1 383 355.7 34 2.8 84 15.9 134 43.7 185 82.1 235 132.5 285 194.9 335 266.3 336 271.0 386 357.6 37<	27	1.7	77	14.2		127	38.7	177	75.2	11	227	123.7		277	184.1		327	256.6	377	341.1
29 2.0 79 15.0 129 39.9 179 76.9 229 125.9 279 186.8 329 259.8 379 344.7 30 2.2 80 15.4 130 40.6 180 77.8 230 127.0 280 188.2 330 261.4 380 346.6 31 2.5 82 16.1 132 41.8 182 79.5 222 122.2 282 190.9 332 264.5 382 350.2 331 262.9 381 348.4 33 2.6 83 16.5 133 42.5 183 80.4 233 130.3 283 192.2 333 266.1 383 352.1 34 2.8 84 16.9 134 43.1 184 81.3 234 131.4 284 193.6 334 267.7 384 353.9 35 2.9 85 17.3 135 43.7 185 82.1 235 132.5 285 194.9 335 266.3 38	28	1.9	78	14.6		128	39.3	178	76.0		228	124.8		278	185.5		328	258.2	378	342.9
30 2.2 80 15.4 130 40.6 180 77.8 230 127.0 280 188.2 330 261.4 380 346.6 31 2.3 81 15.7 131 41.2 181 78.6 231 128.1 281 189.5 331 262.9 381 348.4 32 2.5 82 16.1 133 42.5 183 80.4 233 130.3 283 192.2 333 266.1 383 352.1 34 2.8 84 16.9 134 43.1 184 81.3 234 131.4 284 193.6 334 267.7 384 353.1 35 2.9 85 17.3 135 43.7 185 82.1 235 132.7 286 196.3 336 271.0 386 357.7 36 3.1 86 17.8 136 44.4 186 83.0 236 133.7 286 196.3 336 271.0 386 357.6 37 3.3 </td <td>29</td> <td>2.0</td> <td>79</td> <td>15.0</td> <td></td> <td>129</td> <td>39.9</td> <td>179</td> <td>76.9</td> <td> </td> <td>229</td> <td>125.9</td> <td></td> <td>279</td> <td>186.8</td> <td></td> <td>329</td> <td>259.8</td> <td>379</td> <td>344.7</td>	29	2.0	79	15.0		129	39.9	179	76.9		229	125.9		279	186.8		329	259.8	379	344.7
31 2.3 81 15.7 131 41.2 181 78.6 231 128.1 281 189.5 331 262.9 381 344.4 32 2.5 82 16.1 132 41.8 182 79.5 232 129.2 282 190.9 332 264.5 382 350.2 34 2.6 83 16.5 133 42.5 183 80.4 233 130.3 283 192.2 333 266.1 383 352.1 34 2.8 84 16.9 134 43.1 184 81.3 234 131.4 284 193.6 334 267.7 384 355.7 36 3.1 86 17.8 136 44.4 186 83.0 236 133.7 286 196.3 336 271.0 386 355.7 37 3.3 87 18.2 137 45.0 187 83.9 237 134.8 287 197.7 337 272.6 387 359.4 38 3.5 </td <td>30</td> <td>2.2</td> <td>80</td> <td>15.4</td> <td></td> <td>130</td> <td>40.6</td> <td>180</td> <td>77.8</td> <td> </td> <td>230</td> <td>127.0</td> <td></td> <td>280</td> <td>188.2</td> <td></td> <td>330</td> <td>261.4</td> <td>380</td> <td>346.6</td>	30	2.2	80	15.4		130	40.6	180	77.8		230	127.0		280	188.2		330	261.4	380	346.6
32 2.5 82 16.1 132 41.8 182 79.5 232 129.2 282 190.9 332 264.5 382 350.2 33 2.6 83 16.5 133 42.5 183 80.4 233 130.3 283 192.2 333 266.1 383 352.1 34 2.8 84 16.9 134 43.1 184 81.3 234 131.4 284 193.6 334 267.7 384 353.9 35 2.9 85 17.3 135 43.7 185 82.1 235 132.5 285 194.9 335 269.3 385 355.7 36 3.1 86 17.8 136 44.4 186 83.0 236 133.7 286 196.3 336 271.0 386 357.6 37 3.3 87 182 45.7 188 84.8 238 135.9 288 199.1 338 274.2 388 361.3 39 3.7 89 <td>31</td> <td>2.3</td> <td>81</td> <td>15.7</td> <td></td> <td>131</td> <td>41.2</td> <td>181</td> <td>78.6</td> <td> </td> <td>231</td> <td>128.1</td> <td></td> <td>281</td> <td>189.5</td> <td></td> <td>331</td> <td>262.9</td> <td>381</td> <td>348.4</td>	31	2.3	81	15.7		131	41.2	181	78.6		231	128.1		281	189.5		331	262.9	381	348.4
33 2.6 83 16.5 133 42.5 183 80.4 233 130.3 283 192.2 333 266.1 383 352.1 34 2.8 84 16.9 134 43.1 184 81.3 234 131.4 284 193.6 334 267.7 384 353.9 35 2.9 85 17.3 135 43.7 185 82.1 235 132.5 285 194.9 335 269.3 385 355.7 36 3.1 86 17.8 136 44.4 186 83.0 236 133.7 286 196.3 336 271.0 386 357.6 37 3.3 87 18.2 137 45.0 187 83.9 237 134.8 287 197.7 337 272.6 387 359.4 38 3.5 88 18.6 138 45.7 188 84.8 238 135.9 288 199.1 338 274.2 388 363.2 40 3.8 </td <td>32</td> <td>2.5</td> <td>82</td> <td>16.1</td> <td></td> <td>132</td> <td>41.8</td> <td>182</td> <td>79.5</td> <td></td> <td>232</td> <td>129.2</td> <td></td> <td>282</td> <td>190.9</td> <td></td> <td>332</td> <td>264.5</td> <td>382</td> <td>350.2</td>	32	2.5	82	16.1		132	41.8	182	79.5		232	129.2		282	190.9		332	264.5	382	350.2
34 2.8 84 16.9 134 43.1 184 81.3 234 131.4 284 193.6 334 267.7 384 355.9 35 2.9 85 17.3 135 43.7 185 82.1 235 132.5 285 194.9 335 269.3 385 355.7 36 3.1 86 17.8 136 44.4 186 83.0 236 133.7 286 196.3 336 271.0 386 357.6 37 3.3 87 18.2 137 45.0 187 83.9 237 134.8 287 197.7 337 272.6 387 359.4 38 3.5 88 186 138 45.7 188 84.8 238 135.9 288 199.1 338 274.2 388 361.3 39 3.7 89 19.0 139 46.4 189 85.7 239 137.1 289 200.5 339 275.8 389 363.2 40 3.8 <td>33</td> <td>2.6</td> <td>83</td> <td>16.5</td> <td></td> <td>133</td> <td>42.5</td> <td>183</td> <td>80.4</td> <td></td> <td>233</td> <td>130.3</td> <td>L</td> <td>283</td> <td>192.2</td> <td></td> <td>333</td> <td>266.1</td> <td>383</td> <td>352.1</td>	33	2.6	83	16.5		133	42.5	183	80.4		233	130.3	L	283	192.2		333	266.1	383	352.1
35 2.9 85 17.3 135 43.7 185 82.1 235 132.5 285 194.9 335 205.3 385 355.7 36 3.1 86 17.8 136 44.4 186 83.0 236 133.7 286 196.3 336 271.0 386 357.6 37 3.3 87 18.2 137 45.0 187 83.9 237 134.8 287 197.7 337 272.6 387 359.4 38 3.5 88 18.6 138 45.7 188 84.8 238 135.9 288 199.1 338 274.2 388 361.3 39 3.7 89 19.0 139 46.4 189 85.7 239 137.1 289 200.5 339 275.8 389 365.0 41 4.0 91 19.9 141 47.7 191 87.6 241 139.4 291 203.2 341 279.1 391 366.9 42 4.2 </td <td>34</td> <td>2.8</td> <td>84</td> <td>16.9</td> <td></td> <td>134</td> <td>43.1</td> <td>184</td> <td>81.3</td> <td></td> <td>234</td> <td>131.4</td> <td>ľ</td> <td>284</td> <td>193.6</td> <td>1</td> <td>334</td> <td>267.7</td> <td>384</td> <td>353.9</td>	34	2.8	84	16.9		134	43.1	184	81.3		234	131.4	ľ	284	193.6	1	334	267.7	384	353.9
36 3.1 86 17.8 136 44.4 186 63.0 236 133.7 286 190.3 336 21.0 386 397.6 37 3.3 87 18.2 137 45.0 187 83.9 237 134.8 287 197.7 337 272.6 387 359.4 38 3.5 88 18.6 138 45.7 188 84.8 238 135.9 288 199.1 338 274.2 388 363.2 40 3.8 90 19.4 140 47.0 190 86.6 240 138.2 290 201.8 340 277.4 390 365.0 41 4.0 91 19.9 141 47.7 191 87.6 241 139.4 291 203.2 341 279.1 391 366.9 42 4.2 92 20.3 142 48.4 192 88.5 242 140.6 292 204.6 342 280.7 392 368.8 43 4.4 <td>35</td> <td>2.9</td> <td>85</td> <td>17.3</td> <td></td> <td>135</td> <td>43.7</td> <td>185</td> <td>82.1</td> <td></td> <td>235</td> <td>132.5</td> <td></td> <td>285</td> <td>194.9</td> <td>J</td> <td>335</td> <td>209.3</td> <td>385</td> <td>355.7</td>	35	2.9	85	17.3		135	43.7	185	82.1		235	132.5		285	194.9	J	335	209.3	385	355.7
37 3.3 87 18.2 137 43.0 187 83.5 237 134.6 287 197.7 337 272.6 387 359.4 38 3.5 88 18.6 138 45.7 188 84.8 238 135.9 288 199.1 338 274.2 388 361.3 39 3.7 89 19.0 139 46.4 189 85.7 239 137.1 289 200.5 339 275.8 389 363.2 40 3.8 90 19.4 140 47.0 190 86.6 240 138.2 290 201.8 340 277.4 390 365.0 41 4.0 91 19.9 141 47.7 191 87.6 241 139.4 291 203.2 341 279.1 391 366.9 42 4.2 92 20.3 142 48.4 192 88.5 242 140.6 292 204.6 342 280.7 392 368.8 43 4.4 </td <td>30</td> <td>3.1</td> <td>80</td> <td>17.8</td> <td></td> <td>130</td> <td>44.4</td> <td>180</td> <td>83.0</td> <td></td> <td>230</td> <td>133./</td> <td>Ľ</td> <td>280</td> <td>190.3</td> <td>1</td> <td>330</td> <td>271.0</td> <td>380</td> <td>357.0</td>	30	3.1	80	17.8		130	44.4	180	83.0		230	133./	Ľ	280	190.3	1	330	271.0	380	357.0
38 3.5 88 16.0 138 45.7 188 84.6 238 155.7 288 195.1 338 274.2 388 301.3 39 3.7 89 19.0 139 46.4 189 85.7 239 137.1 289 200.5 339 275.8 389 363.2 40 3.8 90 19.4 140 47.0 190 86.6 240 138.2 290 201.8 340 277.4 390 365.0 41 4.0 91 19.9 141 47.7 191 87.6 241 139.4 291 203.2 341 279.1 391 366.9 42 4.2 92 20.3 142 48.4 192 88.5 242 140.6 292 204.6 342 280.7 392 368.8 43 4.4 93 20.8 143 49.1 193 89.4 243 141.7 293 206.0 343 282.4 393 370.7 44 4.6 </td <td>3/</td> <td>3.3</td> <td>8/</td> <td>10.2</td> <td></td> <td>13/</td> <td>45.0</td> <td>18/</td> <td>04.0</td> <td> </td> <td>237</td> <td>134.8</td> <td></td> <td>28/</td> <td>197.7</td> <td></td> <td>337</td> <td>272.0</td> <td>38/</td> <td>359.4</td>	3/	3.3	8/	10.2		13/	45.0	18/	04.0		237	134.8		28/	197.7		337	272.0	38/	359.4
39 3.7 89 13.0 139 40.4 169 83.7 239 137.1 289 200.5 339 273.8 389 303.2 40 3.8 90 19.4 140 47.0 190 86.6 240 138.2 290 201.8 340 277.4 390 365.0 41 4.0 91 19.9 141 47.7 191 87.6 241 139.4 291 203.2 341 279.1 391 366.9 42 4.2 92 20.3 142 48.4 192 88.5 242 140.6 292 204.6 342 280.7 392 368.8 43 4.4 93 20.8 143 49.1 193 89.4 243 141.7 293 206.0 343 282.4 393 370.7 44 4.6 94 21.2 144 49.8 194 90.3 244 142.9 294 207.4 344 284.0 394 372.6 45 4.9 </td <td>20</td> <td>3.5</td> <td>00</td> <td>10.0</td> <td></td> <td>120</td> <td>45.7</td> <td>190</td> <td>04.0</td> <td> </td> <td>200</td> <td>127.1</td> <td></td> <td>200</td> <td>200.5</td> <td></td> <td>220</td> <td>274.2</td> <td>290</td> <td>262.2</td>	20	3.5	00	10.0		120	45.7	190	04.0		200	127.1		200	200.5		220	274.2	290	262.2
40 50 160 160 141 160 170 160 160 160	40	2.9	00	19.0		140	40.4	109	86.6		239	128.2		209	200.5		339	273.0	309	365.0
41 4.0 91 15.5 141 47.7 191 57.6 241 155.4 291 205.2 541 275.1 391 506.5 42 4.2 92 20.3 142 48.4 192 88.5 242 140.6 292 204.6 342 280.7 392 368.8 43 4.4 93 20.8 143 49.1 193 89.4 243 141.7 293 206.0 343 282.4 393 370.7 44 4.6 94 21.2 144 49.8 194 90.3 244 142.9 294 207.4 344 284.0 394 372.6 45 4.9 95 21.7 145 50.5 195 91.3 245 144.1 295 208.9 345 285.7 395 374.5 46 5.1 96 22.1 146 51.2 196 92.2 246 145.2 296 210.3 346 287.3 396 376.4 47 5.3 </td <td>40</td> <td>1.0</td> <td>01</td> <td>19.4</td> <td></td> <td>141</td> <td>47.0</td> <td>101</td> <td>97.6</td> <td>11</td> <td>240</td> <td>129 /</td> <td></td> <td>201</td> <td>201.0</td> <td></td> <td>241</td> <td>277.4</td> <td>201</td> <td>266.9</td>	40	1.0	01	19.4		141	47.0	101	97.6	11	240	129 /		201	201.0		241	277.4	201	266.9
424.25220.514240.415266.5242140.6252204.6542200.7552552434.49320.814349.119389.4243141.7293206.0343282.4393370.7444.69421.214449.819490.3244142.9294207.4344284.0394372.6454.99521.714550.519591.3245144.1295208.9345285.7395374.5465.19622.114651.219692.2246145.2296210.3346287.3396376.4475.39722.614751.919793.1247146.4297211.7347289.0397378.3485.59823.014852.619894.1248147.6298213.1348290.6398380.2495.89923.514953.319995.0249148.8299214.6349292.3399382.1506.010024.015054.020096.0250150.0300216.0350294.0400384.0	41	4.0	02	20.3		141	47.7	102	99.5		241	140.6		291	203.2		341	275.1	302	368.8
40 4.4 90 20.0 143 40.1 133 00.4 243 141.7 253 200.0 543 202.4 593 570.7 44 4.6 94 21.2 144 49.8 194 90.3 244 142.9 294 207.4 344 284.0 394 372.6 45 4.9 95 21.7 145 50.5 195 91.3 245 144.1 295 208.9 345 285.7 395 374.5 46 5.1 96 22.1 146 51.2 196 92.2 246 145.2 296 210.3 346 287.3 396 376.4 47 5.3 97 22.6 147 51.9 197 93.1 247 146.4 297 211.7 347 289.0 397 378.3 48 5.5 98 23.0 148 52.6 198 94.1 248 147.6 298 213.1 348 290.6 398 380.2 349 292.3 39	42	4.2	03	20.5		1/12	40.4	102	89.4		242	140.0		292	204.0		342	282.4	302	370.7
444.09421.214440.619490.3244142.5254201.4544201.6554572.6454.99521.714550.519591.3245144.1295208.9345285.7395374.5465.19622.114651.219692.2246145.2296210.3346287.3396376.4475.39722.614751.919793.1247146.4297211.7347289.0397378.3485.59823.014852.619894.1248147.6298213.1348290.6398380.2495.89923.514953.319995.0249148.8299214.6349292.3399382.1506.010024.015054.020096.0250150.0300216.0350294.0400384.0	45	4.4	93	21.2		143	49.2	193	90.3		245	142.9		293	200.0		343	284.0	393	372.6
46 5.1 96 22.1 146 51.2 196 92.2 246 145.2 296 210.3 346 287.3 396 376.4 47 5.3 97 22.6 147 51.9 197 93.1 247 146.4 297 211.7 347 289.0 397 378.3 48 5.5 98 23.0 148 52.6 198 94.1 248 147.6 298 213.1 348 290.6 398 380.2 49 5.8 99 23.5 149 53.3 199 95.0 249 148.8 299 214.6 349 292.3 399 382.1 50 6.0 100 24.0 150 54.0 200 96.0 250 150.0 300 216.0 350 294.0 400 384.0	45	4.0	95	21.2		145	50.5	105	91.2		244	144.1		294	208.9		345	285.7	305	374.5
47 5.3 97 22.6 147 51.9 197 93.1 247 146.4 297 211.7 347 289.0 397 378.3 48 5.5 98 23.0 148 52.6 198 94.1 248 147.6 298 213.1 348 290.6 398 380.2 49 5.8 99 23.5 149 53.3 199 95.0 249 148.8 299 214.6 349 292.3 399 382.1 50 6.0 100 24.0 150 54.0 200 96.0 250 150.0 300 216.0 350 294.0 400 384.0	45	51	96	22.1		145	51.2	195	92.2	$\ $	245	145.2		295	210.3		345	287.3	306	376.4
48 5.5 98 23.0 148 52.6 198 94.1 248 147.6 298 213.1 348 290.6 398 380.2 49 5.8 99 23.5 149 53.3 199 95.0 249 148.8 299 214.6 349 292.3 399 382.1 50 6.0 100 24.0 150 54.0 200 96.0 250 150.0 300 216.0 350 294.0 400 384.0	47	5.3	97	22.6		147	51.9	197	93.1		247	146.4		297	211.7		347	289.0	397	378.3
49 5.8 99 23.5 149 53.3 199 95.0 249 148.8 299 214.6 349 292.3 399 382.1 50 6.0 100 24.0 150 54.0 200 96.0 250 150.0 300 216.0 350 294.0 400 384.0	48	5.5	98	23.0		148	52.6	198	94.1		248	147.6		298	213.1		348	290.6	398	380.2
50 6.0 100 24.0 150 54.0 200 96.0 250 150.0 300 216.0 350 294.0 400 384.0	49	5.8	99	23.5		149	53.3	199	95.0		249	148.8		299	214.6		349	292.3	399	382.1
	50	6.0	100	24.0		150	54.0	200	96.0	$\ $	250	150.0		300	216.0		350	294.0	400	384.0
						100					200					L				

Copyright © 2013 FireDepartment.net - All Rights Reserved

FireDepartment.net strives to provide fire departments & firefighters with quality free tools. But, the user takes full responsibility for information contained above. Use at your own risk!

Friction Loss Calculator - 100 Feet of 1" Hose

GPM	FL	GPM	FL	GPM	FL	GPM	FL	GPM	FL		GPM	FL	[GPM	FL	GPM	FL
1	0.0	51	39.0	101	153.0	151	342.0	201	606.0		251	945.0	ſ	301	1359.0	351	1848.0
2	0.1	52	40.6	102	156.1	152	346.6	202	612.1		252	952.6	I	302	1368.1	352	1858.6
3	0.1	53	42.1	103	159.1	153	351.1	203	618.1		253	960.1		303	1377.1	353	1869.1
4	0.2	54	43.7	104	162.2	154	355.7	204	624.2		254	967.7	I	304	1386.2	354	1879.7
5	0.4	55	45.4	105	165.4	155	360.4	205	630.4		255	975.4		305	1395.4	355	1890.4
6	0.5	56	47.0	106	168.5	156	365.0	206	636.5		256	983.0	I	306	1404.5	356	1901.0
7	0.7	57	48.7	107	171.7	157	369.7	207	642.7		257	990.7		307	1413.7	357	1911.7
8	1.0	58	50.5	108	175.0	158	374.5	208	649.0		258	998.5		308	1423.0	358	1922.5
9	1.2	59	52.2	109	178.2	159	379.2	209	655.2		259	1006.2		309	1432.2	359	1933.2
10	1.5	60	54.0	110	181.5	160	384.0	210	661.5		260	1014.0		310	1441.5	360	1944.0
11	1.8	61	55.8	111	184.8	161	388.8	211	667.8		261	1021.8		311	1450.8	361	1954.8
12	2.2	62	57.7	112	188.2	162	393.7	212	674.2		262	1029.7		312	1460.2	362	1965.7
13	2.5	63	59.5	113	191.5	163	398.5	213	680.5		263	1037.5		313	1469.5	363	1976.5
14	2.9	64	61.4	114	194.9	164	403.4	214	686.9		264	1045.4		314	1478.9	364	1987.4
15	3.4	65	63.4	115	198.4	165	408.4	215	693.4		265	1053.4		315	1488.4	365	1998.4
16	3.8	66	65.3	116	201.8	166	413.3	216	699.8		266	1061.3		316	1497.8	366	2009.3
17	4.3	67	67.3	117	205.3	167	418.3	217	706.3		267	1069.3		317	1507.3	367	2020.3
18	4.9	68	69.4	118	208.9	168	423.4	218	712.9		268	1077.4		318	1516.9	368	2031.4
19	5.4	69	71.4	119	212.4	169	428.4	219	719.4		269	1085.4		319	1526.4	369	2042.4
20	6.0	70	73.5	120	216.0	170	433.5	220	726.0		270	1093.5		320	1536.0	370	2053.5
21	6.6	71	75.6	121	219.6	171	438.6	221	732.6		271	1101.6		321	1545.6	371	2064.6
22	7.3	72	77.8	122	223.3	172	443.8	222	739.3		272	1109.8		322	1555.3	372	2075.8
23	7.9	73	79.9	123	226.9	173	448.9	223	745.9		273	1117.9		323	1564.9	373	2086.9
24	8.6	74	82.1	124	230.6	174	454.1	224	752.6		274	1126.1		324	1574.6	374	2098.1
25	9.4	75	84.4	125	234.4	175	459.4	225	759.4		275	1134.4		325	1584.4	375	2109.4
26	10.1	76	86.6	126	238.1	176	464.6	226	766.1		276	1142.6		326	1594.1	376	2120.6
27	10.9	77	88.9	127	241.9	177	469.9	227	772.9		277	1150.9		327	1603.9	377	2131.9
28	11.8	78	91.3	128	245.8	178	475.3	228	779.8		278	1159.3		328	1613.8	378	2143.3
29	12.6	79	93.6	129	249.6	179	480.6	229	786.6		279	1167.6		329	1623.6	379	2154.6
30	13.5	80	96.0	130	253.5	180	486.0	230	793.5		280	1176.0		330	1633.5	380	2166.0
31	14.4	81	98.4	131	257.4	181	491.4	231	800.4		281	1184.4		331	1643.4	381	2177.4
32	15.4	82	100.9	132	261.4	182	496.9	232	807.4		282	1192.9		332	1653.4	382	2188.9
33	10.3	83	103.3	133	205.3	183	502.3	233	814.3	4	283	1201.3	ł	333	1003.3	383	2200.3
34	17.3	84	105.8	134	209.3	184	507.8	234	821.3	ľ	284	1209.8	4	334	16/3.3	384	2211.8
35	10.4	85	110.4	135	2/3.4	185	515.4	235	020.4		285	1218.4		335	1602.4	385	2223.4
30	20.5	00	112.5	130	2/7.4	100	524.5	230	033.4		200	1220.9	1	330	1702.5	300	2234.5
37	20.5	0/	115.5	13/	201.3	107	520.2	237	849.7		207	1235.5		337	1705.5	200	2240.3
20	22.7	90	110.2	130	200.7	190	525.9	230	956.9		200	1244.2		220	1722.8	380	2250.2
40	22.0	00	121 5	140	203.0	100	541.5	239	864.0		209	1252.0		240	1723.0	200	2203.0
41	24.0	01	124.2	141	294.0	101	547.2	240	871.2		201	1270.2		241	1744.0	301	2201.3
41	26.5	02	127.0	142	302.5	191	553.0	241	878.5		291	1279.0		341	1754.5	302	2205.2
43	27.7	03	129.7	143	306.7	193	558.7	243	885.7		292	1287.7		343	1764.7	393	2316.7
44	29.0	04	132.5	144	311.0	194	564.5	245	893.0		294	1296.5		344	1775.0	394	2328.5
45	30.4	95	135.4	145	315.4	195	570.4	245	900.4		295	1305.4		345	1785.4	395	2340.4
46	31.7	96	138.2	146	319.7	196	576.2	246	907.7		296	1314.2		346	1795.7	396	2352.2
47	33.1	97	141.1	147	324.1	197	582.1	247	915.1		297	1323.1		347	1806.1	397	2364.1
48	34.6	98	144.1	148	328.6	198	588.1	248	922.6		298	1332.1		348	1816.6	398	2376.1
49	36.0	99	147.0	149	333.0	199	594.0	249	930.0		299	1341.0		349	1827.0	399	2388.0
50	37.5	100	150.0	150	337.5	200	600.0	250	937.5		300	1350.0		350	1837.5	400	2400.0
													-				

Copyright © 2013 FireDepartment.net - All Rights Reserved

FireDepartment.net strives to provide fire departments & firefighters with quality free tools. But, the user takes full responsibility for information contained above. Use at your own risk!

3.3 Friction Loss in Fire Hose

Friction loss is the resulting resistance as water (fluid) moves along the inside wall of either a hose, pipe, or hose fittings.

Points to remember about friction loss:

- 1. Friction loss increases as flow (gpm) increases.
- 2. Total friction loss varies with length -- the greater the length, the higher the friction loss.
- 3. Friction losses on reeled hose average about 21 percent more than for straight hose lays.
- 4. Friction loss is nearly independent of pressure.
- 5. Friction loss varies with type, lining, weave, quality, and age of the hose.
- 6. Friction loss increases 4 times for each doubling of water flow. Reducing the diameter of a hose by 1/2 will increase the friction loss by a factor of 32 for the same flow.

To account for friction loss, the pressure at which the pump is working must be increased. The pump pressure must also be or decreased to compensate for the head loss or gain, to produce the desired nozzle pressure.

The NWCG is the authority to all wildland fire training standards set nationwide as a template for the rest of the world to follow. Please take a moment to visit their website at <u>https://www.nwcg.gov</u> to obtain the information you need to push your career forward in the direction only you know that will best serve you... so you can better serve others.

BE SAFE... BE FIRELINE SAFE!

Effort to Deploy Fire Hose

'Bundle' (Coiled) vs. Folded/'Double-Donut' Rolled 'Moment' and 'Total' Energy Expended/Required

The purpose of this graph is to mathematically prove the advantages of utilizing the Laws of Physics that apply to a basic garden hose found 'coiled' at its water supply (faucet) also applies to ALL fire hose. In that 'Moment' energy and 'Total' energy are fully illustrated and compare the deployment of two (2) basic methods.

The first basic configuration is the traditional and most popular 'minuteman' or 'triple-fold' flat load or 'double-donut' roll (100') that requires literally every

fold to fit within a specific compartment or cabinet on fire apparatus. This creates a pre-engineered water restrictive kink that MUST FIRST always be painstakingly unfolded before the first drop of water is adequately pressurized to produce the necessary Nozzle Pressure (NP) for firefighter SAFETY. The second (and least popular?) is the 'Coiled' method (i.e. Cleveland, Gnass, etc.) that can be fully charged literally in mere seconds... within feet of the pressurized source... and especially in confined spaces where ZERO manipulation of the hose is required to secure FULL Nozzle Pressure (NP) at every stage of deployment...within feet of a fire apparatus... up to the full length of the hose. [http://HoseRoller.net]

Please carefully identify each component of this graph. The *BLUE BAR* graph illustrates the typical 50' 'tail' of hose that is dragged behind a firefighter when advancing/pulling a 150' 'pre-connect' or 'Live-Line' of folded hose. It also represents the minimum of 50' behind a 100' 'Double-Donut' roll of hose that is (stupidly?) unrolled, in reverse, back down the steep rugged terrain of the very hill just traversed.

The *YELLOW BAR* illustrates the 'tail' of hose that is dragged behind a firefighter when advancing/pulling 100' of hose from a 'high-rise' or wildland ('Cleveland'/Gnass) 'Bundle'. Or the last 100' of hose of any (properly) prepared coil configuration pre-connect a firefighter must pull to advance from the location in which a hose bundle is simply dropped on the ground and CHARGED! No matter where the 'Bundle' is placed during the deployment process, only the hose necessary from that drop point will ever be pulled.

Please view the demonstration at the one (1) minute mark in the online video at <u>http://HoseRoller.net</u>. Only AFTER walking around a parked car and then walking through one bay door, wrapping the post in a complete knot to exit a second/adjacent garage/bay door, thus fully wrapping the solid post between each, the hose is then FULLY charged. But with NO KINKS! This hose is then deployed to its full length in less than 40 seconds upon never pulling any more charged hose than what is ever needed from the moment the hose was pressurized up to its full length. And only ONE (1) firefighter doing the work of four... with a quarter (¹/₄) of the effort... and in record time!

Any other hose-load configuration (Flat-Load, Triple-Fold, modified Minute-Man) with any tail whatsoever would immediately cease all forward progression at the first right-angle turn at the first rear tire of the car. But instead, I demonstrate an EFFORTLESS deployment that simulates advancing up to the point of entry into a burning building. A near-effortless advancement of fully charged line with full nozzle protection at every step of the way to a fire victim, while simultaneously creating an excellent indicator for emergency egress (follow the hose back to SAFETY) by the shortest distance out of the danger zone.

In other words, a hose 'bundle' that can be advanced DRY and with NO effort to a point at which water is EVER needed for the protection from and suppression of any fire AT ANY INCIDENT! As long as the hose is coiled to its 'Minimum Critical Inside Diameter' to prevent ALL kinks, it can then be fully pressurized in mere seconds from the moment its discharge valve is opened wide.

The *BLUE LINE* graph illustrates the amount of *MOMENT EFFORT* given as a percentage in effort/energy to simply advance/pull any hose at any one point in the deployment process given at a specific distance when comparing the 'Bundle' method vs. that of a folded/rolled method. The <u>BOLD</u> example upon advancing **30'** of 'COILED' hose [*YELLOW BARs in a triangular illustration*] is 46% of the effort to pull the same charged hose, but because it is folded or always rolled to have at least a 50' tail, it is compared to the 65' length of folded/rolled hose [*BLUE BAR*] that is being dragged at that 30' foot distance from the point at which the hose was first charged.

The *MAGENTA LINE* graph illustrates, as a percentage also, the comparison of *'TOTAL'* EFFORT OF THESE COMPARED HOSE ADVANCE evolutions of the Coiled 'Bundle' Method vs. that of the folded/rolled method from the point of commencement. The coiled method at 2' feet is 4% of the moment effort, at 10' feet it was 18% of the moment effort, at 20' feet it was 33% of the moment effort, and at 30' feet it is 46% of the moment effort...

...but what is key is the <u>TOTAL EFFORT</u> from start to finish. The TOTAL EFFORT of the entire evolution, when you measure the SURFACE AREA under all YELLOW BARS, compared the SURFACE AREA under all the

corresponding BLUE BARS, it is then, therefore, evidenced the TOTAL EFFORT from zero (0') to 30' only 26%!

The video at <u>http://HoseRoller.net</u> [and <u>http://HoseCabinet.com</u>] demonstrates that one firefighter can do the same work as four (4)... in one quarter (¹/₄) the time... and a quarter of the effort... and with absolutely NO water restrictive kinks EVER! The graph above is the mathematical evidence that this evolution of deploying hose from a coil configuration is exactly as all claims are demonstrated far more efficiently than most could ever imagine!

The choice is yours! Fold that long flat stuff on that horse wagon... that motorize cart... that \$750,000.00 PIERCE! Are you such a traditionalist that you cannot be open-minded to what technology mathematically proves!?! Truly, is there any other method that produces such an incredible calculated and documented result... EVER!?!

About the Author

Up to 90-Day FREE Trial of APPLE (iOS) DOWNLOAD TODAY at <u>http://Apple.HydraulicsApp.com</u> - Please click twice to first download TestFlight... then click again to download the iOS app.

Please go to http://HydraulicsSlideRule.com and http://Henway.org

Please visit: <u>https://www.TheHeatAndFireExpo.com</u> in Miami Beach, Florida this Spring (Covid19 contingent) where I am scheduled to be a featured <u>http://Speaker.hydraulicsapp.com</u> and nominated as a possible winner of their Annual Innovation Award for the technologies I am presenting here.

I present two priorities:

- <u>http://ExteriorFireSprinklerSystems.com</u> to exponentially
 <u>http://pnwHomeFireProtection.com</u> for any home with a swimming pool or large water
 storage tank.
- Knowledge and distribution of the world's first-ever <u>https://HydraulicsApp.com</u> and mechanical <u>http://HydraulicsSlideRule.com</u> TOTAL engine pressure (EP) calculators to ensure maximum wildland firefighter safety that truly only allows any competent fire officer to consider virtually (2) choices:
 - a. Invest in your crew's safety with Phone App subscription(s) for every driver/operator and a mechanical Slide-Rule for every glove box of every wildland pumper you are responsible. With brief training, this will secure the ability to accurately <u>estimate</u> proper 'TOTAL' engine pressure (EP) [including estimated HEAD] in mere seconds for the safety of your nozzle personnel at all times or...
 - b. Roll the dice, hoping and praying you don't face an attorney 18 months long after the scars of a severe burn injury (or even death). A lawsuit as a result of pain and suffering that could have been significantly reduced or even virtually prevented as you face the very same technology here that will be used against you in that court of law. Evidence that you may have placed your personnel where it was virtually impossible not to violate NFPA 1002 Chapter 8: Wildland Fire Apparatus. ...without exhausting 100 % of your engine pressure to produce an effective fire stream at the nozzle's rated capacity.

I do not want to put anyone in FEAR of any legal matter upon a nightmare that you know you're directly involved in the compromised well-being of your crew when we strive to learn and implement ways to 'more' safely put our life on the line to serve others. Instead, I only desire all to better understand a few specific laws of physics and present technology to eliminate the most challenging portions of the calculation process, not only accurately but quickly in the field where it

truly matters: The ability to meet these NFPA and OSHA mandates (written in the blood) with a simple phone app and the only 21st-century mechanical slide-rule (back-up) calculator. Enhance personnel SAFETY in the glove box of every wildland fire engine when electronics inevitably fail. Tools to calculate in mere seconds under the stress of incident mitigation to pump the proper engine pressure at every step of any wildland fire hoselay.

And especially, of course, WHEN TO STOP ALL PROGRESSION at the exhaustion of 100% of the available MAXIMUM engine pressure (EP) usually governed at 400 PSI.

Biography:

Mr. Hoffmann began his career as a 'Fire Fighter (Seasonal)' for the 'NEW' California Dept. of Forestry at 18 in 1979. He later promoted to Fire Apparatus Engineer (Limited-Term) upon graduating TOP in his class (96.8%; BFEO #14) at 25; became a 'Firefighter/Security Officer' (fulltime) for the California Military Dept. that following Spring, and promoted to Correctional Fire Captain at Avenal State Prison at 32. [<u>http://Training.HydraulicsApp.com</u>] He is now a small business owner (medically retired since age 39) and a twice patented inventor, author, and Fire Command, Investigation, Prevention, and Hazardous Materials Specialist, CPR/First Aid instructor who has supported many with severe PTSD both individually and as a Critical Incident Debriefing Team member.

In 2006, Texas A & M University requested his copyright release to instruct his hose deployment method internationally [<u>http://HoseRoller.net</u>]. Deploy any 'pre-connect' within 10' feet of the engine in mere seconds with NO KINKS EVER! ...to protect our crews and apparatus from the brunt of a severe [<u>http://BurnOver.HoseRoller.net</u>]. PLUS deploy that same hose line up, over, and around literally any obstacle, pulling only the hose you need to full extension and again with NO KINKS EVER!!

Lastly, a 2 1/2" 'Blitz-Line' methodology that can be fully 'charged' within the same 10' foot distance of the rear of any apparatus in less than a minute. Again with NO KINKS EVER also! Yet deployed to its full length, even around right-angle turns or any obstruction that would instantly halt the 'Serpentine method,' and then extend this HEAVY LINE up to its full 200' foot length but without EVERY DRAGGING THE HOSE... EVER!!!

Sound Impossible!?! Hence, his first two (2) patents (others pending) issued in 2001 and 2003: video demonstrated at <u>http://NoDragHoseLoad.com</u>.

As mathematically proven [<u>http://HoseRoller.info</u>] that one (1) firefighter can perform the same duties of four... in a quarter of the time... with a quarter of effort... to exponentially increase firefighter SAFETY!

All from the invention of a hose roller only 24" X 6" X 4.75" (with optional extensions) <u>http://HoseRoller.us</u>].that I used to handroll, stack, and inventory over 3,200 feet of every length

Page 51 of 53

of hose from 3/4" "Peanut Line" to 3" Supply line in less than an hour and ten minutes BY HIMSELF! A first to handroll 100 ft. lengths of Agnus 5" LDH (even in the field) and prepare any length for immediate 'kink-free' deployment.

The immediate deployment that has facilitated invention of the world's first functional <u>http://HoseCabinet.com</u> able to extinguish any fire within mere feet of the discharge valve/hose assembly. None have ever been created with COIL BUNDLE design. Hence all have been banned nationwide as DYSFUNCTIONAL since April 2001.

An incredible device that transitions into an 8:1 Mechanical Advantage <u>http://RescueWinch.com</u> that is capable of sending up to four (4) rescuers with two (2) rescue baskets to remove victims 150' plus over the side of a cliff curbside well within their 'Golden Hour' to vastly increase their survivability.

In 2008, he perfected his http://FireBusterPro.com Home Fire Protection System. Now he's a private sector first to copyright his book 'Wildland Fire Hydraulics – Myth or Math' [in a U.S. Copyright Office record six (6) weeks]. ...as he directs the creation of https://HydraulicsApp.com (Android and Apple) and invent a mechanical <u>http://HydraulicsSlideRule.com</u> to calculate TOTAL Engine Pressure in mere seconds.

His research inspired <u>http://HENway.org</u>. A progressive hoselay methodology that allows nozzle flow to increase 25% (56% more "Knock-Down" at 75 GPM than 60 GPM) and extend an additional 500'/83% farther and pump water a full 639' higher in HEAD at 1,100'. The 'Standard' method is limited to only 600' before exhausting the governed Engine Pressure at a Maximum 400 PSI. A hose-lay method that can be extended to 1,500 at 25 GPM nozzle setting [with an occasional 75 GPM (balloon effect)] in which 900' is a full 150% farther!. All achieved on any 32% grade to exponentially increase firefighter effectiveness, but especially personnel SAFETY!

Additionally, the use of dual lines (that reduces the Friction Loss (FL) component a full 75%) allows fire personnel to coordinate the attack that in the event of an abrupt weather change to cause a 'slop-over' [ESCAPE!!!]:

1. The forward attack nozzle and ALL other 'overhaul ('laterals') are temporarily halted.

2. The secondary 'Supply' line is then utilized as an attack line as:

a. Disconnected up to 100' ft. beyond the 'slop-over.'

b. A secondary 75 GPM nozzle is attached (which is 1,066% MORE EFFECTIVE than a 10/23
 GPM nozzle on 1" lateral)

To provide our personnel with the ability to actually knock-down and contain such an inevitable event before it overwhelms our severely limited resources caused by the 'Standard' method everyone uses today.

Page 52 of 53

This methodology is identical to laying dual lines, such as a 'Reverse-lay' (before LDH), to compensate for the inadequacies of our underground hydrant systems. It was not fully evidenced until 2005 by the USDA Forest Service, San Dimas Training and Development Center (SDTDC) that the mean-average coefficients of the 1944 'Moody Chart' results were incorrect by a full 40% LESS. No longer 24 but 35 for 1.5"; and no longer 150 but rather 250 for 1" hose. All calculations based on the Henry Darcy-Julies Weisbach equation of 1903 to determine Friction Loss (FL) in any cylindrical pipe system. In that when multiplied by the square of (GPM/100)^2 is a FULL 50% LESS THAN ACTUAL!

Hence, '<u>H</u>offmann's <u>Extraordinary New-WAY.</u>') For the first time in fire service history, the longage joke, "What's a Hen-Way?" ...can now be discovered at http://HENway.org.

Lastly, please check out these two sites: <u>http://pnwHomeFireProtection.com</u> – which involves <u>http://ExteriorFireSprinklerSystems.com</u>. In that every home can be protected under a water canopy to meet the NFPA's Assessing Structure Ignition Potential (ASIP). A design that pretreats most any combustibles on or adjacent to any structure regardless of wind-direction. Atomized water from a series of 360-degree, 'fan-style' pattern sprayed in a 12' foot diameter from sprinklers head every 10' feet. Each flowing 3 GPM from a phone-app controlled system to conserve water usage, that is then overridden by heat sensors when a fire is detected in any direction.

Additionally, either pump [130 GPM at 108 PSI or 230 GPM at 115 PSI (soon to be phone-app capable)] comes with not one (1), but two (2) attack lines for a home-owner's SAFETY! Upon evacuation, for your safety to then leave your engine fully stocked and non-committed in any manner for immediate escape.

Is it SAFE to swim alone? ... SCUBA dive alone? ... or especially fight fire alone?!? HELL NO! Why should we start now!?! Ask the firefighters who lost EVERYTHING due to inadequate Defensible Space in the Los Padres National Forest. An incident which ALL personnel deployed their fire shelters. Yet two (2) were flown to Fresno with severe burn injuries! An incident in which their own fire station would have been SAFE REFUGE... and therefore nearly 100% PREVENTABLE in a water-saturated fireproof structure!

Oh... and I was a featured artist at my city art center in Ankeny, Iowa back in 2011. Do please enjoy: <u>http://RHPhotographics.com</u>