
Momentum & Impulse 

The motion of objects can be described precisely in terms 
of their distance travelled, displacement, speed, velocity 
and acceleration. However what actually makes a body 

move? Can we predict the motion of objects? 

Topic 2.4 
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Definition of Linear Momentum 

The linear momentum of an object is 
defined as the product of its mass and 
velocity. 

mvp 

The SI units for momentum is kg m s-1.   



From Newton’s Second law of motion  

Impulse of a force 

p = linear  momentum 

m = mass of body 

V = velocity of body 
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The change in momentum, ∆p, is called 
Impulse. 

Impulse 

The units for momentum may also be N s 
as can be seen from the impulse formula. 



Definition of Impulse 

Impulse is defined as the change in momentum caused by 
a force.  

Note:  Area under Force-displacement graph is equal 
to Work Done. 

 

Impulse = Area under Force-time graph 



Newton’s Second law of motion  

Use of Impulse in Newton’s 
Second Law  
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Newton’s second law of motion  

For constant velocity, 

Example 1 

A conveyor belt is used to transfer luggage at an airport. It 
consists of a horizontal, endless belt running over driving 
rollers, moving at a constant speed of 1.5 m s-1. To keep the 
belt moving when it is transporting luggage requires a 
greater driving force than for an empty belt.  

On average, the rate at which luggage is placed on one end 
of the belt and lifted at the other is 20 kg s-1. 

Why is an additional force required, and what is its value? 

dt

dm
vF 

An additional force is required to overcome the retarding force exerted by 
the luggage on the belt during impact. 

F = v (dm/dt) = 1.5 x ( 20 ) = 30 N 



Newton’s second law of motion  

For constant velocity, 

Example 2 

A steady wind of 50 ms-1 hits against a rigid wall which is in 
a plane perpendicular to the wind direction. Estimate the 
pressure exerted by the wind on the wall.  

(Density of air = 1.25 kgm-3) 

dt

dm
vF 

P = F / A = ( v dm/dt ) / A = [ v x A x ( s/ t ) x  ] / A = v2   

P = v2  = 502 x 1.25 = 3125 = 3100 N ( to 2 s.fs) 



Law of Conservation of Momentum 

The total momentum of a closed system is constant, provided 
no external resultant force act on it. 

 
(No external force is only possible if we assume that the surface in which the objects are 
moving on is frictionless.) 

 An extension of Newton’s Second & Third Laws of Motion 

 For a closed system of two colliding bodies,  

 - Newton’s Third Law ensures the condition required 
 for the Principle of Conservation of Momentum  



Types of Collisions 

 Elastic Collision 

 -   After the collision, the two bodies move separately 

 -   Total Kinetic energy is conserved 

 -   Total Momentum is conserved 

 Perfectly Inelastic collision 

 -   After the collision, the two colliding bodies move 
together as one 

 -   Total Kinetic energy is NOT conserved, as some of it is 
lost in the form of heat and sound energies 

 -   Total Momentum is conserved 

 Inelastic collision 

-   Same as in perfectly inelastic collision, but the two 
 colliding bodies do not move together as one. 



Comparison Table for Collisions & Explosion 

Collision  

& 

Explosion 

Momentum 

Conserved 

Kinetic Energy 

Conserved 

Colliding bodies stick 

together after collision 

Elastic 

Collision 

YES YES NO 

Perfectly 

Inelastic 

Collision 

YES NO YES 

Inelastic 

Collision 

YES NO NO 

Explosion YES NO [opposite of perfectly 

inelastic collision] 



Elastic Collision Equation 

For elastic collisions, both momentum and kinetic energy are 

conserved.  It can be shown that for Elastic Collisions, the 

following formula can be derived (for one dimension only): 

See Giancoli page 176… 

 

Equation 7-7: 

uA – uB = - (vA – vB)  



Example: Elastic collision 

A 0.060-kg tennis ball, moving with a speed of 2.50 m s-1 collides head-on 

with a 0.090 kg ball initially moving away from it at a speed of 1.15 m s-1. 

Assuming a perfectly elastic collision, what are the speed and direction of 

each ball after the collision?  (Giancoli, Qn 25) 

 

 

Let A represent the 0.060-kg tennis ball, and let B represent the 0.090-kg ball.  The initial direction 

of the balls is the positive direction.  We have 
A

2.50m sv   and 
B

1.15m sv  .  Use Eq. 7-7 to 

obtain a relationship between the velocities. 
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 Substitute this relationship into the momentum conservation equation for the collision. 
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 Both balls move in the direction of the tennis ball’s initial motion. 



Example: Inelastic 

Collision 

The ballistic pendulum is a device 
used to measure the speed of a 
projectile, such as a bullet.  The 
projectile, of mass m, is fired into a 
large block of wood of mass M, 
which is suspended like a 
pendulum.  As a result of this 
collision, the pendulum and 
projectile together swing up to a 
maximum height h.  Determine the 
relationship between the initial 
horizontal speed of the projectile, 
v, and the maximum height h. 

(Giancoli, Example 7-10) 

 



Answer to Ballistic Pendulum example 

Momentum is conserved, therefore: 

Total momentum before collision = Total momentum after collision 

mv = (m +M) v’    ------ (1) 

 

Kinetic energy is not conserved in the initial collision. So we cannot 

use the derived formula Eq 7-7. 

 

However, after the bullet and block becomes “one” object, we can 

use conservation of energy from kinetic to potential energy. 

 

 



Answer to Ballistic Pendulum example …cont. 

Therefore we can write: 

(KE + PE) just after collision =  

(KE + PE) at pendulum’s maximum height 

 

½ (m + M) v’2 = (m + M)gh    -------- (2) 

 

Solving using both equations (1) and (2) we get the following: 
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Example: Explosion, an inelastic “collision” 

An internal explosion breaks an object, initially at rest, into two 

pieces, one of which has 1.5 times the mass of the other. If 7500 J 

were released in the explosion, how much kinetic energy did each 

piece acquire?  (Giancoli, Qn 34) 

 

 

Note:  You can think of an explosion as the opposite of an 

inelastic collision.  

 



Answer to Explosion example 

Use conservation of momentum in one dimension, since the particles will separate and travel in opposite 

directions.  Call the direction of the heavier particle’s motion the positive direction.  Let A represent 

the heavier particle, and B represent the lighter particle. We have 
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1.5m m , and  

A B
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The negative sign indicates direction.   
 

Since there was no mechanical energy before the explosion, the kinetic energy of the particles after 

the explosion must equal the energy added. 
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Thus 
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