Red [most common] [154 marks]

Two players are playing table tennis. Player A hits the ball at a height of 0.24 m above the edge of the table, measured from the top of the table to the bottom of the ball. The initial speed of the ball is $12.0\,\mathrm{m\,s^{-1}}$ horizontally. Assume that air resistance is negligible.

1a. Show that the time taken for the ball to reach the surface of the table is [1 mark] about 0.2 s.

1b. Sketch, on the axes, a graph showing the variation with time of the vertical component of velocity $\nu_{\rm V}$ of the ball until it reaches the table surface. Take g to be +10 m s⁻².

[2 marks]

ne ball boun prizontal spe	ces and the ed of 10.5 r	n reaches m s ⁻¹ . The	a peak he mass of t	ight of 0. he ball is	18 m abo 2.7 g.	ve the t	able w
orizontal spe	eed of 10.5 r	$m s^{-1}$. The	mass of t	he ball is	2.7 g.		
orizontal spe	ces and the eed of 10.5 r e kinetic en	$m s^{-1}$. The	mass of t	he ball is	2.7 g.		
rizontal spe	eed of 10.5 r	$m s^{-1}$. The	mass of t	he ball is	2.7 g.		
rizontal spe	eed of 10.5 r	$m s^{-1}$. The	mass of t	he ball is	2.7 g.		
rizontal spe	eed of 10.5 r	$m s^{-1}$. The	mass of t	he ball is	2.7 g.		
rizontal spe	eed of 10.5 r	$m s^{-1}$. The	mass of t	he ball is	2.7 g.		
rizontal spe	eed of 10.5 r	$m s^{-1}$. The	mass of t	he ball is	2.7 g.		
rizontal spe	eed of 10.5 r	$m s^{-1}$. The	mass of t	he ball is	2.7 g.		
rizontal spe	eed of 10.5 r	$m s^{-1}$. The	mass of t	he ball is	2.7 g.		
orizontal spe	eed of 10.5 r	$m s^{-1}$. The	mass of t	he ball is	2.7 g.		

1c. The net is stretched across the middle of the table. The table has a

[3 marks]

1e.	Player B intercepts the ball when it is at its peak height. Player B holds a [3 marks] paddle (racket) stationary and vertical. The ball is in contact with the paddle for 0.010 s. Assume the collision is elastic.
	10.5 m s ⁻¹
	Calculate the average force exerted by the ball on the paddle. State your answer to an appropriate number of significant figures.
	A girl rides a bicycle that is powered by an electric motor. A battery transfers energy to the electric motor. The emf of the battery is 16 V and it can deliver a charge of 43 kC when discharging completely from a full charge. The maximum speed of the girl on a horizontal road is 7.0 m s ⁻¹ with energy from the battery alone. The maximum distance that the girl can travel under these conditions is 20 km.
2a.	Show that the time taken for the battery to discharge is about 3×10^3 s. [1 mark]

r	riction and air resistance act on the bicycle and the girl when they [2 mark nove. Assume that all the energy is transferred from the battery to the electric motor. Determine the total average resistive force that acts on the bicycland the girl.
Γ	

The bicycle and the girl have a total mass of 66 kg. The girl rides up a slope that is at an angle of 3.0° to the horizontal.

	Calculate the component of weight for the bicycle and girl acting down [1 mark] the slope.
2e.	The battery continues to give an output power of 240 W. Assume that [2 marks]
	the resistive forces are the same as in (a)(iii).
	Calculate the maximum speed of the bicycle and the girl up the slope.

On ar Expla that t	he bicy	cle car	trave	l along	the si	ope.	_						
		ere ear		arorrg		<u> </u>							
differ	ence (p	nas a mod) for t	the bat one ins	tery w	hen th	e mot	or is r	unnir	ng. Th	mina e dia	al pot agran	ent n sh	ial ows t
difference meter	ence (pr reading pd 2V	current	the bat one ins	tery w tant. T	hen th he em	e mot f of th	or is r e cell	unnir	ng. Th	mina e dia	al pot agran	n sh	ows t
difference meter	ence (pr reading pd 2V	od) for tongs at concentration	the bat one ins	tery w tant. T	hen th he em	e mot f of th	or is r e cell	unnir	ng. Th	mina e dia	al pot agran	n sh	ial ows t
difference difference di la constanti di la co	ence (pr reading pd 2V	current	the bat one ins	tery w tant. T	hen th he em	e mot f of th	or is r e cell	unnir	ng. Th	mina e dia	al pot	n sh	ows t
difference difference di la constanta di la co	ence (pr reading pd 2V	current	the bat	tery w tant. T	hen th he em	e mot f of th	or is r e cell	unnir	ng. Th	e dia	al pot	n sh	ows t
difference difference di la constanta di la co	ence (pr reading pd 2V	current	the bat	tery w tant. T	hen th he em	e mot f of th	or is r e cell	unnir	ng. Th	e dia	al pot	n sh	ows t
difference difference di la constanta di la co	ence (pr reading pd 2V	current	the bat	tery w tant. T	hen th he em	e mot f of th	or is r e cell	unnir	ng. Th	e dia	al pot	n sh	ows t
difference difference di la constanta di la co	ence (pr reading pd 2V	current	the bat	tery w tant. T	hen th he em	e mot f of th	or is r e cell	unnir	ng. Th	e dia	al pot	n sh	ows t

The battery is made from an arrangement of 10 identical cells as shown.

2h.	Calculate the emf of one cell.	[1 mark]
2i.	Calculate the internal resistance of one cell.	[2 marks]
2j.	Calculate the internal resistance of one cell.	[2 marks]

	Calculate the emf of one cell.	[1 mark]
	A small metal pendulum bob of mass 75 g is suspended at rest from a f with a length of thread of negligible mass. Air resistance is negligible. T then displaced to the left.	ixed point he bob is
	At time $t=0$ the bob is moving horizontally to the right at 0.8 m s ⁻¹ . It with a small stationary object also of mass 75 g. Both objects then mov with motion that is simple harmonic.	
	Direction of motion ————————————————————————————————————	
За.	Calculate the speed of the combined masses immediately after the collision.	[1 mark]

Sho	ow that the collision is inelastic.	[3 mai
Des	scribe the changes in gravitational potential energy of the oscill tem from $t=0$ as it oscillates through one cycle of its motion.	lating [1 ma
Des	scribe the changes in gravitational potential energy of the oscill tem from $t=0$ as it oscillates through one cycle of its motion.	lating [1 ma
sys	scribe the changes in gravitational potential energy of the oscill tem from $t=0$ as it oscillates through one cycle of its motion.	lating [1 ma
sys	tem from $t=0$ as it oscillates through one cycle of its motion.	
sys	tem from $t=0$ as it oscillates through one cycle of its motion.	

y of the eg	ms. Dete	ermine th	e magnitu	de of	
					[4 marks
					[4 marks _]

Tibl	rane. The other end of the rope is connected to a block which is initially at osition A. The block is released from rest. The mass of the rope is negligible. The block is released from rest. The mass of the rope is negligible. The block is released from rest. The mass of the rope is negligible. The block is released from rest. The mass of the rope is negligible. The block is released from rest. The mass of the rope is negligible. The block is released from rest. The mass of the rope is negligible. The block is released from rest. The mass of the rope is negligible. The block is released from rest. The mass of the rope is negligible. The block is released from rest. The mass of the rope is negligible. The block is released from rest. The mass of the rope is negligible. The block is released from rest. The mass of the rope is negligible. The block is released from rest. The mass of the rope is negligible.
at	t position B.

	etermine the magnitude of the average resultant force acting on the ock between B and C.	[2 marks
be	ketch on the diagram the average resultant force acting on the block etween B and C. The arrow on the diagram represents the weight of the ock.	
be	etween B and C. The arrow on the diagram represents the weight of the	
be	etween B and C. The arrow on the diagram represents the weight of the	[2 marks

- 1		
F	or the rope and block, describe the energy changes the	at take place
. b	etween A and B.	[1 ma
b	etween B and C.	[1 ma

The diagram below shows part of a downhill ski course which starts at point A, 50 m above level ground. Point B is 20 m above level ground.

A skier of mass 65 kg starts from rest at point A and during the ski course some of the gravitational potential energy transferred to kinetic energy.

6a.	From A to B,	24 % of the gra	avitational p	potential	energy	transferred to	[2 ma	irksj
	kinetic energy	y. Show that th	ne velocity a	at B is 12	m s ⁻¹ .			

	Some of the gravitational potential energy transferred into internal energy of the skis, slightly increasing their temperature. Distinguish between internal energy and temperature.	[2 marks
<u>_</u>		
	The dot on the following diagram represents the skier as she passes point B. Draw and label the vertical forces acting on the skier.	[2 mark
	The hill at point B has a circular shape with a radius of 20 m. Determing whether the skier will lose contact with the ground at point B.	e <i>[3 mark</i>

6e.	The skier reaches point C with a speed of 8.2 m s^{-1} . She stops after a [3 marks] distance of 24 m at point D.
	Determine the coefficient of dynamic friction between the base of the skis and the snow. Assume that the frictional force is constant and that air resistance can be neglected.
6f.	Calculate the impulse required from the net to stop the skier and state [2 marks] an appropriate unit for your answer.

	in, with reference to change in momentum, why a flexible safet less likely to harm the skier than a rigid barrier.	cy [2 marks
P / kPa	220 200 180 160 140 120 200 250 300 350 400 450 500 550 T/K	
	//K	
	ce whether helium behaves as an ideal gas over the temperatue 250 K to 500 K.	re <i>[2 mark</i>

b. Helium has a molar mass of 4.0 g. Calculate the mass of gas in the container.	[2 marks
A second container, of the same volume as the original container, contains twice as many helium atoms. The graph of the variation of with \mathcal{T} is determined for the gas in the second container.	[2 marks P
Predict how the graph for the second container will differ from the graph for the second container will be graph from the	raph for the
The air in a kitchen has pressure 1.0×10^5 Pa and temperature 22° C refrigerator of internal volume $0.36~\text{m}^3$ is installed in the kitchen.	C. A
With the door open the air in the refrigerator is initially at the same temperature and pressure as the air in the kitchen. Calculate the number of molecules of air in the refrigerator.	[2 mark
temperature and pressure as the air in the kitchen. Calculate the	[2 mark.

	The refrigerator door is closed. The air in the refrigerator is cooled to the number of air molecules in the refrigerator stays the same.	5.0°C and
8b.	Determine the pressure of the air inside the refrigerator.	[2 marks]
8c.	The door of the refrigerator has an area of 0.72 m ² . Show that the minimum force needed to open the refrigerator door is about 4 kN.	[2 marks]
8d.	Comment on the magnitude of the force in (b)(ii).	[2 marks]
8d.	Comment on the magnitude of the force in (b)(ii).	[2 marks]
8d.	Comment on the magnitude of the force in (b)(ii).	[2 marks]
8d.	Comment on the magnitude of the force in (b)(ii).	[2 marks]
8d.	Comment on the magnitude of the force in (b)(ii).	[2 marks]
8d.	Comment on the magnitude of the force in (b)(ii).	[2 marks]
8d.	Comment on the magnitude of the force in (b)(ii).	[2 marks]
8d.	Comment on the magnitude of the force in (b)(ii).	[2 marks]
8d.	Comment on the magnitude of the force in (b)(ii).	[2 marks]

Show that the pressure p_c exerted by the cylinder on the surface is given by $p_c = \rho g h$.	ρgh.	a. A solid cylinder of height h and density ρ rests on a flat surface.	[2 marks
		Show that the pressure p_c exerted by the cylinder on the surface is $\rho g h$.	given by $p_c =$

A tube of constant circular cross-section, sealed at one end, contains an ideal gas trapped by a cylinder of mercury of length 0.035 m. The whole arrangement is in the Earth's atmosphere. The density of mercury is 1.36×10^4 kg m⁻³.

When the mercury is above the gas column the length of the gas column is 0.190 m.

9b. Show that $(p_0 + p_m) \times 0.190 = \frac{nRT}{A}$ where	[2 marks]
p_0 = atmospheric pressure	

 $p_{\rm m}$ = pressure due to the mercury column

T = temperature of the trapped gas

n = number of moles of the trapped gas

A =cross-sectional area of the tube.

The tube is slowly rotated until the gas column is above the mercury.

diagram not to scale

The length of the gas column is now $0.208\ m$. The temperature of the trapped gas does not change during the process.

)(of	utline why the gas particles in the tube hit the mercury surface less $[1 m]$ ten after the tube has been rotated.

A container of volume 3.2 \times 10-6 m ³ is filled with helium gas at a pressure of 5.1 \times 10 ⁵ Pa and temperature 320 K. Assume that this sample of helium gas behaves as an ideal gas.
10a. The molar mass of helium is 4.0 g mol ⁻¹ . Show that the mass of a helium [1 mark] atom is 6.6×10^{-27} kg.
10b. Estimate the average speed of the helium atoms in the container. [2 marks]
10c. Show that the number of helium atoms in the container is about 4 \times [2 marks] 10^{20} .
A helium atom has a volume of 4.9 \times 10 ³¹ m ³ .
10d. Calculate the ratio total volume of helium atoms volume of helium gas. [1 mark]

		with reference to the kinetic e assumed to be an ideal gas	[2 marks] s.
		d in an insulated tank. Gaseo sing an electrical heater plac	
The following data	are available.		
Mass of 1.0 mol of o	oxygen = 32 g		
Specific latent heat	of vaporization of oxy	$/gen = 2.1 \times 10^5 \text{J kg}^{-1}$	
11a. Distinguish betwee	en the internal energy	$ygen = 2.1 \times 10^5 \text{J kg}^{-1}$ of the oxygen at the boiling hen it is in its gas phase.	[2 marks]
11a. Distinguish betwee	en the internal energy	of the oxygen at the boiling	[2 marks]
11a. Distinguish betwee	en the internal energy	of the oxygen at the boiling	[2 marks]
11a. Distinguish betwee	en the internal energy	of the oxygen at the boiling	[2 marks]
11a. Distinguish betwee	en the internal energy	of the oxygen at the boiling	[2 marks]
11a. Distinguish betwee point when it is in	en the internal energy	of the oxygen at the boiling	
11a. Distinguish betwee point when it is in	en the internal energy its liquid phase and w	of the oxygen at the boiling hen it is in its gas phase.	
11a. Distinguish betwee point when it is in	en the internal energy its liquid phase and w	of the oxygen at the boiling hen it is in its gas phase.	

TIL	. Calculate, in kW, the heater power required. [2 marks]
	. Calculate, in KW, the heater power required.
	temperature or -15 °C.
	allowed to expand to a pressure of 0.11 MPa and to reach a temperature of -13 °C.
110	State one assumption of the kinetic model of an ideal gas that does not <i>[1 mark]</i> apply to oxygen.
110	
110	

12b. Calculate the number of atoms in the gas. 12c. Calculate, in J, the internal energy of the gas. [2 marks]		An ideal monatomic gas is kept in a container of volume 2.1 \times 10 ⁻¹ temperature 310 K and pressure 5.3 \times 10 ⁵ Pa.	⁴ m ³ ,
	12a	. State what is meant by an ideal gas.	[1 mark]
	101		
12c. Calculate, in J, the internal energy of the gas. [2 marks]	12b	. Calculate the number of atoms in the gas.	[1 mark]
12c. Calculate, in J, the internal energy of the gas. [2 marks]			
12c. Calculate, in J, the internal energy of the gas. [2 marks]			
12c. Calculate, in J, the internal energy of the gas. [2 marks]			
	12c	. Calculate, in J, the internal energy of the gas.	[2 marks]
	12c	. Calculate, in J, the internal energy of the gas.	[2 marks]
	12c	. Calculate, in J, the internal energy of the gas.	[2 marks]
	12c	. Calculate, in J, the internal energy of the gas.	[2 marks]
	12c	. Calculate, in J, the internal energy of the gas.	[2 marks]
	12c	. Calculate, in J, the internal energy of the gas.	[2 marks]
	12c	. Calculate, in J, the internal energy of the gas.	[2 marks]
	12c	. Calculate, in J, the internal energy of the gas.	[2 marks]
	12c	Calculate, in J, the internal energy of the gas.	[2 marks]
	12c	Calculate, in J, the internal energy of the gas.	[2 marks]

2e. Explain, in terms of molecular motion, this change in pressure. [2 marks	2d.	Calculate, in Pa, the new pressure of the gas.	[1 mark
2e. Explain, in terms of molecular motion, this change in pressure. [2 marks			
2e. Explain, in terms of molecular motion, this change in pressure. [2 marks			
2e. Explain, in terms of molecular motion, this change in pressure. [2 marks			
	2e.	Explain, in terms of molecular motion, this change in pressure.	[2 marks

Two loudspeakers, A and B, are driven in phase and with the same amplitude at a frequency of 850~Hz. Point P is located 22.~5~m from A and 24.~3~m from B. The speed of sound is $340~m~s^{-1}.$

13a. Deduce that a minimum intensity of sound is heard a	t P. [4 marks]

	A microphone moves along the line from P to Q. PQ is normal to the line [2 marks] midway between the loudspeakers.
	Р
	direction of travel
	•
	A 🐠
	B 喇
	D 441
T C	The intensity of sound is detected by the microphone. Predict the variation of letected intensity as the microphone moves from P to Q.
C	When both loudspeakers are operating, the intensity of sound recorded [2 marks] at Q is I_0 . Loudspeaker B is now disconnected. Loudspeaker A continues to emit sound with unchanged amplitude and frequency. The intensity of sound recorded at Q changes to $I_{\rm A}$. Estimate $\frac{I_{\rm A}}{I_0}$.

A beam of microwaves is incident normally on a pair of identical narrow slits S1 and S2.

When a microwave receiver is initially placed at W which is equidistant from the slits, a maximum in intensity is observed. The receiver is then moved towards Z along a line parallel to the slits. Intensity maxima are observed at X and Y with one minimum between them. W, X and Y are consecutive maxima.

14a	. Explain why intensity maxima are observed at X and Y.	[2 marks]

	ne the frequency of the microwaves.	
utline fferer	one reason why the maxima observed at W, X and `nt intensities from each other.	Y will have <i>[1</i>
utline	one reason why the maxima observed at W, X and `it intensities from each other.	Y will have <i>[1</i>
utline	one reason why the maxima observed at W, X and `it intensities from each other.	Y will have <i>[1</i>
utline fferer	one reason why the maxima observed at W, X and `nt intensities from each other.	Y will have <i>[1</i>

Monochromatic coherent light is incident on two parallel slits of negligible width a distance d apart. A screen is placed a distance D from the slits. Point M is directly opposite the midpoint of the slits.

Initially the lower slit is covered and the intensity of light at M due to the upper slit alone is $22~W~m^{-2}$. The lower slit is now uncovered.

15a. Deduce, in W m ⁻² , the intensity at M.	[3 marks]

15b. P is the first maximum of intensity on one side of M. The following data [2 marks] are available.
d = 0.12 mm
D = 1.5 m
Distance MP = 7.0 mm
Calculate, in nm, the wavelength λ of the light.
The width of each slit is increased to 0.030 mm. D , d and λ remain the same.
15c. Suggest why, after this change, the intensity at P will be less than that at [1 mark] M.
15d. Show that, due to single slit diffraction, the intensity at a point on the [2 marks] screen a distance of 28 mm from M is zero.

A beam of coherent monochromatic light from a distant galaxy is used in an optics experiment on Earth.

The beam is incident normally on a double slit. The distance between the slits is 0.300 mm. A screen is at a distance D from the slits. The diffraction angle θ is labelled.

16a. A series of dark aı	nd bright fringes	appears on	the screen.	Explain ho	ow a <i>[3 l</i>	marks]
dark fringe is form	ned.			•		

16b. The wavelength of the beam as observed on Earth is 633.0 nm. The	[2 marks]
separation between a dark and a bright fringe on the screen is 4.50	
mm. Calculate <i>D</i> .	

••••••	

16c. Calculate the wavelength of the light in water.		[1 mark]
16d. State two ways in which the intensity pattern	on the screen changes.	[2 marks]
17a. Outline what is meant by the principle of supe	rposition of waves.	[2 marks]

The air between the slits and the screen is replaced with water. The refractive index of water is 1.33.

17b. Red laser light is incident on a double slit with a slit separation of 0.35 [3 marks]
mm. A double-slit interference pattern is observed on a screen 2.4 m from the slits.
The distance between successive maxima on the screen is 4.7 mm.
double slit
0.35 mm
2.4 m
(not to scale)
Calculate the wavelength of the light. Give your answer to an appropriate number of significant figures.
17c. Explain the change to the appearance of the interference pattern when [2 marks] the red-light laser is replaced by one that emits green light.

	 _	~	_	_	_	_	_	_	_	 _	 _	_	_	_	С	_	_	 _	_	_	_	۲	_	-	_	_	 _	_	_	_	_	_	_	_	_	_	_	_	_	_	_	 	_						 	 	 	 			_
									- /																		 																										 		

© International Baccalaureate Organization 2022 International Baccalaureate® - Baccalauréat International® - Bachillerato Internacional®

Printed for CONCORDIAN INTL SCH THAILAND