
Introduction
The purpose of this section is to describe the algorithm with which the private key is calculated using the corresponding
salt phrase, secret phrase, and currency type. The algorithm presented below is identical to the algorithm that is
realized in Bitfi wallets. This same algorithm is realized in the private key genertion software found at the Bitfi
Foundation website1. If you have any questions about the below content, please contact support@bitfi.com.

Algorithm

Figure 1: Bitfi key derivation algorithm.

The above diagram shows the algorithm at first glance. The given algorithm accepts textual data in the form of Salt,
Secret Phrase, Currency name and returns Address and Private Key as the result. We will define functions MKD, CI,
and CKD.

MKD(Master key derivation)
Before we can determine the function MKD, it is imperative to determine various assisting algorithms
Parameters:

H = A hash function
k = Length of output produced by H, in bits
Integerify = A bijective function from {0, 1}k → {0, ..., 2k − 1}

Input:

B = Input of length k bits
N = Integer work metric < 2k/8

Output:

B′
= Output of length k bits

Algorithm 1 ROMixH(B,N)

begin
X := B
for i := 0 to N − 1 do

Vi := X
X := H(X)

end
for j := 0 to N − 1 do

j := Intergify(X) mod N
X := H(X

⊕
Vj)

end
B

′
:= X

end

1https://www.btknox.org/calculate-your-private-keys

1



Parameters:
H = A hash function
r = blocksize parameter
Input:
B0...B2r−1 = Input vector of 2r k-bit blocks
Output:
B

′

0...B
′

2r−1 = Output vector of 2r k-bit blocks

Algorithm 2 Algorithm BlockMixH,r(B)

begin
for i := 0 to 2r − 1 do

X := H(X
⊕

Bi)
Yi := X

end
B ′ := (Y0, Y2, ...Y2r−2, Y1, Y3, ...Y2r−1)

end

To determine function SMixr
Definition 1. The function SMixr

2 : {0, 1}1024r × {0...264 − 1} → {0, 1}1024r is
SMixr(B,N) = ROMixBlockMixSalsa20/8,r

(B,N)

where Intergify(B0, ...B2r−1) is defined as the result of interpreting B2r−1 as a little-endian integer.

Parameters:
PRF = A pseudorandom function
hLen = Length of output produced by PRF, in octets
MF = A sequential memory-hard function from ZMFLen

256 × N to ZMFLen
256

MFLen = Length of block mixed by MF, in octets.
Input:
P = Passphrase, an octet string
S = Salt, an octet string
N = CPU/memory cost parameter
p = Parallelization parameter; a positive integer satisfying p ≤ (232 − 1)hLen/MFLen
dkLen = Intended output length in octets of the derived key; a positive integer satisfying dkLen ≤ (232− 1)hLen

Output:
DK = Derived key, of length dkLen octets

Algorithm 3 MFcryptH,MF (P, S,N, p, dkLen)

(B0...Bp−1) := PBKDF2PRF (P, S, 1, p ∗MFLen)
begin

for i := 0 to p− 1 do
Bi := MF (Bi, N)

end
DK := PBKDF2PRF (P,B0 ∥ B1 ∥ Bp−1, 1, dkLen)

end

To determine function MKD
Definition 2. The MKD function3 is defined as

MKD(P, S) = MFcryptHMAC−SHA256,SMix4(P, S, 32768, 4, 64)

2refer https://en.wikipedia.org/wiki/Salsa20 for more details regarding Salsa20
3Permanent parameters were selected specifically for the Bitfi wallet

2



CKD(Child key derivation)
Before proceeding, we need to define some convention functions

• point(p): returns the coordinate pair resulting from EC point multiplication (repeated application of the EC
group operation) of the secp256k1 base point with the integer p.

• ser32(i): serialize a 32-bit unsigned integer i as a 4-byte sequence, most significant byte first.

• ser256(p): serializes the integer p as a 32-byte sequence, most significant byte first.

• serP (P ): serializes the coordinate pair P = (x, y) as a byte sequence using SEC1’s compressed form: (0x02or0x03) ∥
ser256(x), where the header byte depends on the parity of the omitted y coordinate.

• parse256(p): interprets a 32-byte sequence as a 256-bit number, most significant byte first.

We represent an extended private key as (k, c), with k the normal private key, and c the chain code. An extended
public key is represented as (K, c), with K = point(k) and c the chain code.
Parameters:

i = Derivation index

Input:

(kpar, cpar) = Extended private parent key

Output:

(ki, ci) = Extended private child key, corresponding to derivation index i

Algorithm 4 CKD
begin

if i ≥ 231 // key is hardened
I := HMAC − SHA512(Key = Cpar, Data = 0x00 ∥ ser256(kpar) ∥ ser32(i)

end
if i < 231

I := HMAC − SHA512(Key = Cpar, Data = serp(paint(kpar)) ∥ ser32(i)
end
IL := I.SUBARRAY (0, 32)
IR := I.SUBARRAY (32, 32)
if parse256(IL) ≥ n or ki = 0
The resulting key is invalid, and one should proceed with the next value for i

end
ki := parse256(IL) + kpar(mod n)
ci := IR

end

CI (Convert to index)
Function CI is simple and linear. It provides the line segment figure based on the algorithm below
Input:

cn = Currency name

Output:

index = Child index

3



Algorithm 5 CI
begin
acc := ””
for i := 0 to LENGTH(cn) do

acc := acc+ (ASCII −NUMBER(cn[i])− 64).T oString()
end
index := Intergify(acc)

end

And finally, we can now determine the function of the Bitfi key derivation

Bitfi key derivation algorithm
Before proceeding, we need to define some convention functions

• GETBYTES: converts input string to byte array

Input:

P = Password phrase, type string
S = Salt phrase, type string
C = Currency name, type string

Output:

S = Seed key

Algorithm 6 Bitfi key derivation
begin
Pbytes = GETBY TES(P )
Sbytes = GETBY TES(S)
kpar := MKD(Pbytes, Sbytes)
cpar := SHA− 256(Sbytes)
index := CI(C) ∥ 0x80000000 //we want to make this index hardened
S := CKD((kpar, cpar), index)

end

At exit, the algorithm puts out the appropriate seed, which can be used for generation of the public and private keys.
The process of generation of the private and public keys is outside the scope of this article. For each cryptocurrency
a specific and custom algorithm is used. One can learn more about this process through official resources.4

4For example, for cryptocurrency Monero, please visit: https://github.com/monero-project/monero

4


