conference proceedings – GUSSOW CONFERENCE 2009

Metal Mining to the Aid of the Oil Sands? Lateral Opportunities in Industrial Cross-Breeding

Gussow Geoscience Conference, Engineering Sustainable Oil Sands Development, Shahé F. Sabag PGeo, President & CEO, Dumont Nickel Inc., Oct 2009

Viable sustainable development solutions depend on combining technological advances with behavioral modifications. While industry readily deploys costly resources toward seeking technological solutions, it resists behavioral changes which stray beyond "core business". Oil sands operations can benefit from supporting novel low cost metal mining to enhance their eco?footprint.

Northeast Alberta contains some of the world's largest accumulations of recoverable metals, hosted in metal bearing black shales over 100's sq kms. Several immense low grade polymetallic zones were discovered by accident in 1995 but could not be exploited with then available metal recovery technologies.

Milestone advances in bioleaching of metals from polymetallic black shale deposits have propelled this novel deposit type to the frontlines worldwide over the past five years as a long term future source of metals. Bioleaching has lower Capex/Opex, lower eco-footprint and lesser energy dependence when compared to traditional smelting and refining.

The first ever bioheapleaching black shale mine came into production in 2008 and is producing metals, in the Finnish subarctic, at a lower cost than traditional miners. The mine will generate \$30 billion as the "first-born" of a \$5 million EU R&D initiative. It offers a template for what might be achieved in Alberta.

Known metal zones in Alberta's polymetallic black shales are located in landlocked northeast Alberta. Envisaged metal mining can benefit oil sands operations by consuming significant waste Sulfur while also providing collateral opportunities for Carbon sinks/offsets. Black shales also have capacity to sequester CO2.

Recognizing the strategic importance of sustainable self sufficient metals supply, the EU has been the principal driving force advancing exploitation of black shales via focused initiatives through a consortium of industry and environmental groups. Canada lacks a similar constructive collaborative fabric.

Dumont is advancing six polymetallic black shale projects in northeast Alberta over 2,500 sq kms, with potential for hosting up to 20 billion tons in six 50-100 sq km deposits. The projects present opportunities to develop low footprint metal mines, to utilize run-of-river hydro, to harvest waste heat, and to cross-breed local technologies toward creating a new valuable industry independent of energy markets. The projects provide collaborative opportunities to oil sands operators toward what can become a showcase of pro-active sustainable development.

Dumont is assessing options for bioleaching metals from its projects, and intends to advance them via consortium through the initial \$1 million R&D phase. Dumont is also scoping Carbon sink/offset opportunities presented by the projects, as well as the capacity of envisaged mining operations to consume Sulfur.

ETDEWEB / Search for undefined / Metal mining to the aid of the oil sands? Lateral opportunities in industrial cross-breeding

Metal mining to the aid of the oil sands? Lateral opportunities in industrial crossbreeding

CONFERENCE:

SAVE / SHARE

Export Metadata -

Abstract

This paper demonstrated how oil sands operations can benefit from supporting innovative low cost metal mining to enhance their eco-footprint. Northeast Alberta contains large accumulations of recoverable metals, hosted in metal bearing black shales. Immense low grade polymetallic zones were discovered in 1995 but could not be exploited with existing recovery technologies. However, significant advances in bioleaching of metals from polymetallic black shale deposits have propelled this new deposit type to the forefront over the past 5 years as a long term future source of metals. Compared to traditional smelting and refining, bioleaching has lower Capex/Opex, lower eco-footprint and less energy dependence. Envisaged metal

Metal mining to the aid of the oil sands? Lateral opportunities in industrial ...

mining in the black shales of northeast Alberta can benefit oil sands operations by consuming large amounts of waste sulfur while also providing collateral opportunities for carbon sinks/offsets. Black shales have the capacity to sequester carbon dioxide (CO{sub 2}). Dumont Nickel Inc. is advancing 6 polymetallic black shale projects in northeast Alberta over 2,500 km{sup 2} with potential for hosting up to 20 billion tons in six 50-100 km{sup 2} deposits. The projects present opportunities to develop low footprint metal mines, to use run-of-river hydro, to harvest waste heat, and to combine local technologies to create a new valuable industry independent of energy markets. <<Less

Authors: Sabag, S F ^[1]

E Show Author Affiliations

Publication Date: Jul 01, 2009

Product Type: Conference

Resource Relation:

Conference: The 2009 Gussow geoscience conference : engineering sustainable oil sands development, Banff, AB (Canada), 5-7 Oct 2009; Other Information: From session on carbon management during heavy oil/bitumen production; Online publication. Abstracts only.; Related Information: In: Proceedings of the 2009 Gussow geoscience conference : engineering sustainable oil sands development, [100] pages.

Subject:

58 GEOSCIENCES; 04 OIL SHALES AND TAR SANDS; GEOLOGY; BLACK SHALES; OIL SANDS; METALS; MINING; RESOURCE EXPLOITATION; LEACHING; CARBON SEQUESTRATION; RESERVOIR ROCK; ENVIRONMENTAL PROTECTION; SUSTAINABLE DEVELOPMENT; ALBERTA

Sponsoring Organizations:

Association of Professional Engineers Geologists and Geophysicists of Alberta, Edmonton, AB (Canada); Schlumberger Canada Ltd., Calgary, AB (Canada); Gushor, Calgary, AB (Canada); Nexen Canada Ltd., Calgary, AB (Canada); Oilsands Imaging Inc., Calgary, AB (Canada)

OSTI ID:

21240076

Research Organizations: Canadian Society of Petroleum Geologists, Calgary, AB (Canada)

Country of Origin: Canada

Language:

Metal mining to the aid of the oil sands? Lateral opportunities in industrial ...

English	
Other Ider TRN: CA0	ntifying Numbers: 1905107
Availability Available pg.org/cor	/: online from the website of the Canadian Society of Petroleum Geologists at http://www nventions/Gussow2009/program.cfm
Submitting CANM	g Site:
Size: page(s) 1-	2
Announce Dec 11, 20	ment Date: 009
CON	IFERENCE:
SAV	E / SHARE
Export	Metadata 🔻
f Citatior	♥ ■ < Formats
<u>MLA</u>	APA Chicago BibTeX
Sabag, opportu	S F. Metal mining to the aid of the oil sands? Lateral nities in industrial cross-breeding. Canada: N. p., 2009. Web.
	Copy to clipboard

DUMONT NICKEL INC

Toronto, ON, M5V1V6, 416-595-1195, www.dumontnickel.com

Metal Mining to the Aid of the Oil Sands? Lateral Opportunities in Industrial Cross-Breeding

Shahé F. Sabag PGeo President & CEO, Dumont Nickel Inc. ssabag@dumontnickel.com

2009 Gussow Geoscience Conference

October 2009

Safe Harbour Statement This presentation includes forward looking statements. While these statements represent our best current judgment, they are subject to risks and uncertainties that could cause actual results to vary. For further details, see NI-43-101 Technical Report and Dumont's Annual Information Form available from SEDAR and from Dumont's website, www.dumontnickel.com.

1

Polymetallic Black Shales Novel Giant Deposit Type - WCSB

West Canada Sed Basin Contains Some of the World's Biggest Accumulations of Base Metals + U + Gold

Hosted in Metal Enriched Zones In Black Shales First Zones Discovered 1995 - Alberta

2nd White Speckled Shale & Shaftesbury Fm

Metalliferous Black Shales

2nd White Speckled Shale*

Metal Enriched Black Shale Rift-Volcanic Type Metal Enrichment

Alberta Polymetallic Black Shales Novel Giant Deposit Type - Alberta

2nd White Speckled Shale

Metal Enriched Black Shale - Rift-Volcanic Type Enrichment

2 W S	AVG	МАХ
	Grade	Grade
M o O 3 (lb/t)	0.1	1.1
Ni (lb/t)	0.1	0.8
U 3 O 8 (lb/t)	0.1	0.6
V 2 O 5 (lb/t)	0.9	4.8
Z n (lb/t)	0.3	1.7
Cu (lb/t)	0.1	0.4
C o (b / t)	0.0	0.4
Ag (oz/t)	0.02	0.1
Au (oz/t)	Assum	e nil

Rift-Volcanic Type - Tabular "Giant" Deposits (1+ Billion tons)

Known Worldwide .. 10's-100's sq kms .. 20m-100m Thick Modest Bulk Grades 10's-100's ppm Base Metals Formed in "starved" Basins Metal Zones Near Exhalative Venting → "Smoker" Metals

Metal Equiv of Oil Sands - As Big as Oil Sands Explored Like Oil Sands - Bulk Mined Like Oil Sands

Polymetallic Black Shales Metals Recovery Break-Throughs

Metals Extraction – Major Challenge to Exploiting Black Shales

Very Fine Metal Particles Physically "Trapped" in Organics or Fine Clay or Slimes Metals Not Recoverable by Traditional Methods Smelting Inefficient - Cannot Recover Low Grade – Energy Intensive & "Dirty"

Alberta Black Shales Discovered 1995 – "Shelved"

Metals Could not be Recovered by Traditional Methods

Milestone Advances in Bioleaching

1990's - Use Natural Bacteria to Leach Metals from Sulfides Bacteria Metabolize Fe+S – No Energy Needed ~ 30 Tank BioLeaching Operations – Concentrates

2006 - EU Pilot Demo - BioHeapLeaching Enables Eco Friendly Bulk Exploitation of Giant Low Grade Base Metal Deposits 100's Million Pounds Metals - Long Term Sources to Metals - LOMs 25-50+ yrs

First Polymetallic Black Shale Mine 2008 – BioHeapLeaching

Ex Outokumpu Discovery Shelved 1990's – Enabled by BioHeapLeaching Re-Evaluate Alberta Polymetallic Black Shales (WCSB?)

Dumont Polymetallic Black Shales Six Polymetallic Properties - 2,536 sq km

Dumont Polymetallic Black Shales Two Polymetallic Formations

Second White Speckled Shale & Shaftesbury Fms

- •The ONLY Metal Enriched Fms Mo-Ni-U-V-Zn-Cu-Co-Ag-Au
- •Metals Associated w/ Kill Zones + Bentonites (Ash)
- •Other Black Shales Above and Beneath No Metals

Dumont Polymetallic Black Shales 2nd White Speckled Shale - A Volcanic Cycle

Second White Speckled Shale Downhole Patterns

Buckton Zone Historic Drilling

- •Speckled Shale Nearer Surface Primary Target
- •Speckled Shale is the Better Mineralized Fm
- •Discovered by Tracing Placer Gold + Sulfides in Steams
- •Downhole Geochemistry Supported by Geol
- •2nd White Speckled Shale "Captures" Exhalative Cycle

DUMONT - DNI

Dumont Polymetallic Black Shales 2 Potential Mineral Deposits* + 4 Other Targets

Six Mineralized Systems

Mo-Ni-U-V-Zn-Cu-Co-Ag-(Au) 100-300 sq km each Near Structural Corridors & Abnormal Strat 1000+ Oil-Gas Wells

Uniform Bulk Grade Over 60km BUT Upper Lateral Enrichment Vectors

Buckton – 1.2 billion t Northerly Enrichment Vector

Increasing Grade to the North
Thicker Better Grade Sections
More Bentonites & Thicker
Mo-Ni-Co-U-Ag x3-x5 the Avg Grade
BUT V-Cu-(Zn) No Change
Nearer Fault Corridor → Higher Grade
Nearer Metals Source? Nearer Venting?
Exhalative Metals in V-(Zn,Cu) Basin?

Erosional Edge 2nd White Specks

Alluvial Gold Alluvial Sulfides

Dumont Polymetallic Black Shales Vent Corridors - SEDEX Working Model for Alberta

Dumont Polymetallic Black Shales Sulfides & Gold in 2nd White Speckled Shale

Shale Debris In Asphalt Creek

Speckled Shale Traced by Stream Heavy Minerals

Coarse Sulfides in Pan Concentrate

Muddy Concentrate

Speckled Shale Contains up to 20% Sulfides
Fine Mud-Clay Coating on Metal Minerals
Metals Concentrated by Gravity after Deflocculation

•Gold Grains in Streams -> Traced to Shale Outcrops

Speckled Shale Poorly Consolidated → High Tons "Rip" Mining – Like Oil Sands
 Speckled Shale Flows when Wet → Amenable to Slurry – Like Oil Sands

Shale Slump Terraces

Wet Shale Mud Flow

Dumont Polymetallic Black Shales 2 Potential Mineral Deposits* + 4 Other Targets

Six Prospective Systems Mo-Ni-U-V-Zn-Cu-Co-Ag-(Au) 100-300 sq km each

: Buckton North Extension Open for 6km+ +SEDEX Targets

BUCKTON ZONE

Potential Mineral Deposit* (NI-43-101) 1.2 – 1.3 billion short tons ~21m thick – 26 sq km Partly Exposed - Open in 3 Directions Drill Tested - Historic Work Higher Grade Sub-Zones

Buckton South Extension Open for 6km – 1-2 billion tons? Possible Separate Zone

Asphalt North Extension Open for 6km

ASPHALT ZONE

Potential Mineral Deposit* (NI-43-101) 109-132 million short tons ~11m thick – 4.5 sq km Partly Exposed - Open in 3 Directions Drill Tested - Historic Work +SEDEX Targets

• Asphalt South Extension Open for 3km

*The Asphalt and Buckton Potential Mineral Deposits are NOT Resources, though Based on historic drilling and related supporting data, they are conceptual in nature since there has been insufficient drilling over the two Zones to define a mineral resource, and it is uncertain if further drilling will define a resource over the Zones. The Asphalt and Buckton Potential Mineral Deposits comply with NI-43-101.

Dumont Polymetallic Black Shales Buckton Potential Mineral Deposit*

Buckton Potential Mineral Deposit* - Bulk Average Grade Estm 1.2-1.3 Billion short tons - 26 sq km - avg 20.5-21.9m thick					
	Grade Range	Grade Range	Gross Metal/Oxide Co	ontent (lb) (oz)*	
	(ppm)	(lb/st)(opt)	Low Estimate	High Estimate	
Мо	62 - 86 ppm	0.12 - 0.17 lb/st	150,000,000	225,000,000	
[MoO3]	93 - 129 ppm	0.19 - 0.26 lb/st	225,000,000	338,000,000	
Ni	121 - 160 ppm	0.24 - 0.32 lb/st	293,000,000	419,000,000	
U	25 - 37 ppm	0.05 - 0.07 lb/st	61,000,000	96,000,000	
[U3O8]	30 - 44 ppm	0.06 - 0.09 lb/st	72,000,000	113,000,000	
V	623 - 776 ppm	1.25 - 1.55 lb/st	1,511,000,000	2,027,000,000	
[V2O5]	1108 - 1381 ppm	2.24 - 2.79 lb/st	2,719,000,000	3,649,000,000	
Zn	282 - 360 ppm	0.56 - 0.72 lb/st	683,000,000	940,000,000	
Cu	70 - 83 ppm	0.14 - 0.17 lb/st	169,000,000	217,000,000	
Со	19 - 24 ppm	0.04 - 0.05 lb/st	46,000,000	63,000,000	
Ag	0.3 - 0.8 ppm	0.01 - 0.026 opt	12,000,000	34,000,000	
Au	assumed nil	assumed nil	assumed nil	assumed nil	
11 /			1 0 0 0 1		

<u>Recovery</u>

Encouraging Historic R&D Initial R&D – To Be Optimized

Sulfuric Acid Leaching

Ni - 97%
Zn - 100%
V - 33%
Other Metals no Data

Gold Leached by Cyanide

>Bottle Roll Cyanidation>0.1-0.4 g/t Multi Samples>Expl Grade Understated

Heavy Mineral Concentrates
Sulfides + Gold

lb/st=lbs per short ton; opt=ounces per ton

*100% recovery, rounded to nearest million

Bulk Grade a Starting Point

Uniform Bulk Grades - Higher Grade Subzones No "Leading" Metal - Collective Value

Sufficient Gross In-Situ Bulk Value to Compel Follow-Up

Viability = Collective Efficient Recovery Encouraging Historic Recovery Data – To Be Optimized

Other Polymetallic Black Shale Projs Only 3 Other Projects Worldwide

Only 3 Other Projects Worldwide

Talvivaara Mine – Finland – Ni-Co-Zn-Cu-Mn

MyrViken Property – Sweden – U-Oil (Mo-V) – Targeting 150 ppm U + Oil

Storsjon Property – Sweden – U-Oil (Mo-V) – Targeting 150 ppm U

	Shares	S	hare	Mk	t Cap	Started	Development Stage	Base Resources
	Issued (MM)	Pri	ce C\$	(C\$	MM)			
Talvivaara Mining Co (Talv:LSE)	245	\$	7.20	\$1	,764	2003	Mining	1.2 Billion t
Continental Precious Minerals (CZQ:TSX)	47	\$	0.45	\$	21	2006	Resources & Bench	2.8 Billion t
Aura Energy Corp (Au:AEE)	45	\$	0.15	\$	7	2006	Drilling	1B-3B t Blocked
Dumont Nickel Inc. (DNI:TSX-V)	165	\$	0.03	\$	5	2008	Historic Data	1.2-1.3 B t Blocked

Aug 2009

Alberta Offers Significant Advantages Not Found Elsewhere

Good Regulatory, Logistical & Permitting Fabric – Good Access & Infrastructure

No Political Risk – No Competing Land Use

Metal Zones Near Surface - Available to Bulk Mining

Talvivaara a Guide to What Might be Achieved in Alberta

Polymetallic Black Shale - Finland Talvivaara Polymetallic Mine - In Sub-Arctic

First Bio-Heapleaching Mine - 2008 Polymetallic Black Shale Ni-Co-Zn-Cu-Mn

Ex-Outokumpu Project - Shelved 1990's

- Too Low Grade for Recovery by Smelting
- •"Enabled" by EU \$3MM Bio-HeapLeach Demo 2006
- •\$32 Billion Gross Revenues

1.2+ billion tons - Open Pit – 15MM tpa – 75-100yr LOM *Ni-5.2lb/t Co-0.4lb/t Zn-11lb/t Cu-2.8lb/t Ni-0.26% Co-0.02% Zn-0.55% Cu-0.14%*

Collective Recovery: Ni-85%, Co-48%, Zn-79%, Cu-47%, Mn-?
2.3% Global Ni Supply 2010 - 4% by 2012
Capex \$820 million - Opex \$11/t

Can Mine to \$3/Ib Ni - \$2.3 w/ Mn Circuit - \$1.5 by 2012

Polymetallic Black Shale - Finland Talvivaara Polymetallic Mine

Talvivaara Open Pit First Blast

Open Pit – Drill/Blast

Production Rate 15 MM tpa tpa constrained by deposit shape & drill/blast

Polymetallic Black Shale - Finland Talvivaara Polymetallic Mine

IF Tabular Deposit – *like OS IF* Mineable by "Ripping" – *like OS*Talvivaara Could Mine at Much Higher Rate

15 MM tpa **Talvivaara**

70 MM tpa – 180 MM tpa Oilsands

Polymetallic Black Shale - Finland Talvivaara Polymetallic Mine - In Sub-Arctic

Dumont Polymetallic Black Shales Bulk Mining Benchmarks

Talvivaara Mine a Good Guideline

- •Operations, Costs & Technology
- •Tailor Existing Technology to Alberta Shales
- •Migrate Technology to Canada
- •"Template" for What Might be Achieved in Alta

Oil Sands Ops a Good Guideline

•40+ Adjacent Operations, Logistical, Costs•Adapt to Metal Mining, Borrow What Works

Other Guidelines

Other Deposits "Driven" by SizeGeneral Bulk Mining Cost Benchmarks

Dumont Polymetallic Black Shales Bulk Mining Benchmarks

In-Situ Gross Metal Value
High Enough
to Compel Closer Look

Value = x2-x5 of Bulk Mining Cost Benchmarks Viability = Efficient Collective Metal Recovery

Dumont Polymetallic Black Shales Athabasca, Alberta

>Mo-Ni-U-V-Zn-Cu-Co-Ag(Au) _____In-Situ \$15-\$131/t GFD

>Buckton - Bulk Avg_____ Gross In-Situ \$32-\$56/t GFD

>Billions+ tons - Open Pit "Rip Mining"

Capex - Like Talvivaara?

Operating Cost ?

\$5-\$14/t?

BioHeapleaching

Talvivaara Polymetallic Mine: Talvivaara, Finland

>Ni-5.2/b/st Zn-11/b/st Cu-2.8/b/st Co-0.4/b/st In-Situ \$56/t GFI	2
>Ni-0.26% Zn-0.55% Cu-0.14% Co-0.02%	
>1.2 Billion t Resource - Open Pit - LOM 75-100 yr @ 15MM tpa	
Operating Cost~*11/t	

High Tonnage Rip Mining

Typical Oil Sands Mine: Athabasca, Alberta					
> 0.5 bbl/t SCO Grade(\$100/bbl) In-S	itu \$50/t GFD				
>0.5-1BB bbl SCO Avg Deposit - LOM 20-30yrs					
Typical 40m-60m Thick - Flat 50-100 sq km Depos	it				
>Prod Rate: 50,000-100,000 <i>bbl/day</i> (35-70MM tpa)					
Operating Cost* (\$6-\$9/t cash cost)	_\$11-\$14/t				
*Mine+Upgrade+Capital+10%Return \$22-\$28/bbl SCO					

Paracatu Gold Mine: Kinross, Brazil

>0.37 g/t Gold Grade(\$600/oz) In-Situ \$	7/t GFD
>1.7BB t Resource - 20MM oz - LOM 32yrs @ 60MM tpa	
>76% Recovery - Flotation + Gravity	
Kinross Bought 51% for \$260MM + \$470MM '07-'08	
Operating Cost (\$400/oz - Cash Cost ~\$170/oz)	_\$5/t

\$=USD

GFD=Go-Forward-Date. Talvivaara GFD: Bankable Feasibility Report 2006, Ni EUR3.75/lb, Cu EUR2000/t, Zn EUR1050/t, Co EUR12.5/t; Paracatu GFD: Corporate Documents 2007, Technical Report 2006, Gold 600/oz; Dumont GFD: Start Land Assembly Sep 2007. Mo-\$32/lb; Ni-\$12/lb; V205-\$5/lb; Zn-\$1.4/lb; Cu-\$3/lb; Co-\$40/lb; Ag-\$15/oz; Gold assumed nil. Oil Sands: Info from misc sources. USD/CDN at par.

Dumont Next Steps

\$0.5-\$1 Million Testwork Program – Optimize Recovery

- 1. Bio-Leaching Existing Technology Methods from EU
- 2. Mineral Concentration for Gold+Sulfides
- 3. Conventional Leaching & Clay Disaggregation

Existing Historic Drill Core Samples + New Field Trenching 2009

DUMONT BRGM Study 2009 DUMONT Other R&D 2009

Dumont Polymetallic Black Shales Regional Synergies - Sustainable Dev Ideas?

Dumont Polymetallic Black Shales Regional Synergies - Sust Devlp Opportunities

Polymetallic Black Shale Mining Can Benefit Oil Sands + Other Alberta Industries

Symbiotic Synergies – Metal Mining & Oil Sands Mining

•Waste From Metal Mining = Feed for OS Mining

•Waste From OS Mining = Feed for Metal Mining

Cross-Breeding Opportunities

•New Industry Disconnected from Energy Markets

Dumont Current R&D Inhouse – ARC – BRGM – Actlabs – Offshore Geo Orgs

•Bioleaching + Conventional Recovery Testwork

•Sulfur Consumption

•CO₂ Mitigation

• River Small Hydro - pending 2010

•Soil – pending 2010

Other

Athabasca Oil Sands District Metals Leaching = Sulfur Clean-up?

Bitumen Upgrading Produces Waste Sulfur

- ~1t Sulfur per 100-150 bbl Upgraded
- ~5 million t Stockpile (2005)
- ~2 million t New Sulfur Produced Annually
- •Acid Drainage Environmental Liability

Sulfur Stockpiling & Maintenance is Costly

- •Blocking, Stockpiling, Monitoring ~\$5-\$10/t
- •Waste Sulfur Oversupply
- Athabasca Landlocked
- •Shipping to Port Truck+Rail ~\$72-\$100/t
- •What is Carbon Footprint of Shipping Sulfur?

Sulfuric Acid - Metal Leaching Solvent

 Bioleaching Consumes Sulfur Talvivaara Consumes ~270,000 tpa SulfAcid Talvi@75tpa = ~ 0.5 MM tpa Sulfur Consumption
 Inorganic Leaching Also Consumes Sulfur

Metal Leaching = Sulfur Clean-Up

Blocked & Stacked

DUMONT - DNI

Alberta Black Shales Potential Geologic CO2 Sinks for CCS

Oil Sands Operations emit 65 MM t CO₂ per year - 125 MM tpa by 2020

Carbon Mitigation Technologies Include Geologic CO₂ Sequestration Injection Hosts Include Deep Brines, Salt, CoalBeds etc..

Can Also Inject CO₂ into Organic-rich Shales which can "Absorb" CO₂ Costs Partly Offset by Enhanced Gas Recovery Costs "Assisted" by CO₂ CERs/ERUs

Kentucky Black Shales Provide an Excellent CO₂ Sink Capacity to Sequester ~ 28 Billion tons CO₂ Big Sandy Gas Field - Capacity to Sequester ~ 7 Billion tons CO₂ (1.5 million acres, 5 counties, Kentucky)

> Alberta's \$2+ billion CCS Initiative Significant Commitment to Advancing CO₂ CCS Will Injection-CCS Overshadow All Else?

Alberta Black Shales Hold Potential as Immense CO₂ Sinks Untested

Dumont Polymetallic Black Shales Existing Science on Mineral Trapping of CO₂

Mineral Trapping of CO₂ Attractive Solutions for Permanent Traps

Promising – Even Though Reaction Dynamics Need Enhancement

in Geothermal Reservoirs - pressurized in Fly Ashes - ambient in Coal Mine Waste - ambient in "spent" Oil Shale Ashes - ambient in "spent" Oil Shale Waste - ambient ... +Many Others Considerable Existing Science

CO₂ Capture Dynamics Depend on Chemistry + Available Reactive Surface Area

Dumont Polymetallic Black Shales Run of River Small Hydro Options - 500m Vertical

Dumont Polymetallic Black Shales Run of River Small Hydro

Traditional Run-of-River Small Hydro

- •Micro-Hydro Turbines (<100kw)
- •Pico-Hydro Turbines (<5kw)
- •Constant Power Generation 24/7

M Intake

Cana

Forebay

Penstock

DUMONT Study 2010

Free Flow Turbine Generators

- •Can Operate Over Range of Flow Speeds (2-5m/sec)
- •2m Diameter Model → 10kw 2mps Flow (40kw@3mps) Higher Flow → Exponential Increases in Power Strategically Deployed – Modular Expansion
- •Near Consumer → Low Transmission Cost & Power Loss

Each Generator Replaces

~60 tons CO_2 per year ~63 tons Coal ~127 bbl Oil ~780,000 cu ft Gas

Dumont Polymetallic Black Shales "Spent" Shale - Oil Sands Tailings Stabilizer?

Remediated Oil Sands Tailings a Waste Sand Issue

Wind-Blown Fine Sand - Health & Eco Hazard

Revegetation Challenges – Surface Stabilization Challenges

Metals Mining Produces de-Sulfidized "Spent" Shale

•Backfill or Recycle to Backfill OS Pits? eg. Buckton can yield 2BB tons Fill = Horizon->Fronteer Volume Shrinkage

•Possible Top-Soil Stabilizer and Binding Agent?

Possible Top-Soil Enhancer – Enhanced Re-veg?

•Collateral Slurry Transport Benefits – Hydro+CO₂CERs?

Dumont Polymetallic Black Shales Future In-Situ Extraction?

Speckled Shale Poorly Consolidated Candidate for Borehole Slurry Mining In-Situ Mining Alternative to Open Pit?

 Used for Uranium, Potash, Aggregate •High Pressure Cutting-Jet Bit Assembly •Cavern "Stoping" - Ore Slurry Pumped Good for Selective Extraction & Flat Zones •Small Surface Footprint •Like Coal-Bed-Methane Surface Land Use •BUT "Mining" Stations Temporary

Steam Assisted Gravity Drainage (SAGD)

Adapt SAGD Technology?

- •"Borrow" Horizontal Drilling Know-How for Slurry-Mining
- •"Borrow" Slurry Handling Know-How
- •Existing Equipment Existing Expertise Existing Regulatory

Dumont Polymetallic Black Shales Regional Industrial Symbiotic Opportunities

Symbiotic Cross Breeding Checklist

	Envisaged Metal Mining	Oil Sands
	Bio-Leaching Black Shales	Operations
Sulfur	Consumes 🔷	Produces Waste Sulfur
CO2	Modest CO2 Sink	Produces
CO2	Potential CO2 Offsets	Produces
CO2	Potential CO2 Sequestration Sink	Produces
Sulfate	Produces Waste Sulfate	Can Use
H2S	Consumes 🛛 🛁	Produces
Hydro	500m Topo Elevation Drop	On the Flats
	Can Produce Some	Consumes Hydro
Heat	Produces Waste Heat	Consumes Heat
"Spent" Shale	Backfilled	Maybe Can Use
Regional Infrastructure	Existing	Existing
Community Economy	Disconnected From	Dependant On
	Energy Markets	Energy Markets
Investment Leverage	High Leverage	High Leverage
	x10,000 Like Talvi-Finland?	x10,000 Like Lougheed Years
Funds Needed To Advance to Demo Pilot	\$0.5-\$1 million	Spends More on Sulfur Research

Closing Remarks

- NIL Development is Not Sustainable Consider Production "Leakage" CO₂ Not a NIMBY Issue - It is Global Shutting Down Oil Sands = CO₂ Environmental Disaster
- Sustainable Development Makes Good Business Sense. But Best Practices are Dynamic
- Proposed Polymetallic Black Shale Metal Mining = Metal Mining with Eco Clean-Up as a Bonus? *OR* Environmental Clean-Up Paid For by Metals?
- If Proposed Polymetallic Black Shale Metal Mining Indeed Captures CO₂, Who Will Own the Credits? Accrued to Canada's National Cap? Alberta's Cap? the Project Owner?
- Polymetallic Black Shale Metal Mining Offers a Natural Opportunity for Proactive Participation by Oil Sands Industry in Launch of a Symbiotic Industry
- Old Projects Difficult to Retrofit for Sust Dev Best Practices Costly & Adversarial What is Carbon Footprint of Money? Envt Footprint of Money?
- Sust Dev Easy to Implement if "Hardwired" into Projects Early
- Polymetallic Black Shale Metal Mining a Proactive Opportunity for Eco Groups to Help "Hardwire" Sust Dev Best Practices into a Novel Project Early
- We can list many reasons why a novel idea might not work Let's focus on the one reason why it might
- "When dealing with novel technologies, unfounded biases prevail which are absorbed by the technology itself oblivious to bias. Don't be pre-occupied with technology "push" - look at context and market "pull" author unknown, from an ACR Circular circa 2002

Alberta Black Shale Properties Narrative Summary

Dumont Nickel Inc. holds 100% interest in metallic mineral rights over a 2,536 sq km property located approximately 120 km to the north of Fort McMurray, in the Athabasca oil sands region, in northeast Alberta, Canada. The Property extends over a 50kmx60km quadrant covering the eastern parts of the Birch Mountains. Dumont assembled its land position during Sep/07-Jul/08, and has not yet commenced field exploration and is relying on historic information from the Property. Dumont completed a NI-43-101 compliant Technical Report for the Property in Nov/08, which Report consolidates results from extensive historic third-party exploration work over areas presently under the Property.

Polymetallic black shales extend under the surface of the entire Property. The shales are locally enriched in Mo-Ni-U-V-Zn-Cu-Co-Ag and **Au(vg).** The metal zones are mixed with exhalative debris, bentonite, sulfides and a pyroclastic cap. The zones can be regarded as aggregations of metals, extending over areas +50 sq km each, draped around several yet undiscovered exhalative vents. Dumont's primary target is a 20m-40m Formation, which is a flat "blanket" across the Property and is exposed throughout the eastern one third. It is a classic polymetallic black shale which would be amenable to bulk mining.

The polymetallic black shale system under the Property was discovered by accident in 1995 by third-parties, and explored through 1999, but could not be exploited at the time with traditional technologies then available. The shales were previously unknown and had only been documented in oil well gamma logs due to Uranium content. Presence of exhalative debris was also unknown and is now believed to be related to suspected nearby sedimentary exhalative venting with potential for SEDEX style sulfides. Advances over the past decade in industrial scale application of bioleaching to extraction of metals significantly enhance merits of the black shales as a long term bulk mineable source to metals. There are currently only three other polymetallic black shale projects worldwide, one of which was also discovered in the 1990's but could not be exploited with then available metals recovery methods, but which commenced production in 2008 with resources exceeding 1 billion tonnes relying on bioheapleaching.

Based on historic work, Dumont has identified six 100-300 sq km polymetallic enrichment systems on the Property and regards them as six distinct sub-properties in different stages of development. **Polymetallic Zones have been drill confirmed on two of these, showing that both contain large polymetallic potential mineral deposits one of which comprises 1.2-1.3 billion short tons extending over 26 sq km, and the other is 109-132 million short tons extending over 4.5 sq km**. Both potential deposits are "open" and would be amenable to bulk mining. The polymetallic mineralization consists of Mo-Ni-U-V-Zn-Cu-Co-Ag and represents sufficient in-situ value to merit additional work to advance them toward resources. Approximately 75% of the in-situ value is represented by the combined value of Mo-Ni-U-V.

The Property's location in a mature mining district, in a well organized regulatory, jurisdictional and permitting framework tailored to the development of laterally extensive deposits, provides considerable logistical and infrastructural advantages rarely available elsewhere. The local availability of sulfur as a waste product of surrounding oil sands operations, is an added benefit to any sulfur consuming leaching methods which might ultimately be applied for the recovery of metals from the shale. Envisaged mining has further potential to provide CO₂ sinks and offsets, in addition to CO₂ sequestration possibilities.

Dumont's current work program per its Technical Report consists of (i) metals recovery testwork to continue through 2009 with an approximate \$700,000 budget and; (ii) field activities, scheduled for 2009, with an approximate \$400,000 budget focusing on - SEDEX - style sulfides. Subject to results from the metals recovery testwork, a \$3.9 million drilling program is envisaged for winter 2009-2010 consisting of infill drilling to upgrade the two Potential Mineral Deposits to classified resources, and to expand the Deposits by probing their projected extensions.

Dumont Nickel Inc. Corporate Profile

Directors & Officers

Denis A. Clement LLM - Chairman & Director •>30 yrs in finance, law and corporate management •CGX Energy Inc., Vena Resources Inc

Shahé F. Sabag MSc PGeo - President-CEO and Director
>30 yrs in mining industry- Canada & USA
Sr officer/director of public Cos since 1985

David G. Wahl PEng PGeo - *Director* •>30 yrs in mining industry - Consulting •President Southampton Associates •Previously President-CEO Latin American Minerals

Raymond E. Mitchell CA - Director >30 yrs in financial industry •CFO Latin American Minerals •Previously, CFO CDS

Nicholas Tintor BSc - Director >30 yrs in mining industry •President-CEO Homeland Uranium Inc. •Anaconda Mining Inc., Macusani Yellowcake, San Anton Resource

Colin A. Grant CA – *CFO* >25 years in financial sector •CFO Argenta Oil and Gas

Advisory Committee

Gordon Bogden – Financial Advisor Bryan Wilson – Development Advisor Lee Barker – Diamonds Advisor Mani Verma – Bulk Mining Advisor James Letourneau – Cross-Over Technologies

Capital Structure

Share Price (CAN\$) --- yr range \$0.01-\$0.13 Shares Issued ----- 165 million Fully Diluted ----- 199 million Market Capitalization (CAN\$) ---- \$3 million Working Capital (CAN\$) ----- \$0.5 million

Listed TSX Venture Exchange – DNI

Highlights Corporate Repositioning NEW Projects – 2,536 sq km Alberta

New Focus Bulk Mineable Polymetallic Shales - Alberta

Technical Team

Shahé F. Sabag MSC PGeo •Extensive Alberta Experience

J. P. Robinson PhD PGeo •Sr. Structural Geologist

Mining Engineer & Metallurgist - *pending* Network of Consultants & Test Labs

Strategic Partnerships - pending

