Alberta Critical Metals Projects – SBH Property – Athabasca Region

Overview

Constrained supplies of critical metals compel the discovery of metal deposits hosting long term domestic supplies which can advance into production quickly. Bulk mineable deposits which are at surface offer the best such opportunities, especially if advantaged with infrastructure and supplies of reagents nearby.

Mineralized Zones have been discovered in black shales at the 850km² SBH Property held by Critical Minerals Americas Inc., adjacent to the Alberta oil sands. The Zones are mineralized with recoverable Rare Earth Elements, Lithium and Scandium, and offer opportunities capable of supporting mining operations over many decades which will also consume much of the waste Sulphur from oil sands operations in addition to consuming CO₂.

The above Mineralized Zones hold potential to advance quickly toward mining production as bulk mineable metallic aggregations extractable by open pit rip-mining methods, whose contained metals are recovered by bioheapleaching processes using naturally occurring bio-organisms.

The Company is advancing development of two of the known Mineralized Zones to complete Preliminary Economic Assessments within the next two years.

1

Alberta Critical Metals Projects – SBH Property – Athabasca Region

<u>Safe Harbour Statement</u>

This presentation and all content relating to historic information from the Property includes forward looking statements. While these statements represent our best current judgment, they are subject to risks and uncertainties that could cause actual results to vary. See NI-43-101 Technical Reports from historic work available from SEDAR or contact the Company.

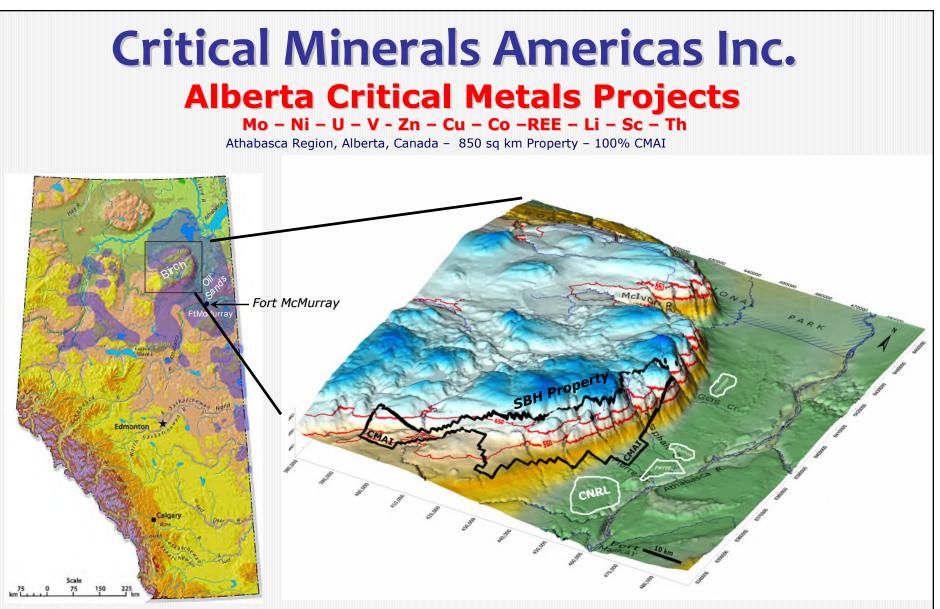
A "**Mineralized Zone**" (otherwise an "Exploration Target" under NI-43-101) is an aggregation of mineralization of encouraging or enticing grade discovered through extensive surface and drill samplings, within a realistic volume of rock, whose ultimate size and economic merits have not been fully confirmed by systematic drilling and, as such, it is conceptual in nature and is intended solely to demonstrate the potential of identifying mineralized material subject to future systematic in-fill grid drilling.

"Mineral Resources" are NOT Mineral Reserves and do not have demonstrated economic viability. There is no guarantee that all or any part of any mineral resources reported will be converted into a Mineral Reserve.

One of the historic Mineral Resources at the Property, is a portion of a larger historic Mineral Deposit evaluated in 2014 beyond a resource study through the rigors of a "**Preliminary Economic Assessment Study" (PEA)** which established metrics for mining excavations and metals recovery processing. Mineable tonnages outlined by the **Preliminary Economic Assessment** represent mineralized material within an optimized pit shell which met economic threshold criteria in 2014, and represent tonnages then deemed economically extractable by open pit method.

Exploration history of the property spans two decades, 1990's-2010's, hence **some of the terminology then in effect my well not be compliant today**. Historic terminology is sometimes used herein for clearer continuity in referencing.

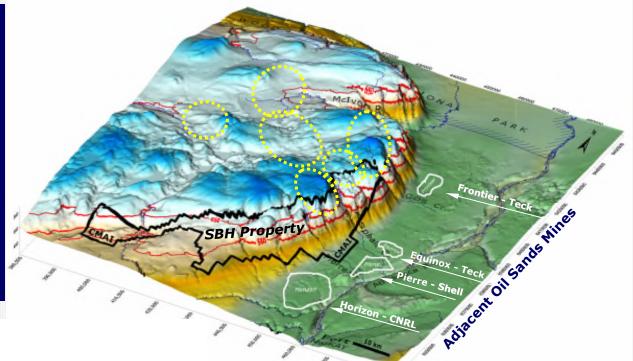
Alberta Critical Metals Projects – SBH Property – Athabasca Region

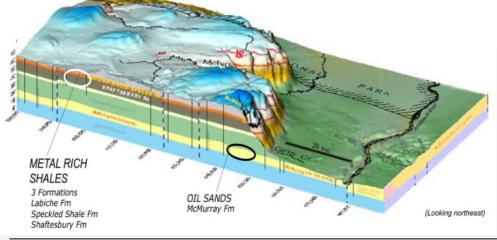

Alberta Holds One of the Largest Accumulations of Recoverable Critical Minerals in the World

The <u>Right</u> Type of Deposit at the <u>Right</u> Location at the <u>Right</u> Time

SBH Property – 3 Large Mineralized Zones – 3BB-7BB tonne ea In Flat Black Shales Exposed at/near Surface Extending over Many 10's km² Quick Production Ramp-Up Potential

> **Recoverable & Mineable** Base Metals - REEs - Lithium - Scandium

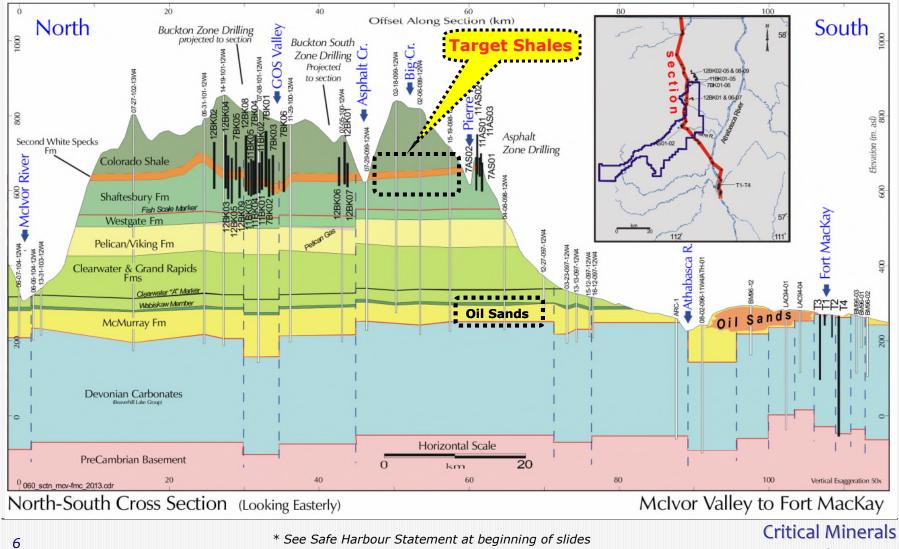

A Distinctly Albertan Story Showcasing Innovative "Green" Mining at Its Best For Decades to Come



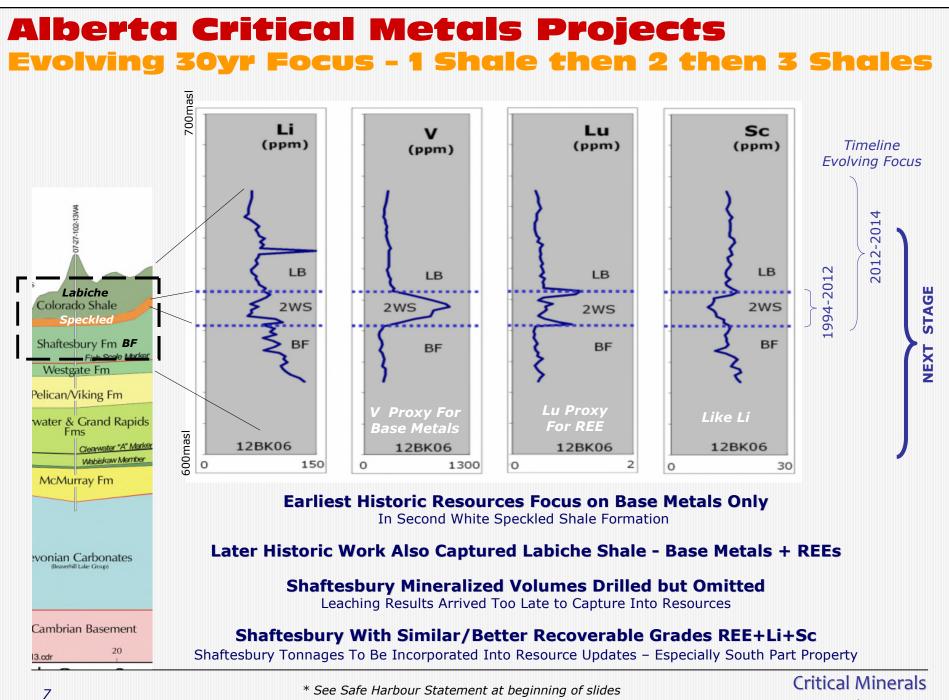
3 Mineralized Zones – incl 2 Resources – Free-Dig Bulk Mining Targets Largest Known North American Concentration Of Critical Minerals + REE + Li-Sc Metals Recoverable by Bio-Heapleaching – ~12BB-16BB Tonnes – 60++ yr Supply 850 km² Property – Prospective Shales Confirmed Over 265km² - Partly Exposed

Alberta Critical Metals Projects Six Mineralized Areas & Zones Discovered 1990's

Six Mineralized Areas incl Mineralized Zones 20km² -30 km² ea 3BB-7BB tonnes ea Partly Drill Confirmed Incl Inferred Resources Mineable & Recoverable



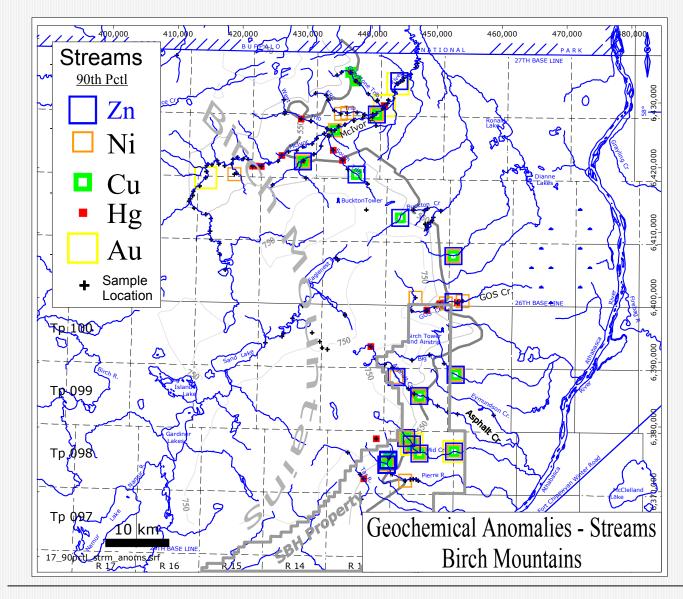
Metalliferous Black Shales Geo Confirmed by 600+ OilGas Wells Higher Grades at Pty than NE-Alta Discovered 1993 – Expl 1993-2014 \$12MM Spent to Date


* See Safe Harbour Statement at beginning of slides

Alberta Critical Metals Projects Excellent Stratigraphic Continuity 100+ Km

Stratigraphy, Mineralized Zones Discovered, Drilling, Oil/Gas Wells Multi-Metal Black Shale Formations – 3Shale-Package – Continuous 50+ Kms

Americas Inc.


Americas Inc.

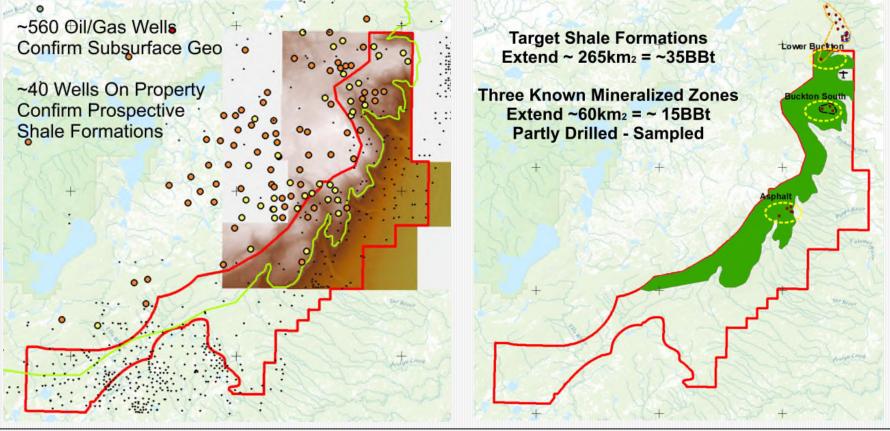
Alberta Critical Metals Projects Target Shales Exposed In Valley Walls - Sampled

Target Shales Exposed in Valley Walls → Consistent Metals Anomalies

Alberta Critical Metals Projects Birch Mountains Drains Metals From Shales

Birch Mountains Drainages Geochemically Anomalous All Metals

Birch Mountains Drainages Mineralogy Is Anomalous Sulfides+Gold


Birch Mountains Lakes Geochemically Anomalous

Birch Mountains Soils Geochemically Anomalous Around Domes


* See Safe Harbour Statement at beginning of slides

Alberta Critical Metals Projects Prospective Black Shales Over 30% of Property

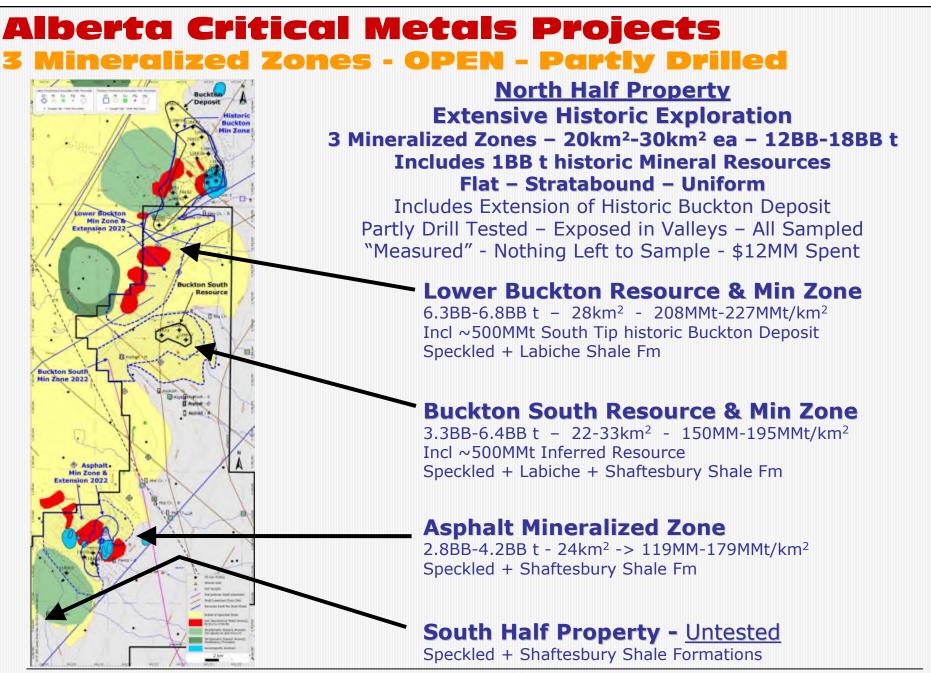
600+ Oil/Gas Wells Confirm Prospective Black Shales Under Birch Mountains 40+ Oil/Gas Wells Confirm Prospective Black Shales at the Property 25 Diamond Drill Cored Holes Confirm Mineralized Zones & Historic Resources on Property 265 km² Prospective Black Shales at The Property – Potential for ~35 Billion t Three Mineralized Zones Together = ~60km² = ~15 Billion t – Partly Drill Confirmed

Alberta Critical Metals Projects 3 Min Zones Tested For 30km - North Half Property

Metalliferous Black Shales

Higher Grades at Pty than NE-Alta Geol Confirmed by 600+ OilGas Wells Zones Exposed in Valleys Zones Confirmed by historic Drilling Collective Metals Recovery Confirmed Bio-Heap-Leaching Free-dig Bulk Mining Open Pit

Mature Projects


Discovered 1995 \$12MM Spent to Date Drilling 1997, 2011, 2012 Recovery R&D 2009-2013 Resource Studies 2011-2013 Historic PEA Study 2014 a Template

Classic Black Shales

Poorly Consolidated Ideal Free-Dig Rip Mining Candidates Metals Recovery by Bioleaching

Prior Work Over North Half Only South Half Targets For Field Follow-up

> Critical Minerals Americas Inc.

* See Safe Harbour Statement at beginning of slides

Alberta Critical Metals Projects 3 Mineralized Zones - Mineable & Recoverable

Excellent Geological Continuity – Flat - Open Pit Mineable

Exceptional Stratigraphic Continuity over 10's Kms Confirmed 100's Oi/Gas Wells + Verified by Core Drilling Confirmed by Valley Lithosections Exposed Prior Work → Very Confident Estimation of Geometry & Shape

Excellent Grade Continuity – Uniform Grade Over >35km

Uniform Grade over 10's Kms – Surface Sampling & Drilling Uniform Resource Studies Whittle Shell Grade Continuity - 0.5km-2.5km – avg 1km Considerable Prior Work → Very Confident Estimation of Average Grade

Metals Recoverability – Collectively Leachable

All Bio-Leaching R&D Testwork Confirm Metals Recoverability Bio-Organisms Adapt well and Quickly to the Alberta Shales No Toxicity Challenges – No Competition Challenges – Rapid Matrix Adaptation Metals Occur in Charged Ionic Form – Easy to Liberate

New Insights Hydromet R&D Discoveries – For Future Expansion

Benchtest Bio-Leaching R&D Testwork → Can Use CO₂ Pre-Treatment Scaled up Column Leaching → Can Use CO₂ Pre-Treatment Scaled up Column Leaching → Can Use Abiotic Processing but Lower Recovery Scaled up Column Abiotic Leaching → Tenfold Faster Leaching Time but Lower Recovery

Alberta Critical Metals Projects Summary - Updated Min Zones & Hist Resources

Historic Buckton Deposit

3 Mineralized Zones & Hist Resources

4.7*BBt* Resource (PEA 4.5*BBt*) 80m thick – 22km² – 214*MMt*/km² 3BBt-7BBt Each - Min Zones & Resources 40-80m thick - 22-33km² - 120-227*MMt*/km²

	Summary of All Porposed Mineralized Zones and Expansions Comparative Resources								
	Lower Buckton	Buckton South		Asp	halt	Buckton South	Buckton Dpst		
	Updated & Expanded Proposed	New Proposed	New Proposed	New Proposed	Updated & Expanded Proposed	Inf Resource Resource Study	Inf Resource Resource Study		
Host Shale	LB-2WS	LB-2WS	LB-2WS-BF	LB-2WS	LB-2WS-BF	LB-2WS	LB-2WS		
Mineralized Zone Tonnage (t)	6,319MM - 6,813MM	2,799MM - 4,455MM	3,296MM - 4,952MM	2,820MM - 3,418MM	3,497MM - 4,239MM	497MM	4,712MM		
Area (sq km)	27.7	18.6-29.6	18.6-29.6	23.7	23.7	3.3	22		
Tonnes per sq km (MMt/km2)	208MM - 227MM	150MM	195MM	119MM - 144MM	148MM - 179MM	150MM	214MM		
		E:	stimated Grades (ppm)					
Мо	15-17	17-17	9-14	14-23	12-20	17	15		
Ni	67-71	71-69	57-64	56-72	54-68	71	68		
U	9-10	10-10	8-9	8-13	8-12	10	9		
V	340-404	404-404	328-368	329-392	310-385	404	341		
Zn	170-185	185-185	163-173	151-179	146-170	185	170		
Cu	40-47	47-48	41-45	39-56	38-53	47	40		
Со	15-15	15-15	14-15	12-15	12-14	15	15		
LREE	159-163	159-166	161-164	135-165	140-170	159	163		
HREE	21-22	22-23	21-22	19-24	19-25	22	21		
Y	31-32	31-33	30-32	27-34	27-35	31	32		
Th	11-14	10-10	10-11	8-9	9-10	10	10		
Sc	10-10	14-15	15-15	12-12	13-12	14	11		
Li	70-71	70-72	76-76	58-65	65-72	70	71		
Mineral Resources Included (t)	500MM	-	-	-	-				
Mineral Resources Excluded (t)	-	497MM	497MM	-	-				
TTL Restated - Resource as MinZone (t)	6,319MM - 6,813MM	3,296MM - 4,952MM	4,268MM - 6,412MM	2,820MM - 3,418MM	3,497MM - 4,239MM	MM=million; (t)			
Restated Area (sq km)	27.7	21.9-32.9	21.9-32.9	23.7	23.7	Light and Heavy REEs shown are: LREE=Ce,Pr,Nd,Sm;			
Tonnes per sq km (MMt/km2)	208MM - 227MM 150MM 195MM 119MM - 144MM 148MM - 179MM HREE=Tb.Dv.Ho.Er.Tm.Yb.Lu;								
Zone for Lower Buckton includes all tonnages of any Mineral Resources thereupon deeming them to be Mineralization only; Mineralized Zone						Buckton Indicated Resource restated as Inferred to enable addition into the total.			

Alberta Critical Metals Projects Recoverable Metal "Budget" 3 Zones - World Class

Estimated Metals "Budgets" on Par or Better than Headlined Discoveries Elsewhere

Especially Li - Sc - HREEO

$Li_2CO_3 \sim 770,000t - Sc_2O_3 \sim 28,000t - REEOs \sim 1,000,000t$

Metal Budget Over Mine Life (t)								
Metal Budget Over Mine Life (t)	Lower Buckton	ckton Buckton South		Asphalt		Three Mineralized Zones Combined		
Host Shale	LB-2WS	LB-2WS	LB-2WS-BF	LB-2WS	LB-2WS-BF	LB-2WS	LB-2WS-BF	
Mineralized Zone Tonnage (MMt)	6,319-6,813	2,799-4,455	3,296-4,952	2,820-3,418	3,497-4,239	11,938 - 14,686	13,112 - 16,004	
Area (sq km)	27.7	18.6-29.6	18.6-29.6	23.7	23.7	70 - 81	70 - 81	
Tonnes per sq km (MMt/km2)	208MM	150MM	195MM	119MM	148MM			
Metals/Oxide Budget (t)								
Mo	1,931 - 2,366	933 - 1,547	595 - 1,376	783 - 1,567	826 - 1,649	3,647 - 5,480	3,352 - 5,391	
Ni	217,216 - 247,918	98,665 - 161,989	96,408 - 161,353	81,036 - 126,229	96,022 - 147,129	396,917 - 536,136	409,646 - 556,400	
U308	42,127 - 49,867	20,487 - 33,784	18,082 - 33,632	17,429 - 32,471	19,913 - 37,032	80,043 - 116,122	80,122 - 120,531	
V2O5	230,819 - 294,568	121,018 - 19,2617	115,864 - 195,329	99,405 - 143,603	116,130 - 174,918	451,242 - 630,788	462,813 - 664,815	
Zn	514,560 - 604,086	248,139 - 396,186	258,599 - 411,635	204,411 - 293,331	245,373 - 346,715	967,110 - 1,293,603	1,018,532 - 1,362,43	
Cu	58,451 - 73,997	30,400 - 49,562	30,808 - 51,102	25,576 - 43,674	30,453 - 51,692	114,427 - 167,233	119,712 - 176,791	
ω	54,677 - 59,614	24,219 - 38,610	26,048 - 40,992	19,897 - 28,863	24,479 - 34,736	98,793 - 127,087	105,204 - 135,342	
LREEO	318,671 - 353,803	141,116 - 234,878	168,416 - 258,604	121,182 - 178,638	155,228 - 228,317	580,969 - 767,319	642,315 - 840,724	
HREEO	71,089 - 78,728	32,383 - 55,131	37,355 - 58,736	28,474 - 42,772	35,116 - 56,285	131,946 - 176,631	143,560 - 193,749	
Y ₂ O ₃	124,098 - 137,869	55,008 - 93,679	62,670 - 99,384	48,332 - 73,582	59,400 - 93,081	227,438 - 305,130	246,168 - 330,334	
ThO ₂	14,657 - 21,007	6,298 - 13,736	7,462 - 11,280	5,170 - 6,551	6,751 - ,8949	26,125 - 41,294	28,870 - 41,236	
Sc ₂ O ₃	10,005 - 10,977	4,471 - 10,086	7,508 - 11,486	5,131 - 6,314	6,654 - 8,184	19,607 - 2,7377	24,167 - 30,647	
Li2CO3	327,623 - 357,872	145,004 - 237,538	187,414 - 282,058	122,553 - 166,485	170,430 - 226,551	595,180 - 761,895	685,467 - 866,481	
Mine Life Hypothetical 72MM tpa (yrs)	88 - 95	39 - 63	46 - 69	39 - 47	39 - 59			

Alberta Critical Metals Projects Guidelines From Mining & Processing Templates

Historic Buckton Deposit PEA 2014 & Talvivaara Mine Excellent Templates for What Can be Achieved For Mineralized Zones Discovered on the Property

Guidelines from Other Open Pit Deposits & Mining Operations

Many Free-Dig High Tonnage Open Pit Heap Leach Operations Worldwide Oil Sands a Good Template for Mining Flat Uniform Grade Surface Deposits in the Region

Historic Buckton Deposit 2014 Positive PEA a Good Mining Template

10% of Buckton Deposit (4.5BB t) is On the Property - ~500MM t at Lower Buckton 96.4% of Resources Captured Into Mining Pit Shell – 0.5:1 Strip Ratio PEA + Scoping Confirm Resources are Mineable Post-PEA Scoping Identifies Many Easy Enhancements Relies on Leaching R&D & CanMet Column Bioleaching of the Shales Provides Template For 72MM tpa 64 year Operation Regards Buckton Deposit an HREE Deposit Based on Economic Value Estimates for Sulfur and H₂S Consumption & Excess Hydro → ESG Benefits Buckton Deposit Economics Depend on Mining Rate Rather than Grade

Talvivaara Mine a Good Template as Bioheapleaching Processing Operation

Operations Consistent with Buckton Deposit PEA Offers Heaping, Aeration and Irrigation Metrics and Separation Guidelines 68% Lower CO₂ Footprint than Comparable Metal Producers Talvivaara Regarded as "Green" Mining at its Best

Alberta Critical Metals Projects Vision = The Next Bio-Heapleaching Mine

Alberta Black Shales = One of the Largest Accumulations of Recoverable Critical Minerals in the World

The "<u>*Right*</u>" Type of Deposit - at the "<u>*Right*</u>" Location - at the "<u>*Right*</u>" Time In Mature Infrastructure – In Stable Mining Jurisdiction – Access to Reagents Short Ramp-Up to Production

Bird's Eye View of Typical Mining Scenario

Step-1: Excavate

Free-Dig - High-Volume - Open Pit

Step-2: Recover Metals+REE+Li+Sc

Bio-Heapleaching – Also Possible Abiotic Leaching (S or S+CO₂) \rightarrow Potential CO₂ Sink

Step-3: Metals Separation

On-Site OR Off-Site

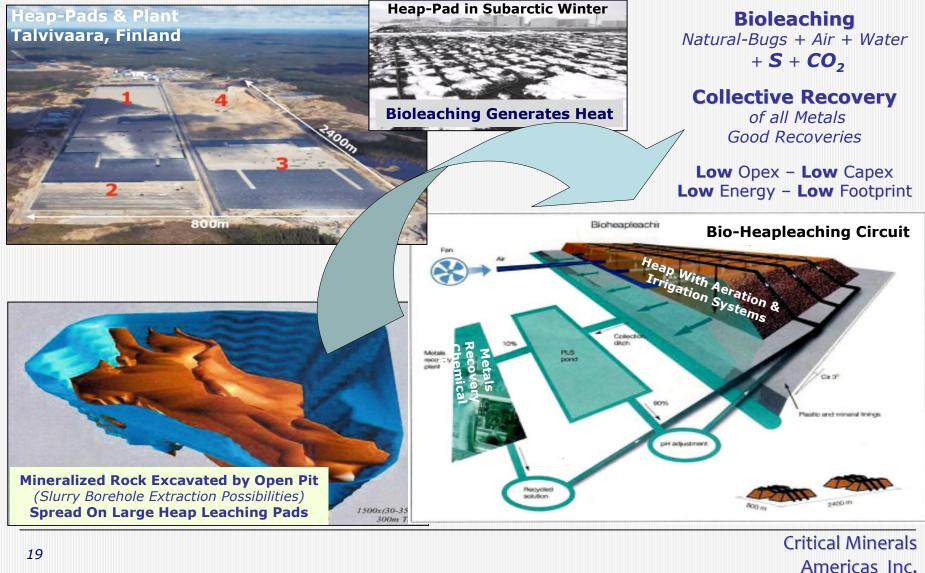
Step-4: Backfill "Inert" Spent Shale

Possible CO₂ Sequestration

Consumes S + H₂S + CO₂ Along the Way = "Green Mining"

* See Safe Harbour Statement at beginning of slides

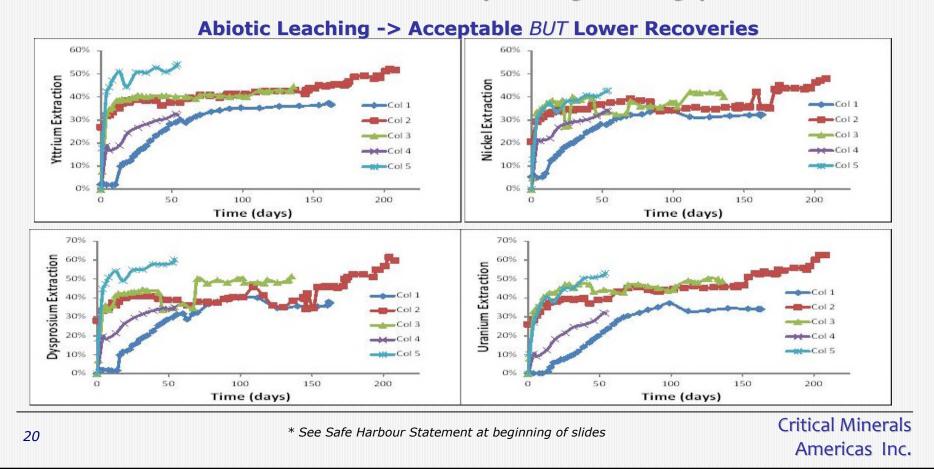
Alberta Critical Metals Projects Mineralized Shale Poorly Consolidated - Mineable


Mineralized Shales Poorly Consolidated Amenable to Free-Dig "Ripping" Like Oil Sands Mines -> High Mining Rate 100,000 tpd -500,000 tpd Historic PEA Template - 72MM tpa

Potential Also For In-Situ Borehole Slurry Mining

Alberta Critical Metals Projects Bird's Eye View of Bio-Heapleaching - Leachable

Bio-Heapleaching Black Shales at Talvivaara Mine a Template for Alberta Black Shales Talvivaara Mine a Perfect Example of Short Pre-Production Timeline (7yrs)


Alberta Critical Metals Projects Leaching R&D - Quicker Recovery Options

Bioleaching Takes Time - 9-14 mo Leach Cycle

Alberta Metals Occur as Charged Ionic Forms Metals – especially REEs – Leach Quickly – Faster Than Talvivaara

unlike Talvivaara where they occur in sulfides requiring aggressive acid digestion

Much of What is Recoverable is Recovered in the Earliest Days ! -> Sacrifice Some Recovery for Larger Throughput ?

Alberta Critical Metals Projects Bioleaching is "Greener" than the "Other Guys"

Bio-Heapleaching Consumes Sulphur + H₂S + CO₂ Bio-Organisms Need to Consume S for Energy – CO₂ for Biomass

Talvivaara's annual Nickel Sulfate production 68% Lower CO₂ Emission Than Comparable Operations

"Green" Ni + CO₂ Offsets Sold at Premium Talvivaara - Environmental Lifecycle Audit 2020 benchmarked by the Nickel Institute

Aiming for CO₂ Neutral by 2039

Talvivaara Annual Mining Throughput = 15MMtpa

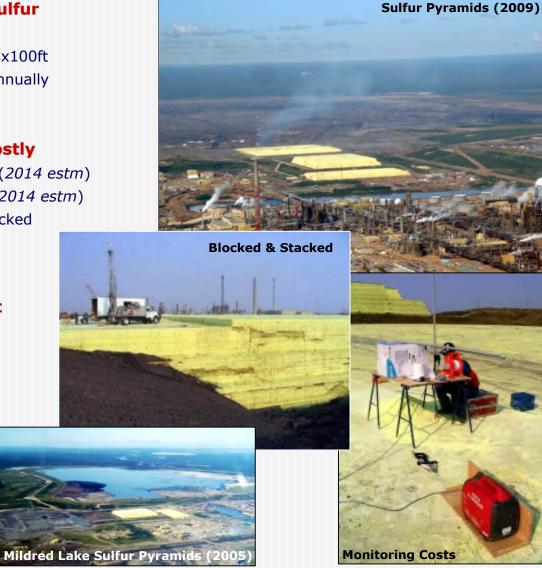
Prevents Emission of 620,000 tonnes of CO₂ **IF** 72MMtpa Throughput -> 3MM tonnes Annual CO₂ Emissions Prevention ?

Bioleaching Remains a Niche Technology in Mining Industry Increasing ESG Imperatives Toward Net Zero CO₂ Mining Emissions by 2050 An Incentive to Expand this Technology Moving Forward

Alberta Critical Metals Projects Metals Bioleaching = Sulfur Clean-up

Bitumen Upgrading Produces Waste Sulfur

- ~1t Sulfur per 100-150 bbl Upgraded
- ~20 million t Stockpile 3 Pyramids 25acresx100ft
- ~2-3 million t New Sulfur Waste Produced Annually
- Acid Drainage Groundwater Contamination


Sulfur Stockpiling & Maintenance is Costly

- Blocking, Stockpiling, Monitoring ~\$5-\$10/t (2014 estm)
- Shipping to Port Truck+Rail ~\$72-\$100/t (2014 estm)
- Waste Sulfur Oversupply Athabasca Landlocked
- Carbon Footprint of Shipping Sulfur Waste?
- Carbon Footprint of Managing Sulfur Waste?

Sulfuric Acid - Metal Leaching Reagent

- Bioleaching Consumes Sulfur Talvivaara Consumes ~270,000 tpa SulfAcid Talvi@75tpa = ~ 0.5 MM tpa Sulfur Consumption
- Abiotic Leaching Also Consumes Sulfur

Metal Leaching = Sulfur Clean-Up BIGTIME !

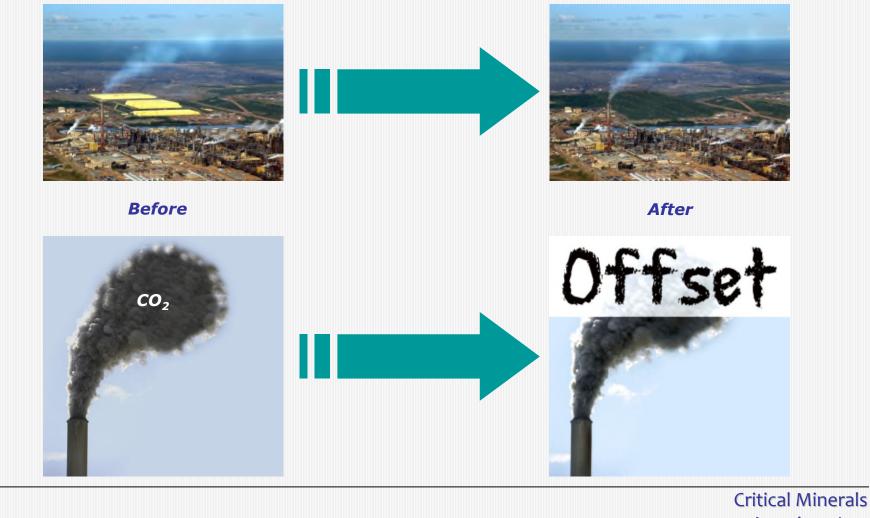
Alberta Critical Metals Projects Regional Environmental Synergies

Bio-Heapleaching Processing of Metal Rich Black Shales Can Clean Up <u>ALL</u> Oil Sands Waste Sulfur + Some CO₂

Will Consume 1MM++ tpa of Local Sulfur Waste From Oil Sands Current stockpile is +25MM t stacked in 3 pyramids

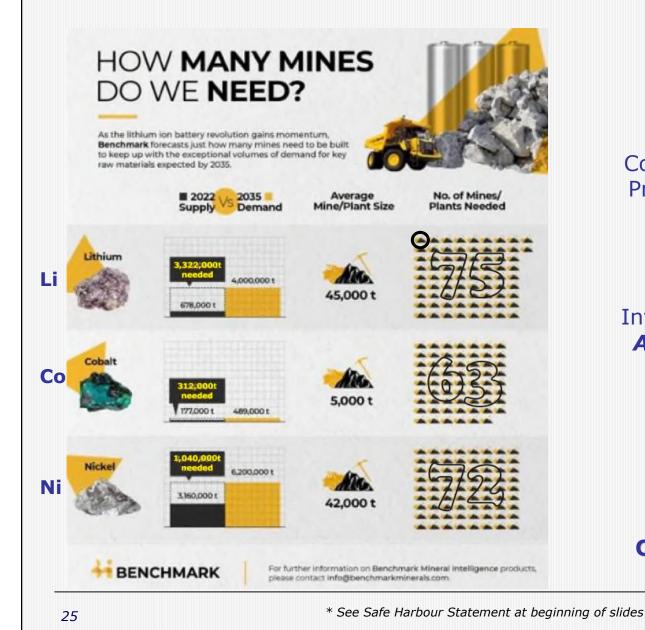
Will Consume CO₂ + Sequestration Opportunities

Plus Many Other Benefits to Oil Sands and Other Alberta Industries


Next Stage R&D Tests Need Less \$ Than What Oil Sands Spend on S Mitigation

Synergy Checklist	Critical Metals Mining From Bio-Leaching Black Shales	Oil Sands Operations
Sulfur	Consumes Sulfur	Produces Waste Sulfur
CO2	Modest CO2 Sink	Produces CO2
CO2	Potential CO2 Sequestration Sink	Produces CO2
Sulfate	Produces Waste Sulfate	Can Use
H2S	Consumes H2S	Produces H2S
Hydro	500m Elevation Drop Can Produce Hydro	Consumes Hydro
Hydro	Excess Heat/Power From Sulfuric Acid Production	Consumes Hydro
Heat	Produces Waste Heat	Consumes Heat
"Spent" Shale	Backfilled	Maybe Can Use
Regional Infrastructure	Existing	Existing
Community Economy	Disconnected From	Dependant On
	Energy Markets	Energy Markets
Investment Leverage	High Leverage	High Leverage
Funds Needed to Advance to Pilot	~\$1MM	Spends More on Sulfur Mitigation
23		Critical Minerals Americas Inc.

Alberta Critical Metals Projects Industrial Cross-Breeding Opportunities


Contrarian Possibilities

Metal Mining OR Profitable Waste Management?

Americas Inc.

Alberta Critical Metals Projects Right Type of Deposit - Right Place - Right Time

Right Type Deposit

Flat – Near/At Surface Free-Dig Bulk Mining Long Minelife Bioheapleaching Collective Metals Recovery Production Within 8 Years S+CO₂ "Sink" + ESG

Right Place

Stable Jurisdiction Infrastructure + Workforce *ALL* Reagents Next Door

Right Time

Significant Domestic Long Term Supply Critical Metals

How Many Deposits Can Reach Production Before 2035 ?

Alberta Critical Metals Projects Next Steps - Advance 2 Mineral Zones to PEA 2025

Advance Two of Three Known Mineralized Zones Through PEA by End 2025

2023-2024: Systematic Resource Drilling – Satisfy NI-43-101

2023-2025: Expand & Scale Up HydroMet Testing – Post Column Tests - Larger Samples

2023-2024: Expand On Enviro Baseline Testwork – CO2e, S, H2S, Excess Hydro

		\$7MM			~ \$25MM			
SBH Property - Next Steps	2022	2023	2024	2025	2026	2027	2028	2029
Stage1								
Property Acquisition								
Data Consolidation & NI-43101 Rpt								
Alberta Strategic Alliances (Gov & Community Outreach)								
Stage2								
Buckton South Histrical Resource Update								
Asphalt Maiden Resource Scoping								
Buckton Historical Deposit PEA Re-Evaluation & Scoping								
Lower Buckton Historical Resource Evaluation								
Asphalt South Recon & Field Sampling								
Stage3 - Asphalt & Buckton South - Drilling, Resources & PEA								
Drill Programs Permitting & Org								
Resource Drilling - Asphalt & Buckton South Zones		AS	P Bł	S				
Resource Drilling (Potential) - Asphalt South								
Resource Study - Asphalt Zone			ASP	BKS				
Resource Study - Buckton South Zone				DICS				
PEA - Asphalt & Buckton South Zones			ASP	BKS				
Stage4		_						
Expanded Hydromet Testwork (Biotic & Abiotic)								
CO2 Sequestration Scoping & Testwork								
Life Cycle Audit CO2								
Expand Leaching Testwork & Column Tests								
Conceptual Plan								
Stage5								
2nd Drill Program + Reserves				Į			_	
Demonstration-Pilot Heap (5,000t ?)								
							_	
1st Feasability Study Bulk Sample Heap Test (15,000t ?)							_	
Bankable Feasability Study								
Permitting								
							Critical N	Ainera
26 * See Safe Harbour :	Statement	at beginn	ing of slid	e <i>s</i>				
							Ameri	cac In

Alberta Critical Metals Projects – SBH Property – Athabasca Region

Management & Technical Team

Participated in All Prior Work On The Property - 1990's-2014

Historic Work Legacy Information Extracted 34GB Digital Database - 17,372 Files - 2,070 File Folders

Geotechnical, Engineering and Hydrometallurgical Prior Work on the Property By

APEX Geoscience	Activation Laboratories					
P&E Engineering	CanMet					
Hatch	ARC/AITF					
Brierly Consultancy	AGS					
BRGM (France)	GSC					

* All Information Publicly Available in Alberta Assessment Reports

Management

Denis Clement, B Com LLB, LLM. - President & CEO, and Director

dclement@criticalmineralsamericasl.com

Mr. Clement is a highly experienced international business executive with over 30 years of experience in international finance, law, M&A, banking, and management primarily in the oil and gas, mining, finance, and tech industries. As founding President of CGX Energy, he negotiated the first Guyanese offshore oil licenses and oversaw its offshore operations. In additional Mr. Clement has been instrumental in financing venture opportunities throughout the world in mining and other business activities. Mr. Clement is a member in good standing of the Ontario Law Society.

John MacKenzie, BSc, B Com, CPA CA - CFO and Director

jmackenzie@criticalmineralsamericas.com

Mr. MacKenzie is a Founder and CFO of Evergreen Environmental Inc. an anaerobic digester of organic waste producing Renewable Natural Gas (RNG). After spending ten years in the Entrepreneurial Services Group at E&Y / CG, Mr. MacKenzie spent fifteen years as founder and CEO at AllCanada Express (ACE), Canada's largest international large jet cargo airline, now part of Cargojet (TSX-V: CJT.TO) and six years as COO at ORNGE, O n m ntario's air ambulance provider. Mr. MacKenzie was former CEO of New Ruby Mining Corporation and Bronte Gold Corp. private Ontario exploration companies and has been an advisor to numerous domestic and international clients in the mining, financial services, energy, aviation, technology, and emergency medical services.

Exploration & Operations

Shahe F Sabag BSc, MSc, PGeo - Technical Director

deminco@aol.com

Mr.Sabag is President of Demin Management Corporation. He has over 50 years of experience in management and technical capacities in the launch of many exploration and development campaigns for a variety of commodities including base metals, precious metals, industrial minerals, critical minerals, Rare Earths, uranium, diamonds, placer gold and peat. He has served as a Senior Officer and Director of a number of private and public corporations since 1985, and was formerly VP of Tintina Mines Limited, President of NSR Resources Inc. and Algomin Inc., and served as Director of Canspar Resources Inc., Algonquin Capital Corporation and Aurogin Resources Ltd.. He was also a Member of the Alberta Chamber of Resources Steering Committee, and principal of Ecoventures an emissions reduction industrial cross-breeding project design venture. He was an active member of Ontario's Pilot Emissions Reduction Trading pilot (PERT), and served as a director of its successor Cleanair Canada Inc. He is also a past member of the Canada Rare Earth Element Network (CREEN). Mr.Sabag has participated in all prior exploration work on the SBH Property all of which was carried out under his direction as an officer of Tintina Mines, NSR Resources and DNI Metals.

William Kerr BSc, PGeo - Operations Manager

will_c_kerr@hotmail.com

Mr.Kerr is a geologist with over 45 years in the Canadian and international exploration and mining industry. He was directly responsible for discovery of two of the worlds four highest grade uranium deposits, (Phoenix and Midwest A) and was a geophysical contractor 45 years ago for the surveys that defined the conductors that became the other two (McArthur River and Cigar Lake). He was QP for the mining of all the McClean Lake deposits, by operator AERVA, the most recent open pit U mines in Canada. He has spent many years in Ontario and was exploration manager for Dome Mines for the Red Lake and Timmins offices. During that time, he was involved, in varying degrees, with discovery and delineation of economically mineable gold deposits at Dona Lake, Detour Lake, and Musslewhite. He has personally ground-staked more than 500 claims, and was awarded in 1996, and maintains, a lifetime Prospector License through MNDM. Mr.Kerr has participated in prior work on the SBH Property during its early discovery stages as Field Exploration Manager of Tintina Mines.

www.criticalmineralsamericas.com