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ABSTRACT

This thesis develops and applies a bi-objective optimization model for the deploy-

ment of battery-electric buses (BEBs) that explicitly balances environmental benefits with

cost effectiveness at the level of individual schedule blocks. The study is situated in

the Wasatch Front region of Utah, an area where poor winter air quality and population

growth make public transit electrification an urgent planning priority. While much of

the existing literature evaluates BEB adoption at fleet-wide or depot scales, this work

introduces a finer-grained analysis that operates at the block level, enabling a more precise

accounting of trade-offs in operational feasibility, infrastructure requirements, and equity

outcomes.

Environmental impacts are quantified through integration of multiple modeling frame-

works. Emissions reductions are estimated using MOVES4.0, while regional dispersion

patterns of fine particulate matter (PM2.5) are simulated with InMAP. To incorporate eq-

uity considerations, demographic and vulnerability data from the Climate and Economic

Justice Screening Tool (CEJST) are overlaid, allowing the model to prioritize deployment

in disadvantaged communities disproportionately affected by transportation emissions.

Results demonstrate that replacing diesel buses with BEBs produces statistically signifi-

cant, though modest, localized reductions in ambient PM2.5 concentrations. These findings

highlight both the potential and the limitations of vehicle electrification when pursued in

isolation, underscoring the need to situate BEB adoption within broader air quality and de-

carbonization strategies that also address upstream electricity generation and non-mobile

pollution sources.

The cost dimension of the analysis reveals nonlinear investment dynamics. While early

BEB deployments yield strong environmental and social returns, benefits taper beyond a

certain threshold due to limitations in vehicle range, charging infrastructure, and oper-

ational flexibility. This emphasizes the value of targeted deployment strategies, where

investments are prioritized to maximize both equity and efficiency.



Overall, the thesis contributes a novel methodological framework that integrates opti-

mization, atmospheric science, and equity analysis. Beyond its application in Utah, the

model offers a template for transit agencies and policymakers seeking to design elec-

trification strategies that are environmentally meaningful, socially just, and financially

prudent.
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CHAPTER 1

INTRODUCTION

1.1 Transportation, Air Quality, and Public Health
The transportation sector is a major contributor to ambient air pollution, particularly

fine particulate matter (PM2.5), which poses severe risks to human health and urban air

quality. Globally, traffic sources account for roughly a quarter of urban PM2.5 concentra-

tions [1], and sector-specific analyses have shown that transportation-related emissions

contribute significantly to premature mortality burdens worldwide [2]. Because tailpipe

emissions from on-road vehicles are a dominant source of localized exposure in densely

populated regions, electrification of the transportation sector offers a direct and actionable

pathway to reduce these impacts. Replacing internal combustion engine vehicles with

battery-electric alternatives has the potential to eliminate exhaust-related PM2.5 emissions,

thereby improving air quality in vulnerable communities and supporting broader decar-

bonization and public health goals.

When evaluating the impacts of transportation electrification, it is important to dis-

tinguish between greenhouse gas (GHG) emissions and local air quality pollutants. GHGs

such as carbon dioxide (CO2) and methane (CH4) are long-lived pollutants that accumulate

in the atmosphere and drive global climate change. In contrast, local air quality is shaped

primarily by short-lived pollutants such as nitrogen oxides (NOx), volatile organic com-

pounds (VOCs), and fine particulate matter (PM2.5), which directly affect human health

and visibility in the regions where they are emitted. While reducing GHG emissions is

essential for addressing long-term climate goals, prioritizing air quality improvements

can yield more immediate and tangible health benefits, particularly for urban populations

and vulnerable communities [3]. Alarmingly, PM2.5 from on-road transportation alone

has been linked to an estimated 3,605 premature deaths in the United States in 2010, with
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more than 50,000 such deaths occurring between 2003 and 2016 [4]. Multiple studies iden-

tify transportation as a dominant source of PM2.5 emissions, though regional variations

exist depending on geography and vehicle mix [5]. Although BEBs still produce some

PM2.5 through brake and tire wear [6], the absence of tailpipe emissions remains a crucial

advantage. Research demonstrates that electric vehicle adoption can significantly reduce

PM2.5 and ozone (O3) levels in dense urban areas, with measurable reductions in asthma

attacks and premature deaths, particularly in historically overburdened neighborhoods

[7][8]. At the same time, scholars caution that atmospheric and meteorological variability

may influence these benefits, underscoring the need for regionally tailored electrification

strategies [9].

PM2.5 refers to microscopic airborne particles less than 2.5 µm in diameter. For con-

text, a human hair is approximately 50–70 µm wide, meaning it would take 20–30 PM2.5

particles placed side by side to span its width. Their small size allows them to bypass the

body’s natural respiratory defenses; whereas larger particles are typically trapped in the

nasal passages or upper airways, PM2.5 can penetrate deep into the alveolar regions of the

lungs and, in some cases, enter the bloodstream [10]. Epidemiological studies consistently

link exposure to elevated PM2.5 concentrations with increased incidence of cardiovascular

disease, respiratory illness, lung cancer, and premature mortality [11][12][13]. Given these

well-established health risks, reducing PM2.5 exposure remains a critical objective of both

environmental health research and transportation planning.

1.2 Historical and Technological Background of EVs
Although electric vehicles (EVs) are often associated with recent technological advances,

their history dates back to the late nineteenth and early twentieth centuries. Early EVs

competed with steam and gasoline-powered cars, particularly in urban markets where

their quiet operation and lack of exhaust made them attractive. However, by the 1920s,

improvements in internal combustion engines, the availability of cheap petroleum, and

the development of mass production techniques such as Ford’s assembly line largely dis-

placed electric models from the consumer market [14]. For much of the twentieth century,

EV research remained limited to niche applications, such as forklifts or demonstration

projects, until renewed interest emerged in the 1990s in response to tightening air quality
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standards and oil price volatility. The twenty-first century brought a decisive shift, driven

by advances in lithium-ion battery technology, the rise of companies such as Tesla, and

growing public and regulatory pressure to decarbonize transportation. Today, EVs are no

longer an experimental technology but a rapidly scaling component of the global automo-

tive industry.

Recent decades have seen enormous strides in increasing the accessibility of battery

technology and electric vehicles (EVs) [14]. Early EV development was constrained by

antiquated batteries that were large, heavy, and costly, leaving less room in the vehicle for

passengers and cargo while also reducing efficiency. This created a frustrating feedback

loop in which heavier batteries required more energy to move, in turn necessitating even

larger batteries. Limited capacity also meant that vehicles required frequent and lengthy

charging, and the high cost of large batteries posed a major hurdle to widespread adoption.

Ongoing research and development has steadily broken this cycle. Advances in chem-

istry, materials science, and manufacturing processes have produced lighter, more energy-

dense, and increasingly affordable batteries [15][16][17]. These breakthroughs are enabling

the scaling of battery-electric buses (BEBs) as a viable option for public transit agencies,

particularly in regions where reducing tailpipe emissions is a priority. Nevertheless, de-

spite decreasing unit costs, BEBs remain more expensive than conventional internal com-

bustion engine (ICE) buses and require substantial investments in charging infrastructure

and electrical system upgrades [18]. The combined costs of vehicle procurement and depot

or on-route charging facilities introduce a complex optimization challenge [19], necessitat-

ing strategies that minimize infrastructure expenditures, maximize operational efficiency,

and ensure that electrification delivers a high return on investment for transit systems.

1.3 Battery-Electric Buses: Promise and Challenges
Within the broader category of EVs, battery-electric buses (BEBs) represent a partic-

ularly promising but technically challenging application. Unlike passenger cars, transit

buses operate on long duty cycles, carry heavy passenger loads, and require consistent

reliability across daily service schedules. These operational demands result in higher en-

ergy consumption per mile, faster battery degradation, and greater sensitivity to charging

logistics compared to light-duty EVs [18]. At the same time, buses are uniquely well-suited



4

for electrification because they operate on fixed routes and schedules, return regularly

to depots, and are often owned and managed by public agencies capable of coordinat-

ing infrastructure investment. Global case studies demonstrate this potential: the city

of Shenzhen, China, achieved full electrification of its bus fleet by 2017, operating more

than 16,000 BEBs, while large-scale deployments are also underway in North America

and Europe [14]. These examples illustrate both the opportunities and the challenges of

scaling BEB adoption, highlighting the importance of optimization strategies that balance

infrastructure costs, operational feasibility, and environmental benefits.

Although BEBs now achieve greater ranges than ever before, the energy demands of

moving a heavy bus over long distances will eventually exhaust even the most efficient

battery. When this occurs, vehicles must either recharge at route terminals or return to the

depot. Transit agencies seek to minimize unscheduled returns to the garage, as doing so re-

duces vehicle availability, requires substitution with a spare bus, and ultimately increases

operating costs. To maintain service reliability, agencies therefore rely on strategically

placed rapid chargers within their service area, allowing BEBs to recharge during layovers

without leaving their routes. However, on-route chargers are themselves expensive and

often necessitate substantial upgrades to the local electrical grid. This creates a critical

planning challenge: minimizing the total number of on-route chargers while maximizing

their utility by building them at strategic locations and terminals where multiple BEBs can

share the infrastructure.

To prevent disruptions to bus schedules and ensure service reliability, BEB deployment

must be planned within the constraints of existing schedules. Transit agencies assign

vehicles to fixed blocks that specify routes, locations, and times in order to guarantee

consistent service. When a BEB schedule includes dwell time at a terminal (for example,

to provide operator breaks or to await a route’s departure) this layover can present an

opportunity to recharge and extend the vehicle’s range. Conversely, if a bus has little or

no terminal dwell time, it must have sufficient charge to reach the next available charging

point along its route. If the vehicle cannot reach that charger, it would be forced to return

to the depot, requiring substitution with a spare bus and causing service inefficiencies.

These operational realities must therefore be explicitly considered when assigning BEBs to

schedules, both to preserve service quality and to minimize costly returns to the garage.
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1.4 Atmospheric Chemistry of PM2.5 Formation
In addition to direct emissions from combustion, a substantial portion of ambient PM2.5

is formed secondarily through chemical reactions in the atmosphere. Diesel engines emit

precursor gases such as nitrogen oxides (NOx), sulfur oxides (SOx), ammonia (NH3), and

volatile organic compounds (VOCs), each of which plays a role in secondary aerosol for-

mation. For example, NOx can react with ammonia and atmospheric oxidants to form

ammonium nitrate, while SOx can be oxidized to produce ammonium sulfate. Similarly,

VOCs undergo photochemical reactions that generate secondary organic aerosols. These

reactions are influenced by temperature, solar radiation, and atmospheric mixing, mean-

ing the extent and composition of secondary PM2.5 vary by season and geography.

Because secondary particles can travel far beyond their point of origin, they contribute

to regional haze and pollution episodes that affect populations well outside the immediate

source area. This characteristic is especially relevant in Utah, where wintertime atmo-

spheric inversions trap precursor emissions in valley basins and amplify the conversion of

gaseous pollutants into fine particulates. Consequently, reducing diesel bus emissions not

only decreases direct tailpipe pollution but also curtails the formation of secondary PM2.5,

yielding broader public health benefits. Highlighting this chemical pathway underscores

why a focus on PM2.5 reduction is central to evaluating the environmental impact of bus

electrification and situates this study within the broader atmospheric context of air quality

management.

1.5 Policy Context: Regulation and State-Level Goals
The regulation of PM2.5 in the United States is overseen by the EPA through the Na-

tional Ambient Air Quality Standards (NAAQS), which establish permissible concentra-

tions of key pollutants under the Clean Air Act. For PM2.5, the current standards limit an-

nual average concentrations to 12 µg/m3 and 24-hthis average concentrations to 35 µg/m3

[10]. Regions that exceed these thresholds are designated as “nonattainment areas,” re-

quiring state and local governments to develop implementation plans to achieve com-

pliance. The Wasatch Front in Utah has repeatedly failed to meet NAAQS for PM2.5,

particularly during winter inversion events that trap pollutants near the surface. As a

result, Utah has adopted its own aggressive air quality targets, including commitments
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in the Utah Division of Air Quality’s State Implementation Plans (SIPs) to reduce PM2.5

through controls on transportation, industry, and residential sources. These plans explic-

itly recognize the transportation sector as a major source of PM2.5 precursors and call

for electrification, improved fleet efficiency, and reductions in mobile-source emissions

as part of a comprehensive strategy to bring the state into compliance. By aligning the

optimization framework developed in this study with both federal regulatory standards

and state-level goals, the analysis directly addresses pressing policy needs for Utah’s most

polluted metropolitan regions.

In Utah, where this study is based, the Division of Air Quality (DAQ) attributes 26% of

nitrogen oxide (NOx) emissions—a key precursor to PM2.5 formation—to transportation

sources [20]. Compounding this challenge is Utah’s unique topography, marked by deep,

bowl-shaped valleys that trap pollution during atmospheric inversions and create periods

of dangerously poor air quality. These geographic constraints exacerbate the public health

risks of transportation emissions and heighten the value of targeted electrification. By

evaluating BEB deployment through this localized lens, this study contributes insights that

are both environmentally and operationally relevant for regions facing similar topographic

and meteorological challenges.

Utah’s commitment to controlling PM2.5 is further formalized through its State Imple-

mentation Plans (SIPs), prepared under the authority of the Clean Air Act. The Utah Divi-

sion of Air Quality is actively developing “Serious Area” SIPs for nonattainment regions

such as Salt Lake City, Provo, and Logan to strengthen emissions control strategies across

point, area, and mobile sources [21]. These plans employ Best Available Control Measures

(BACM) to enforce stricter emissions standards and require updated inventories, model-

ing, and rule revisions [21]. Recent SIP revisions submitted by Utah and approved by EPA

include updates to the Utah Administrative Code (UAC), such as enhancements to vehicle

inspection and maintenance programs (R307-110-32, R307-110-35) and the inclusion of

mobile source control rules [22]. These state-level responsibilities and actions reinforce the

policy relevance of optimizing BEB deployment to directly contribute to Utah’s regulatory

trajectory.

At the national level, recent policy developments have accelerated momentum for bus

electrification by providing unprecedented levels of funding support. The Federal Transit
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Administration’s Low or No Emission Vehicle Program (Low-No) has distributed billions

of dollars to transit agencies to offset the higher capital costs of zero-emission buses and

associated infrastructure [23]. Similarly, the Bipartisan Infrastructure Law of 2021 [24]

and the Inflation Reduction Act of 2022 [25] established long-term funding streams, tax

credits, and grant opportunities aimed at decarbonizing the transportation sector and re-

ducing air pollution in disadvantaged communities. These federal initiatives complement

state-level policies by reducing financial barriers to electrification and creating a stable

policy environment for long-term planning. For Utah agencies operating within federally

designated nonattainment areas, such funding mechanisms are particularly relevant, as

they not only align with State Implementation Plan (SIP) requirements but also provide the

resources needed to meet them. By situating this study within both federal and state policy

contexts, the analysis highlights how optimized BEB deployment can advance regulatory

compliance while leveraging national investment in sustainable transit infrastructure.

1.6 Equity and Environmental Justice Considerations
Air pollution disproportionately affects children, the elderly, and immunocompromised

individuals due to inherent biological vulnerabilities. It also places heavier burdens on

low-income populations, who are more likely to reside in neighborhoods with elevated

ambient pollution levels and limited access to healthcare resources [26][27]. Several studies

have therefore emphasized the importance of incorporating environmental justice consid-

erations into transit electrification strategies, advocating for metrics that explicitly account

for the spatial distribution of vulnerable populations when evaluating BEB deployment.

These disparities underscore the need to incorporate equity considerations into environ-

mental policy and infrastructure planning, ensuring that public health interventions de-

liver direct benefits to those most at risk while also advancing social equity by addressing

systemic environmental injustices.

For this reason, the second objective of this study is to maximize air quality improve-

ments specifically within disadvantaged communities, as identified by the Climate and

Economic Justice Screening Tool (CEJST) [28]. By directing electrification benefits toward

populations historically overexposed to pollution and least equipped to bear its costs, the

optimization framework ensures that improvements are not distributed uniformly, but
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rather weighted toward those with the greatest need. This approach aligns with federal

and local environmental justice goals while also maximizing the impact per dollar spent,

both in terms of emissions reductions and community health outcomes.

1.7 Research Contribution
Much of the existing literature on BEBs centers on the technical and economic barriers

to widespread deployment, particularly in areas such as battery performance, operational

logistics, and lifecycle cost-effectiveness. Researchers have investigated a variety of strate-

gies to optimize charging schedules and route planning with the goal of improving grid ef-

ficiency and minimizing energy costs [29][30]. Additional studies have explored methods

to reduce battery degradation and account for performance variability due to temperature

and weather conditions [31][32]. While these factors are critical to ensuring the long-term

viability of BEBs, this research diverges by shifting the focus toward the practical feasibility

of individual BEB deployments and their real-world environmental impact. Rather than

solely concentrating on system-wide optimization, we aim to highlight how targeted BEB

investments can generate measurable improvements in air quality and public health.

While the existing literature provides a strong foundation on the technical, economic,

and environmental implications of BEB deployment, gaps remain in understanding the

localized, per-vehicle impact of BEBs on air quality, especially in disadvantaged communi-

ties. Prior studies emphasize aggregate benefits and broad strategies, but few offer tools to

quantify how individual deployments contribute to environmental justice goals in specific

geographic contexts. By building on these works, this study seeks to bridge this gap with a

model that evaluates BEB deployment at the route and vehicle level, integrates emissions

modeling, and aligns environmental gains with equity-focused decision-making. This

approach enables transit agencies to make informed, location-sensitive investments that

deliver both climate and public health benefits where they are needed most.

This study introduces the Bi-Objective Battery-Electric Bus Deployment Model (BOBEBD),

designed to optimize both infrastructure costs and environmental impact. While previous

research has primarily focused on technical aspects of BEB operations such as battery

degradation and charge scheduling, this approach integrates operational feasibility with

spatially sensitive environmental benefits. The BOBEBD model aligns with existing transit
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schedules, minimizes charger installation costs, and prioritizes pollution reduction in com-

munities facing the highest environmental burdens. By doing so, it supports both fiscally

responsible planning and equitable public health improvements in transit electrification.

1.8 Thesis Roadmap
The remainder of this thesis is organized as follows. Chapter 2 details the methodology,

beginning with the schedule block as the fundamental unit of analysis and proceeding to

define objectives, indices, parameters, and decision variables. This chapter also presents

the formulation of the bi-objective optimization model and explains the constraints and

equations that govern it.

Chapter 3 applies the model to case study conditions along Utah’s Wasatch Front.

It outlines application-specific parameters, conducts an environmental analysis of both

diesel and battery-electric bus operations, and presents the resulting outputs. This chapter

also demonstrates the implementation of the Bi-Objective Battery-Electric Bus Deployment

Model (BOBEBD), highlighting its ability to balance infrastructure costs with environmen-

tal benefits.

Chapter 4 concludes with a discussion of findings, including their implications for tran-

sit planning, environmental policy, and equity objectives. The discussion also considers the

limitations of the study and identifies opportunities for future research to improve mod-

eling approaches and strengthen the integration of air quality and public health priorities

into transit electrification strategies.



CHAPTER 2

METHODOLOGY

Unlike previous studies that primarily focus on electrifying entire transit networks or

evaluating the system-wide costs of electric vehicle deployment, this study takes a more

granular approach. It assesses the feasibility and localized air quality impacts of integrat-

ing battery-electric buses (BEBs) into an existing fleet at the level of individual vehicle

operations. To achieve this, we introduce the Bi-Objective Model for Battery-Electric Bus

Deployment (BOBEBD)—a planning framework that offers targeted, block-level guidance

to transit agencies. Rather than treating the fleet as a monolith, BOBEBD identifies specific

schedule blocks—each representing a complete daily assignment for a single bus, includ-

ing its route, stop sequence, terminal layovers, and operating times—that yield the greatest

environmental benefit when electrified, while also minimizing the associated capital and

infrastructure costs.

2.1 Analysis Unit: Schedule Block
In this framework, the schedule block serves as the fundamental unit of analysis. A

schedule block is a predefined sequence of transit operations assigned to a single ve-

hicle over the course of a day. It includes all scheduled trips, layovers, and terminal

returns for that vehicle, starting when the bus leaves the depot and ending when it re-

turns. Each block reflects a real-world pattern of vehicle usage, encompassing multiple

routes, time windows, and stop locations. Transit agencies use schedule blocks to structure

their daily operations and ensure consistent, reliable service delivery. Because each block

has known time and distance characteristics, along with designated layover periods and

terminal visits, it provides a natural framework for evaluating whether an electric bus

can feasibly complete the block without exceeding its battery range or missing charging

opportunities. By aligning BEB deployment with the characteristics of individual blocks,

BOBEBD supports fine-grained, data-driven decisions about which blocks are best suited
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for electrification given route lengths, charging windows, and geographic coverage. This

block-level granularity also enables environmental analysis at a micro-operational scale,

allowing us to estimate emissions reductions and health benefits with greater spatial pre-

cision—particularly in areas with high pollution exposure or vulnerable populations.

2.2 Objectives
BOBEBD balances two core objectives:

1. Maximizing environmental benefits, especially reductions in PM2.5 emissions in dis-

advantaged communities, by replacing diesel buses with BEBs; and

2. Minimizing deployment costs, including the capital cost of BEBs and the installation

of on-route charging infrastructure.

These objectives are evaluated under a set of operational constraints that track each

BEB’s energy consumption, state-of-charge, required charging time, terminal dwell times,

and maximum range. This ensures that every recommended assignment is not only envi-

ronmentally beneficial and cost-efficient, but also operationally feasible within the agency’s

existing service structure.

The following sections outline the full model architecture. We begin by describing

the methodology used to estimate environmental benefits, focusing on spatially-resolved

reductions in PM2.5 exposure. We then describe how deployment costs are minimized

through optimized vehicle-to-block assignments and charging infrastructure placement.

Finally, we present the full formulation of the BOBEBD optimization model, integrating

both objectives and operational constraints into a unified framework. A visual overview

of the methodology is provided in Figure 2.1.

2.3 Quantifying Environmental Impact
While both BEBs and diesel buses generate primary PM2.5 emissions through non-

exhaust sources such as brake and tire wear, diesel buses emit a broader range of pollutants

that contribute more substantially to overall air quality degradation. In particular, diesel

combustion releases precursor gases, including nitrogen oxides (NOx), sulfur oxides (SOx),

ammonia (NH3), and volatile organic compounds (VOCs). These pollutants react in the

atmosphere to form ”secondary PM2.5”. These secondary particles can travel long dis-
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Figure 2.1. BOBEBD Methodology Flowchart

tances, compound regional pollution burdens, and pose serious health risks, especially for

vulnerable populations. To accurately assess the environmental benefits of electrifying a

bus fleet, it is therefore essential to consider not only direct emissions but also the chemical

formation and dispersion of secondary PM2.5.

To conduct this analysis, we employed a combination of established environmental

modeling tools that allow for detailed, scalable, and location-sensitive emissions compar-

isons. First, we used the U.S. Environmental Protection Agency’s Motor Vehicle Emissions

Simulator (MOVES4.0) [33] to generate comprehensive emissions inventories for each bus

in the study fleet under both diesel and electric operation scenarios. These inventories

quantify the specific types and quantities of pollutants emitted under real-world condi-

tions, forming the foundation for downstream air quality modeling.

Next, we fed the MOVES outputs into the Intervention Model for Air Pollution (In-
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MAP) [34], a reduced-complexity air quality model designed to estimate annual-average

PM2.5 concentrations across large spatial domains with high population resolution. While

more complex chemical transport models such as WRF-Chem [35], GEOS-Chem [36], or

CMAQ [37] provide greater atmospheric detail, their computational demands are pro-

hibitive for studies requiring large-scale scenario testing. In contrast, InMAP offers a

practical tradeoff—retaining sufficient chemical and spatial resolution to inform policy

decisions while enabling hundreds of simulations to be conducted efficiently across an

entire bus network. This makes it well-suited for modeling the community-level impacts

of BEB deployment.

InMAP relies on three key inputs: (1) a baseline chemical transport model that charac-

terizes the atmospheric conditions in the study region, (2) the pollutant-specific emissions

inventories generated by MOVES4.0, and (3) high-resolution population data. For the

latter, we used the Climate and Economic Justice Screening Tool (CEJST) developed by

the White House Council on Environmental Quality [28, ?]. This tool provides geospatial

demographic data at the census tract level and identifies communities considered disad-

vantaged based on criteria such as socioeconomic status, health disparities, pollution bur-

den, and access to public services. By overlaying InMAP output with CEJST community

boundaries, we are able to determine not only where PM2.5 concentrations are reduced,

but also whether those reductions occur in communities most in need of environmental

relief.

The result is a comprehensive environmental impact metric that reflects both the mag-

nitude and the equity of air quality improvements. By comparing the PM2.5 concentrations

generated by diesel buses and BEBs at the schedule-block level, we can prioritize electri-

fication strategies that deliver the greatest health benefits per dollar spent—particularly

in historically marginalized or pollution-burdened areas. This approach ensures that BEB

deployment is not only environmentally effective but also aligned with environmental

justice goals, supporting cleaner air for all communities, especially those most impacted

by the legacy of transportation-related pollution.
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2.3.1 MOVES4.0

MOVES4.0 (MOtor Vehicle Emissions Simulator) is a comprehensive emissions mod-

eling platform developed by the EPA to estimate air pollutant emissions from on-road

vehicles [33]. The model is designed to simulate real-world vehicle activity by accounting

for key factors such as vehicle class, fuel type, vehicle age, driving patterns, meteorological

conditions, and geographic location. It provides detailed estimates for a wide spectrum of

pollutants, including both direct (primary) PM2.5 emissions—originating from brake wear,

tire wear, and tailpipe exhaust—and precursor emissions that contribute to the formation

of secondary PM2.5, such as nitrogen oxides (NOx), sulfur oxides (SOx), ammonia (NH3),

and volatile organic compounds (VOCs).

To generate accurate emissions inventories, MOVES requires input data on vehicle

activity and fleet characteristics. Key inputs include vehicle miles traveled (VMT), vehicle

type and classification, fuel type, and the age distribution of the fleet. The model incorpo-

rates assumptions about vehicle mass and efficiency that vary by age; for example, older

battery-electric buses (BEBs) are modeled as heavier due to the lower energy density of

early-generation batteries, resulting in greater non-tailpipe emissions from brake and tire

wear. Conversely, older diesel buses may lack advanced emissions control technologies,

contributing to higher exhaust emissions. While MOVES does not distinguish between

specific vehicle makes or models, it represents all vehicles within a given category as

statistical averages, making it suitable for system-level assessments.

MOVES outputs emissions estimates in terms of grams per mile traveled for each

pollutant. These per-mile values are then aggregated into emissions inventories, repre-

senting the total emissions over a defined operational period. For this study, we used

these inventories to generate annual emissions estimates for each vehicle schedule block.

The resulting data were spatially linked to the geographic locations of each route, enabling

high-resolution environmental impact modeling using tools such as InMAP.

2.3.2 Identifying Disadvantaged Communities with the CEJST

InMAP leverages census data to assess the effects of pollution concentrations on popu-

lations within a specific area. Since pollution impacts communities differently, identifying

those most likely to benefit from emissions reductions is critical. The CEJST is based on
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census tracts—geographic areas containing approximately 4,000 people—as defined by

the 2010 U.S. Census. It identifies communities disproportionately affected by challenges

across categories such as climate change, energy, health, housing, legacy pollution, trans-

portation, water and wastewater, and workforce development[38][28]. A community is

flagged as disadvantaged if it meets two conditions: (1) it is at or above the threshold for

one or more burdens in categories such as environmental, climate, or health, and (2) it

meets the threshold for an associated socioeconomic burden, such as low income. Burdens

include:

• Climate Change: Communities at or above the 90th percentile for factors like ex-

pected agriculture, building loss, population loss, flood risk, or wildfire risk, and at

or above the 65th percentile for low income.

• Energy: Communities at or above the 90th percentile for energy cost or air pollution

(PM2.5), and at or above the 65th percentile for low income.

• Health: Communities at or above the 90th percentile for conditions like asthma,

diabetes, heart disease, or low life expectancy, and at or above the 65th percentile

for low income.

• Housing: Communities facing historic underinvestment, high housing costs, or lack

of basic amenities, with more than 65% of the population at or above the low-income

threshold.

• Legacy Pollution: Communities with hazardous sites like abandoned mines, Super-

fund sites, or hazardous waste facilities, and at or above the 65th percentile for low

income.

• Transportation: Communities with high exposure to diesel particulate matter, trans-

portation barriers, or heavy traffic, and at or above the 65th percentile for low in-

come.

• Water and Wastewater: Communities with high levels of underground storage tanks

or wastewater discharge, and at or above the 65th percentile for low income.



16

• Workforce Development: Communities with high levels of linguistic isolation, low

median income, or high unemployment, and where over 10% of adults have less than

a high school diploma.

• Tribes: Federally Recognized Tribes and Alaska Native Villages are automatically

considered disadvantaged communities.

This tool enables the identification of census tracts within the study area that are econom-

ically disadvantaged, exposed to high pollution levels, or otherwise at elevated risk of

health issues from PM2.5. The CEJST provides a downloadable shapefile with data from

the tracts identified as disadvantaged. This shapefile containing census population data,

census tract geospatial data, and other metadata. An example of tracts being identified as

disadvantaged is found in Figure 2.2.

[H]

Figure 2.2. Wasatch Front Area CEJST Tracts
Left: Weber and Davis Counties; Middle: Salt Lake County; Right: Utah County

2.3.3 InMAP

InMAP is a reduced-complexity air modeling tool designed to analyze PM2.5 forma-

tion and dispersion from given sources and assess its impact on preventable deaths and
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hospitalizations due to PM2.5 exposure. InMAP uses CTM metadata from comprehensive

models like GEOS-Chem or WRF-Chem and generates high-resolution outputs for PM2.5

dispersion and concentration. CTM data inputs include atmospheric variables such as

temperature, existing chemical concentrations, convection height, and ozone levels, which

help InMAP determine the formation of secondary particulates and their dispersion pat-

terns.

In atmospheric chemistry analysis, the study area is divided into a grid, with each

grid cell accounting for the emissions released within the cell, the pollutants generated

or removed through chemical reactions, pollutants removed through deposition, and the

transport of pollutants in and out of the cell due to wind. InMAP uses CTM metadata to

estimate the dispersion and transformation of pollutants across the grid. It integrates data

such as atmospheric conditions (temperature, wind speed, and convection height), existing

chemical concentrations, and emissions from various sources. By simulating these factors,

InMAP calculates the concentration of pollutants like PM2.5 in each grid cell over time. The

model also accounts for secondary pollutant formation, such as particulate matter gener-

ated through atmospheric chemical reactions, and pollutant removal through processes

like dry and wet deposition. This results in high-resolution pollutant concentration grids,

which can be used to assess air quality and its associated health impacts in specific regions.

InMAP processes each schedule block’s geospatial geometry—defined by the bus’s

route on a coordinate grid—as if emissions from the assigned bus are released uniformly

along the entire route simultaneously. Rather than modeling emissions as originating from

a single point or moving source, InMAP distributes pollution continuously across the full

extent of the schedule block’s path. This approach enables the model to estimate pollutant

dispersion and its impact on air quality throughout the study area, though it may simplify

the real-world spatial distribution of emissions. Based on this input, InMAP generates an

emissions plume, representing the spread of pollutants from the modeled schedule block

and their transport through the atmosphere.

A key advantage of InMAP is its ability to start with a broad-resolution grid (e.g.,

12 km) and refine the resolution in populated areas with each iteration. This approach

allows for the generation of detailed concentration grids around CEJST-identified census

tracts while maintaining a lower resolution in less populated regions, optimizing both
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computation time and storage needs.

2.3.4 Formulating The Environmental Objective

Each schedule block is assigned a single bus. For each block, we model two scenarios:

one where the block is assigned a diesel bus and another where it is assigned a BEB.

Emissions inventory estimates for each scenario are generated using the MOVES model.

These estimates are linked to the shapefile geometry of the bus block, which represents the

route’s path and geographic coordinates.

To assess the impact of BEB deployment on air quality, InMAP is used to calculate the

PM2.5 concentrations generated by each bus block under both scenarios. InMAP receives

input files containing emissions data, spatial geometries, and atmospheric metadata. The

model processes this information and produces a spatial grid of PM2.5 concentrations.

These concentration grids are then overlaid with CEJST-identified census tracts to evaluate

the exposure of disadvantaged communities to bus-generated PM2.5.

To quantify environmental benefits, we compute the population-weighted meanPM2.5

concentration within CEJST census tracts for each bus block. The reduction in exposure

due to BEB deployment is defined as the difference in these weighted means between the

diesel and BEB scenarios. This reduction is denoted as Vi for a given bus block i, which

serves as the key input to Objective 1 in the optimization model. By prioritizing bus blocks

that yield the greatest reductions in PM2.5 exposure within disadvantaged communities,

the model ensures that BEB deployment maximizes local air quality benefits.

2.4 Bi-Objective Model Formulation
The BOBEBD is a mixed-integer non-linear optimization model designed to identify

which schedule blocks should be assigned a battery-electric bus (BEB) to maximize local air

quality benefits and determine optimal charging station construction. It accomplishes this

by optimizing two key objectives: (1) maximize the environmental benefits of replacing

diesel buses with BEBs and (2) minimize the costs associated with bus procurement and

charging infrastructure.

The model incorporates constraints that ensure operational feasibility. Each bus starts

with a full charge and maintains sufficient energy levels throughout its scheduled opera-
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tions, and adequate charging infrastructure is provided at depots and terminals. Unlike

simpler models that might assume full charging between trips, BOBEBD enables a more

realistic assessment of bus replacement feasibility by incorporating partial charging and

continuously tracking each bus’s energy levels within the existing fleet schedule. The

electric bus’s range is dynamically linked to its energy consumption and remaining battery

level, ensuring a more accurate representation of real-world operational constraints.

The model uses the following notation:

2.5 Indices:
i = index of buses (complete set I)

j = index of on-route charging stations (complete set J)

g = index of in-depot charging stations (complete set G)

k = index of bus terminal sequence

2.6 Parameters:
Vi = Primary quantified environmental goal reached by replacing bus i

CG = cost of building in-depot charger

CO
j = cost of building first on-route charging station at j

CS
j = cost of building each subsequent charging station at j

CB = cost of purchasing one BEB

Cx = project budget

nO = number of BEBs that can be charged simultaneously at each on-route charger

nG = number of BEBs that can be charged simultaneously at each in-depot charger

di,k−1,k = route distance between terminals at sequences k − 1 and k for bus i

R = driving range for a BEB with a full battery

Ti = total driving distance for bus i in one day

αm = set of bus terminal sequences at

Ei,k = energy level of bus i at sequence k

Me
x = maximum battery energy

me
n = minimum battery energy allowed

fb = BEB efficiency (KWh/mile)
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PO = overhead charger power (KW)

ti,k length of time bus i dwells at terminal k

γg = bus depot g

L = large number

2.7 Decision Variables:
ZB

i =

{
1 if bus i replaced
0 otherwise

ZO
j =

{
1 if charger built at terminal j
0 otherwise

YO
j = number of on-route chargers built at terminal j

YG
g = number of in-depot charging stations built at garage g

Xi,k =

{
1 if bus i charged at sequence k
0 otherwise

2.8 Objectives:

max ∑
i

ViZB
i (2.1)

min(∑
g

CGYG
g + ∑

j
(CO

j ZO
j + ZO

j CS
j (Y

O
j − 1)) + ∑

i
CBZB

i ) (2.2)

2.9 Constraints

Ei,0 = Me
x ∀i (2.3)

me
n ≤ Ei,k ≤ Me

x (2.4)

Xi,k ≤ ZO
j ∀i, j, k (2.5)

Xi,k ≤ ZB
i ∀i, k (2.6)

∑
i,k

Xi,k ≤ nOYO
j ∀i, j, k (2.7)

∑
i∈γg

ZB
i ≤ nGYG

g ∀g (2.8)

Ei,k ≥ ((di,k,k+1 + di,k+1,k+2) fb)− ((1 − ZB
i )L) ∀i, k (2.9)

Ei,k = Ei,k−1 + Xi,kti,kPO − ZB
i di,k−1,k fb (2.10)
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2.9.1 Model Notes

On a typical weekday, bus i will run through a sequence of terminals. Each terminal has

a unique identifier j. For example, a hypothetical bus 1 starts at terminal a on sequence 0,

travels 5 miles to terminal b on sequence 1, waits there for 10 minutes, returns to terminal

a at sequence 2, waits there for 8 minutes, then ends its day on terminal c at sequence 3.

The first charger built at a location may cost more than subsequent chargers constructed

at the same station, as it may require installing electrical grid upgrades and transformers

or other upfront investments. Subsequent chargers can then use the existing upgraded

grid infrastructure, thereby requiring only the cost of the purchase and installation of the

charger.

The energy levels and driving range of each BEB are governed by several factors,

including the initial state of charge, energy consumption during operation, and recharging

at terminals or depots. The energy level of bus i at sequence k, denoted Ei,k, is initialized

to the maximum battery energy Me
x at the start of the day. During operation, the energy

level decreases proportionally to the route distance traveled, di,k−1,k, and the BEB efficiency,

fb, which represents energy consumption in kWh per mile. The range of the bus is con-

strained by me
n, the minimum allowable energy level, and Me

x, ensuring the bus remains

operational.

Recharging occurs at designated terminals or depots, where the energy replenished is

calculated as a function of the charging time ti,k, the power of the overhead charger PO,

and the binary decision variable Xi,k, which indicates whether bus i is charged at sequence

k. The energy level at any sequence is expressed as a balance of the energy carried over

from the previous sequence, the energy consumed during transit, and the energy gained

during recharging. This dynamic ensures that the driving range and energy constraints of

BEBs are accurately modeled within the optimization framework.

2.10 Equation Explanation
Objective [1]: Maximize the impact of replacing diesel buses with BEBs.

Objective [2]: Minimize costs associated with purchasing BEBs and building on-route

and depot chargers. As increasing the budget means more buses can be replaced to meet

objective [1], objective [2] is treated as the constraint
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min(∑
g

CGYG
g + ∑

j
(CO

j ZO
j + ZO

j CS
j (Y

O
j − 1)) + ∑

i
CBZB

i ) ≤ Cx (2.11)

Transitioning this objective to a constraint turns the problem into a single-objective prob-

lem that can be solved using computer software.

Constraint [3]: Ensure each bus starts the day with a fully charged battery.

Constraint [4]: Maintain each bus’s energy level within an established minimum and

maximum range.

Constraint [5]: Ensure that a bus charges only if an on-route charger is present at the

terminal.

Constraint [6]: Limit charging to BEBs.

Constraint [7]: Ensure sufficient on-route chargers are available at the terminal for all

buses charging simultaneously.

Constraint [8]: Ensure an adequate number of depot chargers are available.

Constraint [9]: Require that a bus has enough energy to cover the entire return trip upon

departure.

Constraint [10]: Define the transition rule for the bus battery energy level between route

steps.

These objectives and constraints collectively ensure that only feasible buses are replaced

with BEBs, without disrupting existing routes and schedules.



CHAPTER 3

APPLICATION

This study applies the BOBEBD to the Utah Transit Authority (UTA) transit network as

a case study to guide the deployment of BEBs. This deployment, funded by grants from the

Federal Transit Agency, aims to integrate BEBs into UTA’s existing operations. UTA pro-

vides public transit services throughout the Wasatch Front—Utah’s primary metropolitan

area—which includes major cities such as Salt Lake City, Ogden, and Provo. The extent

of UTA’s routes is shown in Figure 3.1. The model operates within UTA’s established bus

routing and scheduling framework, using UTA bus schedule blocks—each containing in-

formation about the terminals visited, routes traveled, and terminal arrival and departure

times—as the fundamental input.

Potential on-route charging locations were manually identified using terminal coordi-

nates and street maps, focusing on terminals located at transit hubs. This ensures that only

sites where UTA owns the land and can feasibly construct the necessary on-route charging

infrastructure are considered.

Data engineering was performed using the Python packages Pandas and Geopandas,

while optimization tasks were carried out using Gurobi and its Python API, Gurobipy.

3.1 Application Parameters
The BEB considered by the UTA is the NewFlyer XE-40, which costs $970,000, has a

total battery capacity of 388 kWh, and an observed efficiency of 3 kWh per mile. The model

allows for a maximum charge of 80% capacity and a minimum charge of 20%, providing

approximately 77 miles of range on a full charge. Charging efficiency decreases as the

battery approaches full capacity; therefore, UTA guidelines recommend charging buses to

around 80% while on-route. To ensure sufficient charge for returning to the bus depot or

addressing emergencies, the battery is kept above 20% under normal operations.

The first overhead charger, along with the necessary transformers and infrastructure,
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Figure 3.1. UTA Routes and Eligible Terminals

costs $700,000, while subsequent chargers at the same terminal cost $400,000. (The reduced

cost of additional chargers encourages the model to prioritize installing multiple chargers
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at fewer locations.) Each overhead charger has an output of 300 kW, enabling a full charge

of 288 kWh from 20% to 80% capacity in approximately 45 minutes under ideal charging

conditions. Charging occurs during operator breaks, so only terminals where buses dwell

for more than 10 minutes are considered for on-route charging. In-depot chargers, which

cost $300,000, can charge up to three buses simultaneously.

The UTA bus runcut file (the spreadsheet containing the bus schedule blocking) con-

tains 345 weekday schedule blocks, 337 of which do not have a terminal-to-terminal trip

exceeding the 77-mile range of a fully charged BEB.

3.2 Environmental Analysis
As described in the methodology, we use InMAP to model the creation and dispersion

of pollution from each diesel bus and BEB, which requires obtaining emissions inventories

from MOVES, population data from the CEJST, and CTM metadata.

3.2.1 Creating Bus Emissions Inventories Using MOVES

Figure 3.2. Age Distribution of UTA Diesel Buses

We begin by gathering the inputs for MOVES to prepare vehicle emissions inventories.

We used weekday bus schedule block data to generate vehicle-miles data. Each schedule

block (see Appendix A: Table A.1) was entered as a separate ”link” in MOVES, with a
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single bus assigned to each link. In MOVES, a ”link” refers to a segment of roadway or a

specific route that a vehicle travels, and it is used as the basic unit for calculating emissions.

The length of each link was specified based on the schedule block’s daily mileage (see

Appendix A: Table A.2). Diesel bus ages were extracted from the UTA change day roster

report (see Figure 3.2). MOVES was then run twice: once with all vehicles designated

as diesel buses and again with all vehicles designated as BEBs. This provided emissions

estimates in kg/mile, which were subsequently converted to kg/year for use as inputs in

InMAP (see Appendix A: Table A.3 for a sample of the diesel bus inventory and Appendix

A: Table A.4 for a sample of the BEB inventory). Note that the BEBs still generate primary

PM2.5 emissions due to brake and tire wear but do not emit any precursor PM2.5 gases

on-route. Each schedule block’s emissions inventory was stored in a separate shapefile,

along with the geospatial data for the block’s serviced routes. MOVES was operated via

its desktop application with a user interface running on a Java Virtual Machine. HeidiSQL

was used to convert MOVES output SQL databases into CSV files for streamlined process-

ing.

3.2.2 CEJST Census Data

The CEJST provides a shapefile containing data for each 2010 census tract in the United

States that is identified as disadvantaged, which can be downloaded from the CEJST web-

site [CITE]. This shapefile contains comprehensive population data including attributes

such as demographics, chronic disease rates, economic conditions, access to healthcare,

whether the tract has an unusually high exposure to pollutants, and so forth. For this study,

we focus exclusively on demographic and population data, as our primary objective is to

analyze pollutant concentrations generated by buses within the study area. We selected the

60 disadvantaged census tracts within Davis, Salt Lake, Utah, and Weber counties—the

Wasatch Front counties serviced by the UTA—and retained only the population, demo-

graphic, and geospatial data for InMAP.

3.2.3 CTM Metadata

CTM data was obtained from a 12-km resolution global atmospheric chemistry simula-

tion conducted on 2005 conditions using WRF-Chem, the Weather Research and Forecast-

ing (WRF) model coupled with Chemistry[39]. This dataset was provided by the creators
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of InMAP and serves as the foundation for modeling atmospheric pollutant transport and

transformation. These data are included in the InMAP downloadable in a NCF binary file.

3.2.4 Executing InMAP

Our analysis involved 337 unique schedule blocks, requiring a total of 674 individ-

ual InMAP simulations. To expedite the processing of emissions concentration data, the

computation was moved to the university’s high-performance computing (HPC) cluster,

enabling parallel execution of multiple simulations, which significantly reduced overall

processing time.

For each fuel scenario and schedule block combination, a TOML configuration file was

generated, specifying file paths for the emissions inventory, census tract shapefiles, and the

CTM metadata NCF binary file. It also included metadata to define the relevant columns

for emissions and population data, along with the geographic extent of the study area.

The 674 simulations were parallelized using two SLURM scripts—one for the 337 diesel

bus simulations and another for the 337 BEB simulations. Each simulation was assigned

to a separate task, with tasks distributed across multiple nodes in the HPC cluster. This

approach allows multiple simulations to run simultaneously, dramatically reducing the

overall computation time.

3.2.5 Understanding Impact of Diesel Buses

To better understand the emissions impact of the entire network, an additional simu-

lation was conducted, incorporating all schedule blocks simultaneously. The visualization

of the pollution dispersion can be seen in figures 3.3, 3.4, and 3.5.

As seen in Figure 3.6, within CEJST-identified census tracts the mean PM2.5 concentra-

tion when all blocks are assigned diesel buses is 0.037, with a median of 0.028 (or -1.739

and -1.547 on a log scale, respectively). When all blocks are assigned BEBs, the mean and

median concentrations decrease to 0.012 and 0.009 (or -2.277 and -2.028 on a log scale,

respectively). These results indicate a measurable reduction in pollution exposure within

populated areas when transitioning from diesel to electric buses.
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Figure 3.3. Pollution from all blocks assigned diesel buses

Figure 3.4. Pollution dispersion with bus routes

Figure 3.5. pollution dispersion with CEJST tracts
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Figure 3.6. Emissions Distribution Across CEJST Tracts
Grid Cells Have ≈71m X 217m dimensions

3.3 Environmental Analysis Output
InMAP generates a grid across the study area, with higher-resolution grids overlaid

on CEJST-identified census tracts, as shown in Figure 3.7. Areas outside these tracts have

grid dimensions of approximately 567 meters by 1734 meters, while areas within them

have finer grid dimensions of approximately 71 meters by 217 meters. Each grid cell in

the InMAP output shapefile contains the average annual PM2.5 concentrations attributable

to the analyzed source. To quantify the environmental impact of each schedule block,

we compute an environmental objective score by calculating the difference in population-

weighted average PM2.5 concentrations for the block between fuel types. Since each block,

whether assigned a diesel bus or BEB, generates a particulate matter plume with relatively

low PM2.5 concentrations when analyzed individually, applying population-weighted av-

eraging helps distribute emissions more effectively and highlights areas that benefit most

from reduced pollution.

To ensure that the observed differences in PM2.5 concentrations between fuel types are

statistically significant, we conducted a series of statistical tests (Table 3.1). The paired

t-test yielded a highly significant result (t = 18.653, p < 0.00001), indicating that the

difference in pollution exposure between diesel and BEB scenarios is unlikely to be due
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Figure 3.7. InMAP grid cells have higher resolution around Census tracts

to random variation. Cohen’s d (d = 1.140) suggests a large effect size, reinforcing the

practical significance of this difference. Additionally, the Wilcoxon Signed-Rank Test (W =

0.000, p < 0.00001), a non-parametric alternative to the t-test, confirms this result without

assuming normality. The Kolmogorov-Smirnov (KS) test (KS = 0.540, p < 0.00001) further

highlights significant differences in the distributions of PM2.5 concentrations between the

two fuel types.

These findings validate the environmental objective score as a meaningful metric for

comparing schedule blocks. While the absolute differences in pollution concentrations

may appear small, their statistical significance suggests that the shift from diesel to BEB

has a measurable impact on air quality.
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Test Statistic p-value
Paired t-test t = 18.653 p < 0.00001
Cohen’s d (Effect Size) d = 1.140 -
95% CI for Mean Difference (9.40 × 10−5, 1.16 × 10−4) -
Wilcoxon Signed-Rank Test W = 0.000 p < 0.00001
Kolmogorov-Smirnov (KS) Test KS = 0.540 p < 0.00001

Table 3.1. Statistical Analysis Results

Figure 3.8. Block 3012 and its emissions plumesLeft: Diesel Bus, Right: Electric Bus

Figure 3.9. Block 4507 and its emissions plumesLeft: Diesel Bus, Right: Electric Bus

3.4 Implementing BOBEBD
3.4.1 Varying Budget Constraint

Different budget levels yield varying results from the model. After accounting for

range and charging constraints, 244 weekday schedule blocks are identified as eligible for
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Figure 3.10. Block 1025 and its emissions plumesLeft: Diesel Bus, Right: Electric Bus

Figure 3.11. Block 2020 and its emissions plumes: South
Left: Diesel Bus, Right: Electric Bus

BEB assignment. This corresponds to a maximum budget of approximately $283 million,

beyond which no additional buses can be feasibly electrified. At this threshold, further

increasing the budget has no impact on the model outcomes. Table B.1 details the location

and count of on-route chargers by budget level, and Table B.2 specifies which bus routes

receive BEBs at each budget level.

3.4.2 Model Instability and Flexibility

The BOBEBD problem is a mixed-integer, non-linear, and non-trivial optimization prob-

lem, inherently exhibiting some degree of instability. Unlike linear or convex problems that

guarantee an optimal solution, the outcomes of BOBEBD may vary slightly depending
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Figure 3.12. Block 2020 and its emissions plume: Central
Left: Diesel Bus, Right: Electric Bus

Random Number Seed Max Budget Number of BEBs Replaced Number of Chargers Required
0 282.8M 244 36
42 281.8M 244 34
43 282.2M 244 35
100 282.2M 244 35
999 281.8M 244 34

Table 3.2. Optimization Results From Varying Starting Conditions

on the initial conditions. As shown in Table 3.2, the maximum number of feasible buses

remains constant, whereas the number of chargers fluctuates slightly. Figures 3.14 and 3.15

illustrate that charging times vary depending on the chosen random seed. This suggests

that the model allows for flexibility in assigning charging schedules. For instance, if a bus

arrives at a terminal and all chargers are occupied, the model may opt to wait rather than

construct an additional charger. Ultimately, the most critical insights from the model are

which bus blocks are electrified and which terminals require charging infrastructure.
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Figure 3.13. PM2.5 Concentrations Across All Analyzed Bus Schedule Blocks
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Figure 3.14. Bus Energy Levels for Bus 2020 and Random Seed 0

Figure 3.15. Bus Energy Levels for Bus 2020 and Random Seed 42



CHAPTER 4

DISCUSSION

This study provides valuable insights into the environmental, economic, and oper-

ational implications of transitioning from diesel to battery-electric buses (BEBs) within

Utah’s Wasatch Front region. By combining emissions modeling, air quality simulation,

and spatially explicit optimization, the analysis evaluates both the feasibility and real-

world environmental benefits of targeted BEB deployment at a granular, schedule-block

scale.

The environmental assessment demonstrates measurable reductions in PM2.5 concen-

trations when diesel buses are replaced with BEBs, particularly within disadvantaged

census tracts identified using the Climate and Economic Justice Screening Tool (CEJST).

Although these reductions are modest in absolute magnitude, they are statistically signifi-

cant and spatially concentrated in communities with high baseline exposure. This nuance

is critical: it underscores that while BEB deployment can meaningfully reduce localized

exposure to harmful pollutants, electrification alone cannot dramatically improve regional

air quality. Instead, it should be viewed as one component of a broader air quality strategy

encompassing industrial emissions, energy production, and urban land-use patterns. As

Panta et al.[40] observe, at least 30% of upstream electricity must originate from renew-

able sources for BEBs to achieve full life-cycle greenhouse gas (GHG) benefits relative to

internal combustion engine (ICE) buses. Future work could extend this framework by

quantifying upstream PM2.5 emissions from electricity generation and integrating those

estimates into BEB life-cycle impact assessments.

The budget-constrained optimization results reveal a clear pattern of diminishing marginal

returns. Initial investments yield substantial progress in fleet electrification—up to 283

diesel schedule blocks replaced under modeled budget scenarios—yet additional spend-

ing beyond this threshold produces limited incremental gains. This plateau effect is largely
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driven by operational constraints such as battery range limits and the availability of charg-

ing infrastructure at key terminals. These findings emphasize the importance of strategic

prioritization: rather than pursuing uniform fleet-wide electrification, agencies should

focus resources on routes that deliver the greatest environmental benefit per dollar, espe-

cially those serving high-pollution or vulnerable neighborhoods. This targeted approach

aligns both with cost-effectiveness principles and with environmental justice mandates

embedded in state and federal policy.

The spatial resolution of modeled emissions warrants further reflection. While In-

MAP provides an efficient and policy-relevant means of estimating regional PM2.5 im-

pacts, its assumption of uniform emissions along each bus block simplifies real-world

conditions. In practice, traffic congestion, stop frequency, roadway geometry, and me-

teorological factors strongly influence pollutant concentration and dispersion patterns.

Incorporating higher-resolution or dynamic emissions models—potentially supported by

mobile air-quality monitoring or vehicle telemetry—could refine these spatial and tempo-

ral estimates. Future research might also integrate atmospheric inversion data specific to

the Wasatch Front, where wintertime trapping of pollutants remains a defining feature of

local air quality dynamics.

The broader context of cumulative pollution exposure is equally important. Diesel

transit emissions represent only one element of the region’s complex air quality chal-

lenge. Significant additional improvements will depend on complementary interventions

addressing industrial and residential emissions, fuel production, and urban transporta-

tion demand. Integrating BEB deployment with policies such as congestion pricing, low-

emission zones, and transit-oriented development could create synergistic effects that am-

plify both environmental and public health outcomes. A systems-level approach—linking

electrification to land use, energy generation, and health planning—offers the clearest path

toward sustained air quality gains.

Operational feasibility remains central to achieving these goals. The BOBEBD frame-

work explicitly integrates real-world operational constraints—such as route length, lay-

over duration, and charger access—that are often overlooked in theoretical models. These

constraints help explain why some schedule blocks remain infeasible for electrification

even under generous funding scenarios. Extending this model to include weekend service,
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extreme-weather conditions, and alternative battery chemistries would further illuminate

the operational frontiers of BEB deployment. Additionally, incorporating stochastic factors

such as equipment downtime or power outages could improve resilience analysis and

contingency planning for electrified fleets.

Future model iterations could also integrate time-of-day or real-time energy pricing,

optimizing where and how much BEBs charge. Such refinements would enable agencies

to minimize operational costs, reduce strain on the electrical grid, and align with dynamic-

pricing frameworks proposed by Zhang et al.[41], who recommend temporal optimization

as a critical element of large-scale electric fleet management.

In sum, this study contributes to the growing body of evidence supporting the envi-

ronmental and equity benefits of transit electrification. While the absolute reductions in

PM2.5 concentrations are relatively modest, they represent a meaningful and achievable

step toward cleaner air and more sustainable public transit. Crucially, these benefits are

not evenly distributed: prioritizing BEB deployment in disadvantaged communities yields

disproportionate health and equity gains, translating limited resources into maximum

public value. Maximizing the long-term impact of BEB adoption will therefore require

sustained investment, adaptive operational strategies, and integration with broader en-

vironmental and energy policy frameworks. Through such coordinated efforts, transit

electrification can serve not merely as a technological upgrade but as a cornerstone of a

healthier, more equitable, and resilient urban future.
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MODEL INPUT EXCERPTS
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block LineAbbr from stop FromTime to stop ToTime
1000 35 35S84WWB 3:54:00 MILLCREK 4:45:00
1000 33 MILLCREK 4:49:00 39-SWASB 5:11:00
1000 33 39-SWASB 5:38:00 MILLCREK 6:00:00
1000 35 MILLCREK 6:04:00 35S84WWB 6:45:00
1000 35 35S84WWB 7:11:00 MILLCREK 8:15:00
1000 33 MILLCREK 8:19:00 39-SWASB 8:43:00
1000 33 39-SWASB 9:07:00 MILLCREK 9:30:00
1000 35 MILLCREK 9:34:00 35S84WWB 10:18:00
1000 35 35S84WWB 10:45:00 MILLCREK 11:45:00
1000 33 MILLCREK 11:49:00 39-SWASB 12:14:00
1000 33 39-SWASB 12:36:00 MILLCREK 13:00:00

Table A.1. Bus block schedule excerpt

linkID countyID roadTypeID linkLength linkVolume linkAvgSpeed linkDescription linkAvgGrade
9999 49035 1 0.000 337 0.00 off-network 0
1000 49035 5 232.22 1 19.51 Bus block 0
1001 49035 5 234.71 1 15.16 Bus block 0
1002 49035 5 239.47 1 19.34 Bus block 0
1003 49035 5 239.83 1 15.59 Bus block 0
1004 49035 5 239.83 1 15.59 Bus block 0

Table A.2. Adapted road link data excerpt

block NOx VOC SOx NH3 PM2.5
1000 7978.164 192.689 9.003 0.001406 96.295
1001 7542.531 183.684 7.876 0.001051 94.971
1002 8205.655 198.244 9.233 0.001391 99.246
1003 7759.754 188.809 8.171 0.001084 97.174
1004 7759.754 188.809 8.171 0.001084 97.174

Table A.3. Annual diesel emissions data by bus schedule block, kg
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block NOx VOC SOx NH3 PM2.5
1000 0 0 0 0 48.825
1001 0 0 0 0 51.580
1002 0 0 0 0 50.483
1003 0 0 0 0 52.375
1004 0 0 0 0 52.375

Table A.4. Annual BEB emissions data by bus schedule block, kg



APPENDIX B

RESULTS BY FUNDING LEVEL

Terminal Name
Budget Levels

$50M $100M $150M $200M $250M $275M $283M
Central Pointe - - - 1 1 1 1
Clearfield FrontRunner - - - 1 1 1 1
Farmington Station - - - 1 1 1 1
Fashion Place Trax - - - 1 1 1 1
Jordan Valley Trax - - - - 1 1 1
Lehi FrontRunner - - 1 1 1 1 1
Layton Station - 1 1 1 1 1 1
Midvale Central - - - 1 1 1 1
Midvale Ft. Union - - - - 1 1 1
Murray Central 1 1 2 1 1 1 2
Murray North - - 1 1 1 1 1
N. Temple Station - - - 1 1 1 1
Ogden Central 1 2 2 2 2 2 3
Orange Street Transit - 2 3 3 3 3 3
Orem FrontRunner - 3 3 3 3 3 4
Provo FrontRunner - 2 2 2 2 3 2
SLC Station 1 1 1 1 2 2 3
South Jordan FrontRunner - 1 1 1 1 1 1
Wasatch Blvd P+R 1 1 2 2 2 2 2
Vineyard FrontRunner - 1 1 1 1 1 1
West Jordan City Center 3 3 3 3 3 3 3
West Valley Central Trax 2 2 2 2 2 2 2
Total Chargers Constructed 9 18 25 28 31 33 37
Electrified Blocks 41 83 126 171 216 238 244

Table B.1. Terminal Charger Counts by Budget Level
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Budget Number of Elec-
trified Schedule
Blocks

Electrified Lines Electrified
Lines
Count

$50M 41 39, 45, 47, 54, 217, 227, 240,
248, 509, 603X

10

$100M 83 1, 4, 9, 33, 35, 39, 45, 47, 54,
200, 201, 205, 217, 218, 227,
240, 248, 509, 513, 551, 601,
603X, 604, 613, 830X, 831

26

$150M 126 1, 2, 4, 9, 33, 35, 39, 45, 47,
54, 200, 201, 205, 217, 218, 227,
240, 248, 470, 509, 513, 551,
601, 603X, 604, 613, 626, 627,
628, 640, 830X, 831, 833, 834,
850, 871

36

$200M 171 1, 2, 4, 9, 17, 21, 33, 35, 39, 45,
47, 54, 200, 201, 205, 209, 217,
218, 227, 240, 248, 470, 473,
509, 513, 551, 601, 603X, 604,
613, 626, 627, 628, 640, 805,
822, 830X, 831, 833, 834, 850,
871

40

$250M 216 1, 2, 4, 9, 17, 21, 33, 35, 39, 45,
47, 54, 200, 201, 205, 209, 213,
217, 218, 220, 227, 240, 248,
451, 470, 473, 509, 513, 551,
601, 603X, 604, 606, 613, 626,
627, 628, 630, 640, 805, 822,
830X, 831, 833, 834, 850, 871

46

$275M / $283M 238 / 244 1, 2, 4, 9, 17, 21, 33, 35, 39, 45,
47, 54, 72, 200, 201, 205, 209,
213, 217, 218, 220, 223, 227,
240, 248, 451, 470, 473, 509,
513, 551, 601, 603X, 604, 606,
613, 626, 627, 628, 630, 640,
667, 805, 806, 807, 822, 830X,
831, 833, 834, 850, 862, 871

52

Table B.2. Electrified Lines and BEB Counts by Budget Level
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Figure B.1. $50M Budget, 9 Chargers at 6 Terminals
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Figure B.2. $100M Budget, 18 Chargers at 10 Terminals
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Figure B.3. $150M Budget, 25 Chargers at 14 Terminals
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Figure B.4. $200M Budget, 28 Chargers at 17 Terminals
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Figure B.5. $250M Budget, 31 Chargers at 19 Terminals



49

Figure B.6. $275M Budget, 33 Chargers at 21 Terminals
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Figure B.7. $283M Budget, 37 Chargers at 22 Terminals
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