
Modeling Traffic with Metering Control

Broderik Craig, Sheridan Harding, Joe Housley,
Adam Skousen, Jonah Sundrud

April 19, 2023

Abstract

In our project, we model the flow of traffic through a mile long strip
of highway. We assume that we have control over the meter that lets
new cars onto the highway and we seek to find the optimal way to let
cars in to not cause traffic jams but still let on enough people to so
that everyone gets where they need to go in a timely manner.

1 Background

This is an important problem in the planning of highways as the city needs
to decide when the meter will be on and when it will be off. Normally during
the hours where there is little traffic, an on-ramp has no meter and during
rush hour it is metered. This allows the cars that are on the road to travel at
full speed without the road becoming congested. If too many cars are sent in
at once, the road is congested and it takes longer for everyone to get where
they need to go. If too few cars are sent, it also takes longer for people to get
where they need to go because they are spending unnecessary time waiting
at the meter when they could be on the road already. Thus, this problem is
important because it seeks to find that balance- send enough to keep things
moving but not too much so that there is congestion. According to INRIX,
the average person in Chicago spends 155 hours per year in traffic [1]. If we
could find ways to minimize the time we spend in transit, the world would
be far better off.

1

2 Mathematical Representation

2.1 First Attempt

Our first attempt at a cost function took into account bikes, buses, and cars,
and is given by

J [u] =

∫ tf

0
αA(t)2 + βB(t)2 + γC(t)2 dt (1)

where

A(t) is number of cars (automobiles) on the road at time t

B(t) is number of buses on the road at time t

C(t) is number of cyclists on the road at time t

α is density of car passengers

β is density of bike passengers

γ is density of bus passengers

This measures how much space is being used by the vehicle and how many
passengers the vehicle uses. We are attempting to minimize the number of
vehicles while maximizing the number of passengers.

The evolution equation modeling the change in the number of cars within
the stretch of highway we are modeling is

x′ = E(t)− ŝ⊙ [
F − x

F
] + u (2)

where

x = [A,B,C]

E(t) is existing highway traffic

ŝ is the functional speed limit of each vehicle

F is the maximum capacity of the highway

u is the control, which is how many of each vehicle we let on the highway

2

Finally the demand for the on-ramp is modeled by

D′ = −uk̇ + f(t) (3)

where

u is our control

k is the number of passengers each vehicle can take

f(t) is the number of passengers waiting at time t.

We choose initial and endpoint conditions for the state and demand as fol-
lows:

A(0) = 100

B(0) = 5

C(0) = 20

D(0) = [1000, 3000, 100]

D(tf) = [0, 0, 0]

2.2 PDE Adaptation

As a second attempt, we decided to only model cars entering the highway
and instead to find out how to maximize traffic flow while taking into ac-
count how too much traffic slows down traffic. Our control here is only how
many cars we let on at each time step.
We adapted a traffic flow PDE found in the volume 4 textbook to our sit-
uation. The original PDE is ut + ux(1− u2)t− 2u2ux = t. We modify this
by assuming ux to be 0 for all x, meaning that we don’t care about the
density at each point on the highway, just the density on the entire stretch
of highway. This yields the ODE ut = r where u is the density and r is the
rate of entry onto the highway. Our cost functional for this version of the
problem is:

J [r] =

∫ tf

0
r2 + (1− u)2dt (4)

subject to u′(t) = r(t) (5)

3

2.3 Model including waiting ramp

For our final and most interesting attempt, we left the PDE adaptation
behind and instead increased our state space to include another state that
is the number of cars waiting on the ramp, ready to be let onto the highway.
The optimization problem here is as follows:

J [r] =

∫ tf

0
x2 − u2/8 + y2dt (6)

subject to x′ = (|x− 100|+ 100)/25 + u+ E(t) (7)

y′ = f(t)− u (8)

x(0) = 20 (9)

y(0) = 0 (10)

where

x is the number of cars on the road

u is the number of cars let on from the ramp

y is the number of cars waiting on the ramp

E(t) is existing highway traffic, taken to be a constant 10

f(t) is the number of cars arriving at the ramp, taken to be a constant 100

The (|x − 100| + 100)/25 represents the flow of traffic and how if there are
more cars on the road then less will be leaving proportionally. The u adds to
x as does the E(t) because those are the cars flowing in. The y is affect by
cars flowing in f(t) and cars let off onto the highway u. We seek to minimize
the number of cars on the road x and cars on the ramp y while maximizing
how many cars we let onto the highway u.

4

3 Solution

3.1 First Attempt

Here we will derive the co-state and optimal control using Pontraygin’s max-
imum principle.

H = p·f−L = p1(e1−s1 ·A+u1)+p2(e2−s2 ·B+u2)+p3(e3−s3 ·C+u3)+

p4(f1 − u1k1) + p5(f2 − u2k2) + p6(f3 − u3k3)+

αA2 + βB2 + γC2 +
α

k1
D2

1 +
β

k2
D2

2 +
γ

k3
D2

3 (11)

Then Pontraygin’s Maximum Principle states that the optimal control max-
imizes the Hamiltonian.

DH

Du1
= p1 − p4k1

DH

Du2
= p2 − p5k2

DH

Du3
= p3 − p6k3

Which yields the following optimal controls. Note that the solution is a
bang-bang.

ũ1(t) =

{
Umax if p1 > p4k1

Umin if p1 < p4k1

ũ2(t) =

{
Umax if p2 > p5k2

Umin if p2 < p5k2

ũ3(t) =

{
Umax if p3 > p6k3

Umin if p3 < p6k3

5

We also find the co-state equations from the Hamiltonian

p′1 =
−p1s1
F

− α

p′2 =
−p2s2
F

− β

p′3 =
−p3s4
F

− γ

p′4 =
α

k1
− p4

p′5 =
β

k2
− p5

p′6 =
γ

k3
− p6

With the following endpoint conditions

p1(tf) = 0

p2(tf) = 0

p3(tf) = 0

3.2 PDE Adaptation

Here we use a simplified version of the PDE discussed in Section 2.2. Notice
that here, we use different notation. For example, u is our state density
function and is one-dimensional. r represents the rate at which cars enter
the highway and is our control. The problem is as follows:

J [r] =

∫ tf

0
r2 − (1− u)2dt

subject to u′ = r

This has a Hamiltonian

H = pr + r2 + (1− u)2, (12)

as we are trying to maximize J [r]. We solve the problem as follows:

p′ = −DH

Du
= 2(1− u) = 2− 2u

DH

Dr
= 0 = p+ 2r

p = −2r

u′ = −1

2
p

6

With Wolfram Alpha, we found the solution

u =
c1
2
(et + e−t)− c2

4
(et − e−t) + 1 (13)

p = c1(e
t − e−t) +

c2
2
(et + e−t) (14)

Using u(0) = .8 and p(0) = 0, we see that c1 = .8 and c2 = 0, so

u = .4(et + e−t) + 1

p = −.8(et − e−t)

r = .4(et − e−t).

3.3 Model including waiting ramp

We begin by finding the Hamiltonian

H = p1x
′ + p2y

′ − y2 − x2 + u2/8, (15)

so by Pontraygin’s maximum principle:

p′1 = −DH

Dx
= p1(x− 100)/|x− 100|/25 + 2x (16)

p1(tf) = 0 (17)

p′2 = −DH

Dx
= 2y (18)

p2(tf) = 0 (19)

DH

Du
= 0 = p1 − p2 + u/4 (20)

u = 4(p2 − p1) (21)

(22)

4 Interpretation

4.1 First Attempt

The solution to the first attempt was sensitive to the initial conditions, but
follows a consistent form. The first graph shows the number of vehicles
on the highway at each point in time, the second graph shows the number
of vehicles waiting on the on-ramp to enter the highway, and the third

7

graph shows the control sequence of the meter. In this we assumed that the
maximum control was 70 vehicles for each type of vehicle.

Figure 1: Vehicles on the highway over time

Figure 2: Highway demand over time

8

Figure 3: Control of the metered on-ramp over time

For the first iteration, we found a solution that yielded trivial but plau-
sible results. The solution was to allow as many vehicles onto the highway
at all times. The reason that the graph of the control goes to 0 at the end of
the time interval is because in the derivation of the co-state equations found
from Pontraygin’s Maximum Principle, we introduced an endpoint condi-
tion on the co-state which also forces the control to 0 at the endpoint. We
were dissatisfied with this solution because it does not actually implement
the control we added. We attempted to modify the cost function to penalize
traffic density but were unsuccessful in producing a viable model.

4.2 PDE Adaptation

The solution to the iteration that was adapted from the traffic flow PDE is
shown in the following graph.

9

Figure 4: Solution of the cost functional J [r] =
∫ tf
0

r2 + (1 − u)2dt subject to the
state equation ut = r.

In this iteration, we reduced the complexity to only consider cars. The
solution of this simplified ODE looked more reasonable in its shape because
traffic declines over time while the number of cars we allow onto the highway
increases. One major concern is that the actual values of the control were
negative, which doesn’t make sense in the context of our project.

4.3 Model including waiting ramp

When we plugged this setup into solve bvp using E(t) = 10 and f(t) = 100
with initial conditions x(0) = 20 and y(0) = 0 we got figure 5. We find this
to be the most interesting of the solutions because it shows the oscillating
nature of the problem. One notes that the solution is nearly bang-bang in
that is goes through periods of turning the meter completely off and then
allows many cars in at once. It seems to be doing this according to a rule of
letting the highway run for a while with whoever is on there, letting them
keep a good speed. Then when the ramp gets too full compared to how
empty the highway is, another batch of waiting cars is allowed on. This
decreases the number of cars on the ramp and increases the number on
the highway and the cycle repeats. During the first section the number of
cars on the highway dips into the negative, which is obviously nonsensical.
However, this behavior only happens on the first bit and the solution settles

10

into a steadily increasing oscillatory pattern, which leads us to believe it is
still valid in the long term. If more time were available we could incorporate
inequality constraints to bound the solution and likely get improved results.

Figure 5: Solution of the cost functional J [r] =
∫ tf
0

x2−u2/8+y2dt subject to the
state equations x′ = (|x− 100|+ 100)/25 + u+ E(t) and y′ = f(t)− u.

11

References

[1] INRIX. Inrix 2022 traffic scorecard, 2022.

12

We give Dr. Barker, Dr. Whitehead, and other instructors at BYU
teaching ACME classes permission to share our project as an example of a
good (or bad) project in future classes they teach.

5 Appendix 1: Code

13

4/18/23, 6:40 PM traffic_control

file:///Users/jjhousley/Downloads/traffic_control.html 1/13

 number of automobiles

 number of buses

 number of cyclists

 passengers / car length

 passengers / bus length

 passengers / bicycle length

 demand for cars to get on the highway

 demand for buses to get on the highway

 demand for bicycles to get on the highway

 speed of cars

 speed of buses

 speed of bicycles

maximize

subject to

where

and

and

and

and

In [1]: import numpy as np
import matplotlib.pyplot as plt
from scipy.integrate import solve_bvp

a =

b =

c =

α =

β =

γ =

d1 =

d2 =

d3 =

s1 =

s2 =

s3 =

J[u] = ∫ tf
0

(δ ⋅ x − u ⋅ k + f(t)) dt

x′ = (1 − s)x + (d − u)

x = (a, b, c)T

δ = (α,β, γ)T

u = (u1,u2,u3)T

s = (s1, s2, s3)T

d = (d1, d2, d3)T

In [39]: # x' = c - s*(F-x)/F + u
a' = c1 - s1*(F-a)/F + u1
b' = c2 - s2*(F-b)/F + u2
c' = c3 - s3*(F-c)/F + u3
D' = -u*k + f(t)
d1' = -u1*k1 + f1(t)
d2' = -u2*k2 + f2(t)
d3' = -u3*k3 + f3(t)
p' = s*p - delta
p1' = (s1)*p1 - alpha
p2' = (s2)*p2 - beta
p3' = (s3)*p3 - gamma
k1, k2, k3 = 1.5, 30, 1.
s1, s2, s3 = 1., .75, .25
c1, c2, c3 = 15., 1/3, 3.
F = 10_000
f = lambda t: 1000
alpha, beta, gamma = .1, 30./39, 1./6
U_max, U_min = 1, 0
def u_hat(p):
 u = np.zeros_like(p)
 for i in range(p.size):
 if p[i] > 0:
 u[i] = U_max
 elif p[i] < 0:

4/18/23, 6:40 PM traffic_control

file:///Users/jjhousley/Downloads/traffic_control.html 2/13

 u[i] = U_min
 return u
def ode_fun(t,y):
 a,b,c,p1,p2,p3 = y
 return np.vstack((c1 - s1*(F-a)/F + u_hat(p1),
 c2 - s2*(F-b)/F + u_hat(p2),
 c3 - s3*(F-c)/F + u_hat(p3),
 s1*p1 - alpha,
 s2*p2 - beta,
 s3*p3 - gamma))

def bc(ya,yb):
 return np.array([ya[0], yb[0]-10, ya[1], yb[1]-5, ya[2], yb[2]-20])

initial guess
t = np.linspace(0, 4, 100)
y = np.zeros((6, t.size))
sol = solve_bvp(ode_fun, bc, t, y)

plot solution
t_plot = np.linspace(0, 4, 1000)
y_plot = sol.sol(t_plot)
plt.plot(t_plot, y_plot[0], label='a')
plt.plot(t_plot, y_plot[1], label='b')
plt.plot(t_plot, y_plot[2], label='c')
plt.legend()
plt.show()

plot control
u1 = u_hat(y_plot[3])
u2 = u_hat(y_plot[4])
u3 = u_hat(y_plot[5])
plt.plot(t_plot, u1, label='u1')
plt.plot(t_plot, u2, label='u2')
plt.plot(t_plot, u3, label='u3')
plt.legend()
plt.show()

4/18/23, 6:40 PM traffic_control

file:///Users/jjhousley/Downloads/traffic_control.html 3/13

In [7]: # x' = c - s*(F-x)/F + u
a' = c1 - s1*(F-a)/F + u1
b' = c2 - s2*(F-b)/F + u2
c' = c3 - s3*(F-c)/F + u3
y' = y - u*k + f(t)
y1' = y1 - u1*k1 + f1(t)
y2' = y2 - u2*k2 + f2(t)

4/18/23, 6:40 PM traffic_control

file:///Users/jjhousley/Downloads/traffic_control.html 4/13

y3' = y3 - u3*k3 + f3(t)
p' = s*p - delta
p1' = -(s1)*p1/F - alpha
p2' = -(s2)*p2/F - beta
p3' = -(s3)*p3/F - gamma
p4' = alpha/k1 - p4
p5' = beta/k2 - p5
p6' = gamma/k3 - p6
k1, k2, k3 = 1.5, 20, 1.
s1, s2, s3 = 1., .75, .25
c1, c2, c3 = 15., 1/3, 3.
F = 10000
f1 = lambda t: 100*np.cos(np.pi*t/12) + 100
f2 = lambda t: 100*np.cos(np.pi*t/12) + 100
f3 = lambda t: 100*np.cos(np.pi*t/12) + 100

alpha, beta, gamma = .1, 30./39, 1./6
U_max, U_min = 75, 0
def u1_hat(p1,p4):
 u1 = np.zeros_like(p1)
 for i in range(p1.size):
 if p1[i] > p4[i] * k1:
 u1[i] = U_max
 elif p1[i] < p4[i] * k1:
 u1[i] = U_min
 return u1
def u2_hat(p2,p5):
 u2 = np.zeros_like(p2)
 for i in range(p2.size):
 if p2[i] > p5[i] * k2:
 u2[i] = U_max
 elif p2[i] < p5[i] * k2:
 u2[i] = U_min
 return u2
def u3_hat(p3,p6):
 u3 = np.zeros_like(p3)
 for i in range(p3.size):
 if p3[i] > p6[i] * k3:
 u3[i] = U_max
 elif p3[i] < p6[i] * k3:
 u3[i] = U_min
 return u3
def ode_fun(t,y):
 a,b,c,y1,y2,y3,p1,p2,p3,p4,p5,p6 = y
 u1 = u1_hat(p1,p4)
 u2 = u2_hat(p2,p5)
 u3 = u3_hat(p3,p6)
 return np.vstack((c1 - s1*(F-a)/F + u1,
 c2 - s2*(F-b)/F + u2,
 c3 - s3*(F-c)/F + u3,
 y1 + f1(t) - u1*k1,
 y2 + f2(t) - u2*k2,
 y3 + f3(t) - u3*k3,
 -s1*p1/F - alpha,
 -s2*p2/F - beta,
 -s3*p3/F - gamma,
 alpha/k1 - p4,
 beta/k2 - p5,
 gamma/k3 - p6))

4/18/23, 6:40 PM traffic_control

file:///Users/jjhousley/Downloads/traffic_control.html 5/13

def bc(ya,yb):
 return np.array([ya[0]-100,
 ya[1]-5,
 ya[2]-20,
 ya[3]-1000,
 ya[4]-3000,
 ya[5]-100,
 yb[9],
 yb[10],
 yb[11],
 yb[6],
 yb[7],
 yb[8]])

initial guess
t = np.linspace(0, 24, 100)
y = np.zeros((12, t.size))
sol = solve_bvp(ode_fun, bc, t, y)

plot solution
t_plot = np.linspace(0, 24, 100)
y_plot = sol.sol(t_plot)
plt.plot(t_plot, y_plot[0], label='A (cars)')
plt.plot(t_plot, y_plot[1], label='B (buses)')
plt.plot(t_plot, y_plot[2], label='C (bikes)')
plt.xlabel('time')
plt.ylabel('# of vehicles')
plt.title('Highway Traffic')
plt.legend()
plt.show()

plot demand
plt.plot(t_plot, y_plot[3], label=r'D_1 (cars)')
plt.plot(t_plot, y_plot[4], label=r'D_2 (buses)')
plt.plot(t_plot, y_plot[5], label=r'D_3 (bikes)')
plt.xlabel('time')
plt.ylabel('# of on-ramp vehicles')
plt.title('Highway Traffic Demand')
plt.legend()
plt.show()

plot control
u1 = u1_hat(y_plot[6],y_plot[9])
u2 = u2_hat(y_plot[7],y_plot[10])
u3 = u3_hat(y_plot[8],y_plot[11])
plt.plot(t_plot, u1, label='u1 (cars)')
plt.plot(t_plot, u2, label='u2 (buses)')
plt.plot(t_plot, u3, label='u3 (bikes)')
plt.xlabel('time')
plt.ylabel('control')
plt.title('Highway Traffic Control')
plt.legend()
plt.show()

plot p
plt.plot(t_plot, y_plot[6], label='p1')
plt.plot(t_plot, y_plot[7], label='p2')
plt.plot(t_plot, y_plot[8], label='p3')

4/18/23, 6:40 PM traffic_control

file:///Users/jjhousley/Downloads/traffic_control.html 6/13

plt.legend()
plt.show()
plt.plot(t_plot, y_plot[9], label='p4')
plt.plot(t_plot, y_plot[10], label='p5')
plt.plot(t_plot, y_plot[11], label='p6')
plt.legend()
plt.show()

4/18/23, 6:40 PM traffic_control

file:///Users/jjhousley/Downloads/traffic_control.html 7/13

4/18/23, 6:40 PM traffic_control

file:///Users/jjhousley/Downloads/traffic_control.html 8/13

In [63]: k1, k2, k3 = 1.5, 30, 1.
s1, s2, s3 = 1., .75, .25
c1, c2, c3 = 15., 1/3, 3.
F = 1000
f1 = lambda t: 100*np.cos(t/8) + 101
f2 = lambda t: 100*np.cos(t/8) + 101
f3 = lambda t: 100*np.cos(t/8) + 101

4/18/23, 6:40 PM traffic_control

file:///Users/jjhousley/Downloads/traffic_control.html 9/13

alpha, beta, gamma = .1, 30./39, 1./6
U_max, U_min = 100, 0
def u1_hat(p1,p4):
 u1 = np.zeros_like(p1)
 for i in range(p1.size):
 if p1[i] > p4[i] * k1:
 u1[i] = U_max
 elif p1[i] < p4[i] * k1:
 u1[i] = U_min
 return u1
def u2_hat(p2,p5):
 u2 = np.zeros_like(p2)
 for i in range(p2.size):
 if p2[i] > p5[i] * k2:
 u2[i] = U_max
 elif p2[i] < p5[i] * k2:
 u2[i] = U_min
 return u2
def u3_hat(p3,p6):
 u3 = np.zeros_like(p3)
 for i in range(p3.size):
 if p3[i] > p6[i] * k3:
 u3[i] = U_max
 elif p3[i] < p6[i] * k3:
 u3[i] = U_min
 return u3
def ode_fun(t,y):
 a,b,c,y1,y2,y3,p1,p2,p3,p4,p5,p6 = y
 u1 = u1_hat(p1,p4)
 u2 = u2_hat(p2,p5)
 u3 = u3_hat(p3,p6)
 return np.vstack((c1 - s1*a + u1,
 c2 - s2*a + u2,
 c3 - s3*a + u3,
 y1 + f1(t) - u1*k1,
 y2 + f2(t) - u2*k2,
 y3 + f3(t) - u3*k3,
 s1*p1 - 2*a*alpha,
 s2*p2 - 2*b*beta,
 s3*p3 - 2*c*gamma,
 alpha/k1 - p4,
 beta/k2 - p5,
 gamma/k3 - p6))

def bc(ya,yb):
 return np.array([ya[0]-100,
 ya[1]-5,
 ya[2]-20,
 ya[3]-500,
 ya[4]-1000,
 ya[5]-100,
 yb[9],
 yb[10],
 yb[11],
 yb[6],
 yb[7],
 yb[8]])

4/18/23, 6:40 PM traffic_control

file:///Users/jjhousley/Downloads/traffic_control.html 10/13

initial guess
t = np.linspace(0, 100, 1000)
y = np.zeros((12, t.size))
sol = solve_bvp(ode_fun, bc, t, y)

plot solution
t_plot = np.linspace(0, 100, 1000)
y_plot = sol.sol(t_plot)
plt.plot(t_plot, y_plot[0], label='a')
plt.plot(t_plot, y_plot[1], label='b')
plt.plot(t_plot, y_plot[2], label='c')
plt.legend()
plt.show()

plot demand
plt.plot(t_plot, y_plot[3], label='y1')
plt.plot(t_plot, y_plot[4], label='y2')
plt.plot(t_plot, y_plot[5], label='y3')
plt.legend()
plt.show()

plot control
u1 = u1_hat(y_plot[6],y_plot[9])
u2 = u2_hat(y_plot[7],y_plot[10])
u3 = u3_hat(y_plot[8],y_plot[11])
plt.plot(t_plot, u1, label='u1')
plt.plot(t_plot, u2, label='u2')
plt.plot(t_plot, u3, label='u3')
plt.legend()
plt.show()

4/18/23, 6:40 PM traffic_control

file:///Users/jjhousley/Downloads/traffic_control.html 11/13

In [6]: u = lambda p: p/2
xstart = .8
def ode(t,x):
 return np.vstack((x[1], 2-2*x[0]))

def bc(ya, yb):
 return np.array([ya[0]-xstart, yb[1]])

4/18/23, 6:40 PM traffic_control

file:///Users/jjhousley/Downloads/traffic_control.html 12/13

t = np.linspace(0,1)
y = np.zeros((2,t.size))
sol = solve_bvp(ode, bc, t, y)

t_plot = np.linspace(0,1,1000)
y_plot = sol.sol(t_plot)
plt.plot(t_plot, y_plot[0], label='density')

plt.legend()
plt.show()

uhat = u(y_plot[1])
plt.plot(t_plot, uhat, label='r (control)')
plt.xlabel('time')
plt.title('Highway Density and Control')
plt.legend()
plt.show()

In [2]: E = 10
f = lambda t: 100
def uhat(p1,p2):
 return np.maximum((p2-p1)*4,0)
def ode(t, X):
 x = X[0]
 y = X[1]
 p1 = X[2]
 p2 = X[3]
 return np.vstack(((np.abs(x-100) - 100)/25 + uhat(p1,p2) + E,
 f(t) - uhat(p1,p2),
 p1*(x-100)/abs(x-100)/25 + x*2,

4/18/23, 6:40 PM traffic_control

file:///Users/jjhousley/Downloads/traffic_control.html 13/13

 2*y))
def bc(ya,yb):
 return np.array([ya[0]-20, ya[1], yb[2], yb[3]])
t = np.linspace(0,15)
y = np.zeros((4,t.size))
sol = solve_bvp(ode, bc, t, y)
t_plot = np.linspace(0,15,1000)
y_plot = sol.sol(t_plot)
plt.plot(t_plot, y_plot[0], label='x')
plt.plot(t_plot, y_plot[1], label='y')
u1 = []
for i in range(len(y_plot[2])):
 u1.append(uhat(y_plot[2][i],y_plot[3][i]))
plt.plot(t_plot, u1, label='u1')
plt.legend()
plt.savefig('final_solution.png',dpi=300)
plt.show()

In []:

	Background
	Mathematical Representation
	First Attempt
	PDE Adaptation
	Model including waiting ramp

	Solution
	First Attempt
	PDE Adaptation
	Model including waiting ramp

	Interpretation
	First Attempt
	PDE Adaptation
	Model including waiting ramp

	Appendix 1: Code

