

STAY CONNECTED!

Download our app for schedule information, maps and event details. The app is available for Apple and Android devices. Search for "GEAPS Exchange" in the App store.

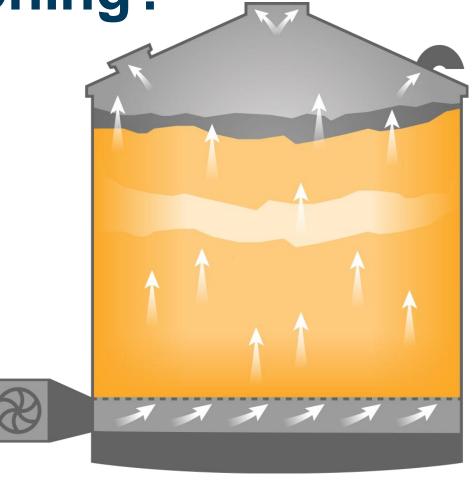
SHARE YOUR EXPERIENCE ON SOCIAL MEDIA. #GEAPSExchange

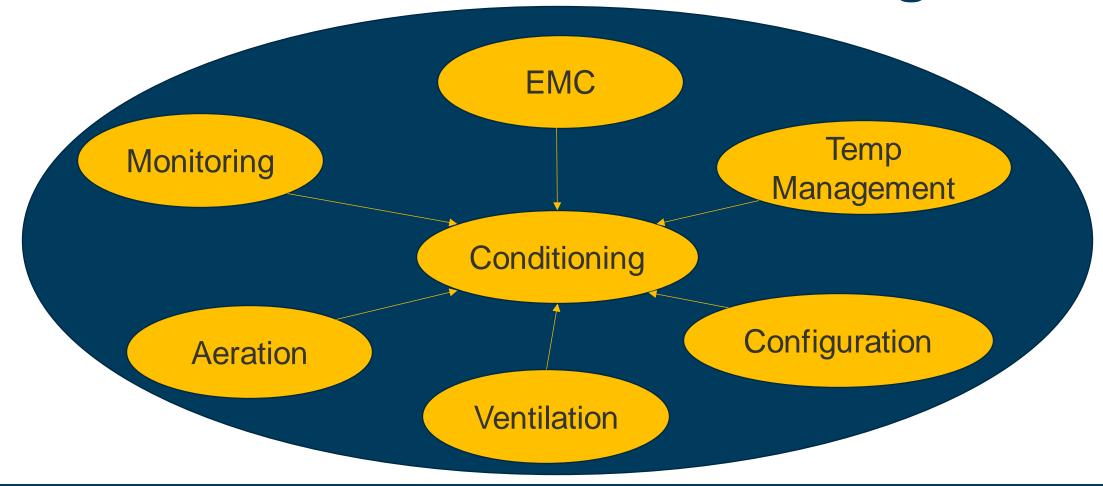
Using Equilibrium Moisture Content in Managing Grains

Monday Feb 27, 2023; 4:30-5:30 PM

John Lawrence

AGI Digitial


Lead Grain Researcher


What is Grain Conditioning?

- Moisture conditioning
 - Removing of moisture
 - Adding of moisture
- Temperature conditioning
 - Cooling
 - Rewarming

Essentials for Good Conditioning

Moisture Content (Wet Basis)

$$MC(wet\ basis),\% = \frac{Weight\ of\ Moisture\ (W_m)}{Weight\ of\ Moisture\ (W_m) + Weight\ of\ DM(W_d)}$$
 x 100

$$MC(wet\ basis),\% = \frac{Weight\ of\ Moisture(W_m)}{Weight\ of\ Grain(W_g)} \times 100$$

Most commonly used moisture content in industry

Moisture content measurement by moisture meter like Dickey-John GAC

Moisture Content (Wet Basis)

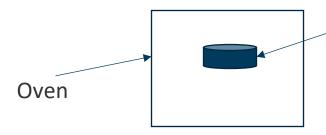
Example:

Weight of moisture is 3 g, Weight of dry matter is 12 g. Calculate % MC wb?

MC(wet basis) =
$$\frac{3 * 100}{[12 + 3]}$$
 = 20.0%

Moisture Content Determination

- 1. Oven drying
- 2. Electronic devices (moisture meters)
- 3. NIR-Near Infrared Spectroscopy



Oven Drying

The known weight of grain placed in an oven drier for a prescribed time and temperature based on research. After this time, grain assumed to be having no moisture, only dry matter.

Can

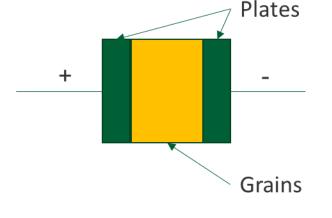
 $MC (\%wb) = \frac{(Initial\ Grain\ Weight - Final\ Grain\ Weight)}{Initial\ Grain\ Weight} x100$

For Corn, take 15g in a can and keep it 103°C for 72 hours

Dry Matter Weight

Moisture Meters

Measure an electrical property, such as capacitance, related to the dielectric constant of a test cell filled with grain.


Most commonly used USDA-GIPSA approved moisture meters are:

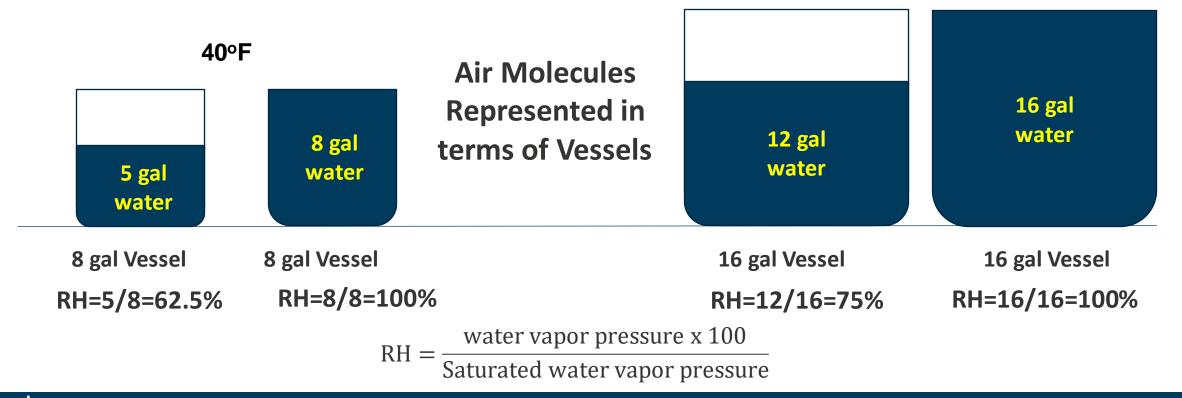
- Dickey-John GAC 2500 UGMA
- Perten Moisture meter AM5200-A
 UGMA-Unified Grain Moisture Algorithms

Dickey-John GAC 2500 UGMA

NIR (Near InfraRed) Spectroscopy

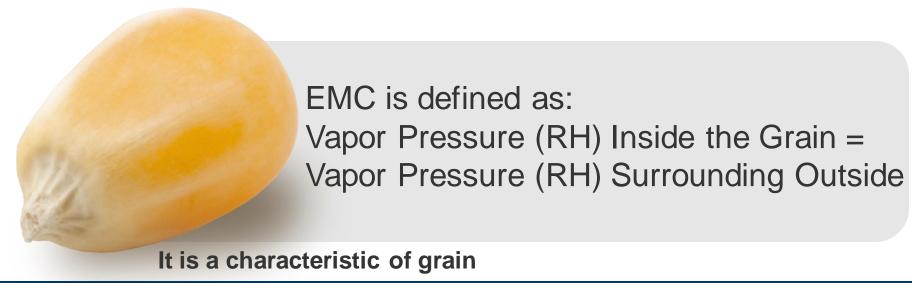
- NIR is a non-destructive method of moisture measure.
- This instrument is used to measure NIR spectra in the short wavelength region from 700 nm (nano meter=10⁻⁹ Scale) to 1100 nm in transmittance mode for moisture content.
- Principle: The specific organic molecules absorb specific wavelengths of near infrared light energy.
- This method is also used to measure oil and protein content in the grain sample.

FOSS Infratec 1241


Perten Inframatic 8800

Relative Humidity (RH)

It is the ratio of water vapor pressure of air and saturated water vapor pressure of air at the same temperature and pressure.


70°F

Equilibrium Moisture Content (EMC)

- All grains equilibrate to a moisture content at fixed surrounding temperature and relative humidity – known as EMC.
- At EMC, there is no moisture intake or drying that will happen.

Safe Storage Moisture Content

Questions to Participants:

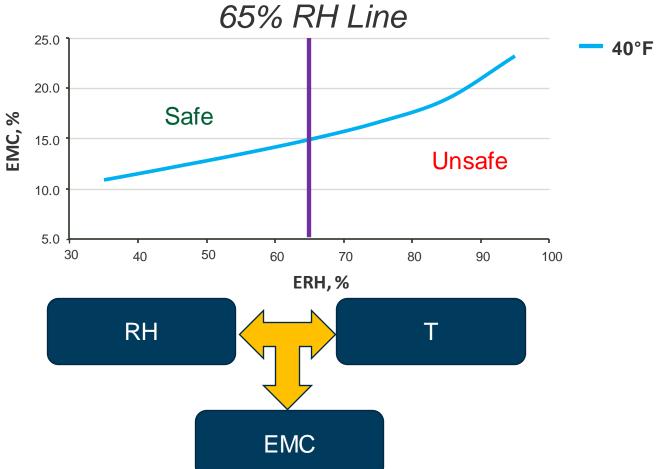
- Who told you corn 15% moisture content (MC) and soybean 13% MC are the safe storage moistures?
- How safe storage moisture content is determined?
- What is the basis for fixing safe storage moisture content limit?

Safe Storage MC: Remove/Add Moisture

Drying (Removing):

Grain Type	Safe Storage at 40°F				
	MC,%	RH,%			
Corn	15.0	65			
Soybean	13.0	65			
Wheat	13.5	65			

Hydration(Adding):


Grain Type	Storage Condition at 40°F				
J	MC,%	RH,%			
Corn	15.0	70			
Soybean	13.0	70			
Wheat	13.5	70			

Grain Type	Safe Storage at 40°F				
	MC,%	RH,%			
Corn	14.0	65			
Soybean	12.0	65			
Wheat	12.5	65			

Why is EMC Important?

EMC: Dry Condition

Lower Vapor
Pressure in the
Surrounding
Environment

HIGHER

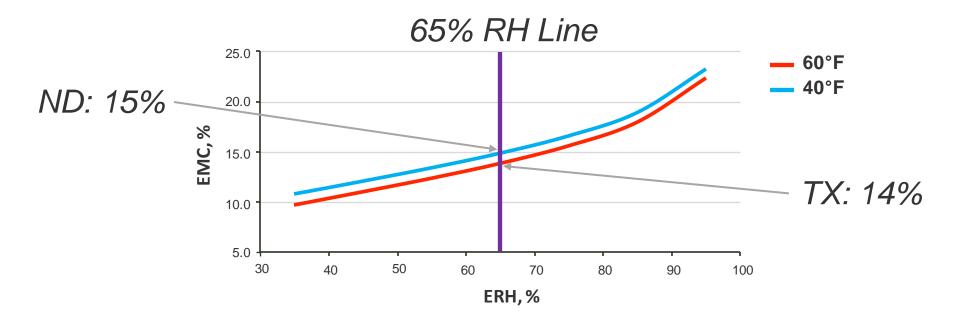
Vapor Pressure Inside the Grain Moisture Loss to Outside to Maintain Equilibrium

EMC: Wet Condition

Higher Vapor
Pressure in the
Surrounding
Environment

LOWER
Vapor Pressure
Inside the Grain

Moisture Gain into the Grain to Maintain Equilibrium


Factors Affecting EMC

- Temperature
- Relative Humidity
- Grain Type
- Grain Variety/Hybrids
- Grain Maturity and History
- Composition of Material (oil, protein, starch)

EMC Variations: Effect of Temperature

• Temperature increases, EMC decreases at a constant RH.

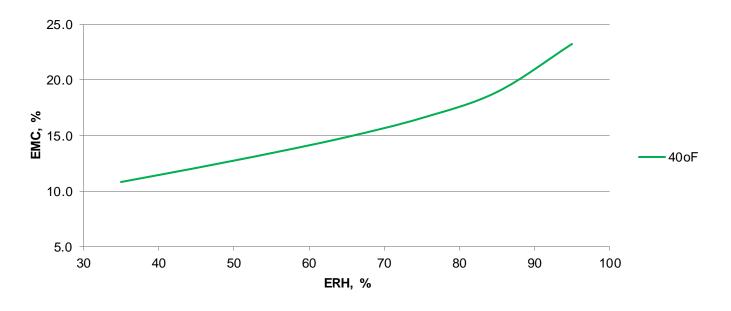
YELLOW DENT CORN

EMC Variations: Effect of Temperature

EMC Characteristics Table for Corn Hybrid-B

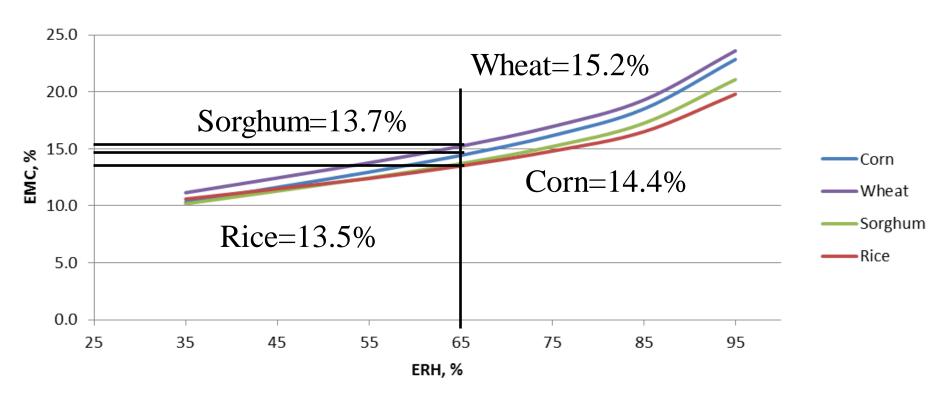
Grain Temperature		Relative Humidity, %					
(°F)	35	45	55	65	75	85	95
100	9.4	10.6	11.8	13.1	14.7	16.8	20.8
90	9.7	10.8	12.0	13.3	14.9	17.0	21.0
80	10.0	11.1	12.3	13.6	15.2	17.3	21.2
70	10.3	11.4	12.6	13.9	15.4	17.5	21.4
60	10.6	11.7	12.9	14.2	15.7	17.8	21.7
50	10.9	12.1	13.2	14.5	16.0	18.1	22.0
40	11.3	12.4	13.6	14.9	16.4	18.4	22.2
30	11.7	12.8	14.0	15.2	16.7	18.8	22.6

SAFE

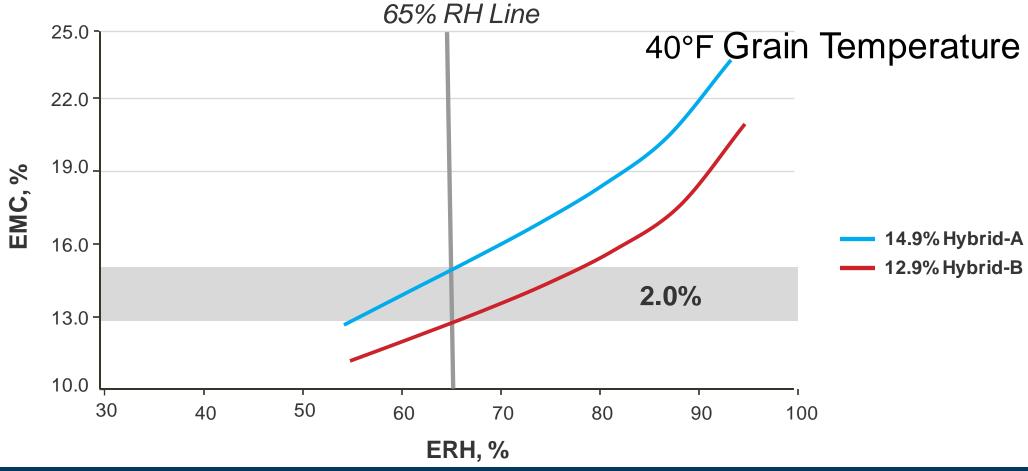

Mold begins to grow Above 65% RH

UNSAFE

EMC Variations: Effect of RH


Relative Humidity increases as EMC increases at constant temperature

Yellow Dent Corn


EMC Variations: Grain Type

40°F Grain Temperature

EMC Variations: Corn Hybrids

EMC Variations: Corn Hybrids

Caulagan Tima	Relative Humidity, %							
Soybean Type	35	45	55	65	75	85	95	
Hybrid-1	9.4	10.5	11.7	12.9	14.4	16.5	20.3	
Hybrid-2	9.8	10.9	12.0	13.2	14.7	16.7	20.4	
Hybrid-3	9.8	10.9	12.2	13.5	15.1	17.2	21.2	
Hybrid-4	10.2	11.5	12.7	14.1	15.7	18.0	22.1	
Hybrid-5	10.1	11.4	12.7	14.1	15.8	18.1	22.3	
Hybrid-6	10.5	11.7	12.8	14.1	15.7	17.7	21.6	
Hybrid-7	10.5	11.7	13.0	14.3	15.9	18.1	22.2	
Hybrid-8	10.3	11.6	12.9	14.4	16.1	18.5	22.8	
Hybrid-9	10.8	11.9	13.1	14.4	16.0	18.1	22.1	
Hybrid-10	11.3	12.4	13.6	14.9	16.4	18.4	22.2	

- At 40°F Grain Temperature
- Marketable Safe Storage Moisture Content is 15% for Corn

EMC Variations: Soybean Hybrids

Coulo con Timo	Relative Humidity, %							
Soybean Type	35	45	55	65	75	85	95	
Hybrid-1	6.0	7.5	8.9	10.5	12.5	15.0	19.8	
Hybrid-2	5.9	7.5	9.1	10.9	13.0	15.8	21.0	
Hybrid-3	5.1	6.8	8.6	10.6	12.9	15.9	21.4	
Hybrid-4	5.6	7.4	9.3	11.3	13.7	16.9	22.6	
Hybrid-5	6.3	8.0	9.7	11.5	13.7	16.6	21.8	
Hybrid-6	6.4	7.8	9.3	10.9	12.8	15.4	20.2	
Hybrid-7	6.2	8.1	10.0	12.1	14.5	17.7	23.5	
Hybrid-8	7.7	9.4	11.0	12.8	14.9	17.7	22.9	
Hybrid-9	5.3	7.2	9.2	11.3	13.8	17.1	23.1	

- At 40°F Grain Temperature
- Marketable Safe Storage Moisture Content is 13% for Soybeans

EMC Variations: Corn Hybrid-A

Yellow Dent Corn

— Desorption

Grain Temperature	Relative Humidity, %						
(°F)	35	45	55	65	75	85	95
100	7.6	8.8	10.1	11.5	13.2	15.5	19.8
90	7.8	9.0	10.3	11.7	13.4	15.7	20.0
80	8.0	9.2	10.5	11.9	13.6	15.9	20.1
70	8.2	9.5	10.8	12.2	13.8	16.1	20.3
60	8.5	9.7	11.0	12.4	14.0	16.3	20.5
50	8.7	10.0	11.2	12.6	14.3	16.5	20.7
40	9.0	10.2	11.5	12.9	14.5	16.7	20.9
30	9.3	10.5	11.7	13.1	14.8	17.0	21.1

SAFE

Mold begins to grow Above 65% RH

UNSAFE

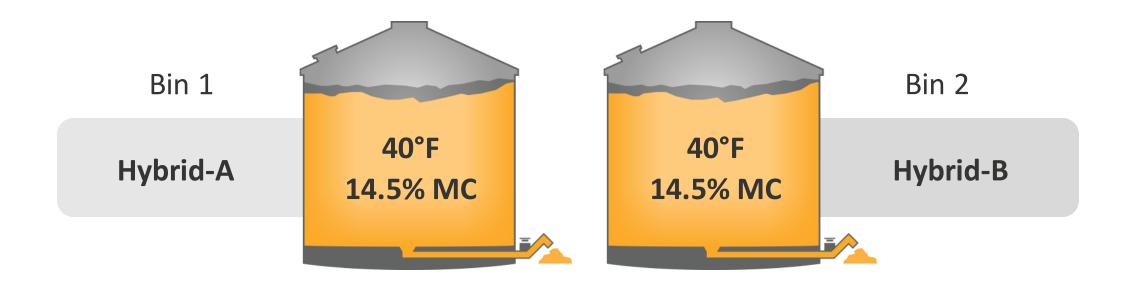
EMC Variations: Corn Hybrid-B

Yellow Dent Corn

– Desorption

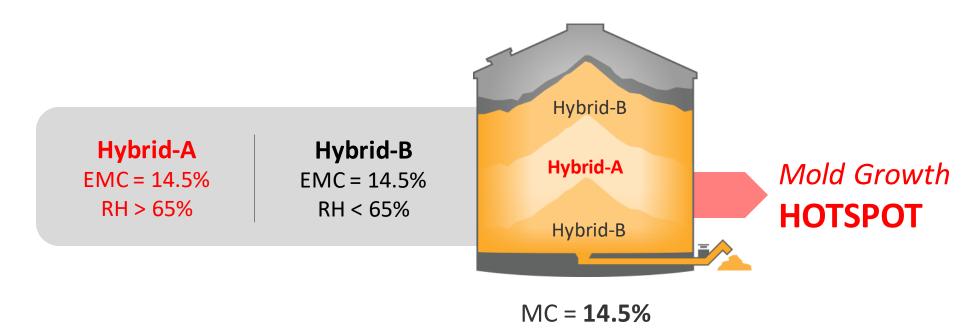
Grain Temperature	Relative Humidity, %						
(°F)	35	45	55	65	75	85	95
100	9.4	10.6	11.8	13.1	14.7	16.8	20.8
90	9.7	10.8	12.0	13.3	14.9	17.0	21.0
80	10.0	11.1	12.3	13.6	15.2	17.3	21.2
70	10.3	11.4	12.6	13.9	15.4	17.5	21.4
60	10.6	11.7	12.9	14.2	15.7	17.8	21.7
50	10.9	12.1	13.2	14.5	16.0	18.1	22.0
40	11.3	12.4	13.6	14.9	16.4	18.4	22.2
30	11.7	12.8	14.0	15.2	16.7	18.8	22.6

SAFE


Mold begins to grow Above 65% RH

UNSAFE

EMC Variations: Implications


Which bin will have spoilage issues?

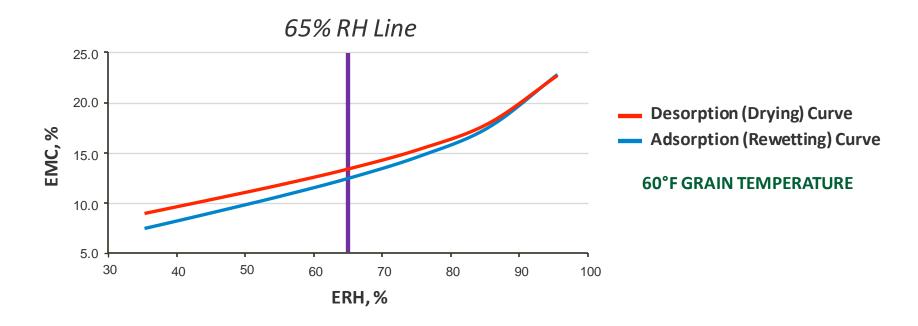
EMC Variations: Implications

- Implications: Loading in the same bin
- Mixing two different EMC hybrids of corn is NOT recommended

Two Types of EMC

Adsorption EMC Curve:
Rewetting (Moisture Gain)
Characteristics

Desorption EMC Curve:


Drying (Moisture Removal)
Characteristics

Desorption EMC values are usually higher than Adsorption EMC values

Hysteresis

• Desorption and Adsorption EMC values are distinct and that difference is called Hysteresis.

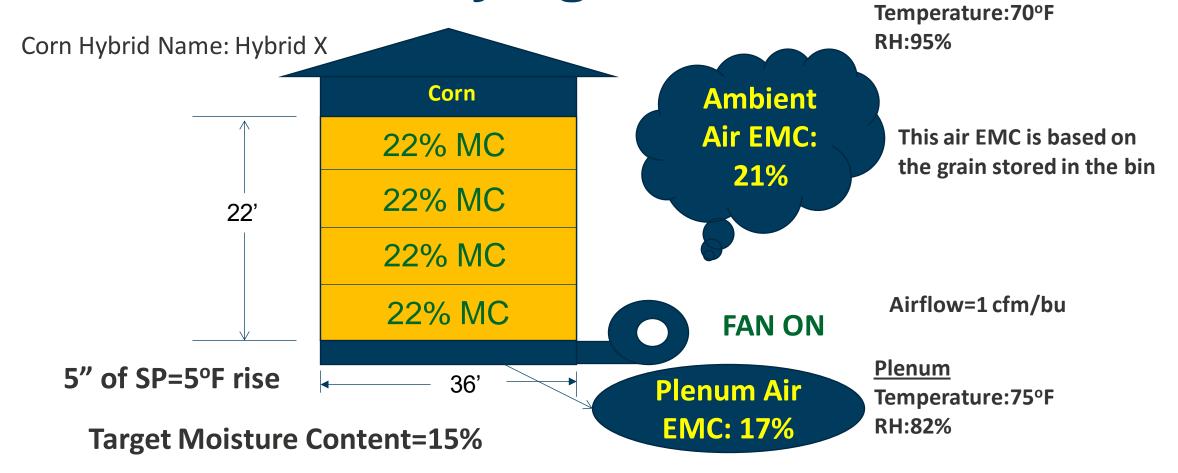
AGI Grain Lab

Determination of EMC Characteristics

- STEP 1: Request customer to send 5-7 gallons grain sample to the lab.
- STEP 2: Lab develops EMC Curve for the new sample.
- STEP 3: Upload the new EMC values into customer SureTrack FARM account to manage grains.

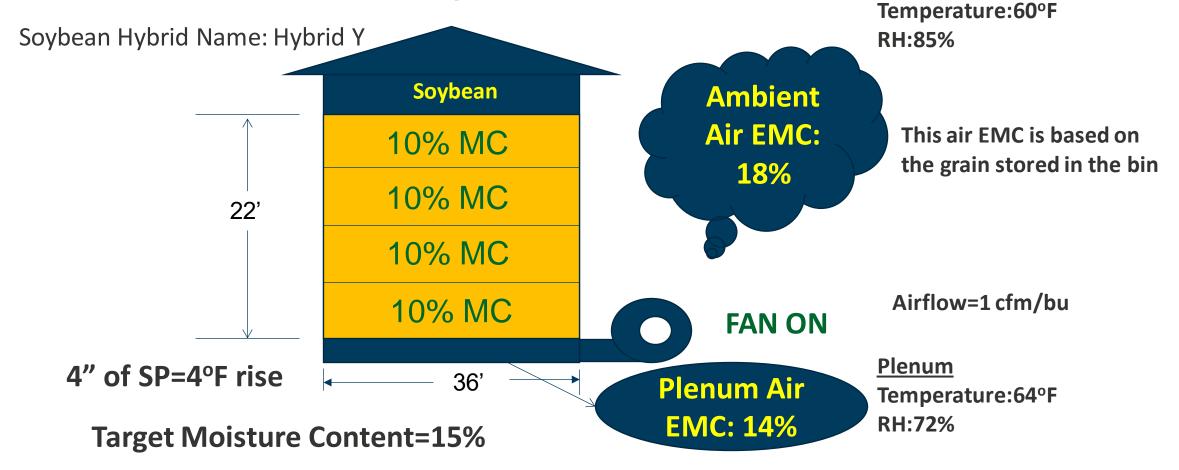
EMC Determination

Direct Method:

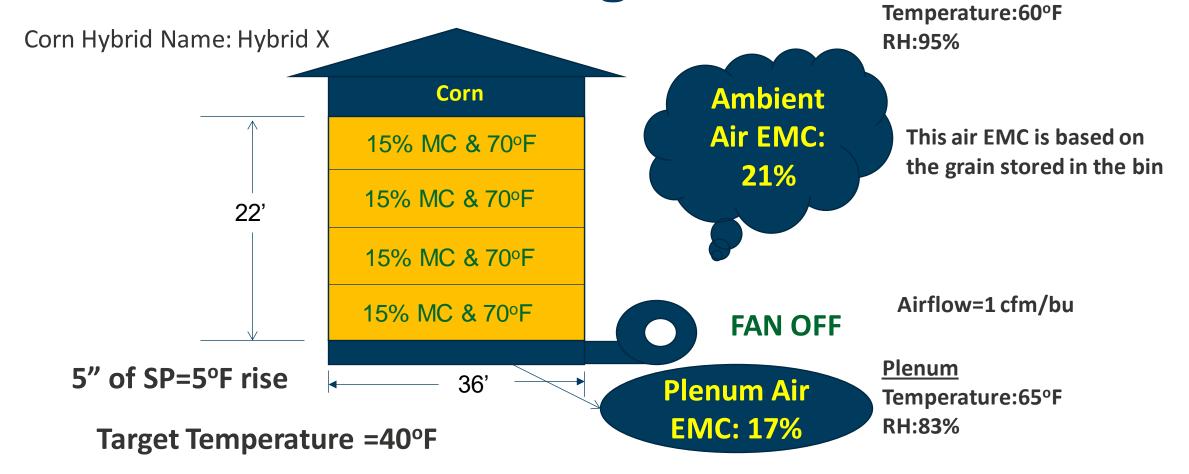

Set the RH and Temperature, wait for grain to equilibrate

70% RH and 20°C 10-20g of sample RH Chamber

Time to equilibrate: 2-4 weeks

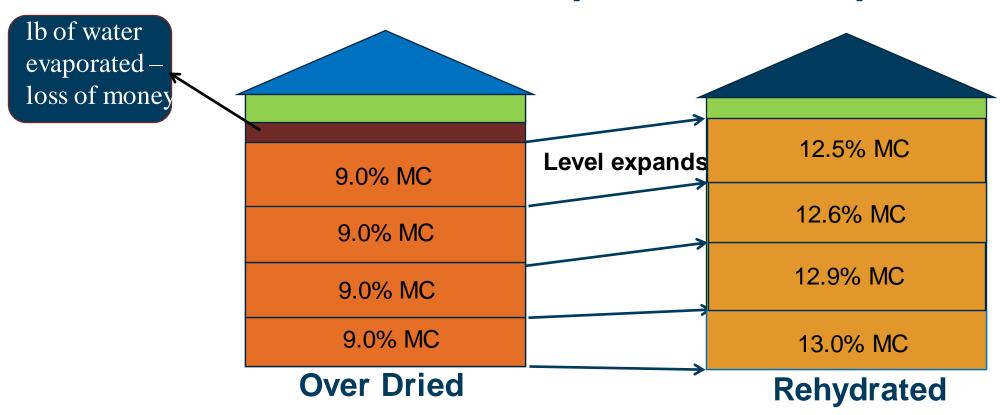

EMC Based Drying

Ambient


EMC Based Hydration

Ambient

EMC Based Cooling



Ambient

Economical Benefit

Rehydration of Soybeans

Economical Benefit

Money Gained During Rehydration of Soybeans

Bin Size	lb of water rehydrated	Bushel of water	Money Gain
D36 H 7RW	52,747	879	\$13,185
D42 H 8RW	60,532	1,024	\$15,360
D48 H 9RW	79,062	1,337	\$20,055

Calculated based on \$15/bu of soybeans

Economical Benefit

Money Gained During Rehydration of Soybeans

Bin Size	Money Gain	Fan Run Energy Cost	Actual Money Gain
D36 H 7RW	\$13,185	\$1,113	\$12,072
D42 H 8RW	\$15,360	\$2,259	\$13,101
D48 H 9RW	\$20,055	\$4,470	\$15,585

Calculated based on \$15/bu of soybeans

Summary

- Safe storage moisture content of any grain type can be determined using the equilibrium moisture content (EMC) characteristics which helps in managing the hotspots (spoilage) in a bin
- Using EMC characteristics of grain, we can select ambient air for cooling, warming, drying and hydrating, an efficient method
- Using EMC based hydration and drying provide economic benefit to farmers and producers

Contact Information

John Lawrence, PhD., PE

Lead Grain Researcher, SureTrack

AGI DIGITAL

8040 Bond St. Lenexa KS, 66214

P: 855-293-5607 ext. 239 | **D**: 816-974-9239

E:john.lawrence1@aggrowth.com

Win a GEAPS Prize Bundle!

Using Equilibrium Moisture Content- Post Survey

SCAN FOR SURVEY Please take a short survey for this session to help us plan for next year.

For every survey you submit you will be entered into a drawing.

GEAPS Prize Bundle

- \$200 Visa Gift card and free registration to Leadership Conference
- Raffle will be drawn at Closing Celebration, Tue 2/28

