
Scaff User Manual

Embedded Systems Software Lab
Southern Illinois University, Carbondale

January 2021

Contents

1 About Scaff 3
1.1 Executor . 3

1.1.1 Initialization . 4
1.1.2 Execution Control . 5

1.2 Scheduler . 5

2 Installation 7
2.1 Install libraries . 7

2.1.1 Known Shared Library Issue . 7
2.2 Set Path . 8
2.3 Installation Script . 8
2.4 Architecture-Specific Settings . 8

3 Files & Directory Structure 9
3.1 Directories . 9
3.2 Scripts . 9
3.3 Other Files . 10
3.4 Changing Default Paths & Names . 10

4 Compilation 10
4.1 Compiling Scaff . 10
4.2 Compiling Benchmarks . 10

4.2.1 Polybench Benchmark Suite . 10
4.2.2 Stream Benchmark Suite . 11

4.3 Setting Performance Counters . 11
4.4 Architecture Specific Settings . 11
4.5 Python Packages . 12

5 Profiling Benchmarks 13
5.1 Storing Benchmark Statistics . 13
5.2 Profiling Script . 13

6 Running Experiments 14
6.1 Configuration File . 14
6.2 Schedulers . 15
6.3 Run Scaff . 15
6.4 Results . 16

7 Experiment Results 16
7.1 Result Directory Structure . 17
7.2 Metadata . 17
7.3 Raw Results . 18
7.4 Summarized Results . 18
7.5 Parsing Old Results . 18
7.6 Searching Experiment Results . 18

1

8 Using Cache Allocation Technology (CAT) 18
8.1 Determine CAT Support . 18
8.2 Integrating CAT into Schedulers . 19

9 Others 21
9.1 Isolating a socket . 21
9.2 Using CPUID . 21
9.3 Performance Monitoring . 21
9.4 cpuset . 22
9.5 freezer . 22

10 Examples 23
10.1 Profiling Experiment . 23
10.2 Normal Experiments . 24

10.2.1 Static Scheduler . 24
10.2.2 Dynamic Scheduler . 26

11 Notes 27

12 Known Issues 27
12.1 Libcpuset/Libbitmask Error . 27
12.2 GCC Installation Error on Comet Lake/ Core i9: . 27
12.3 Repositories/GCC . 27

A Scaff Architecture Detailed Diagram 28

B Server #1 Specific Settings 29

C Server #2 Specific Settings 29

2

1 About Scaff

Scaff is a runtime system that orchestrates the execution of multithreaded applications. It operates
on user-level space on top of Linux-based operating systems. Its primary role is to provide a com-
munication mechanism between the applications being executed and a scheduler implementation.
It relies on two subsystems, the executor and the scheduler. Figure 1 depicts a simplified version
of scaff’s architecture. A more detailed diagram is presented in Appendix A.

Figure 1: Scaff Architecture Overview

The executor is responsible for handling events regarding the execution, such as creation or
termination of programs, and handling the communication between applications and the scheduler.
It, also, provides an interface to assist the scheduler manage the workload.

Concerning the scheduler, it makes the decision on how the available resources should be dis-
tributed among the programs of the workload. This means that it implements a policy for choosing
which applications should be assigned on which cores (space-sharing) on each time-quantum (time-
sharing).

1.1 Executor

The executor takes four arguments. The first is a configuration file, which contains the desired
applications associated with information about the resources they need (cores and memory nodes).
The second one is the directory in which we print the results and debugging information. The
third is a comma separated list of cores, on which we choose to assign the applications of our
workload. On the last argument the name of the desired scheduler is given. Having acquired all
this information, the executor is now ready to start the execution of the workload. Its work can
be divided into to phases. The first is the initialization and the other (and final) is the execution
control. Figure 2 shows an overview of the executor subsystem.

3

EXECUTOR

ExecSt
● create list of cpus

● init pnew_l and
pfinished_l

● pipe for progs to
executor

 communication
● construct a priority

heap for events

Programs
● allocate aff_prog_t

● cpuset_create()
● pipe for executor to
progs communication

● shm_alloc()
● Fork()

● EVNT_NEWPROG

INITIALIZATION

get scheduler and
call scheduler_init()

install signal handlers
for SIGCHLD and

SIGTERM

Prog Notification
Handling
Select()

If ExecSt.pipe[0] ready
Process request
Notify back progs

Signal Handling
catch SIGCHLD and call
scheduler_rebalance()
catch SIGTERM and

abort execution

Event Handling
if EVNT_NEWPROG
put prog in pnew_l

call rebalance()
if EVNT_QEXPIRED

call qexpired()

EXECUTION CONTROL

EVNT_NEWPROG respawn()

Figure 2: Executor Overview

1.1.1 Initialization

The global state of the executor is represented by the ExecSt struct. Its fields are initialized one
by one. First we store the list of cpus we acquired from the input. Then we initialize two lists, one
for the spawned programs (pnew l) and one for the finished (pfinished l). In order to achieve
the applications→executor communication, we create a pipe, where the applications write on the
write-end of the pipe and the executor reads from the read-end. As long as the main responsibility
of the executor is to handle events, we construct a priority heap, where these events will be kept.

The executor parses the configuration file and begins execution of every program of the workload.
For every program, it allocates and initializes a structure (aff prog t) that will be used to describe
it throughout the execution. This structure contains a cpuset t field that is used as a handler
for the program’s cpuset. The executor uses cpuset create() to create a new cgroup to the
cpuset virual filesystem instance. The aff prog t also contains a pointer to the shared memory
that the program will use to communicate with the executor. The executor initializes this portion
of shared memory and sets some of the fields. These fields are the write-end of the executor’s
pipe that a program will use to notify about a new request, the number of cpus available, the
cores allocated initially to the application and a pointer to the application’s aff prog t structure
that will be used as an identifier, when the program will make a request to the executor, so
that the last will distinguish requests from different programs. Each program uses a pipe for
the executor→programs communication. They block to the read-end of the pipe, waiting the
executor to satisfy their requests. The executor writes some arbitrary values in the write-end pipe
of the programs, after having processed their requests. In that way, we achieve a synchronous
communication.

After the initialization of the new program’s structure, the executor will fork() a new process.
The new process uses the execl() command to begin execution on a new shell. The executor waits
for the program to freeze itself and then attaches to its cpuset all the cpus of the system. Finally
an EVNT NEWPROG event will be pushed on the heap and the program will remain FROZEN until the
time that the event will be handled.

Every program is linked with a pre-load dynamic library. This library interacts with shared
memory’s fields and takes care of communication between the application and the executor

4

(affhook region notify()). In addition every application has its own ID field. We use the
/AFF ID name to distinguish cpusets, freezers and shared memory between different applications.

After parsing the configuration file, the executor initializes the scheduler and installs handlers
for the SIGCHLD and SIGTERM signals. The first corresponds to normal termination of a program
and will cause a subsequent call to the scheduler, while the other indicates unexpected termination
and is handles as an error, causing execution abort.

1.1.2 Execution Control

Now that we have finished the initialization phase, the executor is responsible for handling itera-
tively two types of signals, two types of events and the programs’ notifications.

As mentioned above, when a program terminates normally the SIGCHLD signal is caught by the
executor, which in its turn calls the rebalance() function of the scheduler. There the scheduler
handles the internal structures of the program and may need to make a new scheduling policy.
The SIGTERM implies abnormal termination of the application and is considered as an erroneous
behavior, causing the stop of the execution.

In addition, the executor pops events from the priority heap until it becomes empty. Every event
is linked with a timestamp. The executor compares the current timestamp with that of the highest
priority event and if it is time to process it, it pops it from the heap and handles it. If the event
is of EVNT NEWPROG type, the program is added to the pnew l list of the ExecSt structure. On the
other hand, when an EVNT QEXPIRED event has arrived, this means that a time-quantum has expired
and the executor calls the function qexpired() of the implemented scheduler. This function make
decisions about which programs should be assigned on which core for the next time-quantum and
push to the heap an EVNT QEXPIRED event representing the next time-quantum. If there are no other
events, and programs have been added to the pnew l list, then the rebalance() function is called.
Until the process of the next EVNT QEXPIRED event, the executor waits for program notifications.

The executor uses the select() system call to check if there is a program notification. Select()
receives a set of file descriptors (fds) as the first argument and a struct timeval as the second.
Select() watches if some of the given fds becomes ready (characters available for reading or
writing). If there is no change in the observed fds, select sleeps for the amount of time specified by
the timeval and on wake up returns 0. Otherwise, it wakes up when a fd becomes ready and returns
the fd value. In our case, the fd we want to watch until the next time-quantum, is the read-end
of the executor pipe. So we give ExecSt.pipe[0] as the first argument and the timestamp of the
next event as the second one. In that way we succeeded in polling for program notifications, until
the next event in the heap must be handled. When a notification has arrived, the executor reads
it from the read-end of its pipe.

1.2 Scheduler

The second subsystem of the Scaff tool is the scheduler and is responsible for the placement of the
programs to the available cores. It determines on which time slice (time-sharing) and on which cores
(space-sharing) each program should be executed. Figure 3 depicts an overview of the scheduler
subsystem. It consists of the following functions:

1. init(): is called by the executor on the initialization phase. It allocates the structure, which
represents the scheduler and is necessary for the management of programs. This struct is
stored by the executor and used to subsequent calls. In addition the hardware performance
counters are activated and set to zero.

5

SCHEDULER

init()
allocate scheduler

structure
enable HPC

qexpired()
call freeze()

call schedule()
 call thaw()

push EVNT_QEXPIRED

rebalance()
if pnew_l != []

move progs to schedule_l
and alloc struct

if pfinished_l != []
read HPC, dealloc struct

and respawn prog

freeze()
stop running progs
stop HPC and read

their value

thaw()
start selected progs
start HPC monitoring

schedule()
select progs to
run on the next
 time-quantum

Figure 3: Scheduler Overview

2. qexpired(): is called by the executor at the expiration of the time-quantum (EVNT QEXPIRED

occurs). Subsequently, it calls the functions freeze(), schedule() and thaw(), making the
decision for the next time-quantum. It also pushes the EVNT QEXPIRED to the heap.

3. freeze(): first function called by the qexpired(). It is time for the running applications to
leave the cores (freezer state set to FREEZE). The performance counters are stopped, read and
their value is stored in the internal structure of each program.

4. schedule(): second function called by the qexpired(). There we choose which applications
should run on the next time-quantum.

5. thaw(): third function called by the qexpired(). The selected applications start the execu-
tion at the available cores (freezer state set to THAW). The performance counters are started
again.

6. rebalance(): called by the executor either when the pnew l is not empty (EVNT NEWPROG) or
when a SIGCHLD arises. In the first case it moves the programs from the pnew l list to the
app l and allocates for every program a structure that the scheduler uses to represent them.
In the other case, the program is removed from the finished l list and is respawned if this
attribute is enabled.

6

2 Installation

This section will guide you through the process of setting up the Scaff tool from a cloned repository.

2.1 Install libraries

Use the following commands to install each of the prerequisite libraries in HOME DIR/rpm build/

For Ubuntu:

sudo apt -get install libnuma -dev libnuma1

sudo apt -get install alien

cd rpm_build/

sudo alien -i *.rpm

cd ../

NOTE: If a ”cannot loacate libcpuset.so” error occurs when attempting to run Scaff, uninstall the
packages listed above and then re-install them using the apt-get commands listed below.

sudo apt -get install libbitmask1

sudo apt -get install libbitmask -dev

sudo apt -get install libcpuset1

sudo apt -get install libcpuset -dev

For CentOS:

sudo yum install numactl numactl -devel numactl -libs numad

cd rpm_build/

sudo rpm -i *.rpm

cd ../

2.1.1 Known Shared Library Issue

When executing SCAFF, the following (or similar) errors may show up on some computers while
compiling or attempting to execute Scaff:

-> error while loading shared libraries: libcpuset.so.1: cannot open

shared object file: No such file or directory

->error while loading shared libraries: libbitmask.so.1: cannot open

shared object file: No such file or directory

->libbitmask.so => not found

To fix this error, try to use one of the following solutions, arranged in decreasing order of
preference:

1. [Best method] Add the correct folder to $PATH.

export $PATH=$PATH :/lib/x86_64 -linux -gnu/

2. [Not as good, but might work] Copy the installed libraries to the system’s default folder:

cp /usr/lib64/libcpuset* /lib/x86_64 -linux -gnu/

cp /usr/lib64/libbitmask* /lib/x86_64 -linux -gnu/

7

2.2 Set Path

In the main Scaff directory, open home dir.py and set the variable HOME DIR to the absolute path
of the Scaff directory on your computer (add the ‘/’ at the end of the path) . This only needs to
be done once and will help with automation of experiment results’ storage, indexing, and parsing.

2.3 Installation Script

Load msr module (i.e. modprobe msr) and mount the cpuset/freezer subsystems (one-time run
after boot).
Jump to HOME DIR/scripts/ and open prepare.sh. Set the ‘USER’ variable to your username.

./ prepare.sh

2.4 Architecture-Specific Settings

To complete the installation process, jump to HOME DIR/src/prfcnt/prfcntr xeon types.h and
set the hexadecimal values for your processor’s specific Model Specific Registers (MSRs).

To find the exact MSR names and addresses for your CPU, refer to Intel’s Software Developer
Manual, Volume 4, Chapter 2 1. The use of Intel’s Memory Bandwidth Monitoring (MBM)/Memory
Bandwidth Allocation (MBA) also relies upon correct MSR values. If the MSR addresses are
mismatched, the results shown can be incorrect.

1https://software.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-sdm-
combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4.html

8

https://software.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4.htm
https://software.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4.htm

3 Files & Directory Structure

Figure 6 shows the files and directories included in the default Scaff repository.

Figure 4: Home directory for Scaff repository

3.1 Directories

The Scaff home directory (hence referred to as HOME DIR) consists of the following sub directories:

• rpm build: Use this directory for installing prerequisite libraries

• bin: This is where benchmark executables are stored

• conf: This is where the ‘configuration file’ is stored

• src: Contains the main code for the executor and schedulers

• experiment results: Each experiment will be saved in a new directory here

• scripts: Contains utilities for installation, cleanup, parsing, etc.

• scripts/scheds: Contains source code for all schedulers

• scripts/prfcnt: Performance counters can be configured from the files stored here

3.2 Scripts

The following scripts are used for running experiments.

• home dir.py: This script stores the absolute path to Scaff’s home directory.

• profiler scaff.py: Used for profiling individual benchmarks (section 5).

• run scaff.py: Wrapper script for running experiments.

Furthermore, the following scripts are included for support and additional functionality:

9

• scripts/cleanup.sh: Destroy zombies, thaw freezer, clear cpuset. This is done automati-
cally for each experiment but can also be called from here.

• scripts/hyperthreading.sh: Use this script to determine which cores are hyperthreaded.

• scripts/parse results.py:

• scripts/utilities.py: Contains default names and helper functions.

• scripts/search experiments.py: Use to search old results. See section 7.5 for usage de-
tails.

3.3 Other Files

The Scaff home directory also contains an Excel file named alone stats.xlsx. This file contains
execution statistics for individual benchmarks when running without co-runners for one complete
period of execution. Section 5 describes the use of this file along with the process for automatically
profiling applications.

3.4 Changing Default Paths & Names

By default, Scaff will use the directories listed in Section 3.1 to store the configuration files, results,
benchmarks, etc. If required, these values can be reconfigured from utilities.py. Furthermore,
the default naming scheme for experiment result directories can also be changed from this script.

4 Compilation

4.1 Compiling Scaff

Jump to HOME DIR/src/ directory and build the tool

cd src/

make

4.2 Compiling Benchmarks

This section describes the process of compiling benchmarks included with the master scaff reposi-
tory.

4.2.1 Polybench Benchmark Suite

Jump to HOME DIR/bin/polybench-c-4.2.1-beta/ directory

Usage:

./ compile_polybench benchmark_domain

Example:

./ compile_polybench bench_l # compile all benchmarks

./ compile_polybench datamining_l # compile only one domain

10

4.2.2 Stream Benchmark Suite

Jump to HOME DIR/bin/stream/ directory

Usage:

./ compile_stream.py [-h] [--dataset DATASET] [--times TIMES] [--openmp OPENMP]

Example:

./ compile_stream.py --dataset 128M --times 10 --openmp no

4.3 Setting Performance Counters

Performance counters can be configured in HOME DIR/src/prfcnt/prfcntr xeon events.h. There
are two types of performance events - fixed and programmable.

In lines 44-61, replace the hexadecimal values with the ones for your specific architecture. Figure
5 shows the struct prfcnt event t events which holds the information for PMC events. To find
the correct values for your CPU, refer to Intel’s Software Developer Manual 2 Volume 3, Sections
18.3 to 18.6. For more information about performance monitoring, refer to Section 9.3.

Figure 5: Performance Monitoring Counter Events

4.4 Architecture Specific Settings

Different architectures will vary in how they read memory bandwidth. Run the following command
to see which PCI addresses are in use:

cat /proc/bus/pci/devices

ls /proc/bus/pci/

Update the hexadecimal address of the memory controller in HOME DIR/src/prfcnt/prfcntr xeon types.h.

Intel(R) Core(TM) i9-10900 CPU @ 2.80GHz [COMET LAKE]:
Socket0: 00

2https://software.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-sdm-
combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4.html

11

https://software.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4.htm

Socket1: 04

Intel(R) Xeon(R) CPU E5-2620 v3 @ 2.40GHz [PUGET/Haswell]:
Socket0: ff
Socket1: 7f

In HOME DIR/src/scheds/common.h, update the number of available CPUs.

#define MAX_CORES 5

4.5 Python Packages

Install the following packages using pip.

1. numpy

2. pandas

3. xlrd

4. xlsxwriter

12

5 Profiling Benchmarks

5.1 Storing Benchmark Statistics

For many experiments, it is beneficial to compare the results of application execution to a ‘baseline’
case. In this manual, we consider the baseline to be an application’s execution statistics (such as
IPC, exec time, etc.) obtained from running it for one full execution without any interference from
co-running applications (i.e. alone execution on the socket/CPU).

Figure 6: alone stats.xlsx

Scaff can automatically normalize certain results with respect to the ‘baseline’ if the statistics
for a benchmark are already present in the Excel file alone stats.xlsx included in HOME DIR. This
file is used to keep track of all alone execution statistics and is organized into different sheets, one
per number of threads used in the profiled benchmark. This is necessary since a given benchmark
performs differently when executing with different numbers of threads. When parsing results, the
number of threads is automatically taken into account.

5.2 Profiling Script

For quickly obtaining execution statistics for a particular benchmark when executing alone, the
script profiler scaff.py can be used. This script executes the given benchmark until completion
while recording the counts of PMC events. It requires the following inputs in lines 39-42:

• benchmark This is the application to be executed until completion. Make sure it is located
in the bin/ folder.

• num threads The number of threads to compile the benchmark with (OpenMP supporting
benchmarks only)

• cores The set of cores we want to dedicate to this workload. Note that the number of cores
specified must be equal to or greater than the number of threads. Unused cores will not be

13

assigned any applications for the duration of the profiling experiment.

• comments The comments will be written to file in the experiment folder.

6 Running Experiments

The following sections describe the process of running Scaff with user-defined schedulers to collect
performance data.

6.1 Configuration File

To specify the workloads that SCAFF must run, they must be listed in a tab-separated text file.
The directory <SCAFF dir>/conf contains two examples of configuration files. One for memory-
intensive (‘mb prevalent’) and one for cache-intensive workload (‘cs prevalent‘). Each application
is specified using a new line. Lines beginning with ‘#’ are for comments and are ignored when
parsing the config file. Each line in the configuration file corresponds to one application, and
consists of the following tab-separated fields:

1. Cores needed: The number of cores required to execute this application

2. Gang id: Used for static scheduling when applications need to be executed in gangs/group-
s/batches.

3. Core id: The core(s) to be assigned to the application. For multi-threaded applications
requiring more than one core, this field contains the index of the starting core. For dynamic
schedulers, this field can be set to a placeholder value such as 0 for all lines in the config file.

4. IPC/BW alone: This field is used by some schedulers to determine run-time groupings. It
can be set to the alone IPC or memory bandwidth for the corresponding application. Set to
0 if the scheduler does not require this information.

5. Start time: The start time of an application. Normally this is 0 but can vary with scheduler
implementations.

6. Path: Relative path to the executable, along with any command line arguments for the
application.

7. Priority: For use with priority-aware schedulers. Set to a placeholder value if not required.

8. Min ratio: For use with priority aware schedulers. Set to a placeholder value if not required.

9. Max ratio: For use with priority aware schedulers. Set to a placeholder value if not required.

10. Name: The name of the application, as it will appear in the results. Furthermore, if a
matching name is found in the file HOME DIR/alone stats.xlsx then the summarized results
will automatically also contain normalized results.

Listing 1 depicts an example configuration file for the static scheduling policy included in the
Scaff repository cgang. For this example, we execute two groups (‘gangs’) of four applications each.

14

Listing 1: Example Config File

1 0 0 0 0 . . / bin / f t . S . x 0 0 0 f t . S
1 0 1 0 0 . . / bin /bt .W. x 0 0 0 bt .W
1 0 2 0 0 . . / bin /atax 6M 20 0 0 0 atax 6M
1 0 3 0 0 . . / bin /gemm 4M 50 0 0 0 gemm 4M
This i s a comment l i n e
1 1 0 0 0 . . / bin /3mm 32K 50 0 0 0 3mm 32K
1 1 1 0 0 . . / bin /2mm 32K 70 0 0 0 2mm 32K
1 1 2 0 0 . . / bin /gemm 32K 8 0 0 0 gemm 32K
1 1 3 0 0 . . / bin /mg.W. x 0 0 0 mg.W

Important Notes:

1. Configuration files MUST end in a newline character.

2. Not every scheduler utilizes all fields of the configuration file.

6.2 Schedulers

The default Scaff repository includes two schedulers: linux and cgang. However, any number of
user-defined schedulers can be used with Scaff as long as they use the interface described in Section
1.2 to communicate with the executor subsystem. We have successfully implemented and tested
the following schedulers using Scaff:

• Linux: Completely fair scheduler

• Cgang: Simple static scheduler

• Perf: Link to paper. 3

• Perf&Fair: Link to paper. 4

• BAOS: Link to paper.5

• Proposed Dynamic: Resource aware scheduler

6.3 Run Scaff

In the main directory, open the ‘run scaff.py’ script. In line #2 of the code, set the variable
HOME DIR to the path to the Scaff main directory. Don’t forget to add the ‘/’ at the end of the
path.

In the main function, the script takes 4 inputs:

• config file: The configuration file where the workload is defined (check HOME DIR/conf/
for examples)

• cores: The set of cores we want to dedicate to this workload (lscpu for more info)

• scheduler: The scheduling policy utilized to control the execution (options: linux cfs, cgang)

3https://ieeexplore.ieee.org/document/7161508
4https://ieeexplore.ieee.org/document/7676358
5https://www.computer.org/csdl/journal/tc/2016/02/07100868/13rRUx0gez8

15

https://ieeexplore.ieee.org/document/7161508
https://ieeexplore.ieee.org/document/7676358
https://www.computer.org/csdl/journal/tc/2016/02/07100868/13rRUx0gez8

• comments: The comments will be written to file in the experiment folder

Additional options in HOME DIR/src/scheds/cgang.c and HOME DIR/src/scheds/linux.c:

• time window: If this is set then execution will stop when tics=run tics

• run tics: If time window is True, Scaff will stop execution when tics=run tics

Example input:

config_file=HOME_DIR+‘conf/cs_prevalent ’

cores=‘0-5’

scheduler=‘linux_cfs ’ # Options linux_cfs , cgang

exp_comments=‘’ # Any additional comments

6.4 Results

A new folder is created in HOME DIR/experiment results for each experiment. In each folder, the
’about.txt’ file contains a description of the experimental setup, date/time, and additional notes
(if any). The results from each experiment are automatically parsed and summarized in an excel
file (.xlsx) in the experiment’s main folder. This file contains three sheets:

• Counters: Per-application summary of the execution statistics.

• Finisheds: Per-application summary of run times, waiting times, finish times, etc.

• Overhead: The scheduling overhead incurred (in micro seconds) at each time quantum

If needed, the raw results can be found in the HOME DIR/raw results sub directory of each exper-
iment folder. It contains the following files:

• counters-out: Contains performance counter and energy values for each time quantum

• finisheds-out: Every time an application finishes, its execution time and related stats are
logged here.

• energy-out: Contains the energy consumed by package and DRAM during each time quan-
tum.

• overhead.csv: Contains the scheduling overhead incurred between each successive time
quanta (micro sec)

• scaff-out: Contains a log of executor functions such as memory allocation, etc.

• sched-out: Contains a log of the scheduling decisions undertaken by the scheduler at the
expiration of each time quantum.

7 Experiment Results

This section presents an in-depth description of how Scaff manages experiment results.

16

7.1 Result Directory Structure

By default, experiment results are stored in HOME DIR/experiment results unless specified oth-
erwise in HOME DIR/scripts/utilities.py. A new directory is created to store the results and
metadata for each new experiment. Directory names have the default format
scaff exp <exp num>. This can be also be changed from the utilities and paths.py script.
Scaff utilizes a text file stored in the experiment results directory to keep track of experiment num-
bers. This file is called experiment number.txt. If this file is missing, Scaff will automatically
generate a new file restarting the numbering from 0.

7.2 Metadata

Scaff stores information for each experiment inside the experiment’s directory. The configuration
file is automatically copied to the result folder in case it needs to be referenced again. In addition,
the file about.txt is created for each new experiment. This file contains the following information:

Figure 7: Sample about.txt file

17

7.3 Raw Results

7.4 Summarized Results

7.5 Parsing Old Results

The script scripts/parse results.py can be used to re-parse any old experiment result. The
experiment number can be specified by command line argument.
Usage:

./ parse_results <exp number >

7.6 Searching Experiment Results

The default Scaff repository contains a helper script scripts/search experiments.py. The pur-
pose of this script is to crawl through the auto-generated about.txt files, containing the description
of the experimental setup, date/time, and additional notes(if any), and return the experiment num-
bers with a matching field. Experiments can be searched using the following fields:

1. exp type

2. config file

3. cores

4. scheduler

5. comments

8 Using Cache Allocation Technology (CAT)

Intel’s Cache Allocation Technology allows for partitioning of the LLC’s available cache-ways among
the available cores.

8.1 Determine CAT Support

In order to find if the architecture supports CAT, follow the instructions in section 4.1 to compile
the Scaff tool and then jump to HOME DIR/src/. Run the executable intel technologies. The
resulting output will show if CAT is supported on the system.

Example Output:

##
CPU CHARACTERISTICS
##
Vendor : GenuineInte l
Model name : I n t e l (R) Xeon(R) Gold 6130 CPU

@ 2.10GHz
cpuid : 50654
Family : 6
Mic roa r ch i t e c tu r e codename : Skylake−SP
MSR support : YES
Hyperthreading support : YES

18

Perf Vers ion : 4
General Purpose Counters Number : 4
Gpcounters Width : 48
Fixed Counters Number : 4
Fcounters width : 32
Cache Monitoring Technology : YES
Memory Bandwidth Monitoring (Total) : YES
Memory Bandwidth Monitoring (Local) : YES
L3 Cache A l l o c a t i o n Technology : YES
L2 Cache A l l o c a t i o n Technology : NO
Memory Bandwidth A l l o c a t i o n Technology : YES
Code and Data P r i o r i t i z a t i o n Technology : YES
Turbo mode : OFF
##

8.2 Integrating CAT into Schedulers

By default, the Scaff tool provides a mechanism to schedulers for managing shared memory and
other execution characteristics, while also recording the counts of selected PMC events. The use
of CAT can be integrated into any user-defined scheduler that conforms to the communication
scheme presented in Section 1.2. The following steps describe the process of using CAT with Scaff
schedulers:

1. Find the # of cache ways supported by the architecture. For example, on a Xeon Gold 6130s
(SkyLake) the LLC is an 11-way set-associative cache. Furthermore, the minimum # of cache
ways that can be assigned to a core in this architecture is 2.

2. Find the available # of Classes-of-Service (CoS) for the architecture. Each CoS represents
a particular cache configuration by means of the corresponding bitmask. The easiest way to
find # of CoS is to use the intel-cmt-cat tool available here 6.

The sample output presented below shows that our system supports 16 Classes-of-Service
per node. Each cache-way is represented by 1 bit in the bitmask. For example, the bit-
mask 0x7ff (0b011111111111) represents all 11 cache-ways being available, the bitmask
0x600 (0b011000000000) represents 2 cache-ways being available, and the bitmask 0x1ff

(0b00111111111) represents 9 cache-ways available.

Example Output:

L3CA COS definitions for Socket 0:

L3CA COS0 => MASK 0x600

L3CA COS1 => MASK 0x1ff

L3CA COS2 => MASK 0x7ff

L3CA COS3 => MASK 0x7ff

L3CA COS4 => MASK 0x7ff

L3CA COS5 => MASK 0x7ff

L3CA COS6 => MASK 0x7ff

L3CA COS7 => MASK 0x7ff

6https://github.com/intel/intel-cmt-cat

19

https://github.com/intel/intel-cmt-cat

L3CA COS8 => MASK 0x7ff

L3CA COS9 => MASK 0x7ff

L3CA COS10 => MASK 0x7ff

L3CA COS11 => MASK 0x7ff

L3CA COS12 => MASK 0x7ff

L3CA COS13 => MASK 0x7ff

L3CA COS14 => MASK 0x7ff

L3CA COS15 => MASK 0x7ff

3. Allocate the required cache-configuration to an available COS using the relevant bitmask.

4. Associate the COS to the required core(s). All applications running on the associated core
will have access to the assigned cache-ways of the corresponding COS.

The sample association output presented below shows that cores 0 to 8 have access to the
cache-ways represented by COS1, i.e. 9 available ways. The other cores are associated with
COS0, which includes 2 cache-ways. In this particular configuration, all processes executing
on cores 0,2,4,6,8 have exclusive access to 9 cache-ways and the rest of the cores have access to
2 cache-ways. Note that the bitmasks do not overlap, meaning that the available cache-ways
to each COS are exclusive.

Example Output:

Core information for socket 0:

Core 0 => COS1

Core 2 => COS1

Core 4 => COS1

Core 6 => COS1

Core 8 => COS1

Core 10 => COS0

Core 12 => COS0

Core 14 => COS0

Core 16 => COS0

.

.

.

Core 62 => COS0

5. To perform these steps at runtime, the scheduler must integrate the association and allocation
functions in its schedule() function (see Section 1.2 for details). During execution, control
is handed over from the executor to the scheduler (at the end of each time quantum) in
order to decide which processes need to be executed next. The scheduler already possesses
the updated counts of all recorded PMC events when execution of schedule() function
begins. Depending on the schedulers functioning, performance requirements of applications,
and resource availability of the system, the scheduler can invoke the COS association and core-
to-COS allocation functions to assign the needed cache-configurations to cores. Furthermore,
the COS associations and core allocations can also be reset during this stage if required. Note

20

that re-configuring cache-allocations results in significantly increased overhead compared to
simple resource-aware decision making.

9 Others

9.1 Isolating a socket

When running an experiment, it is beneficial to isolate the cores (or socket) to prevent interference
from other applications and kernel tasks running in the background. We use the cset command to
move all the applications from one socket to another. That way, the socket we want to utilize will
be “almost” free of applications and we can run our workload.

Note that the specific cores in the cpuset will depend on the architecture of the platform. For
example, on an Intel(R) Xeon(R) CPU E5-2620 v3 @ 2.40GHz (Haswell microarchitecture) with
24 cores and 2 NUMA nodes, we have cpus 0-5 (and their hyperthreaded cpus 12-17) on one NUMA
node, and cpus 6-11 (and 18-23 hyperthreaded) on the other node. We isolate the socket in the
following way:

create "system" cpuset with [6 -11 ,18 -23] cpus

cset set -c 6-11,18-23 -s system

list the cpusets

cset set -l

move processes from "root" to "system" cpuset

cset proc -m -f root -t system

move kernel threads from "root" to "system" cpuset

cset proc -k -f root -t system

list the processes located in "root" cpuset

cset proc -l -s root

move bash instance (from which scaff is executed) to the "root" cpuset

cset proc -m -p $$ -t root

9.2 Using CPUID

The CPUID instruction, short for CPU-Identification, is used to enumerate the various capabilities
and architectural features for Intel processors. feature information to the EAX, EBX, ECX, and
EDX registers. For more information, see Intel’s Software Developer Manual 7, Volume 2A, Chapter
3.2.

9.3 Performance Monitoring

Intel processors contain two classes of performance monitoring events: architectural and non-
architectural. Availability of architectural performance monitoring capabilities is enumerated using

7https://software.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-sdm-
combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4.html

21

https://software.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4.htm

the CPUID.0AH.
The architectural events are consistent across platforms

Figure 8: Layout of IA32 PERFEVTSELx MSRs

9.4 cpuset

The cpuset pseudo-filesystem can be used to isolate cores from outside interference. See documen-
tation 8 here.

9.5 freezer

Scaff utilizes the freezer subsystem to support scheduling and performance monitoring. For more
information, see documentation 9 here.

8https://man7.org/linux/man-pages/man7/cpuset.7.html
9https://access.redhat.com/documentation/en-us/red hat enterprise linux/6/html/resource management guide/sec-

freezer

22

https://man7.org/linux/man-pages/man7/cpuset.7.html
https://man7.org/linux/man-pages/man7/cpuset.7.html
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/resource_management_guide/sec-freezer

10 Examples

This section demonstrates the process of using Scaff to profile benchmarks, run scheduling experi-
ments, and parse and search experiment results. The following examples require Scaff to be set up
according to the instructions presented in Section 2.

10.1 Profiling Experiment

The Scaff tool includes a dedicated script profiler scaff.py for quick and easy profiling of bench-
marks. The specified benchmark will be executed for one full period with the specified number of
threads. The cores should be equal to or greater than the number of threads of the selected bench-
mark. If there are excess cores, the profiler will keep them unassigned for the duration of the
experiment to ensure no interference from other kernel/user tasks. Figure 9 shows the options used
to profile the benchmark correlation (from Polybench benchmark suite10) with a dataset of 8MB
and problem size of 15. The benchmark field contains the execution command, along with any
required command line inputs. Figure 10 shows the summarized result for this experiment, located
in a new folder created in the experiment results directory.

Figure 9: Example profiling experiment

Figure 10: Profiling Experiment Result

10https://web.cse.ohio-state.edu/ pouchet.2/software/polybench/

23

10.2 Normal Experiments

The examples presented in this section are for a Xeon processor with 12 physical cores partitioned
into two 6-core sockets (each connected to a NUMA node). We utilize the cores of only one socket
to ensure isolation from any unrelated kernel/user tasks. See Section 9.1 for instructions on how
to isolate a socket.

We execute the following group of 12 applications (Table 1), taken from Polybench (4.2.1b)
11 and Stream 12 benchmark suites using the static scheduler cgang and the dynamic scheduler
linux cfs (both are included in the default Scaff repository). Four of the benchmarks are multi-
threaded (lu, 3mm, stream 32M, and stream 64M) while the rest are single-threaded, resulting
in a total of 18 threads for the entire workload.

Index Application #Threads Needed Index Application #Threads Needed

1 symm 1 7 2mm 1

2 lu 2 8 heat-3d 1

3 atax 1 9 durbin 1

4 gemm 1 10 stream 32M 2

5 doitgen 1 11 3mm 2

6 mvt 1 12 stream 64M 4

Table 1: Benchmarks to be scheduled

10.2.1 Static Scheduler

Static schedulers map applications/processes to cores before starting execution. The following steps
describe how the scheduler cgang (included in the default Scaff repository) can be used to execute
the workload listed in Table 1.

Since our system has only 6 physical cores, we split the benchmarks into three distinct groups
(‘gangs’) that will execute interchangeably in a time multiplexed manner. For this example, we
want assign benchmarks 1 to 5 to gang #1, benchmarks 6 to 10 to gang #2, and benchmarks 11
& 12 to gang #3. Complete the following steps to run this experiment:

1. Compile each benchmark and place the generated executables in an appropriate folder. For
this example, we utilize the <HOME DIR/bin> folder. Instructions for compiling Polybench &
Stream benchmarks can be found in Section 4.2.

2. Create a configuration file in <HOME DIR/conf> using the format presented in Listing 2 with
each benchmark being specified in a new line (see Section 6.1 for more details). Figure
11 shows the completed configuration file for this workload. Since cgang does not require
columns 7, 8, and 9, we set each value in these columns to a placeholder (‘0’ in this case).

Listing 2: Column Format
#core s | gang id | core id | a lone | s t a r t t | path | p r i o r i t y | min r | max r | name

11https://web.cse.ohio-state.edu/ pouchet.2/software/polybench/
12https://www.cs.virginia.edu/stream/ref.html

24

Figure 11: Configuration file for example #1

3. For each benchmark, we specify the executable’s path relative to the <HOME DIR/src> folder.
In addition, provide any additional command line arguments such as problem size, input file,
etc., required for each benchmark.

4. For multi-threaded benchmarks such as lu, 3mm, and stream, specify the starting core id in
the ‘core’ column. cgang will automatically check the number of threads and assign the rest
of the cores incrementally. For example, for the double-threaded benchmark lu, we specify
‘1’ as the starting core. Since it requires a total of two threads, the scheduler will assign them
both consecutively to cores 1 and 2.

5. Make sure the configuration file ends in a new line.

6. Once the configuration file has been made, open HOME DIR/run scaff.py and fill in the details
shown in Figure 12.

Figure 12: Settings for example #1

25

7. Execute the HOME DIR/run scaff.py script. Once the experiment is complete, the results
can be found in a newly made directory in HOME DIR/experiment results/.

10.2.2 Dynamic Scheduler

This example demonstrates how the workload presented in Table 1 be scheduled using the dynamic
scheduler linux cfs (included in the default Scaff repository). Dynamic schedulers determine the
application-to-core placement at runtime.

1. Compile each benchmark and place the generated executables in an appropriate folder. For
this example, we utilize the <HOME DIR/bin> folder. Instructions for compiling Polybench &
Stream benchmarks can be found in Section 4.2.

2. Create a configuration file in <HOME DIR/conf> using the format presented in Listing 3 with
each benchmark being specified in a new line (see Section 6.1 for more details). Figure
13 shows the completed configuration file for this workload. linux cfs and other dynamic
schedulers only require the number of threads, path, and benchmark name.

Listing 3: Column Format
#core s | gang id | core id | a lone | s t a r t t | path | p r i o r i t y | min r | max r | name

Figure 13: Configuration file for example #2

3. For each benchmark, we specify the executable’s path relative to the <HOME DIR/src> folder.
In addition, provide any additional command line arguments such as problem size, input file,
etc., required for each benchmark.

4. Make sure the configuration file ends in a new line.

5. Once the configuration file has been made, open HOME DIR/run scaff.py and fill in the details
shown in Figure 14.

26

Figure 14: Settings for example #2

6. Execute the HOME DIR/run scaff.py script. Once the experiment is complete, the results
can be found in a newly made directory in HOME DIR/experiment results/.

11 Notes

This tool has been tested on a Intel(R) Xeon(R) CPU E5-2620 v3 @ 2.40GHz server (24 cores in
total, Haswell microarchitecture) that supports Cache Monitoring Technology (CMT). The operat-
ing system run on this server is CentOS Linux release 7.4.1708. One numa node was utilized with
hyper-threading disabled (i.e. cores 0-5). In core architectures performance monitoring capabili-
ties are more limited. Run intel technologies in src/ directory to check what is supported in your
system.

This tool records the aggregate socket bandwidth along with the per-core bandwidth. The
aggregate bandwidth is extracted via reading the IMC registers from the PCI. In order to run in
a different system one should check the PCI bus.device.function and change the SOCKET0 BUS,
MC0 CHANNEL0 DEV ADDR, MC0 CHANNEL0 FUNC ADDR values in ”prfcntr xeon types.h”.
Otherwise aggregate socket bandwidth should be disabled by commenting the InitPower(), start-
Power(), startMCCounters(), stopMCCounters() functions in the scheduler file.

12 Known Issues

12.1 Libcpuset/Libbitmask Error

12.2 GCC Installation Error on Comet Lake/ Core i9:

E: Failed to fetch http://archive.ubuntu.com/ubuntu/pool/main/l/linux/linux-libc-dev 5.4.0-42.46 amd64.deb
404 Not Found [IP: 91.189.88.152 80] E: Unable to fetch some archives, maybe run apt-get update
or try with –fix-missing?

I do not think this is the correct solution. We fixed it like that:
sudo apt-get -o Acquire::Check-Valid-Until=false -o Acquire::Check-Date=false update

https://junise.wordpress.com/2016/07/26/ubuntu-restore-default-repository/

12.3 Repositories/GCC

https://junise.wordpress.com/2016/07/26/ubuntu-restore-default-repository/
apt-get install build-essential

27

A Scaff Architecture Detailed Diagram

EXECUTOR

SCHEDULER

init()
allocate scheduler

structure
enable HPC

qexpired()
call freeze()

call schedule()
 call thaw()

push EVNT_QEXPIRED

rebalance()
if pnew_l != []

move progs to schedule_l
and alloc struct

if pfinished_l != []
read HPC, dealloc struct

and respawn prog

freeze()
stop running progs
stop HPC and read

their value

thaw()
start selected progs
start HPC monitoring

schedule()
select progs to
run on the next
 time-quantum

APP1 APP2 APPN

cpusetsfreezer

cgroups

SHM1 SHM2 SHMN

ExecSt
● create list of cpus

● init pnew_l and
pfinished_l

● pipe for progs to
executor

 communication
● construct a priority

heap for events

Programs
● allocate aff_prog_t

● cpuset_create()
● pipe for executor to
progs communication

● shm_alloc()
● Fork()

● EVNT_NEWPROG

INITIALIZATION

get scheduler and
call scheduler_init()

install signal handlers
for SIGCHLD and

SIGTERM

Prog Notification
Handling
Select()

If ExecSt.pipe[0] ready
Process request
Notify back progs

Signal Handling
catch SIGCHLD and call
scheduler_rebalance()
catch SIGTERM and

abort execution

Event Handling
if EVNT_NEWPROG

put prog in pnew_l
call rebalance()

if EVNT_QEXPIRED
call qexpired()

EXECUTION CONTROL

./aff-executor conf_file scheduler cpus

init()

EVNT_NEWPROG respawn()

EVNT_QEXPIRED

p
ro

g
_

ch
a

n
ge

d

Figure 15: Detailed Scaff Overview

28

B Server #1 Specific Settings

Settings for puget server with IP address 131.230.192.5
Open HOME DIR/src/prfcnt/prfcntr.h and change references to:
HOME DIR/src/prfcnt/prfcntr sandy types.h and
HOME DIR/src/prfcnt/prfcntr sandy events.h

C Server #2 Specific Settings

Settings for server with IP address 131.230.193.222
Open HOME DIR/src/prfcnt/prfcntr.h and change references to:
HOME DIR/src/prfcnt/prfcntr xeon types.h and
HOME DIR/src/prfcnt/prfcntr xeon events.h

29

	About Scaff
	Executor
	Initialization
	Execution Control

	Scheduler

	Installation
	Install libraries
	Known Shared Library Issue

	Set Path
	Installation Script
	Architecture-Specific Settings

	Files & Directory Structure
	Directories
	Scripts
	Other Files
	Changing Default Paths & Names

	Compilation
	Compiling Scaff
	Compiling Benchmarks
	Polybench Benchmark Suite
	Stream Benchmark Suite

	Setting Performance Counters
	Architecture Specific Settings
	Python Packages

	Profiling Benchmarks
	Storing Benchmark Statistics
	Profiling Script

	Running Experiments
	Configuration File
	Schedulers
	Run Scaff
	Results

	Experiment Results
	Result Directory Structure
	Metadata
	Raw Results
	Summarized Results
	Parsing Old Results
	Searching Experiment Results

	Using Cache Allocation Technology (CAT)
	Determine CAT Support
	Integrating CAT into Schedulers

	Others
	Isolating a socket
	Using CPUID
	Performance Monitoring
	cpuset
	freezer

	Examples
	Profiling Experiment
	Normal Experiments
	Static Scheduler
	Dynamic Scheduler

	Notes
	Known Issues
	Libcpuset/Libbitmask Error
	GCC Installation Error on Comet Lake/ Core i9:
	Repositories/GCC

	Scaff Architecture Detailed Diagram
	Server #1 Specific Settings
	Server #2 Specific Settings

