
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 [ 

 

 
December 5th, 2017 

Version 1.0 

HoloLens  
Internet-of-Things 
Smart Room 

DESIGN REPORT 
 

Team: S17-71-HOL1 

Client: Mr. Howard Lo 

Saluki Engineering Co. 
 

In
va
lid 
so
ur
ce 
sp
ec
ifi
ed
. 



S17-71-HOL1 

 2 

Team Organization 
 

Shivam Kundan Computer Engineering shivamkundan@siu.edu 

Isaac Onoh Electrical & Computer Eng. isaaczikky@siu.edu 

Alaa Alotaibi Computer Engineering alaa@siu.edu 

Ken Nakazawa Computer Engineering ken.nakazawa@siu.edu 

Antonio Pugh Computer Engineering apugh19@siu.edu 

 
 
 Faculty Technical Advisor          Dr. Iraklis Anagnostopoulos 

Professor of ECE, SIU Carbondale 
Email: iraklis.anagno@siu.edu 

 
 
 

 
Alaa, Antonio, Ken, Shivam, Isaac  



S17-71-HOL1 

 3 

Transmittal Letter [KN] 
 
12/01/2017 
 
Saluki Engineering Company 
1263 Lincoln Drive 
Carbondale, IL 62901 
 
Mr. Howard Lo 
howardlo@outlook.com 
Atlanta, GA 
 
Dear Mr. Howard: 
 
On behalf of Saluki Engineering Company, I am pleased to present to you our design 
report for a HoloLens IoT Smart Room.  I am certain you will find the information in line 
with you needs. The design report will cover the points of key we discussed and the 
frame of this project: 
 
The system is designed to provide and show creative augmented environment; We 
created an IoT Environment from scratch for HoloLens. We are able to walk around and 
interact with holographic and real objects. With interacting by gesture of users, each 
object will show the value by interacting. 
 
Saluki Engineering Company is a Full-service programming & manufacturing company 
dedicated to qualifying products and superior customer service. 
Thank you for the opportunity to serve you. If you have any question concern or 
comment, please contact us by following information. We look forward to meeting with 
you again for future projects. 
 
 
Best Regards, 
 

 
Shivam Kundan 
Project Manager 
Saluki Engineering Company 
(217) 974-5324 
shivamkundan@siu.edu 
 

 



S17-71-HOL1 

 4 

 

Table of Contents 

1. Executive Summary [SK] ................................................................................................. 6 

2. ABET Requirements [SK] ................................................................................................. 7 

3. Product Function [SK] ..................................................................................................... 8 

4. Design Description [SK] [IO] ............................................................................................ 8 
4.1 Introduction [SK]................................................................................................................8 
4.2 Constraints [SK] .................................................................................................................8 

4.2.1 Design Constraints ................................................................................................................... 8 
4.2.2 Development Constraints ........................................................................................................ 8 

4.3 Client Side Architecture [IO] ...............................................................................................9 
4.3.1 Vuforia ...................................................................................................................................... 9 
4.3.2 Unity3D & Visual Studio ........................................................................................................... 9 

4.4 Communication Protocol [IO] ........................................................................................... 11 
4.5 Server Side Architecture [SK] ............................................................................................ 13 

4.5.1 IoT Hub: Raspberry Pi 3 Model B ........................................................................................... 13 
4.5.2 Multithreading ....................................................................................................................... 13 
4.5.3 Status Display LCD .................................................................................................................. 14 
4.5.4 Sensors ................................................................................................................................... 14 
4.5.5 Analog Appliances & IoT Relays ............................................................................................. 15 
4.5.6 Music Player ........................................................................................................................... 16 
4.5.7 Speech Feedback ................................................................................................................... 16 
4.5.8 Automated Room Control (Smart Services)........................................................................... 17 

5. Future Expansions [SK] ................................................................................................. 18 
5.1 Extended Gestures ........................................................................................................... 18 
5.2 Artificial Intelligence ........................................................................................................ 18 
5.3 More Sensors ................................................................................................................... 18 
5.4 Motion Tracker/Controller ............................................................................................... 18 

6. Development Tools for Future Projects [AP] ................................................................. 19 

7. Summary [SK] .............................................................................................................. 22 

8. References ................................................................................................................... 23 

Works Cited ......................................................................................................................... 23 

9. Appendices [SK] [KN].................................................................................................... 24 
9.1 Appendix A: IoT Hub Operation Diagram [SK] ................................................................... 24 
9.2 Appendix B: IoT Hub Wiring Diagrams [SK] ....................................................................... 25 
9.3 Appendix C: IoT Electrical Relay Operation [SK]................................................................. 26 
9.1 Appendix D: Adafruit Si7021 Temperature + Humidity Sensor Board [SK] .......................... 27 
9.2 Appendix E: Adafruit TSL2561 Digital Luminosity Sensor Board [SK] .................................. 28 
9.3 Appendix F: House of Quality [KN] .................................................................................... 29 
9.4 Appendix G: Materials List [SK]......................................................................................... 30 



S17-71-HOL1 

 5 

9.5 Appendix H: Observations from Sensor Data [SK].............................................................. 31 
9.6 Appendix I: IoT Hub Code [SK] .......................................................................................... 34 
9.7 Appendix J: Resumes........................................................................................................ 47 

 



S17-71-HOL1 

 6 

1.  Executive Summary [SK] 
 
With almost 15 billion [1] internet-connected devices in use today, we are already living 
among a deluge of raw information. But all too often, we miss out on the most crucial of 
insights because this data is not optimally processed or presented. Augmented Reality 
is all about providing people with real-time data in a way that allows them to do much 
more with it, essentially exposing intelligence in a manner that is highly consumable.  
 
The HoloLens IoT Smart Room not only bridges the gap between real-time data 
collection and consumption, but also enables the control of previously “non-smart” 
analog appliances such as fans, lights, and virtually anything with an on/off switch. By 
combining the two features, several ‘Smart Services’ can be implemented. For 
example, if the temperature in the room is detected to be above a certain amount, we 
can turn on the fan automatically. The night lights turn on and off automatically 
depending upon the ambient light level. If the room is supposed to be locked but 
someone enters, a message can be sent or an alert can be played through the 
speakers.  
 
Analyzing the heaps of collected data leads to the discovery of new and unexpected 
Smart Services. During testing of HoloLens IoT Smart Room system, the analysis of 
temperature, humidity, and brightness data available to us helped to determine the 
patterns of room occupancy. By studying almost 12,000 points of data collected over 4 
days, we were able to tell when the room was occupied, roughly how many people were 
present, what section of the room was likely occupied, and even the time of twilight in 
the morning. (Appendix H) 
 
Using this data, the system can potentially co-ordinate with the thermostat to optimize 
energy usage, yielding significant cost savings, or implement a security system which 
keeps the occupant’s identities anonymous, while also keeping effective tabs on the 
room and its contents. 
 
In the next iteration of our product, SEC aims to make the Smart Room predict the 
needs of occupants based on past observations. For example, it can determine the 
average time of arrival for people on each day of the week and then heat/cool the room 
before they arrive, or begin to brew a cup of coffee when the GPS signal on their phone 
indicates they are about to reach the workplace. Using helpful API’s for web services, it 
is possible to cross-reference sensor data with information like live weather, current 
traffic, and bus schedules, to name only a few. 
 
Using HoloLens’s advanced AR capabilities, we were able to bring the Smart Room to 
life. It’s remarkable responsiveness and versatility allowed for the creation of a 
holographic user interface that is both beautiful and extremely intuitive at the same time. 
 
[Video: youtu.be/ K9n25WHqLxM] 



S17-71-HOL1 

 7 

2.  ABET Requirements [SK] 
Combining two distinct but rapidly merging technologies into one project required skills 
and learning that were broad in scope. In addition to building upon knowledge from 
almost all previous engineering courses, the team members also acquired many new 
skills over the course of the project. 
 
Some of the classes that we drew upon were – 
 

1. ECE 296: Software Tools for Engineers  
Skills: Python, using Raspberry Pi, Arduino, sensors, NXT robot 
 

2. ECE 327: Digital Circuit Design 
Skills: Wiring digital devices on breadboards, Combinational & Sequential Logic 
 

3. ECE 329: Computer Organization and Design 
Skills: General knowledge of computer architecture 
 

4. ECE 412: Ad-Hoc Mobile Networks 
Skills: OSI Network Model, TCP/IP protocol, general knowledge of networks 

 

 
Fig 1: ABET criteria assessment for ECE 412 

 
5. ECE 432: Programming for Parallel Processors 

Skills: Multithreading with pthreads, scheduling 
 

 
Fig 2: ABET criteria assessment for ECE 432 

 
6. ECE 493: Systems Programming 

Skills: OS scheduling, Inter-process communication 
 
Newly acquired skills – 
 

1. C# and .NET programming 
2. Use of TCP/IP protocol. 
3. Two-way communication b/w server and multiple clients. 
4. I2C Communication:  Digital sensor boards and LCD display 
5. Using IoT Electrical relays 
6. Presentation, patience, perseverance  



S17-71-HOL1 

 8 

3.  Product Function [SK] 
The HoloLens-IoT Smart Room has two simple functions – 

1. Connect physical devices and sensors to internet. 
2. Interact with devices and sensor data in an intuitive way. 

4.  Design Description [SK] [IO] 
4.1  Introduction [SK] 

At the topmost level, the HoloLens IoT Smart Room consists of two independent 
subsystems that communicate with each other using messages sent through the 
internet.  

 
Fig 3: Overview 

 

          
 
The IoT hub is capable of running independently and monitors the room continuously, 
even when no clients are connected. This feature is useful for two reasons – 
1. Expanding the client to any internet-enabled device such as a smart phone, 

computer, or hardcoded remote control. 
2. Running the room’s automated control and monitoring functions (Smart Services). 
 

4.2  Constraints [SK] 
 
4.2.1  Design Constraints 

The only design constraint for the product was to use a HoloLens as one of the 
IoT clients. 

 
4.2.2  Development Constraints 

• Budget: $400 

• OS: Windows 10 Education/Pro 
 

Client: 
Device: Microsoft HoloLens 
Purpose: 

• Use AR to interact with the room 

• Read sensor information 

• Additional holographic features 

IoT Hub:  
Device: Raspberry Pi 3 Model B 
Purpose: 

• Accept incoming messages 

• Send status and sensor information 

• Control physical devices 



S17-71-HOL1 

 9 

4.3  Client Side Architecture [IO] 
 
4.3.1  Vuforia 

As a team, we decided to add detection capability to our project, and for that we 
needed to have the ability to identify an object as well as possibly track the 
object. To help with the implementation of this, we used the software Vuforia, for 
detection as well as tracking the object.  
Initially, we planned to track a three-dimensional object, but we soon found out 
that for this to be done efficiently, we needed a three-dimensional object with 
unique data points, as well as a higher resolution scanner to get in detail our 
unique data points. We decided to switch from three-dimensional object detection 
to two-dimensional image detection.  
 
Technical Details 

      
    Fig 4: Image Target  Fig 5: Image Target with Data Points 

 
Using the image target, Vuforia allows you to create a database for the image 
that’s to be detected, and based on this, multiple objects can be bound to a 
particular image. Also, you can have different image targets being tracked at the 
same time. 
Extended Tracking is Vuforia’s counterpart to spatial mapping on the HoloLens. 
This box needs to be checked when building Vuforia applications for the 
HoloLens. This way the Vuforia application maps out the environment, and is 
able to have objects anchored to certain parts of the environment without having 
the image target present [2].  

 
4.3.2  Unity3D & Visual Studio 

Our main development tool for creating objects for our mixed reality environment 
on the HoloLens was Unity version 5.6.3 p2 (patch 2). The shapes and outline of 
our buttons, the visible text placed in free space, and other assets were made 
available to us through unity. For this project, the user interface (UI) element was 
taken care of through unity development tool.  Visual Studio works in concert with 



S17-71-HOL1 

 10 

the Unity development tool as our script editor. This means that when it came to 
writing code for specific objects to perform an action, all of that was taken care of 
on the visual studio IDE. 

  
 Gestures: 

Through Unity development tool, and visual studio, we are able to write scripts 
that help detect and respond to specific gestures. A gaze manager script tracks 
your gaze by casting a ray into your immediate environment to detect what you 
are focusing on. If your focus happens to be on a hologram, and you attempt to 
use an already created gesture on that object, an event recognizer is called, and 
it captures your gesture and the required response is carried out. Below in figure 
5 are the notable gestures used on the HoloLens. 
 

 
Fig 6: Gestures 

 
 
Building & Deployment: 
After placing the objects you want in your scene, you build the project in unity for 
the windows store as shown in figure 6. This creates a solution file which is then 
opened in visual studio, and you can deploy from there [3]. 
 

 



S17-71-HOL1 

 11 

 
Fig 7: Building Unity Project 

 
 

4.4  Communication Protocol [IO] 
In order to interact with other objects, communication is important. Through a server-
client connection, messages could be sent to another device to start up a specific 
instruction.  
 
Technical Details 
From the image below, notice my client function is divided into two parts, a connect 
function, and a sending function. The connection function of the client connects to a 
server through an IP address and a port number. Have in mind, server must be started 
first before client attempts to connect to it. Also, an internet connection is required for 
this connection to be made. The sending function of the client document simply takes in 
a value and sends that to the server. Notice that both functions make use of async, and 
await.  This is as a result of asynchronous programming being used in this script. 
Asynchronous programming is best used when dealing with blocking activities [4].  



S17-71-HOL1 

 12 

   
Fig 8: Async/Await Connection Functions 

 

 
Fig 9: OSI Network Layer Model 

 
 



S17-71-HOL1 

 13 

4.5  Server Side Architecture [SK] 
 

 
Fig 10: Raspberry Pi 3 Model B Motherboard 

 
4.5.1  IoT Hub: Raspberry Pi 3 Model B 

The Raspberry Pi 3 Model B board was the best fit for this project because of – 
 
1. Quad-Core CPU w/ GPU Architecture  

Allows for effective multitasking. From the very beginning of the project, it was 
decided that each feature must work independently. Every device runs in its 
own independent process. Changes can be made by sending the process a 
message or keyboard signal from the <signal.h> library. 
 

2. Linux Operating System: Raspbian 
The team has a vast amount of experience working with Linux systems. 
Raspbian connected hardware can be programmed in C/C++ using wiringPi 
library or in Python. File handling is relatively easy. ‘Windows 10 IoT Core’ 
operating system was also considered for its compatibility with other Microsoft 
products (HoloLens). However, this was not practical for our design. 

 
3. 40-pin GPIO 

Can directly power two 3.3V devices and two 5V devices. Allows for PWM, 
analog signals, and I2C protocol communication. For the IoT hub, two 3.3V 
pins are used to power the sensors and one 5V pin to power the LCD display. 

 
4.5.2  Multithreading 

Devices must not interfere with each other, the music player, or the sensor data 
monitoring operation. Initially the program utilized pthreads library to explicitly 
parallelize functions of the IoT hub but this was tedious and prone to errors. 
In the end product, the Linux software ‘Screen’ was employed to implicitly 
manage the execution of processes/threads. 
In C, the exec() family of functions was used to run Python scripts. 
In Python, the system() function was used to execute system commands. 



S17-71-HOL1 

 14 

4.5.3  Status Display LCD 
 

 
Fig 11: LCD Display 

 
To ensure independent operation and troubleshooting, an LCD character display 
offers a quick way to view sensor readings, clock, incoming socket messages, 
device actions, and potential errors. The system uses a standard 16x2 character 
LCD display with I2C communication capability. 
When a client connects to the system, the screen displays the number of clients 
until it is used by another function such as sensor update or date/time update. 

 
4.5.4  Sensors 

 
1. Adafruit Si7021 Temperature and Humidity Sensor 

Always running in the background and logging the temperature and relative 
humidity every 5 seconds in a .csv file. Output is displayed on the status LCD. 
Data can also be read by the sensor functions in the hardware controller code 
and subsequently sent to the client device for further use. 
 
Subsystem Details (Appendix D) 
Precision Relative Humidity Module 
Precision: ± 3% RH (max), 0–80% RH 
Operating Range: 0 to 100% RH  

 
High Accuracy Temperature Module 
Precision: ±0.4 °C (max), –10 to 85 °C 
Operating Range: Up to –40 to +125 °C 
 
System-On-Chip 
Operating Voltage: 1.9 to 3.6 V 
Power Consumption: 150 µA active current, 60 nA 
standby current 
 

2. Adafruit TSL2561 Digital Luminosity/Lux/Light Sensor 
Approximates human eye response. Constantly running in background and 
logging the room’s visible light brightness every 5 seconds. Also measures IR 
light level but this value is not used for our project.  

 
Programmed to toggle lamp on/off if the reading changes by at least 300 Lux.  
Specifications (Appendix E) 

 
Fig 12: Adafruit Si7021 



S17-71-HOL1 

 15 

Temperature range: 
-30 to 80 *C 
 
Dynamic range (Lux):  
0.1 to 40,000 Lux 
 
Voltage range:  
2.7-3.6V 
 

4.5.5  Analog Appliances & IoT Relays 
If a device has an on/off switch, it can be converted to an IoT device using the 
raspberry pi hub. As a cost and time saving measure, existing electrical 
appliances owned by SEC were converted into IoT devices. These were – a desk 
lamp, a desk fan, and a blender. 
 

 
Fig 14: Interacting with Analog Appliances 

 
This goal presented the team with two of our hardest design challenges – 

1. Handling the connection to the mains outlet (Dangerous! ☠) 
2. Signaling a device with no in-built communication features. 
 
Solution: IoT Relay by Digital Loggers (Appendix C) 
Each unit can independently control one device, using one GPIO pin. We linked 
three of them together and plugged the last one into the mains outlet. 

 

 
Fig 13: Adafruit TSL2561 

 



S17-71-HOL1 

 16 

4.5.6  Music Player 
Using the Raspbian default media player ‘omxplayer’ running in headless mode 
in the background, any saved song can be accessed and played by the music 
player. Essentially the music player is just a collection of functions in the 
hardware controller script. Every song is played in its own new process to ensure 
parallel operation of all devices. 
 

 
Fig 15: Music Player 

 
Features: 

• Actions: Play, Stop, Next, Random. 

• Avoids song overlap. This can happen if multiple clients try to play a song at 
the same time. 

• Speech feedback messages for other functions can still be played concurrently. 

• If a client gets disconnected, the music player will stop their song 
automatically.  

 
4.5.7  Speech Feedback 

Using omxplayer, prerecorded messages can be played for each action. For 
speech synthesis, a Mac OS command line program named ‘say’ was used. 
 

 
Fig 16: Speech Synthesis on Mac OS Terminal 

 



S17-71-HOL1 

 17 

 
4.5.8  Automated Room Control (Smart Services) 

Using the sensors, the Smart Room can detect when a specific activity occurs 
and then take an action such as playing a message or turning a device on/off. If 
needed, it is able to cross reference the readings with data from the internet such 
as weather and traffic. 
 
Using the TSL2561 Lux sensor, if the system detects a change of more than 300 
Lux, it toggles the desk lamp on or off and plays the corresponding speech 
feedback. 

 
Fig 17: Automated Night Light 

 
 

Date Time Temp (C) Humidity Brightness 

11/26/17 3:34:53PM 24.126C 23.41% 739lux 

11/26/17 3:34:55PM 24.126C 23.41% 740lux 

11/26/17 3:34:57PM 24.126C 23.41% 740lux 
Table 1: Sample of Sensor Log File 

 
Appendix H mentions the possibility of making a non-intrusive monitoring system 
using these two sensors. 



S17-71-HOL1 

 18 

5.  Future Expansions [SK] 
 

5.1  Extended Gestures 
 
HoloLens offers the use of three gestures: gaze, tap, and bloom. Using some extra 
hardware for the raspberry pi, gestures can be extended to be swipes, pinches, etc. 
Links: 
Hover Adds Gesture Control to Arduino and Raspberry Pi Projects 
Turn on a Lamp with a Gesture-Controlled Harry Potter Wand 
 

5.2  Artificial Intelligence 
 
Amazon’s AI assistant ‘Alexa’ is open source and can be integrated into a wide variety 
of raspberry pi projects. She can also be made to execute custom programs.  
Links: 
http://www.cyber-omelette.com/2016/11/alexa-pi.html 
http://www.cyber-omelette.com/2017/01/alexa-run-script.html 
 
 

5.3  More Sensors 
 
Adafruit 9-DOF Accel/Mag/Gyro+Temp Breakout Board - LSM9DS0: 
9-degrees-of-freedom sensor board 
Link: https://www.adafruit.com/product/3463 
 
I2CThermal Camera: 
Link: https://www.adafruit.com/product/3538 
 

5.4  Motion Tracker/Controller 
Track motion in extremely high detail. 
https://www.adafruit.com/product/2106 
 

https://lifehacker.com/hover-adds-gesture-control-to-arduino-and-raspberry-pi-1580680276
https://makezine.com/projects/raspberry-pi-potter-wand/
http://www.cyber-omelette.com/2016/11/alexa-pi.html
http://www.cyber-omelette.com/2017/01/alexa-run-script.html
https://www.adafruit.com/product/3463
https://www.adafruit.com/product/3538
https://www.adafruit.com/product/2106


S17-71-HOL1 

 19 

6.  Development Tools for Future Projects [AP] 
In this section we will discuss the hardware used during the completion of the project. 
We will also give possible alternatives, so other hardware can be used and strict 
guidelines of the system requirements are not abused. First the system requirements, 
given by Microsoft, in order to use the Hololens Emulator as well as to transfer 
programs from your computer hardware to the Hololens hardware. The Hololens 
Emulator requires Hyper-V capabilities and uses RemoteFx for hardware accelerated 
graphics. In order to use this emulator your PC is required to meet these standards: 

▪ 64-bit Windows 10 Pro, Enterprise, or Education (The Home edition does not 

support Hyper-V or the HoloLens emulator) 

▪ 64-bit CPU 

▪ CPU with 4 cores (or multiple CPU's with a total of 4 cores) 

▪ 8 GB of RAM or more 

▪ In the BIOS, the following features must be supported and enabled: 

▪ Hardware-assisted virtualization 

▪ Second Level Address Translation (SLAT) 

▪ Hardware-based Data Execution Prevention (DEP) 

▪ GPU (The emulator might work with an unsupported GPU, but will be significantly 

slower) 

▪ DirectX 11.0 or later 

▪ WDDM 1.2 driver or later 

▪ The technological specifications of the PC that was used during the course of the 
project were as follows: 

Processor 2.6 GHz Intel Core i7 

RAM 16 GB DDR3 

Memory Speed 1600 MHz 

Hard Drive 60 GB flash memory solid state 

Graphics Coprocessor NVIDIA GTX960M 2G GDDR5 

Card Description dedicated 

Processor Count 4 

Table 2: System Requirements 
If the PC one has in their possession does not meet these requirements, then one will 
need to be acquired before work can be done with the Hololens. Because the PC that 

http://blogs.technet.com/b/iftekhar/archive/2010/08/09/enable-hardware-settings-in-bios-to-run-hyper-v.aspx


S17-71-HOL1 

 20 

was used for majority of the project was the personal computer of one of the members 
of the team, it was priced at over $1000. We realize that this is not a feasible budget for 
some people.  There are a few already assembled computers that meet these 
requirements and costs are significantly lower. In order to find one that fits your budget, 
one must go online and search for PCs by price as well as specified specifications. Here 
are a few that we found had the minimal specs, but still got the job done. 
 
2017 HP Elite 8300 Small Form Factor Desktop Computer 

• Memory 

o 16GB DDR3 RAM 

• Processor 

o Intel Quad Core i7-3770 3.4GHz Processor 

• Price – $450.00 

 

 

2017 HP Elite 8300 Small Form Factor Desktop Computer 

• Memory 

o 16GB DDR3 RAM 

• Processor 

o Intel Quad Core i7-3770 3.4GHz Processor 

• Price – $824.66 

 
 
HP ENVY Desktop Computer 

• Memory 

o 16 GB DDR4-2133 SDRAM 

• Processor 

o Intel Quad Core i7-7700  

• Price – $1,159.44 

 



S17-71-HOL1 

 21 

There is a possibility that the PC one would like to use has meet some of the technical 
requirements, but not all of them. So, here are some PC parts that you could integrate 
into the PC one has already. 
 

Spec Part Price 

Quad- Core Processor 

AMD Athlon X4 845 and 
Near-Silent 95W AMD 

Thermal Solution 
AD845XACKASBX 

$55.91 

AMD FX 4-Core Black 
Edition FX-4300, 

FD4300WMHKBOX 
$69.95 

AMD A8-7600 Quad-Core 
3.1 GHz Socket FM2+ 

65W Desktop Processor 
AMD Radeon R7 

(AD7600YBJABOX) 

$71.83 

RAM (8GB) 

604506-B21 RAM Module 
- 8 GB (1 x 8 GB) - DDR3 

SDRAM 
$30.20 

8GB (1x8GB) Dual Rank 
x4 PC3-10600 (DDR3-

1333) Registered CAS-9 
Memory Kit 

$29.48 

Kingston 8 GB DDR3 
SDRAM Memory Module 8 
GB (1 x 8 GB) 1333MHz 
DDR31333/PC310600 
ECC DDR3 SDRAM 
240pin DIMM KTH-

PL313/8G 

$52.29 

Windows 10 must be used as the operating system when trying to complete this 
project. The specific types of this operating system (Pro, Enterprise, Education) can 

we acquired through the school or organization that is sponsoring this project. 

Table 3: Specifications 



S17-71-HOL1 

 22 

7.  Summary [SK] 
 
The HoloLens IoT Smart Room system monitors real-time data from high precision 
sensors and then overlays them in a way that enables more efficient use of the 
information. Combined with the ability to control physical devices, several Smart 
Services can be set up for each individual user or groups of users.  
 
At a cost of only $90, the Smart Room is an effective proof of concept for projects 
involving AR/VR on the HoloLens. Because of its uniqueness and open-ended nature, 
the project was extremely research intensive. We hope our documentation and code will 
be helpful for future teams attempting similar projects. 



S17-71-HOL1 

 23 

8.  References 

Works Cited 
 

[1]  Statista, "Internet of Things (IoT) connected devices installed base worldwide from 
2015 to 2025 (in billions)," 1 November 2016. [Online]. Available: 
https://www.statista.com/statistics/471264/iot-number-of-connected-devices-
worldwide/. [Accessed 9 December 2017]. 

[2]  Vuforia, "Developing Vuforia Apps for HoloLens," Vuforia, [Online]. Available: 
https://library.vuforia.com/articles/Training/Developing-Vuforia-Apps-for-HoloLens. 
[Accessed 9 December 2017]. 

[3]  "Unity development overview," [Online]. Available: 
https://developer.microsoft.com/en-us/windows/mixed-
reality/unity_development_overview. 

[4]  "Asynchronous programming with async and await (C#)," 22 May 2017. [Online]. 
Available: https://docs.microsoft.com/en-us/dotnet/csharp/programming-
guide/concepts/async/index. [Accessed 9 December 2017]. 

[5]  Digital Loggers Inc, [Online]. Available: https://dlidirect.com/products/iot-power-
relay. [Accessed 9 December 2017]. 

[6]  L. Klint, "Holographic programming: a HoloLens how-to in a mixed reality world," 
27 May 2016. [Online]. Available: https://www.pluralsight.com/blog/software-
development/holographic-programming-hololens. [Accessed 31 March 2017]. 

[7]  NAE, [Online]. Available: http://www.engineeringchallenges.org/challenges.aspx. 
[Accessed 31 March 2017]. 

[8]  T. I. Paul Hockett, "Augmented Reality with Hololens: Experiential Architectures 
Embedded in the Real World," Arxiv, 13 October 2016.  

[9]  A. S. M. G. F. L. Giovanni Piumatti, "Spatial Augmented Reality meets robots: 
Human-machine interaction in cloud-based projected gaming environments," in 
Consumer Electronics (ICCE) 2017 IEEE International Conference, 2017.  

[10]  [Online]. Available: https://i.ytimg.com/vi/DilzwF90vec/maxresdefault.jpg. 

[11]  [Online]. Available: https://d.ibtimes.co.uk/en/full/1420390/how-microsoft-hololens-
will-enable-scientists-work-virtually-mars.jpg. 

[12]  B. Stackpole, "IoT-and-augmented-reality-A-match-made-in-heaven," 1 November 
2016. [Online]. Available: http://internetofthingsagenda.techtarget.com/feature/IoT-
and-augmented-reality-A-match-made-in-heaven. [Accessed 9 December 2017]. 

 
 
 
 
 



S17-71-HOL1 

 24 

9.  Appendices [SK] [KN] 
 

9.1  Appendix A: IoT Hub Operation Diagram [SK] 
 

 



S17-71-HOL1 

 25 

9.2  Appendix B: IoT Hub Wiring Diagrams [SK] 
 
 

 
 

 
Detailed 

 

 
Simplified 



S17-71-HOL1 

 26 

9.3  Appendix C: IoT Electrical Relay Operation [SK] 
 
 

 
Wiring Diagram 

 
 
 

 
 

Safety Features [5] 
 

 
Link to manufacturers webpage: https://dlidirect.com/products/iot-power-relay 

 
 



S17-71-HOL1 

 27 

9.1  Appendix D: Adafruit Si7021 Temperature + Humidity Sensor Board [SK] 
 
Purpose: Get the current ambient temperature and humidity 
Datasheet:https://www.silabs.com/documents/public/data-sheets/Si7021-A20.pdf 

 

 
Schematic 

 

 
Fabrication Print 

 
 

https://www.silabs.com/documents/public/data-sheets/Si7021-A20.pdf


S17-71-HOL1 

 28 

9.2  Appendix E: Adafruit TSL2561 Digital Luminosity Sensor Board [SK] 
 
Purpose: Low power, digital luminosity (light) sensor 
Datasheet: https://cdn-shop.adafruit.com/datasheets/TSL2561.pdf 
 

 
Schematic 

 
 

 
Fabrication Print 

 
 

https://cdn-shop.adafruit.com/datasheets/TSL2561.pdf


S17-71-HOL1 

 29 

9.3  Appendix F: House of Quality [KN] 
 

 



S17-71-HOL1 

 30 

9.4  Appendix G: Materials List [SK] 
 

# Vendor Product Quantity Original 
Price 

Total 
paid 

Source 

1 Microsoft  HoloLens 1 $3,000  $0  Mr. Howard Lo 

2 RPi 
Foundation 

Raspberry Pi 3 
Model B 

1 $35  $0  Professor Cubley 

3 - LCD Display 16x2 1 
  

Professor Cubley 

4 Digital 
Loggers 

IoT Relays 3 $29.92  $89.76  Dr 
Anagnostopoulos 

5 Adafruit SL2561 Digital 
Luminosity/Lux/Light 
Sensor Breakout 

1 $9.15  $0  Shivam 

6 Adafruit Si7021 Temperature 
& Humidity Sensor 
Breakout Board 

1 $9.95  $0  Shivam 

7 Honeywell Desk Fan 1 - $0  SEC 

8 - Desk Lamp 1 - $0  SEC 

9 - Blender 1 - $0  SEC 

 
Total Expenditure: $89.76 
 
 
 
 



S17-71-HOL1 

 31 

9.5  Appendix H: Observations from Sensor Data [SK] 
Both sensors logged data every 3 to 6 seconds, with the mild variation due to 
processing/file handling overhead. After running the system continually for four 
days, a sizeable amount of data was gathered. The purpose of performing this 
experiment was to see if anything could be learned/inferred from the data. 
 
Total # of readings = 11,814 
Frequency = 3 to 6 s between readings 
 
The inferences are based on cross referencing sensor readings with physical 
observations and information from the internet.  
 
Excerpts from the sensor log and observations are listed on the next two pages.



S17-71-HOL1 

 32 

 

11/26/17 3:34:53PM 24.126C 23.41% 739lux 
 

11/27/17 9:05:09PM 24.815C 22.43% 685lux 

11/27/17 9:05:26PM 24.815C 22.43% 693lux 

11/27/17 9:05:43PM 24.815C 22.43% 3lux 

11/27/17 9:05:59PM 24.815C 22.43% 1lux 

11/27/17 9:06:16PM 24.815C 22.43% 1lux 

11/27/17 9:06:33PM 24.815C 22.43% 1lux 
 

11/27/17 10:46:30PM 24.126C 20.96% 1lux 

11/27/17 10:46:47PM 24.126C 20.96% 1lux 
 

11/27/17 10:47:03PM 24.126C 20.96% 0lux  
11/27/17 10:47:20PM 24.126C 20.96% 0lux  

 

11/28/17 6:29:37AM 23.436C 20.96% 0lux 

11/28/17 6:29:54AM 23.436C 20.96% 0lux 

11/28/17 6:30:11AM 23.436C 20.96% 0lux 

11/28/17 6:30:27AM 23.436C 20.96% 1lux 

11/28/17 6:30:44AM 23.436C 20.96% 1lux 

11/28/17 6:31:01AM 23.436C 20.96% 1lux 
 
 
 
 
 
 

Fig #: Twilight times for Carbondale, IL on 11/28/17 
 

11/28/17 9:00:22AM 23.436C 20.96% 1lux 

11/28/17 9:00:39AM 23.436C 20.96% 1lux 

11/28/17 9:00:56AM 23.436C 20.96% 605lux 

11/28/17 9:01:12AM 23.436C 20.96% 603lux 
 

11/28/17 7:06:58PM 24.815C 23.41% 694lux     

11/28/17 7:07:14PM 24.815C 23.90% 429lux 
 

   

11/28/17 7:07:31PM 24.815C 23.41% 407lux     

11/28/17 7:07:48PM 24.815C 23.41% 693lux     

         

11/28/17 7:08:04PM 24.815C 23.41% 642lux 
  

  

11/29/17 7:49:57PM 24.815C 28.80% 652lux 
 

Last person to leave the lab 
[9:05:43 PM] 

Hallway Lights Turned Off 
[10:47:03 PM] 

First person to arrive 
[9:00:56 AM] 

Twilight Detected (?) 
[6:30:27 AM] 

Begin logging data 
[3:43:53 PM] 

4 to 6 more people entered the lab 
in this period. From our physical 
observation, each person 
increases humidity by ~1% 
[7:08:04 PM] 
[7:49:47 PM] 

Person/people standing directly 
in front of sensors reduces light 
falling on detector. 
[7:07:14 PM] 



S17-71-HOL1 

 33 

 

11/29/17 11:11:15PM 24.815C 29.78% 636lux     

11/29/17 11:11:17PM 24.815C 29.78% 637lux 
 

   

11/29/17 11:11:20PM 24.815C 29.78% 0lux  

 

  

11/29/17 11:11:25PM 24.815C 29.78% 6lux     

11/29/17 11:11:28PM 24.815C 29.78% 6lux     

11/29/17 11:11:30PM 24.815C 29.78% 6lux 
 

   

11/29/17 11:11:33PM 24.815C 29.78% 6lux     

11/29/17 11:11:36PM 24.815C 29.78% 6lux     

11/29/17 11:11:38PM 24.815C 29.78% 6lux  

 

  

11/29/17 11:11:41PM 24.815C 29.78% 6lux     

11/29/17 11:11:44PM 24.815C 29.78% 6lux   

 

 

11/29/17 11:11:46PM 24.815C 29.78% 6lux     

11/29/17 11:11:49PM 24.815C 29.78% 6lux     

11/29/17 11:11:51PM 24.815C 29.78% 6lux     

11/29/17 11:11:54PM 24.815C 29.78% 6lux     

11/29/17 11:11:57PM 24.815C 29.78% 6lux     

11/29/17 11:11:59PM 24.815C 29.78% 6lux     

11/29/17 11:12:02PM 24.815C 29.78% 6lux     

11/29/17 11:12:05PM 24.815C 29.78% 6lux     

11/29/17 11:12:07PM 24.815C 29.78% 6lux     

11/29/17 11:12:10PM 24.815C 29.78% 6lux     

11/29/17 11:12:13PM 24.815C 29.78% 6lux     

11/29/17 11:12:15PM 24.815C 29.78% 6lux     

11/29/17 11:12:18PM 24.815C 29.78% 691lux 
    

11/29/17 11:12:23PM 24.815C 29.78% 659lux     

11/29/17 11:12:25PM 24.815C 29.78% 654lux     

11/29/17 11:12:28PM 24.815C 29.78% 649lux     
 

11/30/17 12:39:05PM 24.815C 26.84% 642lux 

11/30/17 12:39:16PM 24.815C 26.84% 630lux 

11/30/17 12:39:28PM 24.815C 26.84% 104lux 

11/30/17 12:39:41PM 24.815C 27.33% 26lux 

11/30/17 12:39:53PM 24.815C 27.33% 501lux 

11/30/17 12:40:07PM 24.815C 29.29% 638lux 

11/30/17 12:40:19PM 24.815C 28.80% 640lux 

11/30/17 12:40:30PM 24.815C 27.82% 640lux 
 

Someone was likely checking 
out our sensor and LCD setup. 
This reduces the light reaching 
the sensor’s receiver, causing 
these dips in readings.  
[12:39:28 PM] 
[12:40:07 PM] 

Testing Smart Service: 
Automated Night Light  
[11:11:17 PM] 

1. Lux<100 detected  
    [11:11:20 PM] 

1. 2. Small processing delay 
(Have to wait 3 to 6 seconds 
for next readings) 

Desk Lamp turns on 
automatically 
[11:11:25 PM] 

Desk lamp will turn off 
automatically but it cannot 
be confirmed from this data 
alone. 
[11:12:18 PM] 

~5s delay 

39 seconds 



S17-71-HOL1 

 34 

9.6  Appendix I: IoT Hub Code [SK] 
 

 
Organization of Source Files 

 
Main/server.c 
Maintains communication with HoloLens 

1. //Shivam Kundan   
2. //S17-71-HOL1   
3. //Fall 2017   
4.    
5. /*This program -  
6.   Handles multiple HoloLens socket connections.  
7.   Sends message to hardware controller.  
8.   Sends message back to client.  
9.   Socket programming code modified from: goo.gl/mPWPbP  
10.   */   
11.    
12. #include <stdio.h>    
13. #include <string.h>                 //strlen    
14. #include <stdlib.h>    
15. #include <errno.h>    
16. #include <unistd.h>    
17. #include <arpa/inet.h>       
18. #include <sys/types.h>    
19. #include <sys/socket.h>    
20. #include <netinet/in.h>    
21. #include <sys/time.h>               //FD_SET, FD_ISSET, FD_ZERO macros    
22. #include <wiringPi.h>   
23. #include <wiringPiI2C.h>   
24. #include <signal.h>   
25. #include <sys/wait.h>   
26. #include <time.h>   
27. #include <math.h>   
28. #include "mappings.h"               //For misc values used in the code     
29. #include "hardware_controller.c"    //Contains all hardware control functions   
30.    
31. #define PORT 51717   
32.    
33. void begin_server();               //Maintains communication with hololens(s)   



S17-71-HOL1 

 35 

34. void control_hardware(int data);   //Sends received integers to hardware control functi
ons   

35.    
36. int main(int argc , char *argv[])     
37. {     
38.     //Initialize GPIO pins using wiringPi mapping   
39.     wiringPiSetup();   
40.     pinMode (DESK_FAN_PIN, OUTPUT);   
41.     pinMode (LAMP_PIN, OUTPUT);   
42.     pinMode(BLENDER_PIN,OUTPUT);   
43.     pinMode (outpin, OUTPUT);   
44.     pinMode (inpin, INPUT);   
45.        
46.     //Signal handling   
47.     signal(SIGINT,sig_handler);   
48.    
49.     //Will be used later for random song function   
50.     srand(time(NULL));      
51.    
52.     //Display and play welcome message   
53.     system("screen -dm bash -c \"omxplayer -

o local /home/pi/seniordesign/Audio_Files/Speech/system_on.mp3\"");   
54.     system("python  /home/pi/seniordesign/LCD_Scripts/lcd_clear.py");   
55.     system("python  /home/pi/seniordesign/LCD_Scripts/lcd_systemon.py");   
56.        
57.     begin_server();   
58.    
59.     return 0;     
60. }   
61.    
62. void begin_server()   
63. /*Maintains communication with one or more hololens. Sends received data to  
64.   hardware controlling functions*/   
65. {   
66.     int opt = 1;     
67.     int master_socket , addrlen , new_socket , client_socket[30] ,    
68.           max_clients = 30 , activity, i , valread , sd;     
69.     int max_sd;     
70.     struct sockaddr_in address;        
71.     char buffer[1025];  //data buffer of 1K    
72.            
73.     //set of socket descriptors    
74.     fd_set readfds;     
75.             
76.     //initialise all client_socket[] to 0 so not checked    
77.     for (i = 0; i < max_clients; i++) {     
78.         client_socket[i] = 0;     
79.     }     
80.            
81.     //create a master socket    
82.     if( (master_socket = socket(AF_INET , SOCK_STREAM , 0)) == 0) {     
83.         perror("socket failed");     
84.         exit(EXIT_FAILURE);     
85.     }     
86.        
87.     //set master socket to allow multiple connections ,    
88.     if( setsockopt(master_socket, SOL_SOCKET, SO_REUSEADDR, (char *)&opt,    
89.           sizeof(opt)) < 0 ) {     
90.         perror("setsockopt");     
91.         exit(EXIT_FAILURE);     
92.     }     



S17-71-HOL1 

 36 

93.        
94.     //type of socket created    
95.     address.sin_family = AF_INET;     
96.     address.sin_addr.s_addr = INADDR_ANY;     
97.     address.sin_port = htons( PORT );     
98.            
99.     //bind the socket to localhost port PORT    
100.     if (bind(master_socket, (struct sockaddr *)&address, sizeof(address))<0) {  

   
101.         perror("bind failed");     
102.         exit(EXIT_FAILURE);     
103.     }     
104.     printf("Listener on port %d \n", PORT);     
105.            
106.     //try to specify maximum of 3 pending connections for the master socket    
107.     if (listen(master_socket, 3) < 0) {     
108.         perror("listen");     
109.         exit(EXIT_FAILURE);     
110.     }     
111.            
112.     //accept the incoming connection    
113.     addrlen = sizeof(address);     
114.     puts("Waiting for connections ...");   
115.         
116.            
117.     while(1)     
118.     {     
119.         //clear the socket set    
120.         FD_ZERO(&readfds);     
121.        
122.         //add master socket to set    
123.         FD_SET(master_socket, &readfds);     
124.         max_sd = master_socket;     
125.                
126.         //add child sockets to set    
127.         for ( i = 0 ; i < max_clients ; i++) {     
128.             //socket descriptor    
129.             sd = client_socket[i];     
130.                    
131.             //if valid socket descriptor then add to read list    
132.             if(sd > 0)     
133.                 FD_SET( sd , &readfds);     
134.                    
135.             //highest file descriptor number, need it for the select function    
136.             if(sd > max_sd)     
137.                 max_sd = sd;     
138.         }     
139.        
140.         //wait for an activity on one of the sockets , timeout is NULL ,    
141.         //so wait indefinitely    
142.         activity = select( max_sd + 1 , &readfds , NULL , NULL , NULL);     
143.          
144.         if ((activity < 0) && (errno!=EINTR))     
145.         {     
146.             printf("select error");     
147.         }     
148.                
149.         //If something happened on the master socket ,    
150.         //then its an incoming connection    
151.         if (FD_ISSET(master_socket, &readfds))     
152.         {     



S17-71-HOL1 

 37 

153.             if ((new_socket = accept(master_socket,    
154.                     (struct sockaddr *)&address, (socklen_t*)&addrlen))<0)      

        {     
155.                 perror("accept");     
156.                 exit(EXIT_FAILURE);     
157.             }     
158.                
159.             //inform user of socket number - used in send and receive commands  

  
160.             printf("New connection , socket fd is %d , ip is : %s , port : %d \n

" , new_socket , inet_ntoa(address.sin_addr) , ntohs(address.sin_port));     
161.    
162.             //add new socket to array of sockets    
163.             for (i = 0; i < max_clients; i++) {     
164.                 //if position is empty    
165.                 if( client_socket[i] == 0 ) {     
166.                     client_socket[i] = new_socket;     
167.                     printf("Adding to list of sockets as %d\n" , i);   
168.    
169.                     //Play a welcome message    
170.                     system("screen -dm bash -c \"omxplayer -

o local /home/pi/seniordesign/Audio_Files/Speech/client_connected.mp3\"");    
171.                        
172.                     //Display number of clients connected on LCD display   
173.                     lcd_client_connected(i);   
174.                     break;     
175.                 }     
176.             }     
177.         }     
178.                
179.         //else its some IO operation on some other socket   
180.         for (i = 0; i < max_clients; i++) {     
181.             sd = client_socket[i];              
182.             if (FD_ISSET( sd , &readfds)) {     
183.                 //Check if it was for closing , and also read the incoming messa

ge    
184.                 if ((valread = read( sd , buffer, 1024)) == 0)     
185.                 {     
186.                   //Stop the currently playing song (if there is one)   
187.                   stop_song();     
188.                   sleep(1);   
189.    
190.                   //Play a goodbye message   
191.                   system("screen -dm bash -c \"omxplayer -

o local /home/pi/seniordesign/Audio_Files/Speech/client_disconnected.mp3\"");   
192.                      
193.                   //Make sure fan is off   
194.                   digitalWrite (DESK_FAN_PIN, LOW);   
195.                      
196.                   //Display message on LCD   
197.                   lcd_client_disconnected(i);   
198.                    
199.                   //Somebody disconnected , get his details and print    
200.                   getpeername(sd , (struct sockaddr*)&address , \   
201.                     (socklen_t*)&addrlen);     
202.                   printf("Host disconnected , ip %s , port %d \n" ,    
203.                       inet_ntoa(address.sin_addr) , ntohs(address.sin_port));   

    
204.                     //Close the socket and mark as 0 in list for reuse    
205.                   close( sd );     
206.                   client_socket[i] = 0;     



S17-71-HOL1 

 38 

207.                 }     
208.                       
209.                 //Control GPIO pins   
210.                 else   
211.                 {     
212.                     int data = atoi(buffer);   
213.                     printf("\nreceived: %d\n", data);   
214.                        
215.                     control_hardware(data);   
216.    
217.                     //Send back messages   
218.                     //buffer[valread] = '\0';     
219.                     //send(sd , buffer , strlen(buffer) , 0 );     
220.                 }     
221.             }     
222.         }     
223.     }     
224. }  

Main/hardware_controller.c 
Contains functions which interact directly with hardware. 

1. //Shivam Kundan   
2. //S17-71-HOL1   
3. //Fall 2017   
4.    
5. //Variable to keep track of how many on/off's for each device   
6. int fan_counter=0;     
7. int lamp_counter=0;   
8. int blender_counter=0;   
9. int song_counter=0;   
10.    
11. char *song_list[NUM_OF_SONGS]={"JingleBellRock.wav",   
12.                     "mambo.wav",   
13.                     "ThreeLittleBirds.mp3",   
14.                     "GetLucky.mp3"};   
15.                        
16. void lcd_client_connected(int i)   
17. /*Display a message when a client connects.*/   
18. {   
19.     char *str_client = (char*)malloc(100);   
20.     char i_str[10];   
21.     strcpy(str_client,"python /home/pi/seniordesign/LCD_Scripts/lcd_client_connected.py

 ");   
22.     sprintf(i_str, "%d", i+1);   
23.     strcat(str_client,i_str);   
24.     //strcat(str_client,"\"");   
25.     system(str_client);   
26. }   
27.    
28. void lcd_client_disconnected(int i)   
29. /*Display a message when a client gets disconnected.*/   
30. {   
31.     char *str_client = (char*)malloc(100);   
32.     char i_str[10];   
33.     strcpy(str_client,"python /home/pi/seniordesign/LCD_Scripts/lcd_client_disconnected

.py ");   
34.     sprintf(i_str, "%d", i);   
35.     strcat(str_client,i_str);   
36.     //strcat(str_client,"\"");   



S17-71-HOL1 

 39 

37.     system(str_client);   
38. }   
39.    
40. void lcd_received_val(int i)   
41. /*Print received value to LCD.   
42.   This is helpful for a quick status check/debugging.*/   
43. {   
44.     char *str_client = (char*)malloc(100);   
45.     char i_str[10];   
46.     strcpy(str_client,"python /home/pi/seniordesign/LCD_Scripts/lcd_received_val.py ");

   
47.     sprintf(i_str, "%d", i);   
48.     strcat(str_client,i_str);   
49.     system(str_client);   
50. }   
51.    
52.    
53. void lcd_print(char line2[16])   
54. /*Print to line 2 of LCD.*/   
55. {   
56.     char *str2 = (char*)malloc(100);   
57.     strcpy(str2,"python /home/pi/seniordesign/LCD_Scripts/lcd_print.py ");   
58.     strcat(str2,line2);    
59.     system(str2);   //Execute in a detached terminal   
60. }   
61.    
62. void sig_handler(int signo)   
63. /*Ensures proper termination of all running hardware/threads.*/   
64. {    
65.     //Turn off fan, lamp, and blender in case they are on   
66.     system("gpio -g write 17 0");   
67.     system("gpio -g write 27 0");   
68.     system("gpio -g write 22 0");   
69.    
70.     //Stop any music that is playing      
71.     system("killall omxplayer.bin");   
72.     sleep(1);   
73.    
74.     //Print/speak messages   
75.     printf("Bye!\n");   
76.     system("screen -dm bash -c \"omxplayer -

o local /home/pi/seniordesign/Audio_Files/Speech/system_off.mp3\"");   
77.     system("python /home/pi/seniordesign/LCD_Scripts/lcd_exit.py");   
78.     system("screen -dm bash -

c \"python  /home/pi/seniordesign/LCD_Scripts/lcd_clear.py\"");   
79.        
80.     //Kill all threads associated with this program   
81.     system("killall screen") ;   
82.        
83.     exit(0);   
84. }   
85.    
86. void clear_lcd()   
87. /*Blanks out both lines of LCD.*/   
88. {   
89.     system("screen -dm bash -

c \"python /home/pi/seniordesign/LCD_Scripts/clear_lcd.py\"");   
90. }   
91.    
92. void play_song()   
93. /*Plays a song from song_list.*/   



S17-71-HOL1 

 40 

94. {   
95.     printf("Playing %s\n",song_list[song_counter]); //Print name of song   
96.     char *str1 = (char*)malloc(100);   
97.     strcpy(str1,"screen -dm bash -c \"omxplayer -

o local /home/pi/seniordesign/Audio_Files/Songs/");   
98.     strcat(str1,song_list[song_counter]);   
99.     strcat(str1,"\"");   
100.     system(str1);   //Execute in a detached terminal   
101.     if (song_counter!=NUM_OF_SONGS-1) song_counter++;   
102.     else song_counter=0;   
103. }   
104.    
105. void stop_song()   
106. /*Closes omxplayer.*/   
107. {   
108.     system("killall omxplayer.bin");   
109. }   
110.    
111. void measure_distance()   
112. /*Use ultrasonic sensor to measure distance.   
113.   Use values to tell when door is open.  
114.   For E127 lab, door closed is 150cm and  
115.   door open is 152cm or more.*/   
116. {   
117.     long unsigned  int start,stop,total,dist;   
118.     struct timespec gettime_now;   
119.     digitalWrite(outpin, LOW);   
120.     sleep(0.01);   
121.     digitalWrite(outpin, HIGH);   
122.     sleep(0.01);   
123.     digitalWrite(outpin, LOW);   
124.    
125.     //Trigger   
126.     while (digitalRead(inpin)==LOW);   
127.     clock_gettime(CLOCK_REALTIME,&gettime_now);   
128.     start=gettime_now.tv_nsec;   
129.     //printf("start: %ld\n",start);   
130.              
131.     //Echo   
132.     while (digitalRead(inpin)==HIGH);   
133.     clock_gettime(CLOCK_REALTIME,&gettime_now);   
134.     stop=gettime_now.tv_nsec;   
135.     //printf("stop: %ld\n",stop);       
136.    
137.     total=(stop-start);   
138.     //printf("time elapsed: %lu\n",total);   
139.     dist=(3.43*pow(10,-5)*total)/2;   
140.     printf("distance: %lu cm\n",dist);   
141. }   
142.    
143. void control_hardware(int data)   
144. /*Receives input integers and controls processes/threads accordingly.*/   
145. {   
146.     //Fan   
147.     if (data == DESK_FAN_ID) {           
148.         fan_counter++;   
149.         printf("fan counter: %d\n",fan_counter);   
150.       
151.         if (fan_counter%2==1) {   
152.           lcd_print("Fan On");   
153.           printf("Fan on\n");   



S17-71-HOL1 

 41 

154.           digitalWrite (DESK_FAN_PIN, HIGH) ;   
155.     }   
156.         else {   
157.           printf("Fan off\n");   
158.           digitalWrite (DESK_FAN_PIN, LOW);   
159.           lcd_print("Fan Off");   
160.     }      
161.     }   
162.     //Lamp   
163.     else if (data == DESK_LAMP_ID) {   
164.         lamp_counter++;   
165.         printf("desk lamp counter: %d\n",lamp_counter);   
166.         if (lamp_counter%2==1) {   
167.           lcd_print("Lamp on");   
168.           printf("Lamp on\n");   
169.           digitalWrite (DESK_LAMP_ID, HIGH);   
170.     }   
171.           else {   
172.             lcd_print("Lamp off");   
173.             printf("Lamp off\n");   
174.             digitalWrite (DESK_LAMP_ID, LOW);   
175.         }     
176.     }   
177.     //Blender   
178.     else if (data == BLENDER_ID) {   
179.         blender_counter++;   
180.         lcd_print("Blender");   
181.         printf("Blender\n");   
182.       
183.         if (blender_counter%2==1) {   
184.           lcd_print("Blender On");   
185.           printf("Blender on\n");   
186.           digitalWrite (BLENDER_PIN, HIGH) ;   
187.     }   
188.         else {   
189.           printf("Blender off\n");   
190.           digitalWrite (BLENDER_PIN, LOW);   
191.           lcd_print("Blender Off");   
192.     }   
193.     }   
194.     //Play Song   
195.     else if (data == PLAY_SONG) {   
196.         lcd_print("Play Song");   
197.         stop_song();   
198.         printf("Play song\n");   
199.         play_song();          
200.     }   
201.     //Next Song   
202.     else if (data == NEXT_SONG) {   
203.         lcd_print("Next Song");   
204.         printf("Next song\n");   
205.         stop_song();   
206.         play_song();   
207.     }   
208.     //Stop Song (kill omxplayer)   
209.     else if (data == STOP_SONG) {   
210.         lcd_print("Stop Song");   
211.         printf("Stop song\n");   
212.         stop_song();   
213.     }   
214.     //Random Song   



S17-71-HOL1 

 42 

215.     else if (data == RANDOM_SONG) {   
216.         lcd_print("Random song");   
217.         printf("Random song\n");   
218.         int random_num =rand()%NUM_OF_SONGS;   
219.         char *str1 = (char*)malloc(100);   
220.         strcpy(str1,"screen -dm bash -c \"omxplayer -

o local /home/pi/seniordesign/Audio_Files/Songs/");   
221.         strcat(str1,song_list[random_num]);   
222.         strcat(str1,"\"");   
223.         system(str1);   //Execute in a detached terminal   
224.     }   
225.     //Measure distance to door   
226.     else if (data == ULTRASONIC_SENSOR_ID) {   
227.         lcd_print("Door Sensor");   
228.         printf("Ultrasonic distance sensor\n");   
229.     //system("screen bash -c \"python sensor.py\"");   
230.     //measure_distance();   
231.     }   
232.     //Temperature and Humidity   
233.     else if (data == TEMP_SENSOR_ID) {   
234.         lcd_print("Temp / Humidity");   
235.         printf("Temperature and humidity\n");   
236.         system("python /home/pi/seniordesign/Sensor_Scripts/temperature.py");   
237.     }   
238.     //Room brightness   
239.     else if (data == LUX_SENSOR_ID) {   
240.         lcd_print("Room Brightness");   
241.         printf("Lux sensor\n");   
242.         system("python /home/pi/seniordesign/Sensor_Scripts/light_sensor.py");   
243.     }   
244.     else {   
245.       //Display unmapped value on LCD   
246.       lcd_received_val(data);   
247.       printf("Number not mapped to any functions\n");   
248.     }   
249. }   



S17-71-HOL1 

 43 

Main/mappings.h 

1. //Shivam Kundan   
2. //S17-71-HOL1   
3. //Fall 2017   
4.    
5. /*Values in braces are what the hololens client sends.*/   
6.    
7. //Mapping BCM pins to wiringPi library   
8. #define DESK_FAN_PIN    0  //Desk Fan   
9. #define LAMP_PIN        2  //Desk Lamp   
10. #define BLENDER_PIN     3  //Blender   
11. #define inpin           5  //Trigger   
12. #define outpin          4  //Echo   
13.    
14. //Hardware control mappings   
15. #define DESK_FAN_ID         (1)   
16. #define DESK_LAMP_ID        (2)   
17. #define BLENDER_ID          (3)   
18.    
19. //Music Player mappings   
20. #define PLAY_SONG           (4)   
21. #define NEXT_SONG           (5)   
22. #define STOP_SONG           (6)   
23. #define RANDOM_SONG         (7)   
24.    
25. //Sensor control mappings   
26. #define ULTRASONIC_SENSOR_ID (8)   
27. #define TEMP_SENSOR_ID       (9)   
28. #define LUX_SENSOR_ID        (10)   
29.    
30. //Others   
31. #define NUM_OF_SONGS 4   

 



S17-71-HOL1 

 44 

Sensor_Scripts/clock.py 

1. # Shivam Kundan   
2. # S17-71-HOL1   
3. # Fall 2017   
4.    
5. # Constantly receive data from sensors, display on LCD, and save to file   
6.    
7. # TSL2561 Light Sensor   
8. # SI7021 Temperature & Humidity Sensor   
9.    
10. import smbus   
11. import time   
12. import datetime   
13. from subprocess import call   
14. import sys   
15. import shlex   
16. import lcddriver   
17.    
18. # Get I2C bus   
19. bus = smbus.SMBus(1)   
20.    
21. # Initialize LCD   
22. display = lcddriver.lcd()   
23.    
24. def brightness_sensor():   
25.     # TSL2561 address, 0x39(57)   
26.     # Select control register, 0x00(00) with command register, 0x80(128)   
27.     #       0x03(03)    Power ON mode   
28.     bus.write_byte_data(0x39, 0x00 | 0x80, 0x03)   
29.     # TSL2561 address, 0x39(57)   
30.     # Select timing register, 0x01(01) with command register, 0x80(128)   
31.     #       0x02(02)    Nominal integration time = 402ms   
32.     bus.write_byte_data(0x39, 0x01 | 0x80, 0x02)   
33.    
34.     time.sleep(0.5)   
35.    
36.     # Read data back from 0x0C(12) with command register, 0x80(128), 2 bytes   
37.     # ch0 LSB, ch0 MSB   
38.     data = bus.read_i2c_block_data(0x39, 0x0C | 0x80, 2)   
39.    
40.     # Read data back from 0x0E(14) with command register, 0x80(128), 2 bytes   
41.     # ch1 LSB, ch1 MSB   
42.     data1 = bus.read_i2c_block_data(0x39, 0x0E | 0x80, 2)   
43.    
44.     # Convert the data   
45.     ch0 = data[1] * 256 + data[0]   
46.     ch1 = data1[1] * 256 + data1[0]   
47.     brightness = ch0-ch1   
48.    
49.     # Output data to screen   
50.     #print ("Full Spectrum(IR + Visible) :%d lux" %ch0)   
51.     #print ("Infrared Value :%d lux" %ch1)   
52.     #print ("Visible Value :%d lux" %brightness)   
53.     return brightness   
54.        
55. def humidity_sensor():   
56.     # SI7021 address, 0x40(64)   
57.     #       0xF5(245)   Select Relative Humidity NO HOLD master mode   
58.     bus.write_byte(0x40, 0xF5)   



S17-71-HOL1 

 45 

59.    
60.     time.sleep(0.3)   
61.    
62.     # SI7021 address, 0x40(64)   
63.     # Read data back, 2 bytes, Humidity MSB first   
64.     data0 = bus.read_byte(0x40)   
65.     data1 = bus.read_byte(0x40)   
66.    
67.     # Convert the data   
68.     humidity = float(((data0 * 256 + data1) * 125 / 65536.0) - 6)   
69.     lcdHumidity=str(round(humidity)).split('.')[0]   
70.     a,b=str(humidity).split('.')   
71.     logHumidity=float('.'.join((a, b[0:3])))   
72.     #print ("Relative Humidity: %.2f %%" %logHumidity)   
73.     return (lcdHumidity,logHumidity)    
74.    
75. def temperature_sensor():   
76.     time.sleep(0.3)   
77.     # SI7021 address, 0x40(64)   
78.     #       0xF3(243)   Select temperature NO HOLD master mode   
79.     bus.write_byte(0x40, 0xF3)   
80.    
81.     time.sleep(0.3)   
82.    
83.     # SI7021 address, 0x40(64)   
84.     # Read data back, 2 bytes, Temperature MSB first   
85.     data0 = bus.read_byte(0x40)   
86.     data1 = bus.read_byte(0x40)   
87.    
88.     # Convert the data   
89.     cTemp = ((data0 * 256 + data1) * 175.72 / 65536.0) - 46.85   
90.     a,b=str(cTemp).split('.')   
91.     lcdTemp=float('.'.join((a, b[0:1])))   
92.     logTemp=float('.'.join((a, b[0:3])))   
93.     fTemp = cTemp * 1.8 + 32   
94.    
95.     # Output data to screen    
96.     #print ("Temperature in Celsius is : %.2f C" %cTemp)   
97.     #print ("Temperature in Fahrenheit is : %.2f F" %fTemp)   
98.    
99.     return (lcdTemp,logTemp)   
100.    
101. def get_date_time():   
102.     now = datetime.datetime.now()   
103.     myDate=now.strftime('%a,%b%-d')     #Short value because of 16-char lcd   
104.     myTime=now.strftime('%-I:%M%p')   
105.     logDate=now.strftime('%m/%d/%y')    #The logged date is in a different forma

t than lcd's date   
106.     logTime=now.strftime('%-I:%M:%S%p')   
107.     return (myDate,myTime,logDate,logTime)   
108.    
109. try:   
110.     display.lcd_display_string("                ", 1)   
111.     display.lcd_display_string("                ", 2)   
112.     num_writes=0   
113.     flag=0   
114.     b_s_last=0   
115.     while True:   
116.         if (flag!=0):   
117.                     b_s_last=b_s   
118.    



S17-71-HOL1 

 46 

119.         #Get current values   
120.         myDate,myTime,logDate,logTime=get_date_time()   
121.         lcdTemp,logTemp=temperature_sensor()   
122.         lcdHumidity,logHumidity=humidity_sensor()   
123.         b_s=brightness_sensor()   
124.         flag=1   
125.         print(b_s_last)   
126.         print(b_s)   
127.            
128.         #Automated night light 'smart service'   
129.         if (abs(b_s-b_s_last)>300):   
130.                     print("("+myDate+" "+str(logTime)+")"+"\n"+str(logTemp)+"C "

+str(logHumidity)+"% "+str(b_s)+"lux "+"\n")   
131.                     if (b_s<100):   
132.                         call(["omxplayer","-

o","local","/home/pi/seniordesign/Audio_Files/Speech/main_lights_off.mp3"])   
133.                         call(["gpio","-g", "write", "27", "1"])   
134.                     elif (b_s>100 and b_s<500):   
135.                         call(["omxplayer","-

o","local","/home/pi/seniordesign/Audio_Files/Speech/dim_lights.mp3"])   
136.                         call(["gpio","-g", "write", "27", "0"])   
137.                     if (b_s>500):   
138.                         call(["omxplayer","-

o","local","/home/pi/seniordesign/Audio_Files/Speech/main_lights_on.mp3"])   
139.                         call(["gpio","-g", "write", "27", "0"])   
140.                                           
141.         #Print to lcd   
142.         l1=myDate+" "+myTime   
143.         display.lcd_display_string(l1, 1)   
144.         l2=str(lcdTemp)+"C "+str(lcdHumidity)+"% "+str(b_s)+"Lux"   
145.         display.lcd_display_string("                ", 2)   
146.         display.lcd_display_string(l2, 2)   
147.    
148.         #Write to log file   
149.         f=open('lab_sensors_log.csv','a')   
150.         outstring = logDate+","+str(logTime)+','+str(logTemp)+"C"+','+str(logHum

idity)+"%"+','+str(b_s)+"lux"+"\n"   
151.         f.write(outstring)   
152.         num_writes+=1   
153.         f.close()   
154.         print("#writes: " + str(num_writes))   
155.                    
156.         time.sleep(2) #Makes a total of 4 reading/minute   
157.    
158. except KeyboardInterrupt:   
159.     #print("Cleaning up!")   
160.     display.lcd_clear()   
161.     s="#writes: " + str(num_writes)   
162.     display.lcd_display_string(s, 2)   



S17-71-HOL1 

 47 

9.7  Appendix J: Resumes 
 
 



S17-71-HOL1 

 48 

 



S17-71-HOL1 

 49 

 



S17-71-HOL1 

 50 

 


	1.   Executive Summary [SK]
	2.  ABET Requirements [SK]
	3.   Product Function [SK]
	4.  Design Description [SK] [IO]
	4.1  Introduction [SK]
	4.2  Constraints [SK]
	4.2.1  Design Constraints
	4.2.2  Development Constraints

	4.3  Client Side Architecture [IO]
	4.3.1  Vuforia
	4.3.2  Unity3D & Visual Studio

	4.4  Communication Protocol [IO]
	4.5   Server Side Architecture [SK]
	4.5.1  IoT Hub: Raspberry Pi 3 Model B
	4.5.2  Multithreading
	4.5.3   Status Display LCD
	4.5.4  Sensors
	4.5.5  Analog Appliances & IoT Relays
	4.5.6   Music Player
	4.5.7  Speech Feedback
	4.5.8  Automated Room Control (Smart Services)


	5.   Future Expansions [SK]
	5.1  Extended Gestures
	5.2  Artificial Intelligence
	5.3  More Sensors
	5.4  Motion Tracker/Controller

	6.   Development Tools for Future Projects [AP]
	7.  Summary [SK]
	8.   References
	Works Cited
	9.   Appendices [SK] [KN]
	9.1  Appendix A: IoT Hub Operation Diagram [SK]
	9.2   Appendix B: IoT Hub Wiring Diagrams [SK]
	9.3   Appendix C: IoT Electrical Relay Operation [SK]
	9.1   Appendix D: Adafruit Si7021 Temperature + Humidity Sensor Board [SK]
	9.2   Appendix E: Adafruit TSL2561 Digital Luminosity Sensor Board [SK]
	9.3   Appendix F: House of Quality [KN]
	9.4   Appendix G: Materials List [SK]
	9.5   Appendix H: Observations from Sensor Data [SK]
	9.6   Appendix I: IoT Hub Code [SK]
	9.7   Appendix J: Resumes


