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A B S T R A C T

Diesel emissions from school buses expose children to high levels of air pollution; retrofitting bus engines can
substantially reduce this exposure. Using variation from 2656 retrofits across Georgia, we estimate effects of
emissions reductions on district-level health and academic achievement. We demonstrate positive effects on
respiratory health, measured by a statewide test of aerobic capacity. Placebo tests on body mass index show no
impact. We also find that retrofitting districts experience significant test score gains in English and smaller gains
in math. Our results suggest that engine retrofits can have meaningful and cost-effective impacts on health and
cognitive functioning.

1. Introduction

Nearly 25 million children ride over 500,000 buses to school in the
United States each day. The predominantly diesel bus fleet contributes
to air pollution exposure that may adversely affect children’s health and
academic performance. Because of this, school bus retrofit programs
have been enacted across the country, making use of up to $200 million
in federal grants per year to local districts to replace or retrofit engines.
We use information on 2656 of these school bus retrofits in Georgia,
affecting approximately 150,000 students, to estimate effects on stu-
dent health and academic achievement.

Diesel retrofits are an immediate and relatively inexpensive way to
dramatically reduce diesel emissions.2 A large literature has estimated
the effect of diesel engine emissions on ambient air quality, in parti-
cular on nitrogen oxide and particulate matter.3 A separate literature
examines the effect of exposure to air pollution on children’s academic
achievement and health.4 Yet, little is known about the direct effect of
diesel emission reductions on children’s academic achievement or

health. The only studies to investigate school bus retrofits on health
outcomes are Beatty and Shimshack (2011), which finds that bus ret-
rofits in Washington state lead to significant reductions in asthma and
pneumonia doctor visits, and Adar, S. D., D'Souza, J., Sheppard, L.,
Kaufman, J. D., Hallstrand, T. S., et al. (2015), which finds that retrofits
in Washington state reduce pollution and pulmonary inflammation and
increase lung growth. No study we know of examines the effect of re-
duced exposure to school bus emissions on academic performance.

To address the causal link between diesel retrofits, student health
and academic achievement, we exploit variation in the timing and
location of over 2600 school bus retrofits across Georgia between
2007 and 2015. During our sample period, 15 percent of Georgia’s 180
school districts retrofitted a share of their fleet. Our measure of ex-
posure at the district level is based on the proportion of the bus fleet
retrofitted in a given district. We further refine this with the propor-
tion of students who are bus riders and the average amount of time
students spend on the bus. We match retrofitting data to two types of
district-level outcome measures: student health and scholastic
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outcomes. For the former, we observe a state-mandated fitness eva-
luation known as FitnessGram.5 These health data include an estab-
lished measure of cardiovascular health (aerobic capacity), which al-
lows us to estimate effects on respiratory health, and BMI, which we
take as a potential placebo against general health trends, though we
discuss why BMI might also be affected by improved respiratory
health. For scholastic outcomes we observe English and math end-of-
grade test scores in addition to attendance.

We find positive and non-trivial effects of bus retrofits on student
health. Retrofitting an entire fleet leads to a 4 percent increase in the
average aerobic capacity of students, or roughly 1.8 units of VO2 max,
in our most conservative estimate. This effect is slightly larger when we
weight treatment by the share of students in a district who ride the bus.
In this case, retrofitting 100 percent of buses in a district where ev-
eryone rides the bus would yield a 5 percent improvement in aerobic
capacity. We find no relationship between retrofits and our placebo,
BMI. We show that effects on aerobic capacity are strongest for ele-
mentary school students.

We also find evidence that these retrofits affected student achieve-
ment. Retrofitting 10 percent of a district’s fleet increases English test
scores by 0.009 standard deviations, so retrofitting an entire district’s
fleet would increase test scores by nearly one-tenth of a standard de-
viation. Weighting by the share of students who ride the bus, we find
that districts experience a 0.14 standard deviation increase from ret-
rofitting an entire fleet when all students ride the bus. Estimated effects
on math scores are also positive, but are smaller and noisier than those
for English and often cannot be distinguished from zero. We find little
evidence that attendance was significantly affected, though initial at-
tendance rates were very high.

Our results suggest that retrofits are a cost-effective lever to improve
both student health and achievement. A back-of-the-envelope analysis
suggests that for each effect, benefits were far in excess of costs. The
average retrofit required only $8,110 in our sample, suggesting diesel
engine retrofits can be at least three times more cost-effective than
class-size reductions for achieving a given test score improvement.

2. Background

School bus diesel emissions are a public health concern because
school buses are ubiquitous, concentrated in residential areas, and dirtier
than most vehicles. Monahan (2006) finds that California school buses
were nearly twice as polluting as the average tractor-trailer. This is pri-
marily due to the age of the bus fleet; a 30-year-old school bus can
produce two or three times as much on-board pollution as a 3-year-old
bus.6 School buses are also exceptionally dirty because diesel emissions
are more polluting than gasoline emissions, contributing to a third of
nitrogen oxide emissions and a quarter of particulate matter emissions
despite being a smaller fraction of the automobile fleet.7,8 School buses
contribute to pollution exposure both for individuals spending more time
near bus stops and along bus routes, but they are highest for passengers
of the vehicle.9 In fact, Zuurbier et al. (2010) find that riders of diesel
buses had twice as much exposure to air pollution as carpoolers.

2.1. Emissions and health

Exposure to air pollution worsens infant and childhood health.

Diesel emissions contain smoke-related particulate matter, nitrogen
dioxide, gaseous aldehydes, carbon monoxide, and toxic polycyclic
hydrocarbons. The latter are potent carcinogenic compounds that are
more stable when they diffuse into airborne water vapor, allowing them
to reach deep into the lungs when inhaled.10 For this reason, diesel
exhaust may cause immediate short-term adverse pulmonary effects by
decreasing the membrane potential of epithelial cells in the lungs.11

There are also longer-term effects of diesel exhaust exposure; one co-
hort study of urban bus drivers in Denmark finds that just three months
of bus driving is associated with an increased risk of six types of organ-
based cancers and all malignant tumors.12 Young individuals are
especially vulnerable to this form of pollution. Worse air quality is
linked to child lung function growth disparities of 3 to 5 percent, or four
times the effect of second-hand cigarette smoke, in more-polluted areas,
while exposure to in-traffic air pollution is associated with lower lung
capacity, lower forced expiratory flow, and asthma development.13

Two recent studies exploit variation in bus pollution at the census block
level in New York City. The first (Ngo, 2015) finds that increasing
emission standards over time reduced emergency department visits for
respiratory diseases among residents living within a few hundred feet of
a bus route. A second (Ngo, 2017) exploits variation in bus age, and
thereby pollution levels, finding that children born to mothers who
lived close to bus routes with older (dirtier) buses see modest reduc-
tions in infant birth weight and gestational age compared with those
living near routes with newer, cleaner, buses.

2.2. Emissions and academic performance

Past work has identified three mechanisms through which air pol-
lution may impact test scores: attendance changes due to pollution-re-
lated illness, short-term disruptions in attention and cognitive perfor-
mance, and long-term negative influence of pollution exposure on brain
development. Currie, Hanushek, Kahn, Neidell, and Rivkin (2009) de-
monstrate that higher pollution levels over six-week periods are asso-
ciated with more student absences, which may indirectly impact stu-
dent learning. Marcotte (2017) finds that daily pollen and particulate
matter pollution levels affect students’ math and reading test scores.
Ultrafine particles in air pollution, particularly in diesel emissions,
deposit in the prefrontal cortical and subcortical regions of the brain via
the olfactory bulb, leading to heightened inflammatory response, white
matter lesions, and behavioral and cognitive impairment.14 Such cog-
nitive impairment is observable in standardized test scores, and the
negative effects stem from both contemporaneous and long-term ex-
posure.15

2.3. Emission reduction programs

The well-known dangers of pollution from school bus diesel emis-
sions led the United States Congress to spend $200 million per year
from 2007–2012 to retrofit buses under the Diesel Emissions
Reductions Act. Separately, the Clean School Bus Grant Program spent
$110 million in 2005 and 2006. These grants pay for any one of four
types of engine retrofits in our sample: diesel particulate filter, diesel
oxidation catalyst (DOC), flow-through filter, or a closed crankcase

5 The FitnessGram© tests have been used for decades to assess student health,
and a large literature demonstrates the scientific validity of the tests employed.
The FitnessGram manual (https://www.cooperinstitute.org/vault/2440/web/
files/662.pdf) provides details.
6 Harder (2005).
7 EPA (2003).
8 In our sample, 99% of school buses are diesel-powered.
9 Marshall and Behrentz (2005); Xu, Mai, Zhu, Yu, and Liu (2016).

10 Commins, Waller, and Lawther (1957); Muzyka, Veimer, and
Shmidt (1998); Waller, Hampton, and Lawther (1985).
11 Stevens, Cheng, Jaspers, and Madden (2010).
12 Soll-Johanning, Bach, Olsen, and Tüchsen (1998).
13 Beatty and Shimshack (2014); Clougherty and Kubzansky (2008);

Gauderman et al. (2005); Gendron-Carrier, Gonzalez-Navarro, Polloni, and
Turner (2018).
14 Calderón-Garcidueñas et al. (2012); Freire et al. (2010); Guxens and

Sunyer (2012); Sunyer et al. (2015).
15 Chen, Zhang, and Zhang (2017); Ebenstein, Lavy, and Roth (2016);

Ham, Zweig, and Avol (2014); Marcotte (2017).
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filter (also called a closed crankcase ventilation system or CCV). Since
the average diesel particulate filter costs between $5,000 and $10,000,
engine retrofits have the potential to be a cost-effective means of re-
ducing ambient air pollution and the health concerns associated with
them.

The most common type of retrofit, a diesel particulate filter, can
decrease overall emissions of particulate matter (PM) between 60 and
90%.16 The effect of these filters on PM levels inside the bus cabin is
more modest at between 15–26%.17 Emissions reductions of heavy
metals from a diesel particulate filter are more substantial, in the range
of 85–95%.18 Emissions of other harmful compounds, such as total
hydrocarbons and carbon monoxide, can be reduced to background
pollution levels.19 Finally, reductions of nitrogen oxide emissions can
be significant; Tate et al. (2017) find that retrofitting the bus fleet in
York, UK, would reduce city-wide levels of nitrogen oxides by 6–7%.
These benefits appear to be fairly persistent with good engine main-
tenance and the use of low-sulfur fuels. Another study finds that the
reductions in PM of 95% by mass remained after four years of road
exposure.20 Taken together, the existing scientific evidence suggests
that retrofits dramatically reduce the exposure of students to potentially
harmful compounds.

Our work builds most directly on Beatty and Shimshack (2011),
who examine roughly 4000 school bus retrofits in Washington state
between 1996 and 2006. They match retrofit data and hospital ad-
missions at the district-month level. The authors find that districts with
retrofits see significant and sizable reductions in asthma and pneu-
monia-related visits for both children and adults, with estimated ben-
efits of nearly 7 to 16 times the cost of retrofit investments. In a related
article that focuses on direct measures of exposure to pollution,
Adar et al. (2015) measure pollution and health of 275 elementary
school bus riders in Seattle and Tacoma, Washington, during a retrofit
program from 2005 to 2009. The authors separately estimate the effect
of four different emissions reduction programs (DOCs, CCVs, and fuel
switching to ultra-low-sulfur diesel or biofuels) on pollution exposure,
health measures, and school absenteeism. They find significant effects
of DOCs, CCVs, and ultra-low-sulfur diesel use on bus-cabin particulate
levels. They find health benefits (increased lung functioning measures)
from DOCs and CCVs only for students with persistent asthma.

We build on this prior literature in several ways. First, we have
different measures of student health: aerobic capacity and BMI from
FitnessGram tests. Beatty and Shimshack (2011) use hospital visits, and
Adar et al. (2015) use measures of lung functioning.21 Our health
outcome measures are likely to better capture the effect of diesel
emissions on student health because VO2 max conveys general cardio-
vascular health rather than lung function, therefore representing the
observable consequence of lower lung functioning. Our outcome also
captures the health of all students instead of merely those visiting a
clinic for acute lung conditions, thereby capturing the effect on the

average student instead of only those likely to visit a clinic. Second, we
provide potential placebo measures using a non-respiratory health
outcome, BMI. Third, ours is the first study we know of to examine the
effect of retrofits on academic performance, allowing us to tie together
two largely separate literatures on health and academic performance.22

2.4. Retrofits in Georgia

The Georgia retrofit program started as the Adopt-a-School Bus
program in 2003, a collaboration between the state Environmental
Protection Division, school districts, and businesses to improve the
well-being of students. The goals of the project were to implement any
of four emission reduction retrofit devices, reduce bus idling, and in-
crease use of ultra-low sulfur diesel.23 The project has since been
funded by a wide variety of sources and grants. The EPA Clean School
Bus grant program provided three separate grants in 2004, 2005, and
2006. The Diesel Emissions Reduction Act (DERA) was passed by
Congress in 2005 as part of the Energy Policy Act and is administered
by the EPA. Under DERA, the EPA sponsored two retrofit grant cycles in
2009 and 2014 that collectively paid for 182 school bus retrofits. The
US Department of Transportation sponsored the program under its
Congestion Mitigation and Air Quality Improvement (CMAQ) Program,
which contributed $11.2M to retrofit 1890 buses. The staggered
funding and implementation lags allow us not only to compare retro-
fitting and non-retrofitting districts, but also to exploit the timing of
retrofits among retrofitting districts to secure causal identification.

Over the relevant sample period from 2007–2017, 2656 buses were
retrofitted with at least one type of modification. 1160 of these bus
retrofits involved a diesel particulate filter, 1394 added a diesel oxi-
dation catalyst, 58 installed a flow-through filter, 244 added a closed
crankcase filter, and 188 buses were replaced early. We do not observe
any information on the use of ultra-low-sulfur diesel (ULSD) fuel, but
we know from communication with the Environmental Protection
Division that retrofit grants stipulated the use of ULSD fuel to preserve
the new engine parts. Moreover, EPA diesel fuel standards required the
use of ULSD on all vehicles starting in 2010.

3. Data

Our data come from four sources, providing information on health,
achievement, retrofits, and the Georgia bus fleet in general. Since we
observe school bus retrofits at the district level, we aggregate data to
that unit of analysis. We describe each data source, advantages, and
limitations in turn below.

3.1. Health

Our first data source contains health information from the Cooper
Institute’s FitnessGram examination. The FitnessGram examination is a
series of mandatory tests administered annually to all Georgia public
school students who are in a physical education class. Many other states
use FitnessGram as well, and the results of the FitnessGram tests are
used widely in studies on student health.24 According to the Georgia
Department of Education’s 2016 Fitness Assessment Program Report,
1.1 million students in Georgia (74%) participate in the examination.
Since physical education requirements differ by age, the participation

16 Biswas, Verma, Schauer, and Sioutas (2009); EPA (2003).
17 Hammond, M. Lalor, and Jones (2007).
18 Hu et al. (2009).
19 Jiang et al. (2018). Note that Zhang and Zhu (2011) find that retrofits

significantly decrease tailpipe emissions but have no significant effect on bus-
cabin air quality, while Li, Lee, Liu, and Zhu (2015) show that tailpipe emis-
sions do in fact enter the cabin. Borak and Sirianni (2007) conduct a meta-
analysis and conclude that control technologies like retrofits can in fact elim-
inate “self-pollution” from diesel exhaust into bus cabins.
20 Barone et al. (2010).
21 Adar et al. (2015) use forced expiratory volume in one second (FEV1) and

forced vital capacity (FVC) as measures of lung functioning. These measures are
useful figures for diagnosing lung diseases such as COPD or emphysema, but
they do not measure cardiorespiratory fitness per se. The FitnessGram aerobic
capacity test we employ is designed to capture VO2 max, the maximal oxygen
uptake at peak performance. Other studies, including Ross et al. (2016), use
VO2 max as a broader indicator of health.

22 By contrast, other studies, including Marcotte (2017), estimate the effect of
pollution exposure on academic outcomes but do not conduct a program eva-
luation.
23 Idling reductions were a statewide effort.
24 Anderson, Gallagher, and Ritchie (2018); Castelli, Hillman, Buck, and

Erwin (2007); Edwards, Mauch, and Winkelman (2011); Fahlman, Hall, and
Lock (2006); Murray, Eldridge, Silvius, Silvius, and Squires (2012);
Welk et al. (2010).
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rate for elementary school students is 94%, while for middle school and
high school students the rate is 71% and 49% respectively. Since our
study covers several years, most students should be included at some
time in the sample window.

Several tests are involved in a FitnessGram examination, including
tests of aerobic capacity, body mass index, curl-ups, push-ups, and sit
and reach (a measure of flexibility).25 We limit our analysis to just the
test of aerobic capacity and BMI. Aerobic capacity is a measure of
cardiovascular fitness likely to be affected by exposure to diesel pol-
lution, and BMI is a potential placebo.26

Aerobic capacity is the maximum rate at which oxygen can be taken
up and utilized by the body during exercise. It is measured by
FitnessGram through an exercise called the PACER (Progressive Aerobic
Cardiovascular Endurance Run) test, also called a multi-stage fitness
test, a “beep test”, or a shuttle run.27 Physical education instructors
administer the test and record results according to instructions pro-
vided by the Cooper Institute. The school-level average VO2 max, as
computed from either the student-level number of laps completed on
the PACER test or the timed performance on a one-mile run, is our
observed outcome measure.28 The FitnessGram assessment also directly
measures each student’s BMI, which is defined as a student’s mass in
kilograms divided by her height in meters squared. The CDC defines
healthy and unhealthy levels of BMI for children based on their per-
centile rank among all children of a given age and sex.

The first and second years of FitnessGram aerobic capacity in-
formation collected by the state, 2011-12 and 2012-13, are not con-
sistent with the remaining years.29 These early years feature many
average VO2 max values that are simply not observed in later years.
More troublingly, some of these very low average VO2 values corre-
spond to unrealistically high levels of healthy fitness zone attainment.
The indiscrepancies may result from a few possible factors, although we
cannot diagnose the precise origin of the issue.30 We believe the

unreliable observations are primarily an issue of accidental half-
counting by coaches administering the test for the first or second time.
This view is consistent with the findings of Blasingame (2012) that
differences between one-mile run and the PACER test and between
FitnessGram versions 8 and 9 are minimal. To account for this issue
while preserving as much data as possible, we take a rule-based ap-
proach to identifying schools that most likely have contaminated
scores, dropping any school-level observations below the minimum
score by gender that we observe across all years in which we are con-
fident of the data (those after the 2012-13 school year). In Section 5.4.3
we explore the robustness of our results to a wide variety of alternative
methods for dealing with this issue, including dropping the 2011-12
school year entirely, confirming that our main results are indeed quite
conservative.

The first panel of Table 1 presents summary statistics of the Fit-
nessGram tests for aerobic capacity (AC) and body mass index (BMI)
aggregated to the district level. We take the district average as our
outcome measure because treatment in our data is at the district level.
Average values were converted from school- to district-level by calcu-
lating the sum of weighted school averages for each district, where the
weight is the proportion of a district’s attempts taken at that school.31

The attempts divided by enrollment is an approximation of the pro-
portion of students completing a FitnessGram examination in each
district. AC and BMI were the two most common FitnessGram ex-
aminations, though less than half of students in a district completed the
AC exam, while about two-thirds of students completed a BMI ex-
amination in any given year.32

3.2. Academic achievement

Our second source of data includes information on student test
scores, enrollment levels, and demographics from the Georgia
Department of Education (GADOE), which provides school-level
data from 2006–07 to 2016–17. Only English language arts (ELA) and
math end-of-grade 3rd-grade through 8th-grade test scores are re-
ported throughout the sample window, so we focus on these exams.
The recorded information includes the average raw scale score of

25 Records of these assessments are kept by the Georgia Department of
Education Physical Fitness Division, which annually reports school-level results
separately for male and female students. For each school-gender-test combi-
nation, measures include the total number of attempts, the average perfor-
mance, and the percentage of students attaining “healthy fitness zone” (HFZ)
status. Depending on whether the aerobic capacity or BMI is higher than a
benchmark figure determined for each student’s age, weight, and gender
combination, a student may be assigned to healthy fitness zone status.
26 We exclude curl-ups, push-ups, and sit and reach from our analysis because

they are not completed by a large proportion of the student body.
27 In the test each time students hear a timed electronic beep they have a set

amount of time to run 20m (from one line to the other). The exercise ends for a
student the second time she cannot finish the 20m within the set amount of
time. At the end of each minute students hear 3 beeps letting them know that
the amount of time they will have to finish the 20m has been reduced. A stu-
dent’s score is the number of laps she completed before her second failure to
complete the 20m within the allotted time. Some schools actually use a one-
mile run test to assess aerobic capacity. We do not observe the test employed,
however both tests are converted to a comparable scale of VO2 max. See
Boiarskaia et al. 2011 for additional information on how these two tests are
converted to the same measurement of VO2 max, and Blasingame (2012), which
finds that both assessment types accurately capture VO2 max and are consistent
with each other.
28 Given age and weight, the number of laps completed by a student can be

used to determine the student’s maximal aerobic capacity, or VO2 max. The
Cooper Institute approximates this value based on a functional transformation
of the number of laps completed and the student’s age. For more information,
see the Cooper Institute FitnessGram Reference Guide.
29 Fig. A1 shows the extent of inexplicable values in 2011-12 and 2012-13,

showing how the otherwise tight linear relationship between percent of stu-
dents in the healthy fitness zone and the average VO2 max, which we see in the
2014–2017 data, is dramatically less reliable in the first two years.
30 One potential cause is that schools calculated VO2 max using the

FitnessGram version 8 equation in 2011-12 and 2012-13, whereas in later years
they use the conversion equation from FitnessGram version 9. Second, roughly

(footnote continued)
one third of schools implement a one-mile run test while the remaining schools
use the PACER test. Although both have been converted to units of VO2 max in
our data, the correlation between VO2 max and performance on the one-mile
walk is slightly lower. Blasingame (2012) finds that the one-mile run is less
correlated to actual VO2 max than the PACER test (correlation coefficients of
0.84 and 0.93), but both assessment types and estimation equations are con-
sistent and generally accurate. Third, coaches may have half counted PACER
laps, effectively counting a “down and back” as one lap rather than two. We
suspect this issue because more-recent official coaching instructions specifically
advise against this counting practice.
31 For example, district i’s average aerobic capacity in a given year is
= =y xit s

N
st

ast
ait1 where xst is the school average in year t and a is the total at-

tempts on the relevant FitnessGram examination for each school s in district i
and year t. Alternatively, the weights could be school-level and district-level
enrollment instead of total attempts, but this aggregation procedure over-
emphasizes schools that have lower levels of FitnessGram participation, such as
high schools.
32 Some students are not tested because children below 3rd grade do not take

the test, and any students who are not in a physical education class also do not
take the test. Additionally, tests administered to fewer than 25 students in a
school are censored to protect privacy, hence some school observations are
missing. In Appendix Table A4, we find no relationship between FitnessGram
attempts on aerobic capacity and bus retrofits. It is also impossible to know
whether the total attempts reported by the state reflect multiple attempts by the
same student. This could introduce noise if, for example, districts compensate
for lower performance by allowing their students more attempts, which would
tend to mute physical fitness differences across districts. We also test for this
possibility in Appendix Table A4.
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students in each grade and the number of student test takers for each
test. We normalize scale scores using the state mean and student-level
standard deviation, and then average over grades and schools using
weights for the number of test-takers. This yields a district-level
average performance, in terms of student-level z-scores, for ELA and
math in each year of the sample. From 2013-14 to 2014-15, the state
changed its assessment regime from the Criterion-Referenced
Competency Test (CRCT) to the Georgia Milestones Assessment
System, with an accompanying change in scale and difficulty on the
math end-of-grade exam. This is accounted for by normalizing within
grade-year and including year fixed effects in our regression models.33

The second and third panels of Table 1 report district-level schooling
outcomes and demographic characteristics. Test scores are slightly
higher for retrofitting districts,34 though this may be confounded by
the effects of the retrofits themselves. Attendance rates are virtually
identical across retrofitting and non-retrofitting districts. On average,
non-retrofitting districts are smaller, but have otherwise similar stu-
dent compositions.

3.3. Bus retrofits

The third data source contains information on all bus retrofits from
2003 to 2018 and was provided through an open records request by the
Georgia Environmental Protection Division (EPD). These data describe
the type of retrofit performed in each district, the number of buses af-
fected, the month and year of implementation, and the specific grant
used to finance the retrofit. We use district-specific invoices for re-
imbursement for installation of retrofits to calculate the amount each
district paid for their retrofits.35 Fig. 1 maps retrofitting districts. The
fourth panel of Table 1 shows that a typical retrofitting district im-
proved 66 buses, or close to 19% of the bus fleet, in each retrofit cycle.

3.4. Bus manifest

We augment this with the Georgia Transportation Authority’s
manifest of all state school buses from 2010 to 2016. Since the bus
manifest covers fewer years than for which there exist retrofits, in-
formation for 2007–2010 and 2017 is replaced with the value of the
nearest available year in the sample.36 The manifest includes specific

Table 1
District-Level Student Characteristics.

(1) (2) (3)

Non-Retrofitting Retrofitting Difference

Districts Districts T-Test of Means

Health Outcomes (2012–2017)
Aerobic Capacity (V02 Max) 41.160 (1.688) 41.201 (1.422) −0.0412 (−0.12)
Body-Mass Index 21.069 (0.880) 20.633 (0.340) 0.436* (2.54)
AC Attempts / Enrollment 0.407 (0.114) 0.425 (0.079) −0.0174 (−0.76)
BMI Attempts / Enrollment 0.654 (0.153) 0.689 (0.108) −0.0346 (−1.12)
Schooling Outcomes (2007–2017)
Math Z-Scores −0.107 (0.263) −0.060 (0.216) −0.0473 (−0.88)
ELA Z-Scores −0.107 (0.229) −0.061 (0.194) −0.0459 (−0.98)
Attendance rate 95.573 (0.630) 95.584 (0.488) −0.0112 (−0.09)
Demographics (2007–2017)
African American 0.367 (0.272) 0.363 (0.266) 0.004 (0.07)
Hispanic 0.082 (0.105) 0.109 (0.077) −0.028 (−1.32)
White 0.554 (0.252) 0.504 (0.276) 0.051 (0.95)
Other 0.030 (0.025) 0.055 (0.029) −0.025*** (−4.71)
Male 0.513 (0.010) 0.513 (0.005) 0.000 (0.11)
Female 0.487 (0.010) 0.487 (0.005) −0.000 (−0.11)
Students (thousands) 5.655 (9.765) 28.081 (37.502) −22.426*** (−6.34)
Free and Reduced Lunch 0.668 (0.171) 0.616 (0.146) 0.052 (1.49)
Students with Disabilities 0.123 (0.024) 0.121 (0.018) 0.002 (0.38)
English Language Learner 0.025 (0.037) 0.045 (0.043) −0.021* (−2.58)
Retrofits (2007–2017)
Buses Retrofitted per Retrofit 66.39 (145.3)
Proportion of Fleet Retrofitted 0.189 (0.141)
Average Retrofit Cost per Bus ($) 8111.0 (5013.8)
Bus Fleet Characteristics (2007–2017)
Average Time in Bus (minutes) 44.883 (11.629) 49.631 (7.940) −4.748* (−2.04)
District Bus Ridership 0.621 (0.174) 0.610 (0.087) 0.0113 (0.33)
Total Buses 75.594 (104.432) 313.286 (411.857) −237.7*** (−6.17)
Total Bus Riders (thousands) 3.475 (7.412) 17.563 (25.814) −14.088*** (−5.62)
Average Bus Age 14.126 (1.574) 14.268 (1.537) −0.142 (−0.43)
Observations 153 27 180

Mean coefficients reported; standard deviations in parentheses. Observations are at the district level. Other demographic category includes Asian, American Indian,
Pacific Islander, and Multiracial. Students represents the average student enrollment in thousands. Standardized math and ELA test scores are negative because the
majority of Georgia school districts are rural, small, and under-achieving relative to larger urban districts. Aerobic capacity attempts / enrollment represents the
number of attempts divided by K-12 enrollment.

33 Later, in Table A5, we drop the Milestones years from the sample. Aside
from being a slightly different examination, there were widespread issues with
the new computer-based assessment. The state notably decided not to use the
Milestones examination for accountability purposes in 2015 and 2016.
34 Standardized test score averages are different from zero because there are

many low-performing districts with small student populations and a few high-
performing districts with many students.

35 Although we do not observe actual emissions pre- or post-retrofit, the EPD
does provide predictions of the yearly and lifetime reductions of four pollutants
using the EPA Diesel Emissions Quantifier. These pollutants were fine parti-
culate matter (PM2.5), volatile hydrocarbons, carbon monoxide, and nitrogen
oxides. Because these are predicted emissions changes based on engineering
models rather than measured or observed values, we do not use these data.
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bus identifiers, type of bus, capacity, and bus manufacturing details like
make, model and year, fuel source, passengers, daily miles, and the
number of students living within 1.5 miles of the school who are eli-
gible to be riders. Some of these statistics are summarized in the last
panel of Table 1. The variety of information provided by the bus
manifest allows the creation of variables for the district-wide average
student minutes spent in the bus, the district-wide bus ridership rate,
and the proportion of district buses retrofitted for each grant. These
three variables comprise our treatment measures. In our sample, the
average bus rider spends a little less than 45 minutes on the bus each
day. The average district has a 62% bus ridership.

4. Empirical strategy

Our identification strategy exploits variation in the timing and lo-
cation of retrofits across Georgia. We adopt a first-differences estima-
tion strategy, which differences out any unobserved, time-invariant
district attributes that might be correlated with retrofits and health or
achievement. The estimating equation is as follows:

= + + +y R X .it it it t it (1)

All variables are aggregated to the district (i) year (t) level as described
above. Δ indicates a one-period change in a variable (e.g.,

=y y yit it it 1). The dependent variable, yit, can be either one of the
two health outcomes (aerobic capacity and body mass index) or one of
the three schooling outcomes (math and English scores and atten-
dance). Since many retrofitting districts experience more than one
retrofitting episode, the model captures these year-on-year changes in
health and schooling as a result of proportional changes in the share of
buses retrofitted.

Our treatment variable, measuring district retrofits that occurred
between time t 1 and t, is Rit (one can think of Rit as the change in
cumulative retrofits between t 1 and t).37 We consider three different
ways of measuring treatment intensity, Rit. The first measure is the

proportion of the bus fleet retrofitted that year, termed Percent Retro-
fitted. For example, if a district retrofits 10% of its buses between t 1
and t, then =R 0.1it . In this case, the magnitude of the coefficient on Rit

shows the effect of retrofitting an entire fleet – going from all dirty
buses to all clean buses.38 The second measure is the proportion of the
bus fleet retrofitted multiplied by the time-constant proportion of stu-
dents in the district who are bus riders, termed Percent Retrofitted *
Ridership. For example, if 10% of buses were retrofitted between time
t 1 and t, and time-constant average bus ridership in district i is 50%
of students, then =R 0.05it . Here, the coefficient on Rit shows the effect
of retrofitting an entire fleet in a district where all students ride the bus.
This accounts for the fact that the impact of retrofitting should have a
larger effect in districts where a higher fraction of students ride the bus.
We use time-constant district averages for the proportion of students
who are bus riders to avoid identifying changes off potentially en-
dogenous ridership changes, though we later show that changes are in
fact small and unrelated to retrofits. Our third measure is the propor-
tion of the bus fleet retrofitted times the fraction of students who are
bus riders times the time-constant average duration of each bus ride in
minutes per day. This is termed Percent Retrofitted * Ridership * Trip
Duration. Here again we use the time-constant district average for bus
ride minutes to avoid identifying effects off potentially endogenous
changes in trip duration. Given two district-years with an equal pro-
portion of buses retrofitted and an equal share of students who ride the
bus, if one district buses students twice as far as the other, we should
expect larger effects in that district.

Equation 1 includes the vector ΔXit, measuring annual changes in
the following district-level student characteristics: percent of the stu-
dent body that is Asian, Hispanic, African-American, male, English-
language learner, eligible for free- and reduced-price lunch, or posses-
sing of a disability. The vector ΔXit also includes the following district-
level changes in bus fleet characteristics: average bus age, to account
for new buses replacing older models, the share of buses that are older
models made before recent emissions regulations, student ridership,
trip duration, and the share of buses that run on liquid natural gas,
regular gasoline, and butane. We find little impact from their inclusion.
τt is an academic year fixed effect.

Our identifying source of variation is the timing and magnitude of
the retrofits. Differences in the share of students riding the bus and the
average length of ride among riders add additional variation. An
identifying assumption is that this timing is uncorrelated with any
potential confounders that would affect health or academic perfor-
mance. This assumption would be violated if, for example, retrofit
timing was a function of expected changes in health or academic per-
formance. Such endogeneity is unlikely in practice because funding
allocation decisions were made by a state agency, the Environmental
Protection Division, independently of any school district prerogatives.
Moreover, the timing of bus retrofit completion varied greatly within
grant cycles and across districts. Still, if this were true, we would also
see changes in BMI as a proximate health outcome, which we test for.
We might also be concerned with endogenous responses on the part of
students and families through, for example, increased ridership in re-
sponse to cleaner retrofitted buses. We employ several robustness tests
to allay each of these concerns and discuss each in turn directly fol-
lowing our main results.

One could also estimate the model using district fixed effects. This
requires stronger assumptions than the first differences model, some
that we likely do not satisfy. For example, the first differences model
best captures immediate year-on-year changes, given that a large
number of districts have multiple retrofit cycles. More importantly, we
worry about serial correlation. First differences requires only that Rit is
uncorrelated with =it it it 1 where fixed effects requires Rit to be

Fig. 1. Retrofitting School Districts Notes: Darker school districts have at least
one retrofit cycle during the relevant sample window (2007–2017). Blank
districts are missing data.

36 Inclusion or exclusion of these years does not affect the sign or diminish the
magnitude of the results, as we show in Appendix Table A6.
37 In other words, we could also have modeled this as R ,it

cumul the change in
cumulative retrofits. This causes difficulties when we interact R with the share
of students who are bus riders because we do not want to identify variation
resulting from potentially endogenous changes in ridership.

38 The average proportion of the fleet retrofitted for the observed retrofits is
0.189.
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uncorrelated with it i (i.e., that all errors are uncorrelated as op-
posed to uncorrelated changes in errors, which is a weaker assumption).
In the absence of serial correlation, the fixed effects estimator has
consistency advantages over first-differences, but as we show in ro-
bustness checks, Durbin-Watson statistics suggest that we do not satisfy
this requirement, in particular for academic outcomes which are highly
serially correlated. Moreover, we have a relatively large number of time
periods (10) compared to the number of individual observations (180),
which again leads to advantages in the first differences model as fixed
effects assumes N→∞ with fixed T. Regardless, as part of our many
robustness tests we also report estimates from fixed effects regressions.
We show that while point estimates are similar in nearly all cases,
standard errors are larger under the fixed effects model, which is con-
sistent with our concerns.

5. Results

5.1. Health

We present our main regression results for aerobic capacity and our
placebo health outcome, BMI, across all three measures of treatment Rit

in Table 2. These regressions are based on Equation 1 and use data from
2012 to 2017. The first three columns present effects on aerobic ca-
pacity (AC), where the units represent VO2 max, which is measured in
milliliters of oxygen intake per kilogram minute. The second three
columns present the effects on BMI. The coefficient in column 1 implies
that if a district retrofitted 100% of its fleet, average VO2 max would
increase by 1.8 units, or about a 4% increase relative to the baseline
mean of 41.16. Since the average retrofit affected 19% of the bus fleet,
the average retrofit improved district-wide aerobic capacity by 0.33
milliliters of oxygen per kilogram minute.

Columns 2 and 3 use the alternate measures of the treatment effect
Rit. In column 2 it is the percent of buses retrofitted multiplied by the
percent of students who ride the bus. This coefficient implies that if a
district had 100 percent ridership and retrofitted its entire bus fleet,

average student aerobic capacity would increase by 2.4 units, or about
6 percent of the mean. The average bus ridership rate is 62%, so this
implies that the average retrofit (19% of the fleet) in the average dis-
trict increases aerobic capacity by 0.28 milliliters of oxygen per kilo-
gram minute. Column 3 sets Rit to the percent of the bus fleet retrofitted
times the ridership rate times the average trip duration. The coefficient
implies that, if all buses in a district are retrofitted and all students ride
the bus, then each additional minute of bus riding for students in this
district is associated with roughly 0.041 units increase in VO2 max.
Since the average trip duration is 46 minutes, this implies that the
average retrofit in the average district increased aerobic capacity by
0.21 units VO2 max.39 Thus our point estimates, when scaled, are
roughly consistent across specifications in the range of 0.2 to 0.4 units
VO2 max. Given that there is little variation across retrofitting districts
in the ridership share and trip length, we do not find this result sur-
prising.

We next turn to our placebo health outcome, BMI. In the final three
columns of Table 2 we find that estimates are effectively zero in all
cases. Although directions suggest lower BMI, the coefficient on our
main estimate (-0.24) is equal to approximately 1% of BMI. We take this
as suggestive evidence that retrofits were uncorrelated with general
health trends across treatment and control districts.

We next break out results by gender and school level. Table 3 dis-
plays male and female aerobic capacity results in the full sample across
elementary, middle, and high schools. These results reveal two pieces of
information. First, estimates are comparable for male and female stu-
dents. While point estimates are different across gender for elementary
school students, the coefficients for male and female students at a given
level are not statistically different from one another. Second, effects are
highest among elementary school students. We find noisy and in fact
negative effects for boys in middle school. Although we are unable to
explain this, we believe it relates to influence of outliers in the middle-
school assessments and the likely re-assessment of physical education
classes to selectively lower-quality students after one mandatory year of
the course. The consistency across elementary male and female esti-
mates contradicts the hypothesis that differential incidence of child-
hood asthma in young boys would exert some influence on these re-
lative effect sizes (Bjornson & Mitchell, 2000). As has been shown in
other work (Beatty & Shimshack, 2011), children with asthma are more
susceptible to the negative effects of air pollution.

Table 2
FitnessGram Health 2012–2017.

(1) (2) (3) (4) (5) (6)

AC AC AC BMI BMI BMI

Percent Retrofitted 1.815** -0.241
(0.81) (0.33)

Percent Retrofitted 2.439* -0.479
Ridership (1.36) (0.53)
Percent Retrofitted 0.041 -0.010
Ridership * Trip Duration (0.03) (0.01)
Dep. Var. mean 41.66 41.66 41.66 21.03 21.03 21.03
R2 0.197 0.199 0.198 0.050 0.051 0.051
N 856 846 846 863 853 853

* p < 0.1, ⁎⁎p < 0.05, ⁎⁎⁎p < 0.01. Clustered standard errors at the district
level in parentheses. Year fixed effects included. Demographic variables include
the proportion of students that are Asian, African-American, Hispanic, and
male, where White and female are the omitted categories, as well as the per-
centage of students with free or reduced price lunch, disabilities, and English-
language learner status. Bus characteristics include average bus age, the pro-
portion of buses built before 2007, and the proportion of liquid natural gas-,
butane-, and gasoline-powered buses in the district. Student ridership and trip
duration variables also included as controls. The independent variable percent
retrofitted is the proportion of a district’s bus fleet that is retrofitted in a given
year, and zero otherwise. Percent retrofitted * ridership is the percent of the bus
fleet retrofitted times the time-constant proportion of students in a district
riding the bus, while percent retrofitted * ridership * trip duration is the pro-
portion of the bus fleet retrofitted times time-constant ridership and the time-
constant average duration of a daily bus commute for students in a given dis-
trict.

Table 3
FitnessGram Health by Gender and School Type 2012–2017.

Elementary Middle High School

Male Female Male Female Male Female
(1) (2) (3) (4) (5) (6)

Percent Retrofitted 3.963** 4.152* −1.651 0.304 1.899** 1.802
(1.99) (2.19) (1.26) (2.02) (0.78) (1.41)

Dep. Var. mean 42.45 39.82 43.22 38.85 43.45 37.75
R2 0.143 0.273 0.093 0.305 0.031 0.086
N 777 777 770 770 710 710

* p < 0.1, ⁎⁎p < 0.05, ⁎⁎⁎p < 0.01. Clustered standard errors at the district
level in parentheses. Year fixed effects included. Demographic variables include
the proportion of students that are Asian, African-American, Hispanic, and
male, where White and female are the omitted categories, as well as the per-
centage of students with free or reduced price lunch, disabilities, and English-
language learner status. Bus characteristics include average bus age, the pro-
portion of buses built before 2007, and the proportion of liquid natural gas-,
butane-, and gasoline-powered buses in the district. Student ridership and trip
duration variables also included as controls. The independent variable percent
retrofitted is the proportion of a district’s bus fleet that is retrofitted in a given
year, and zero else.

39= 0.189*0.62*46*0.041.
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5.2. Academic achievement

We present our main regression results on three academic outcomes
in Table 4. These regressions include years 2007–2017, since we ob-
serve test scores for more years than we observe FitnessGram outcome
measures. In columns 1–3, the dependent variable is a z-score of
average English (ELA) test scores, normalized to the student-level
standard deviation, for grades 3–8. The coefficient in column 1 implies
that retrofitting an entire fleet would raise ELA scores by 0.09 standard
deviations. This represents an achievement differential slightly larger
than that observed between students of a rookie teacher and those of a
teacher with five years of experience.40 The average retrofitting district
retrofitted 19% of the fleet, suggesting an average increase in ELA
scores of 0.017 standard deviations per retrofit cycle. In column 2, the
treatment effect Rit is the share of buses retrofitted times the share of
students who ride the bus. The point estimate suggests that retrofitting
an entire bus fleet with 100% ridership would increase student test
scores by 0.145 standard deviations. The average retrofit (19% of the
bus fleet) for the average district (61% ridership) increases scores by
0.017 standard deviations according to this point estimate, which is
identical to the result in column 1. Column 3 shows that each minute of
bus riding in a 100%-retrofitting district with 100% ridership is asso-
ciated with a 0.003 standard deviation increase in ELA scores. Based on
this, the average district’s retrofit increases ELA scores by 0.016 stan-
dard deviations, which is consistent with specifications (1) and (2).

The results on math test scores (columns 4–6) are also positive but
only about one-half as large as the ELA results and not statistically
distinguishable from zero. This is consistent with Ham et al. (2014) who
find that particulate matter, and especially PM2.5, tends to affect ELA
scores more than math scores. Specifically, they find that PM2.5 lowers
math scores by 60% less than ELA scores, which is similar to our
findings. The last three columns of Table 4 show that there is no effect
of retrofits on average attendance rates. Since the mean attendance rate
is 0.95, there is little margin for gain. This contrasts with the negative
attendance effects found in Adar et al. (2015). In Table 5, we show how
the percentage of a bus fleet retrofitted affects ELA and math z-scores
among elementary and middle school students.41 Consistent with the
health estimates, effects are larger in elementary schools than in middle
schools. For both elementary and middle schools, the effects on math

are positive but indistinguishable from zero.42

5.3. Results by retrofit type

In Table 6, we present results by type of retrofit for each of our
academic and health outcomes. There were few episodes of closed-
crankcase filter retrofits (244), and fewer of flow-through filter retrofits
(58). In fact, there were none of these retrofits over the sample period
during which we observe aerobic capacity and BMI records from the
FitnessGram examination. Nevertheless, diesel particulate filters (1,160
retrofits) and diesel oxidation catalysts (1,394 retrofits) had a positive
and roughly consistent effect on both ELA and math test scores.

Table 4
Academic Achievement 2007–2017.

(1) (2) (3) (4) (5) (6) (7) (8) (9)

ELA ELA ELA Math Math Math Attend Attend Attend

Percent Retrofitted 0.089*** 0.049 0.153
(0.03) (0.03) (0.25)

Percent Retrofitted 0.145*** 0.082 0.283
Ridership (0.04) (0.05) (0.40)
Percent Retrofitted 0.003*** 0.001 0.006
Ridership * Trip Duration (0.00) (0.00) (0.01)
Dep. Var. mean −0.100 −0.100 −0.100 −0.099 −0.099 −0.099 95.57 95.57 95.57
R2 0.058 0.058 0.058 0.024 0.024 0.024 0.097 0.097 0.097
N 1800 1800 1800 1800 1800 1800 1800 1800 1800

* p < 0.1, ⁎⁎p < 0.05, ⁎⁎⁎p < 0.01. Clustered standard errors at the district level in parentheses. Year fixed effects included. Demographic control variables include
the proportion of students that are Asian, African-American, Hispanic, and male, where White and female are the omitted categories, as well as the percentage of
students with free or reduced price lunch, disabilities, and English-language learner status. Bus control variables include average bus age, the proportion of buses
built before 2007, and the proportion of liquid natural gas-, butane-, and gasoline-powered buses in the district. Student ridership and trip duration variables also
included as controls. The independent variable percent retrofitted is the proportion of a district’s bus fleet that is retrofitted in a given year, and zero else. Percent
retrofitted * ridership is the percent of the bus fleet retrofitted times the time-constant proportion of students in a district riding the bus, while percent retrofitted *
ridership * trip duration is the proportion of the bus fleet retrofitted times time-constant ridership and the time-constant average duration of a daily bus commute for
students in a given district.

Table 5
Academic Achievement by School Type 2007–2017.

Elementary Middle

ELA Math ELA Math
(1) (2) (3) (4)

Percent Retrofitted 0.119*** 0.061 0.059** 0.047
(0.03) (0.07) (0.03) (0.03)

Dep. Var. mean −0.091 −0.089 −0.107 −0.107
R2 0.043 0.02 0.042 0.037
N 1800 1800 1800 1800

* p < 0.1, ⁎⁎p < 0.05, ⁎⁎⁎p < 0.01. Clustered standard errors at the district
level in parentheses. Year fixed effects included. Demographic variables include
the proportion of students that are Asian, African-American, Hispanic, and
male, where White and female are the omitted categories, as well as the per-
centage of students with free or reduced price lunch, disabilities, and English-
language learner status. Bus characteristics include average bus age, the pro-
portion of buses built before 2007, and the proportion of liquid natural gas-,
butane-, and gasoline-powered buses in the district. Student ridership and trip
duration variables also included as controls. The independent variable percent
retrofitted is the proportion of a district’s bus fleet that is retrofitted in a given
year, and zero else. Elementary includes end-of-grade test scores for grades 3–5,
while middle includes the same for grades 6–8.

40 Rice (2010).
41 We do not have test scores by gender, nor do we have them for high school

students.

42 In Appendix Table A1 we display results dis-aggregated by grade. The
grade-level performances are consistently in the same direction as the main
academic estimates, and achieve significance in at least one grade for each ELA
and math test scores. Interestingly, grade-level effects suggest larger impacts for
students more likely to sit at the back of the bus– those in 4th, 5th, and 8th
grade– which is consistent with bus self-pollution from diesel exhaust.
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Adar et al. (2015) find that implementing DOCs and CCFs both had an
effect on attendance, with larger and more significant effects for DOCs.
This is consistent with our findings for DOCs only, the discrepancy
likely caused by the low number of CCF retrofits. We add to their
findings by testing for effects on diesel particulate filters, which appear
to have a larger effect on ELA, math, and aerobic capacity. Since DPFs
are expected to eliminate 60–90% of fine particulate matter, while
DOCs eliminate 10–50% of fine particulate matter in Adar et al. (2015),
this finding appears reasonable.

5.4. Robustness and alternate specifications

5.4.1. Alternate specifications
In Table 7 we re-estimate our main results (both health outcomes

and academic outcomes) using a fixed effects specification. In the top
panel we show our main results from the baseline first-differences
model for reference. In Panel II we show estimates from a fixed effects
model. This is:

= + + + + +y R Xit it it t i it (2)

Where ϕi is a district fixed effect. Point estimates for all outcomes are
similar across Panels I and II, though standard errors are larger under
fixed effects. The exception is the coefficient on math scores, which
becomes zero under fixed effects. Panel II also show Durbin-Watson test
statistics, which indicate a high degree of serial correlation. Given that
the math estimates were zero in our main specifications, a smaller
coefficient here does not change conclusions. For ELA, we find a mar-
ginally larger point estimate and substantially larger standard errors,
marginally failing to reject the null. Effects on aerobic capacity are si-
milar though noisier as well. Taken together, these two panels of
Table 7 suggest efficiency gains from first differences as expected in the
presence of serial correlation, and that our conclusions are not sub-
stantively altered by our modeling choice.

We also use the fixed-effects model to conduct additional robustness
checks. We re-estimate Equation 2 above and include a lead of Rit

( +Ri t, 1) as a test for pre-trends. Panel III of Table 7 shows the results.
Academic results are similar to our main estimates (the ELA coefficient
is slightly larger), and we cannot reject that the lead coefficients are

zero for each outcome except aerobic capacity. We find that the lead for
aerobic capacity is large and significant. We believe this is strongly
influenced by the noisy first year of AC data. When we add district time
trends to the fixed effects model with leads, in panel IV, the lead
coefficient in the AC regressions (column 4) is not statistically sig-
nificant and the contemporaneous coefficient returns to the same
magnitude as in the base case. In this model, the coefficient on ELA test
scores shrinks from 0.089 in the first-differences specification to
0.032.43 These results suggest that the fixed effects estimates are sen-
sitive to modeling decisions. We note that 9 of 10 lead tests fail to reject
the null hypothesis of no leads, supporting the notion that we are not
picking up spurious correlations. In Section 5.4.7 below, we conduct a
stricter test of timing by assigning treatment to one year in advance,

Table 6
All Outcomes by Retrofit Type.

(1) (2) (3) (4) (5)

ELA Math Attend AC BMI

Diesel Particulate Filter 0.134** 0.063 0.459 1.411 −0.612
(0.05) (0.07) (0.52) (1.89) (0.54)

Closed-Crankcase Filter −0.022 −0.012 −0.635 - -
(0.04) (0.05) (0.45) (.) (.)

Diesel Oxidation Catalyst 0.051** 0.047 0.144 1.367 −0.139
(0.02) (0.03) (0.19) (0.85) (0.46)

Flow-through Filter −0.026 −0.177*** −0.149 - -
(0.06) (0.05) (1.43) (.) (.)

Dep. Var. mean −0.100 −0.099 95.57 41.66 21.03
R2 0.058 0.023 0.096 0.186 0.049
N 1800 1800 1800 856 863

* p < 0.1, ⁎⁎p < 0.05, ⁎⁎⁎p < 0.01. Clustered standard errors at the district
level in parentheses. Year fixed effects included. Demographic control variables
include the proportion of students that are Asian, African-American, Hispanic,
and male, where White and female are the omitted categories, as well as the
percentage of students with free or reduced price lunch, disabilities, and
English-language learner status. Student ridership and trip duration variables
also included as controls. The number of buses replaced early also included as a
control. Bus characteristics not included due to high correlation with covari-
ates. The independent variables each represent the proportion of a bus fleet that
is retrofitted with the given engine modification. The sample includes 32 DPF
retrofits, nine CCF retrofits, eight DOC retrofits, and three flow-through filter
retrofits. Accordingly, results for flow-through filter retrofits may be unreliable.

Table 7
All Outcomes Fixed Effects Estimates.

(1) (2) (3) (4) (5)

ELA Math Attend AC BMI

I: First Differences
Percent Retrofitted 0.089*** 0.049 0.154 1.815** −0.241

(0.03) (0.03) (0.25) (0.81) (0.33)
R2 0.058 0.023 0.097 0.197 0.050
N 1800 1800 1800 856 863

II: Fixed Effects
Percent Retrofitted 0.092 −0.006 0.130 1.108 −0.166

(0.06) (0.08) (0.22) (1.61) (0.34)
R2 0.900 0.900 0.391 0.705 0.613
N 1958 1958 1958 1034 1040
D-W F-Stat 197.77 194.42 17.01 31.68 11.39
Prob > F 0.0000 0.0000 0.0001 0.0000 0.0009

III: FE Adding Leads
Percent Retrofitted 0.100** 0.030 −0.021 0.207 −0.155

(0.05) (0.06) (0.27) (1.59) (0.35)
Percent Retrofit Lead −0.012 −0.047 0.197 5.648* −0.088

(0.05) (0.07) (0.29) (3.32) (0.67)
R2 0.900 0.900 0.391 0.706 0.613
N 1958 1958 1958 1034 1040

IV: FE Adding Leads and
Trends

Percent Retrofitted 0.032 0.037 0.204 1.610* −0.299
(0.03) (0.05) (0.42) (0.95) (0.72)

Percent Retrofit Lead −0.053 −0.029 0.201 3.091 −0.063
(0.05) (0.06) (0.44) (4.16) (1.33)

R2 0.955 0.943 0.565 0.860 0.756
N 1958 1958 1958 1034 1040

* p < 0.1, ⁎⁎p < 0.05, ⁎⁎⁎p < 0.01. Clustered standard errors at the district
level in parentheses. Year and district fixed effects included. Outcomes are
district average ELA test scores, Math test scores, attendance, aerobic capacity,
and BMI. Demographic variables include the proportion of students that are
Asian, African-American, Hispanic, and male, where White and female are the
omitted categories, as well as the percentage of students with free or reduced
price lunch, disabilities, and English-language learner status. Bus characteristics
include average bus age, the proportion of buses built before 2007, and the
proportion of liquid natural gas-, butane-, and gasoline-powered buses in the
district. Student ridership and trip duration variables also included as controls.
The independent variable percent retrofitted is the proportion of a district’s bus
fleet that has ever been retrofitted, and zero else. The table compares all out-
comes using the fixed-effects model to the estimates in our preferred first-dif-
ferences specification. It also shows how the estimates differ when adding lead
treatment variables and district-specific linear trends.

43 Our preferred first-differences specification is robust to the inclusion of
leads and district-specific trends. In Appendix Table A2, we include two leads
and district trends in all regressions. For the FitnessGram test regressions
(columns 4 and 5), we cannot include more than one lead since there is not
enough variation in the retrofits during the years we have the FitnessGram test
data. But, inclusion of the second lead does not substantially change our results.
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and find that all estimates are zero, as one would expect if pre-trends
are not a concern. Similarly, in the next section we show pre-trend
plots. We expect that the trend and lead relationship we observe with
respect to aerobic capacity is related to outlier data in the first year of
our sample, which we address in Section 5.4.3 to follow.

5.4.2. Academic achievement pre-trends in retrofitting districts
One might be concerned that retrofitting districts have different pre-

treatment trends that drive the results. This possibility is difficult to test
directly because there is no uniform year of treatment across retrofitting
districts. For this reason, there are no uniform pre-treatment or post-
treatment years. Many retrofitting districts also had multiple retrofit
cycles. To assess the possibility of differential pre-trends, we therefore
plot academic achievement outcomes from 2006–07 to 2011–12 across
retrofitting and non-retrofitting districts in Fig. 2. We plot results in the
years leading up to 2013 because this was the modal retrofit year with
nine retrofits. We note that 25 retrofits occur before this year, so we may
expect the slope trends to increasingly differ by the extent to which the
retrofits impact academic outcomes. Nevertheless, the trends appear
close to parallel over this period. We do not plot pre-trends for our health
outcomes because of the shorter window over which we observe these
outcomes and the notable issues with aerobic capacity information in the
roll-out year of the program (as discussed in Section 5.4.3).

5.4.3. Aerobic capacity data
As discussed earlier, the early FitnessGram results contain incon-

sistencies, so we apply a rule-based approach in which we eliminate
implausible values. In Appendix Table A3 we re-estimate our main spe-
cification, using the share of buses retrofitted, across different cutoff
values to demonstrate how our results vary across different rules of
thumb. The first five columns of the table show results for cutoffs set at
15, 20, 25, 30, 35. These represent dropping school-level aerobic capa-
city results below the given value in 2011-12 and 2012-13 (although, in
practice, almost all removed values are in 2011-12). In column 6 we
show our preferred cutoff of 26 for females and 30 for males for re-
ference, the lowest observed values after 2012-13. In column 7 we apply
an alternate rule where we eliminate schools for which we observe a

jump of more than 6 in Aerobic Capacity – equivalent to 15 percent of
the mean – between 2011–12 and 2012–13 as an indicator of reporting
issues in the first year. In column 8 we show the full data, not dropping
any schools, and in column 9 we show effects if we drop school year
2011-12 entirely. With the exception of the specification in columns 7
and 9, results are similar in magnitude across specifications. Eliminating
problematically low observations affects the standard errors, as we
would expect. In column 7, when we drop implausibly large jumps, es-
timates double, and when we drop the first year of data entirely in
column 9, effect sizes increase over four-fold, from 1.8 to 7.1. While we
are more confident in these estimates, we take the conservative case of
only dropping problematic observations as our preferred estimate.

5.4.4. Correlation of proportion of a bus fleet retrofitted with district
characteristics 2007–2017

We address the potential for retrofits to affect participation in the
FitnessGram test, possibly due to increased health status, in the first
panel of Appendix Table A4. In columns 1 and 2, we regress the parti-
cipation rates for aerobic capacity and BMI FitnessGram tests, measured
as the total number of test attempts divided by the district enrollment, on
the percent of a bus fleet retrofitted. We find no discernible relationship
between district retrofits and the share of students who are tested in
aerobic capacity. If anything the point estimate suggests a small negative
relationship. We find a similar pattern for BMI tests, suggesting that
districts with more retrofits see a marginally higher rate of BMI testing,
though again the estimate is noisy. In column 3 we test for changes in
ridership, potentially resulting from an increase in the share or number
of students riding the bus as a result of reduced emissions. We find no
effect, suggesting that cleaner buses do not increase ridership. In the
same table, we demonstrate the relationship between the proportion of a
bus fleet retrofitted and changes in bus fleet characteristics, student de-
mographics, and student characteristics. We observe a statistically sig-
nificant relationship in only one case; the proportion of students with
disabilities in a district is positively related to the proportion of a bus
fleet retrofitted. We believe it is unlikely that retrofits would change
disability status among students. Regardless, we control for changes in
the share of students with disabilities in all regressions.

Fig. 2. Differential Pre-Trends by
Retrofitting Districts 2007–2013 Notes:
Figure plots the trend in ELA and Math
test scores across retrofitting and non-
retrofitting districts before 2013, the
mode year of retrofit implementation,
such that -1 represents school year
2011-12. Because the timing of retrofits
varied across districts, we are unable to
conduct a simple event study with non-
retrofitting districts as a comparison.
We therefore normalize treatment to
2013 and plot trends across districts
that ever retrofit and those that do not.
Some of the pre-2013 years feature
retrofits and therefore may be expected
to have differential trends over this
period. Nevertheless, the trend lines
are roughly parallel over this sample
window.
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5.4.5. Milestones test sensitivity
The roll-out of a new Milestones exam (Georgia’s end-of-year test) in

2015 resulted in large decreases in math scores in several of Georgia’s
largest districts, many of which received retrofits. The decrease was
caused by complications in the new internet-based math examination
where several districts had computers “freeze,” causing severe disrup-
tion to test-takers.44 As a result, those exams were not used to calculate
district performance for state requirements, student retention, or gra-
duation.45 That retrofitting districts are primarily Georgia’s larger dis-
tricts, which were those who adapted to computer-based tests, raises
concerns that this could be a confounding factor in our test score
analysis. When we drop Milestones years 2015–2017 from the sample,
in Appendix Table A5, the results are qualitatively similar to our main
specification, although math scores are larger in magnitude and more
precise. Since no districts retrofitted after 2015, this change is not
correlated with contemporaneous treatment, but rather shows a decline
in test score post-treatment for these districts.

5.4.6. Exclusion of interpolated bus manifest data
The district bus manifest covers 2009-10 to 2015-16. We fill in the

remaining years by substituting the value of the nearest chronological
neighbor for each year. For example, a district’s 2016–17 value for total
buses is set equal to the number of buses it had in 2015-16. Linear
interpolation was ruled out because it created unrealistic values for
some districts with large changes in their bus fleet. As shown in
Appendix Table A6, our results are unchanged by the exclusion of years
for which we lack information on district bus fleets. In fact, excluding
these years improves the precision of both our math and ELA point
estimates.

5.4.7. Timing of retrofit treatment
There are two sources of imprecision with respect to the timing of

treatment. First, the FitnessGram test may be in fall, spring, or both,
while the end-of-grade tests are uniformly in April-May.46 Second, the
date of the bus retrofit reimbursement invoice, which we use as a proxy
for the date of retrofit completion, imperfectly corresponds to the date
when the buses are first used. If the timing of a retrofit comes before
April of the year in question, the retrofit is counted as occurring in that
school year even if some of the FitnessGram tests may have occurred
before the retrofitted buses were active. This may affect the results of
some FitnessGram tests while leaving the test score results unaffected.
On the other hand, buses completed in a retrofit before April may not
actually be used until the following school year due to implementation
lags, which would mean our baseline treatment year assignment is too
early to pick up changes in test scores. In Appendix Table A7 we show
our baseline treatment assignment and explore a placebo timing
treatment that assigns the year of the retrofit to one year in advance of
the year of the retrofit completion invoice. These results, presented in
the second panel of Table A7, demonstrate that the assigned treatment
timing is not inconsequential, as no estimate is significant when
adopting a placebo treatment year. In Panel III we assess the possibility
that our treatment assignment for retrofits occurring after January is
too early by assigning the same fiscal year to any retrofits completed
before January and the subsequent fiscal year to any retrofits completed
after January. Under this treatment year assignment rule, the results are
the same for each outcome except for math test scores, which are now
positive and significant. We take this as suggestive evidence that our
baseline treatment assignment is not too late to capture changes in

aerobic capacity, although it may be too early to pick up changes in
academic achievement for some districts.

5.4.8. Linear trends
In Appendix Tables A8 and A9, we present results with the first-

difference model including linear trends. Adding district-specific linear
trends amounts to adding a district fixed effect in the regressions (first-
differencing eliminates a district-fixed effect and converts a linear trend
to a fixed effect). Appendix Table A8 replicates the health regressions
(Table 2), and Appendix Table A9 replicates the academic regressions
(Table 4). Both sets of results are robust to inclusion of trends. For
health outcomes, adding linear trends slightly increases the magnitude
of the effect of each definition of treatment on aerobic capacity. For
academic outcomes, adding linear trends slightly reduces estimates for
ELA scores, although conclusions are similar.

6. Cost-benefit and cost effectiveness analyses

We conduct back-of-the-envelope calculations of the costs and the
benefits of bus retrofits. We examine health benefits in terms of both
reduced mortality and reduced cardiovascular disease, as well as ben-
efits from increased test scores. We note that this does not account for
spillover effects on non-treated members of the community who are
exposed to lower pollution levels overall. Additionally, we compare the
cost of achieving the education benefits from the retrofits to the costs of
achieving similar gains from class-size reduction to provide a cost ef-
fectiveness analysis.

6.1. Costs

The total amount awarded for district bus fleet retrofits in Georgia is
$26 million. However, certain retrofits occurred before our sample
window. Moreover, a large portion of funds went to purchasing new
buses to replace older ones. We separate the amount awarded for bus
replacement from the amount spent on retrofits using invoices detailing
each district’s reimbursement for completing their retrofit. These re-
imbursements include the cost of parts, labor, and daily usage of a re-
pair bay. The total amount spent on engine retrofits is $12.6 million,
with the average district spending $8,110 per retrofitted bus. The
average district has 111 buses, so the cost of the average district ret-
rofitting 10% of its fleet is $90,000. For comparison, the cost of one
regular new bus is roughly $130,000, while a new hybrid or electric bus
is $360,000. Replacing 10% of a fleet with new diesel or hybrid buses
would therefore cost $1.4M–$4M, an order of magnitude greater than
the cost of engine retrofits.

6.2. Benefits - health

We focus on the health benefits in terms of increased aerobic ca-
pacity, which is the most persistent result. Our preferred specification is
column 1 of Table 2, which indicates that a ten-percentage-point in-
crease in the percentage of buses retrofitted is correlated with a 0.18-
unit increase in the measure of aerobic capacity. The units we observe
for the aerobic capacity measure are milliliters oxygen per kilogram
minute (mL/min/kg); these units have already been converted into a
measure of VO2 max from the number of PACER laps completed using a
standard conversion factor provided by the FitnessGram test manu-
facturer. From this conversion we conclude that a ten-percentage-point
increase in the percentage of buses retrofitted is correlated with a 0.18-
unit increase in VO2 max. We convert the VO2 max effect measure from
units of mL/min/kg to units of metabolic equivalent (MET) by dividing
the VO2 max in mL/min/kg by 3.5, yielding a change in MET of 0.05 for
a retrofit of approximately 10 percent of a district’s bus fleet.47

44 Cobb, Dekalb, Cherokee, and Gwinnett counties all suffered from these
computer glitches.
45 See this article and this article for more information.
46 Across the state we know that two-thirds of FitnessGram exams are given in

Spring and one-third in Fall, although we do not know the breakdown by dis-
trict. 47 Castillo-Garzón, Ruiz, Ortega, and Gutiérrez (2006).
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Several studies document and measure the benefits from increased
aerobic capacity (or cardiorespiratory fitness).48 Kodama et al. (2009)
conducts a meta-analysis and finds that a 1-MET higher level of VO2

max is associated with a 13% decrease in the risk of all-cause mortality
and a 15% decrease in the risk of cardiovascular disease (CVD).49

However, this meta-analysis was conducted on studies of adults, not
children. Other studies examine the effect of cardiorespiratory fitness
on children’s CVD outcomes50, but do not provide an estimated mag-
nitude of a causal effect from VO2 max.

We thus use two different measures of the valuation of health
benefits from aerobic capacity increases. First, we use the meta-analysis
of mortality effects reported in Kodama et al. (2009) for adults and
extend them to childhood mortality: a 1-MET increase in VO2 max is
associated with a 13% decrease in mortality risk. The baseline child-
hood mortality rate in Georgia among 5–12 year-olds was 13.3 deaths
per 100,000 population in 2016.51 We use a standard value of a sta-
tistical life (VSL) of $7.4 million.52 The average district in Georgia has
about 9000 students. Thus, if an average district’s average MET unit of
VO2 max increased by 0.05 units (the effect size 1.8 scaled to represent
a district retrofitting 10 percent of a its buses and divided by 3.5 to
convert to MET units), the health valuation from reduced mortality for
that district is $71.1.53 Assuming a retrofit life of 10 years54 and an
annual discount rate of 3%, the present discounted value of the mor-
tality reduction benefits is $624.69, a small fraction of the cost of ret-
rofitting 10% of the bus fleet calculated earlier, $90,000. It is perhaps
not surprising that the retrofits fail a cost-benefit analysis when the
benefits are calculated only from reductions in mortality, since the
baseline mortality rate for elementary-school-aged children is ex-
tremely low.

The second measure of the valuation of health benefits combines the
result from Kodama et al. (2009) on the effect of aerobic capacity on
cardiovascular disease (among adults) with results from
Adamowicz, Dickie, Gerking, Veronesi, and Zinner (2014) on the va-
luation of avoided CVD among children. Adamowicz et al. (2014)
conduct a stated-preference survey of parents asking for their will-
ingness-to-pay (WTP) for a reduction in the probability of their children
being diagnosed with heart disease by age 75. They report a mean
annual WTP to reduce that probability by one chance in one hundred of
$5.62 for mothers and $4.08 for fathers; we use the mean of these two
values ($4.85). Since this is an annual WTP, we interpret the total WTP
for the one-in-one-hundred chance reduction in CVD to be the net
present value of this annual WTP from age 11 until age 75, which
equals $139.34.55 Kodama et al. (2009) report a 1-MET increase in VO2

max is associated with a 15% decrease in the risk of CVD. About one
third of Americans have some form of CVD,56 so a 15% decrease in the

risk is equivalent to a decrease in the chance of 1 out of 20. Therefore,
the benefit from a district retrofitting 10% of its buses is valued at
$940,590 per district.57 This is more than nine times greater than the
cost of the retrofits. Because CVD is so prevalent (unlike childhood
mortality), the valuation of even a modest reduction in its risk is quite
high. These benefits do not take into account the value of lower pol-
lution levels for non-students.

6.3. Benefits - test scores

Next, we calculate the benefit of the retrofits from a monetization of
test score improvements. Chetty et al. (2011) estimate the effect of an
increase in kindergarten test scores on adult earnings; they report that a
one-percentile increase in test scores is associated with an increase of
$94 in wage earnings at age 27 after controlling for parental char-
acteristics. Assume that the wage benefit of $94 lasts throughout one’s
working years of age 25–54, and discount using an annual rate of 3%.
Then, the one percentile increase in test scores is valued at $1,041.58

The results presented in Table 4 indicate that retrofitting 10% of a
district’s fleet will increase the z-score of the ELA tests by 0.009 and of
the math tests by 0.005. These improvements in z-scores are equivalent
to percentile increases of 0.36 and 0.19, respectively. Using the average
of these two values (0.275), and multiplying by the valuation implied
by the Chetty et al. (2011) estimates, the benefit of retrofitting 10% of a
district’s fleet is valued at $2.57 million.59 This is over 25 times greater
than the cost of the retrofit.

Lastly, we compare the costs of achieving test score gains through
bus retrofits to the costs of achieving those same gains through inter-
ventions studied in Chetty et al. (2011). The Tennessee STAR program
reduced class sizes by seven students, which is expected to cost around
$870 per student,60 and it yielded a 4.81 average percentile improve-
ment in test scores. Our estimates of the effects of the retrofits are that
they yielded a 1.9–3.6 average percentile increase in test scores. The
average school bus in our sample transports 66 students per day. Since
the average cost per bus retrofit in our sample is $8,110, this translates
to a cost of roughly $122 per student, or $34.1–$64.7 per percentile
point gain. The cost for an equivalent test score improvement is roughly
three to six times higher for the STAR class size reduction than it is for
the bus engine retrofits.61

7. Conclusion

We estimate the effect of retrofitting diesel school bus engines on
student health and academic achievement in the state of Georgia.
Retrofits have positive and significant effects on students’ aerobic ca-
pacity, a measure of respiratory health, but no effect on body mass
index, which we take as a placebo. Retrofits also have positive and
significant effects on student English test scores, and a smaller and
precise effect on math scores. Robustness checks reinforce our findings.
Back-of-the-envelope calculations suggest that the benefits of the ret-
rofits were much higher than their costs, and that the academic gains
were achieved at a lower cost than they would have been through class
size reductions.

This study could be extended several ways. First, use of individual-
level data rather than district-level data may improve the precision of

48 Several such studies are summarized in Medicine (2012), Chapter 5.
49 Lakoski et al. (2015) finds also an association between aerobic capacity and

adult cancer rates.
50 Castro-Piñero et al. (2017); Ortega, Ruiz, Castillo, and Sjöström (2008).
51 https://oasis.state.ga.us/oasis/webquery/qryMortality.aspx#.
52 https://www.epa.gov/environmental-economics/mortality-risk-

valuation#whatvalue.
53 The 0.05 MET increase = 0.00000665 PP decrease in the mortality rate =

0.00000960555 averted deaths per average district retrofit = $71.1 per dis-
trict.
54 Diesel particulate filters are often given a lifespan of 100,000 miles by the

manufacturer, which represents 8 years with our sample’s average yearly
mileage of 12,960. However, DPF lifespan varies greatly depending on regular
servicing and cleaning. Barone et al. (2010) show that DPFs are 95% as effective
after four years, while Sappok, Santiago, Vianna, and Wong (2009) show that
DPFs are half as effective at 188,000 miles, or roughly 14 years for the buses in
our sample. We select 10 years to be consistent with Beatty and
Shimshack (2011), although the entire range (4–14 years) of possible lifespans
lead to benefits far less than the costs of $90,000.
55 The survey sample in Adamowicz et al. (2014) includes just parents with at

least one child aged 6–16 in the home, so we use 11 as the starting age.

56 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5408160/.
57 The 0.05 MET increase = 0.0075% decrease in the probability of CVD =

$104.51 benefit per child = $940,590 benefit for an average district with 9000
children.
58= = 94*(1 0.03)i

i
20

50 .
59= 0.275 percentile points *$1,041 per percentile point per student *9,000

students per district.
60 Reichardt (2000).
61 The class size reduction cost $870 per student for 4.81 percentile gain =

$181 per percentile point gain.
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the results. Within-district variation in the exposure of students to the
retrofits could be utilized if, for instance, individual student health
records could be matched with bus routes. This could also allow for
determining if treatment effects differ by demographic group. Second,
data from other states could be analyzed to test whether the results
from Georgia generalize elsewhere. Third, alternative health or aca-
demic outcomes could be examined. Linking students to other health
outcomes, for example via Medicare data, may provide a valuable
measure of health not picked up by FitnessGram scores. With a longer

panel, long-term outcomes, including college attendance and labor
market outcomes, could be examined. Fourth, we could test the effect of
retrofits on outcomes other than health and academic performance such
as non-cognitive skills.

Our results have plausible policy relevance. While bus retrofit pro-
grams are widespread, very little work has examined their effects.
Policymakers interested in physical health and academic performance
of children can use bus retrofits as another cost-effective policy tool.

Appendix

Table Appendix A1
Academic Achievement by Grade 2007–2017.

Grade 3/6 Grade 4/7 Grade 5/8

ELA Math ELA Math ELA Math

(1) (2) (3) (4) (5) (6)

I. Elementary Schools
Percent Retrofitted 0.087 0.034 0.208** 0.203* 0.169*** 0.060

(0.07) (0.11) (0.10) (0.11) (0.05) (0.08)
R2 0.033 0.022 0.072 0.064 0.056 0.069
II. Middle Schools
Percent Retrofitted 0.048 −0.003 0.049 0.031 0.073* 0.108

(0.05) (0.06) (0.05) (0.04) (0.04) (0.08)
R2 0.048 0.015 0.037 0.024 0.016 0.038
N 1800 1800 1800 1800 1800 1800

* p < 0.1, ⁎⁎p < 0.05, ⁎⁎⁎p < 0.01. Clustered standard errors at the district level in parentheses. Outcomes are grade-level ELA and math scores. Year fixed effects
included. Demographic variables include the proportion of students that are Asian, African-American, Hispanic, and male, where White and female are the omitted
categories, as well as the percentage of students with free or reduced price lunch, disabilities, and English-language learner status. Bus characteristics include average
bus age, the proportion of buses built before 2007, and the proportion of liquid natural gas-, butane-, and gasoline-powered buses in the district. Student ridership
and trip duration variables also included as controls. The independent variables percent retrofitted is the proportion of a district’s bus fleet that is retrofitted in a
given year, and zero else.

Table Appendix A2
Fixed Effects with Multiple Leads 2007–2017.

(1) (2) (3) (4) (5)

ELA Math Attend AC BMI

Percent Retrofitted 0.031 0.045 0.313 1.610* −0.299
(0.04) (0.05) (0.43) (0.95) (0.72)

Lead 1 −0.050 −0.050 −0.116 3.091 −0.063
(0.03) (0.05) (0.32) (4.16) (1.33)

Lead 2 −0.004 0.044 0.660 - -
(0.06) (0.05) (0.41) (.) (.)

R2 0.955 0.943 0.565 0.860 0.756
N 1958 1958 1958 1034 1040

* p < 0.1, ⁎⁎p < 0.05, ⁎⁎⁎p < 0.01. Clustered standard errors at the district level in parentheses. Year and district fixed effects included. Outcomes are district
average ELA test scores, Math test scores, attendance, aerobic capacity, and BMI. Demographic variables include the proportion of students that are Asian, African-
American, Hispanic, and male, where White and female are the omitted categories, as well as the percentage of students with free or reduced price lunch, disabilities,
and English-language learner status. Bus characteristics include average bus age, the proportion of buses built before 2007, and the proportion of liquid natural gas-,
butane-, and gasoline-powered buses in the district. Student ridership and trip duration variables also included as controls. The independent variable percent
retrofitted is the cumulative proportion of a district’s bus fleet that has ever been retrofitted, and zero else. The table demonstrates the fixed effects estimates when
adding two leads to the model. The relevant sample for models (1) and (2) is 2012 - 2017, while model (3) covers the entire sample window, 2007–2017.
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Table Appendix A4
Correlation of Proportion of a Bus Fleet Retrofitted with District Characteristics 2007–2017.

(1) (2) (3)

ΔAC Part. ΔBMI Part. ΔRidership

I. Endogenous Responses
Percent Retrofitted −0.449 −0.576* −0.023

(0.32) (0.30) (0.04)
R2 0.153 0.030 0.012
N 870 870 1780

Δ Bus Age Δ Total Buses Δ Trip Duration

II. Bus Characteristics
Percent Retrofitted 0.470 56.662 4.227

(0.63) (36.02) (5.80)
R2 0.129 0.057 0.011
N 1800 1800 1780

Δ Afr.
American

Δ Hispanic Δ Male

III. Student Demographics
Percent Retrofitted 0.015 0.466 −0.109

(0.36) (0.38) (0.30)
R2 0.021 0.028 0.007
N 1800 1800 1800

Δ ELL Δ SWD Δ FRPL

IV. Student
Characteristics

Percent Retrofitted −0.009 0.572** 0.924
(0.08) (0.29) (1.58)

R2 0.012 0.219 0.035
N 1800 1800 1800

* p < 0.1, ⁎⁎p < 0.05, ⁎⁎⁎p < 0.01. Clustered standard errors at the district level in parentheses. Year fixed effects included. In the first panel, models
(1) and (2) demonstrate the extent to which the proportion of a bus fleet retrofitted is correlated with changes in the participation rate, i.e., the
number of attempts divided by district enrollment. Model (3) shows whether the proportion of a bus fleet retrofitted is correlated with year-on-year
changes the ridership rate. The relevant sample for models (1) and (2) is 2012 - 2017, while model (3) covers the entire sample window, 2007–2017.
In the second panel, we show that the proportion of a bus fleet retrofitted is not significantly correlated with changes in the average bus age within a
district, the total number of buses, or the average trip duration. The third panel demonstrates that the proportion of a bus fleet retrofitted is not
significantly related to changes in the percent of a district that is African American, Hispanic, or Male. The fourth panel shows the relationship
between the proportion of a bus fleet retrofitted and changes in the percent of a district’s students that are English language learner, students with
disabilities, or receiving free- and reduced-price lunch.

Table Appendix A3
Sensitivity of Aerobic Capacity Results to Different Cutoffs 2012–2017.

(1) (2) (3) (4) (5) (6) (7) (8) (9)

15 20 25 30 35 30 & 26 Jumps None 2012

Percent Retrofitted 2.298 1.313 1.483 1.763** 1.675** 1.815** 3.528*** 1.324 7.089***
(2.07) (1.34) (0.97) (0.73) (0.70) (0.81) (0.85) (2.29) (1.09)

R2 0.248 0.238 0.223 0.218 0.147 0.197 0.098 0.246 0.300
N 860 860 860 857 849 856 675 860 681

* p < 0.1, ⁎⁎p < 0.05, ⁎⁎⁎p < 0.01. Clustered standard errors at the district level in parentheses. Year fixed effects included. Demographic and bus characteristics
included as controls. Student ridership and trip duration variables also included as controls. For models (1) through (6), column headers represent different VO2 max
cutoff values. Average aerobic capacity in 2011-12 and 2012-13 is left-skewed, with many implausibly low values for VO2 max. In later years, no school-average VO2

max is below 30 for male assessments and 26 for female assessments. We therefore demonstrate aerobic capacity results under a range of cutoffs, where each cutoff
represents dropping school-level aerobic capacity results below the given value. In column (7), labeled Jumps, we replace as missing any school with average values
that increase or decrease by more than 6 VO2 max units from 2011–12 to 2012–13. These jumps are very large in relation to those observed after 2012-13, and so
dropping these observations is often equivalent to dropping all values below a given low-valued cutoff. In the column (2012), we drop the entire year of 2011-12,
which restricts the number of retrofitting districts such that the coefficient is estimated from only three retrofitting districts. We prefer model (6), the cutoff at 30 for
males and 26 for females, because it creates a 2012 distribution that best conforms to the other years of the sample while simultaneously not dropping too many low
yet accurate results. In almost all cases, the cutoffs drop less than a tenth of school observations in any given district. Controlling for the proportion of schools
dropped does not affect the results because the proportion dropped is not correlated with treatment.
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Table Appendix A6
Drop Interpolated Bus Years.

(1) (2) (3) (4) (5)

ELA Math Attend AC BMI

Percent Retrofitted 0.083*** 0.057 0.242 1.766** -0.242
(0.03) (0.04) (0.29) (0.83) (0.35)

R2 0.079 0.029 0.174 0.188 0.061
N 1260 1260 1260 692 698

* p < 0.1, ⁎⁎p < 0.05, ⁎⁎⁎p < 0.01. Clustered standard errors at the district level in parentheses. Outcomes are district average ELA test scores, Math test scores,
attendance, aerobic capacity, and BMI. District and year fixed effects included. Demographic variables include the proportion of students that are Asian, African-American,
Hispanic, and male, where White and female are the omitted categories, as well as the percentage of students with free or reduced price lunch, disabilities, and English-
language learner status. Bus characteristics include average bus age, the proportion of buses built before 2007, and the proportion of liquid natural gas-, butane-, and
gasoline-powered buses in the district. Controls for ridership share and trip duration are also included. The independent variable percent retrofitted is the proportion of a
district’s bus fleet that is retrofitted in a given year, and zero else. The table shows how our first-differences estimates change when dropping all years for which information
on district bus fleets is lacking. For these years, we inserted the value of the nearest year for which data is available, which is 2010 for all years prior and 2016 for 2017.

Table Appendix A7
Timing of Retrofit Implementation.

(1) (2) (3) (4) (5)

ELA Math Attend AC BMI

I. Regular Timing
Percent Retrofitted 0.089*** 0.049 0.154 1.815** -0.241

(0.03) (0.03) (0.25) (0.81) (0.33)
R2 0.058 0.023 0.097 0.197 0.050
N 1800 1800 1800 856 863
II. Treatment 1-year in

Advance
Percent Retrofitted −0.029 −0.040 −0.110 2.258 0.197

(0.03) (0.04) (0.23) (2.75) (0.62)
R2 0.056 0.023 0.097 0.196 0.050
N 1800 1800 1800 856 863
III. January

Implementation
Percent Retrofitted 0.100*** 0.079** 0.273 1.664* −0.089

(0.02) (0.03) (0.26) (0.87) (0.28)
R2 0.059 0.024 0.097 0.197 0.050
N 1800 1800 1800 856 863

* p < 0.1, ⁎⁎p < 0.05, ⁎⁎⁎p < 0.01. Clustered standard errors in parentheses. Year fixed effects included. Demographic control variables include the proportion of
students that are Asian, African-American, Hispanic, and male, where White and female are the omitted categories. The percentage of students with free or reduced
price lunch, disabilities, and English-language learner status. Bus characteristics include average bus age, the proportion of buses built before 2007, and the
proportion of liquid natural gas-, butane-, and gasoline-powered buses in the district. Student ridership and trip duration variables also included as controls. The
independent variable percent retrofitted varies according to the timing of the retrofit completion date in a given school district. In the base case presented in Panel I,
regular timing, all retrofits between May and the following April are assigned to the fiscal year of the latter April. In Panel II, we show the results when assigning a
placebo treatment year as one year before the actual retrofit completion year. In Panel III, retrofits completed before January are assigned to the same fiscal year, but
those occurring after January are assigned to the following fiscal year.

Table Appendix A5
Academic Achievement 2007–2017, Dropping Milestones Years 2015–2017.

(1) (2) (3) (4) (5) (6)

ELA ELA ELA Math Math Math

Percent Retrofitted 0.089*** 0.049
(0.03) (0.03)

Percent Retrofitted 0.143*** 0.083*
Ridership (0.04) (0.05)
Percent Retrofitted 0.002*** 0.001
Ridership * Trip Duration (0.00) (0.00)
R2 0.064 0.064 0.064 0.020 0.020 0.020
N 1440 1440 1440 1440 1440 1440

* p < 0.1, ⁎⁎p < 0.05, ⁎⁎⁎p < 0.01. Clustered standard errors at the district level in parentheses. Outcomes are district average ELA test scores, Math test scores,
attendance, aerobic capacity, and BMI. District and year fixed effects included. Demographic variables include the proportion of students that are Asian, African-
American, Hispanic, and male, where White and female are the omitted categories, as well as the percentage of students with free or reduced price lunch, disabilities,
and English-language learner status. Bus characteristics include average bus age, the proportion of buses built before 2007, and the proportion of liquid natural gas-,
butane-, and gasoline-powered buses in the district. Controls for ridership share and trip duration are also included. The table shows how our first-differences
estimates change when dropping all years after 2014-15 when the new Milestones standardized examination is offered instead of the CRCT exam. Milestones
computerized examinations suffered from widespread glitches that may have affected our estimates.
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Table Appendix A8
FitnessGram Health with Linear Trends 2012–2017.

(1) (2) (3) (4) (5) (6)

AC AC AC BMI BMI BMI

Percent Retrofitted 2.197*** −0.345
(0.60) (0.56)

Percent Retrofitted 3.196*** −0.660
Ridership (1.05) (0.88)
Percent Retrofitted 0.055** −0.016
Ridership * Trip Duration (0.02) (0.01)
Dep. Var. mean 41.66 41.66 41.66 21.03 21.03 21.03
R2 0.353 0.353 0.353 0.200 0.200 0.200
N 846 846 846 853 853 853

* p < 0.1, ⁎⁎ p < 0.05, ⁎⁎⁎ p < 0.01. Clustered standard errors at the district level in parentheses. Year fixed effects and district fixed effects, to account for linear
trends, included. Demographic variables include the proportion of students that are Asian, African-American, Hispanic, and male, where White and female are the
omitted categories, as well as the percentage of students with free or reduced price lunch, disabilities, and English-language learner status. Bus characteristics include
average bus age, the proportion of buses built before 2007, and the proportion of liquid natural gas-, butane-, and gasoline-powered buses in the district. Student
ridership and trip duration variables also included as controls. The independent variable percent retrofitted is the proportion of a district’s bus fleet that is retrofitted
in a given year, and zero otherwise. Percent retrofitted * ridership is the percent of the bus fleet retrofitted times the time-constant proportion of students in a district
riding the bus, while percent retrofitted * ridership * trip duration is the proportion of the bus fleet retrofitted times time-constant ridership and the time-constant
average duration of a daily bus commute for students in a given district.

Table Appendix A9
Academic Achievement with Linear Trends 2007–2017.

(1) (2) (3) (4) (5) (6) (7) (8) (9)

ELA ELA ELA Math Math Math Attend Attend Attend

Percent Retrofitted 0.076*** 0.045 0.107
(0.03) (0.04) (0.35)

Percent Retrofitted 0.121** 0.075 0.195
Ridership (0.05) (0.06) (0.56)
Percent Retrofitted 0.002** 0.001 0.004
Ridership * Trip Duration (0.00) (0.00) (0.01)
Dep. Var. mean −0.100 −0.100 −0.100 −0.099 −0.099 −0.099 95.57 95.57 95.57
R2 0.137 0.137 0.137 0.070 0.070 0.070 0.153 0.153 0.153
N 1780 1780 1780 1780 1780 1780 1780 1780 1780

* p < 0.1, ⁎⁎p < 0.05, ⁎⁎⁎p < 0.01. Clustered standard errors at the district level in parentheses. Year fixed effects and district fixed effects, to account for linear
trends, included. Demographic control variables include the proportion of students that are Asian, African-American, Hispanic, and male, where White and female
are the omitted categories, as well as the percentage of students with free or reduced price lunch, disabilities, and English-language learner status. Bus control
variables include average bus age, the proportion of buses built before 2007, and the proportion of liquid natural gas-, butane-, and gasoline-powered buses in the
district. Student ridership and trip duration variables also included as controls. The independent variable percent retrofitted is the proportion of a district’s bus fleet
that is retrofitted in a given year, and zero else. Percent retrofitted * ridership is the percent of the bus fleet retrofitted times the time-constant proportion of students
in a district riding the bus, while percent retrofitted * ridership * trip duration is the proportion of the bus fleet retrofitted times time-constant ridership and the time-
constant average duration of a daily bus commute for students in a given district.
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Fig. Appendix A1. Data Issues in
Aerobic Capacity Notes: Each pane
scatters the school-level average VO2

max against the percent of students
attaining healthy fitness zone (HFZ)
status. The left pane presents the scat-
terplot for school years 2011-12 and
2012-13, while the right pane displays
a scatterplot for the remaining years in
the sample. A school’s average VO2

max should be highly correlated with
the percent of students attaining HFZ
status because each child’s VO2 max is
used to determine whether they meet
HFZ standards. In the right panel, we
observe such a tight relationship be-
tween these related measures. In the
left panel, however, the relationship is
less clear. After the 2012-13 school
year, there are no female school-level
VO2 max observations below 26 or
male school-level VO2 max observa-
tions below 30. These values are
nevertheless very common in the first
two years of the sample, and many of
these low values correspond to rela-
tively high HFZ attainment. Such va-
lues suggest a data-reporting issue in
the roll-out years of the sample.
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