CUH ProKnow

Liam Stubbington, RT Physicist liam.stubbington@NHS.net

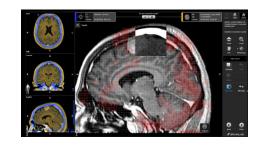
Together
Safe
Kind
Excellent

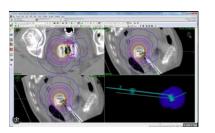
Data Curation

To Automate or not to Automate?

Benefits:

- Saves planner/checker time
- Planner/checker can concentrate on the task at hand
- Planner/checker don't have to learn a new system (<u>logging in!!!</u>)


Costs:

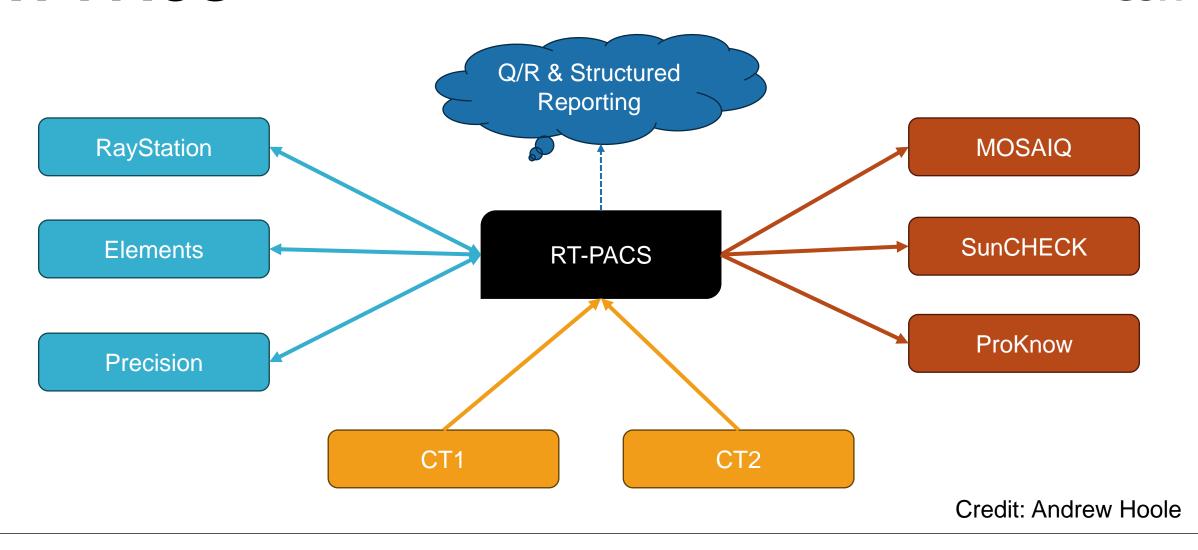

- Planner/checker never engage with the power of ProKnow
- Solution must deal with <u>subtleties</u>

Background

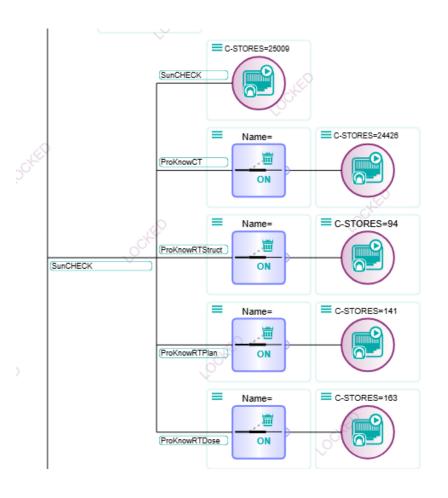
NHS CUH


- 5 Primary planning systems
 - RayStation for C-ARM LINACs
 - Elements for SRS
 - Precision for TomoTherapy
 - Oncentra Brachy for Gynae BT
 - Oncentra Prostate for LDR
- DoseCHECK for independent dose calculation
- Smorgasbord of independent check softwares and legacy systems

Centralized treatment planning for all Accuray treatment delivery systems.

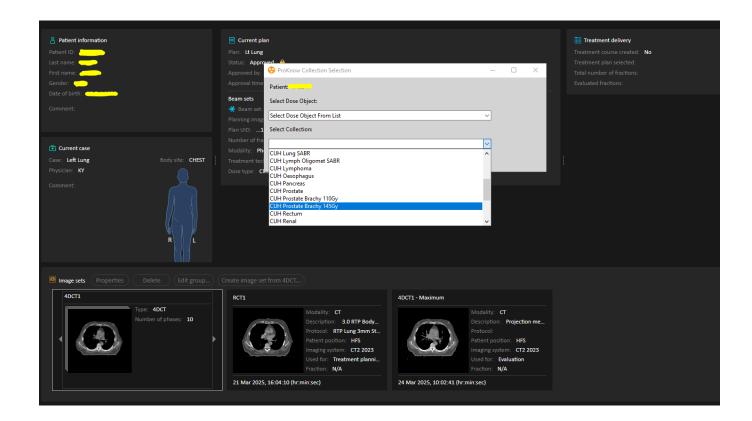


RT-PACS



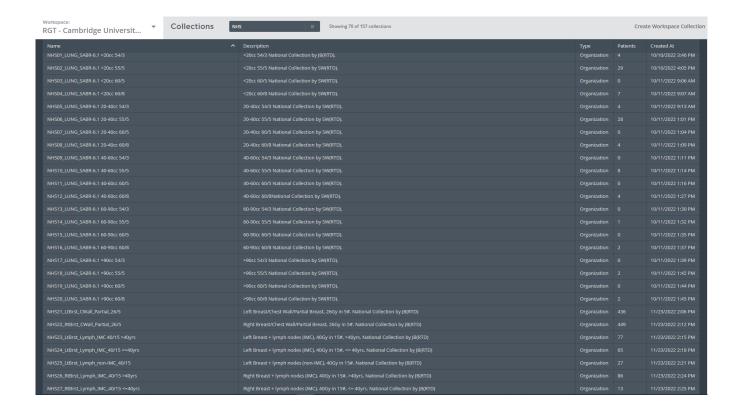
RT-PACS

- Vendor Neural Archive
- Destination AET SUNCHECK gets streamed to ProKnow
- RTPlan
 - ApprovalStatus (300E, 0002): APPROVED
- RTDose
 - DoseSummationType (3004, 000A): PLAN

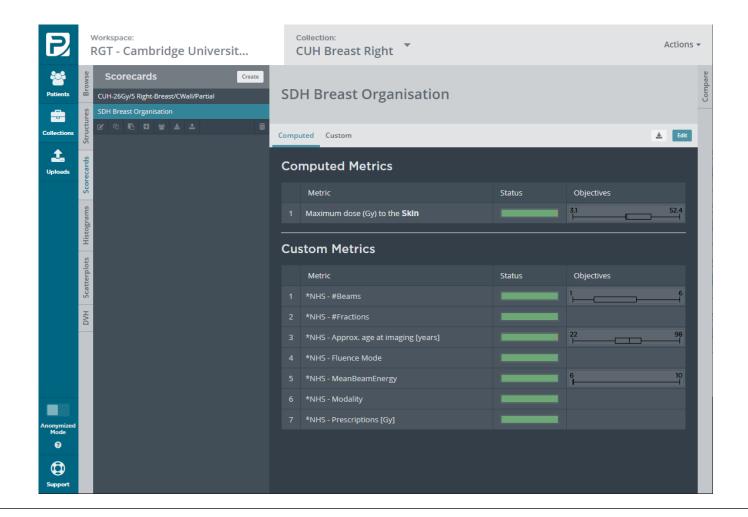


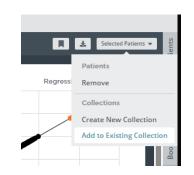
Credit: Andrew Hoole

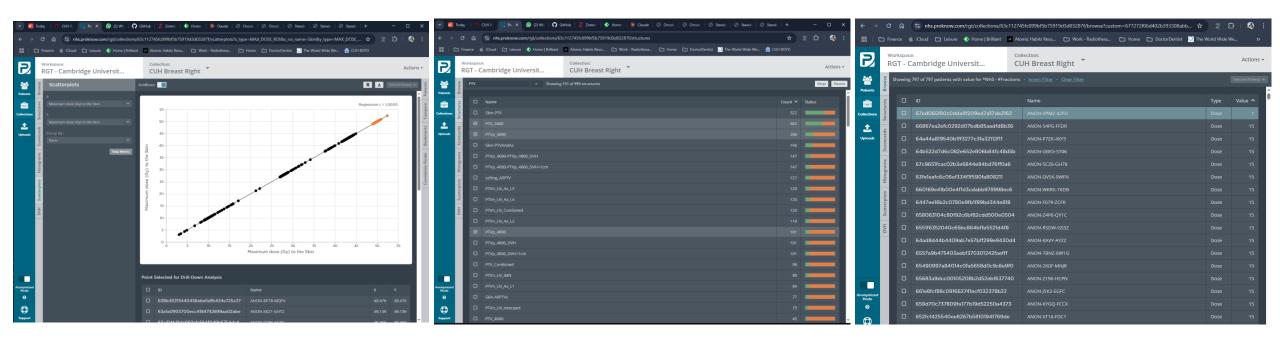
Semi-automatic approach


- All approved plans (+associated DICOM entities) captured in ProKnow automatically
- Moving items to collections?
- Small <u>RayStation script</u> enables checker to move dose entities to target collection

Subtleties – Collections


- Filter only CUH Workspace collections
- Soft landing for National Collections
 - There are a LOT of them.
 - 79 at time of writing


Subtleties – Collections

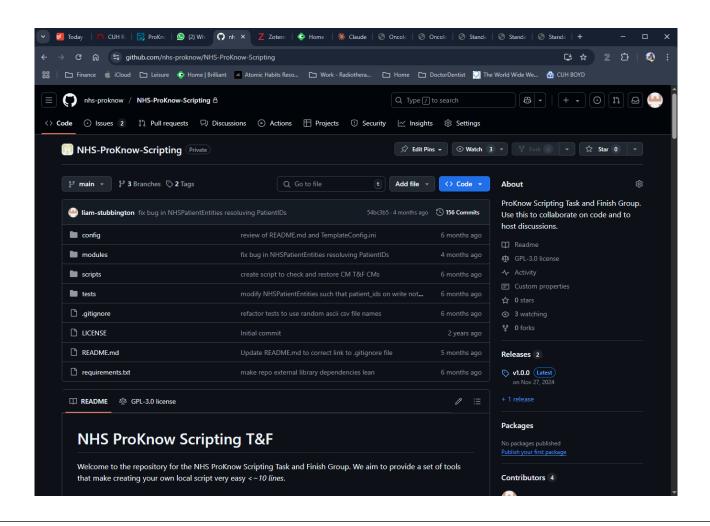

• Setup *Organizer* scorecards

Subtleties – Collections

External Max Dose [Gy]

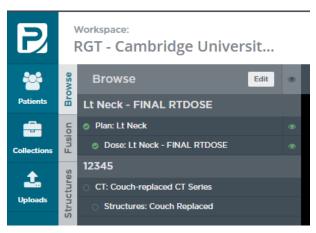
ROI Label Frequency

Fractions


Subtleties – Data Cleaning

- RayStation script is an entry point for running other clean up tasks
 - 1. Adding Custom Metrics
 - 2. Removing TomoTherapy LA4 Plan
 - 3. DICOM Association
 - 4. Dose Summations

Custom Metrics

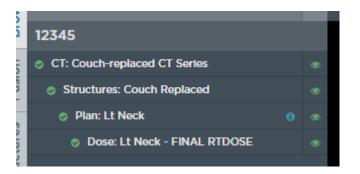

Includes (not exhaustive):

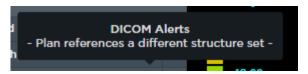
- TPS vendor
- Machine S/N (Tomo)
- #Beams
- #Fractions
- Beam model label
- FFF or cFF
- Energy
- Prescriptions [Gy]
- Age (at imaging)
- Isotopes, BT

TomoTherapy

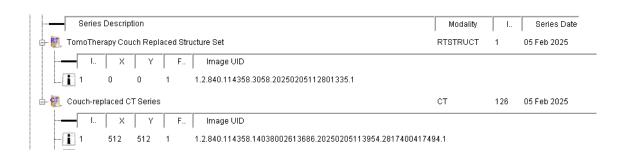
- Only interested in the LA3 plan for longitudinal dosimetry
- Both LA3 and LA4 plan get sent to DoseCHECK for QA
- Couch is inserted as HU in planning image
- RT SS and CT end in different study

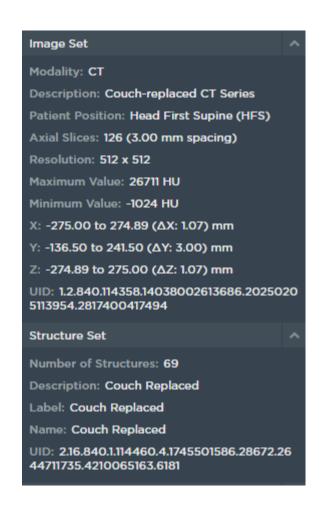

```
def delete_la4_plan_and_dose(patient: Any) -> None:
    """Deletes any LA4 plans and doses in ProKnow for a given patient.


Parameters
------
patient : Any
    ProKnow API Patient object.
"""


plan_summaries = patient.find_entities(
    lambda x: x.data["type"] == "plan"
)
```

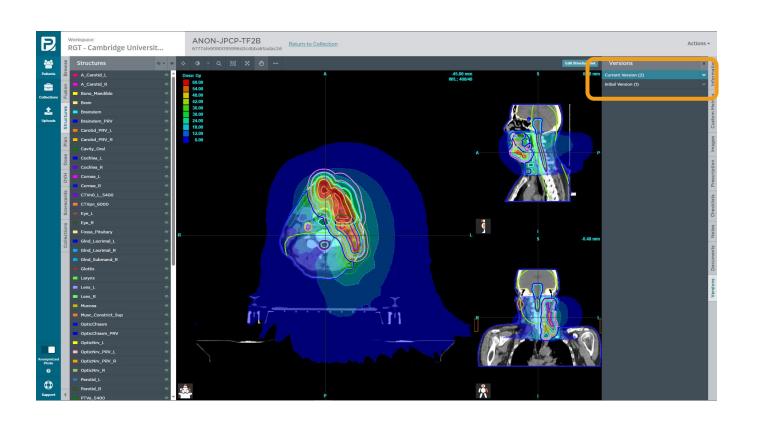

- ProKnow should automatically find reference CT Series,
 Structure-Set and Plan on upload through reference
 SOPInstanceUID attributes in DICOM header
- Not always the case



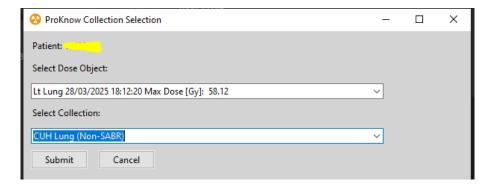


Same DICOM object VNA UID # ProKnow UID????

Renaming Rules


- ProKnow renaming rules change structure set on upload
- A LOT of renaming rules
- UID gets changed for DICOM compliance

Structure Set Versions


- Fortunately, the original structure set
 UID is still embed in ProKnow in the original version of the structure set
- Original SOPInstanceUID not accessible through UI, but CAN be obtained through scripting
- Provides a link back to the plan, dose etc.

Summary

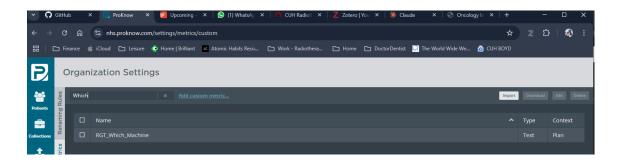
- Semi-automated workflow for ProKnow data curation at CUH
 - DoseCHECK data is automatically forwarded via DICOM router
 - RayStation script:
 - Entry point for further data cleaning e.g. TomoTherapy, DICOM association
 - Checker moves dose entity to local collection
 - Local collections are filtered and added to National collections as instructed

Reflection

- What's gone well?
 - Saves planner/checker time in a high patient throughput department
 - Fun and engaging
- What hasn't?
 - Haven't completely lost the administrative burden
 - Low engagement
 - We are still <u>not</u> using ProKnow for audits

Local Audits

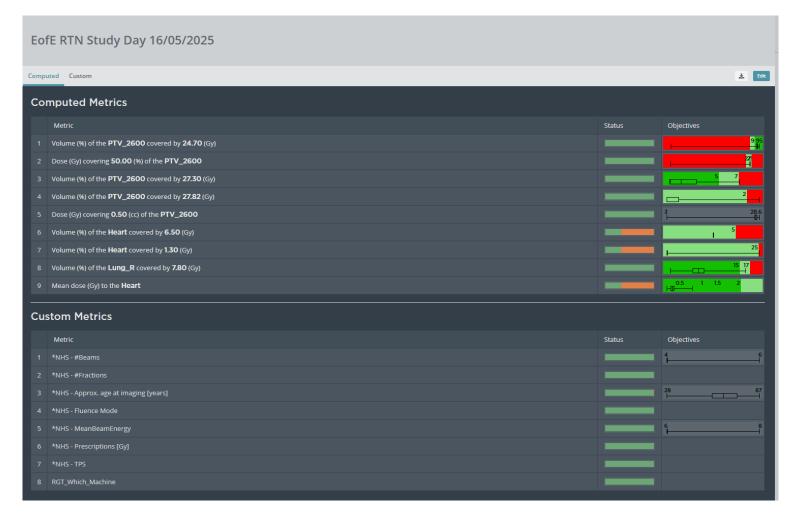
Elekta -> Varian


MLC Parameter	Agility	TrueBeam	TrueBeam STx
Number (per bank)	80	60	60
Leaf width [cm]	0.5	1	0.25, 0.5
Max tip difference [cm]	20.0	15	15
Max out of carriage difference [cm]	20.0	15	15
Minimum leaf position [cm]**	-15.0	-20.1	-20.1
Maximum leaf position [cm]**	+20.0	+20.1	+20.1

- Not all Agility leaves have the same ROM
- TrueBeam STx has 0.25 cm projection across central 32 leaves
- IEC 61217 Coordinates, X2 bank
- No comparison of IGRT capabilities

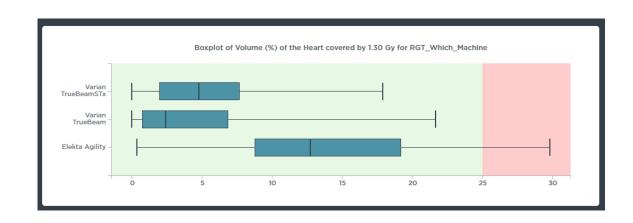
Elekta -> Varian

NHS CUH


- Beam naming convention
- Custom Metric based on machine class


```
def get_machine_from_dose_entity(
       plan entity: Any) -> str:
   """Returns machine class string from a ProKnow
   CollectionPatientSummary object.
   Matching is based on first character of first beam in referenced
   plan entity.
   Parameters
   plan entity : Any
       ProKnow API plan entity item.
   Returns
       TrueBeam, TrueBeamSTx, Agility
       None if not found.
   plan delivery analysis = plan entity.get delivery information()
   zeroth_beam = plan_delivery_analysis['beams'][0]
   zeroth beam name = zeroth beam["name"]
   if zeroth_beam_name.startswith("E"):
       return "Elekta Agility"
   elif zeroth beam name.startswith("V"):
       return "Varian TrueBeamSTx"
   elif zeroth beam name.startswith("M"):
       return "Varian TrueBeam"
       nhs_ce.logger.error(
               "Patient: %s plan entity %s has "
               "unresolvable beam name: %s"
           plan entity.patient id,
           plan entity.id,
```

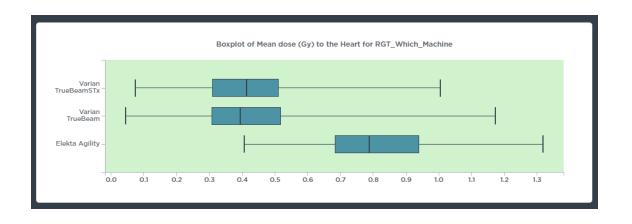

Breast RT



Left Breast Heart Dose

• Statistically significant difference in Volume of Heart covered by 1.30 Gy in favour of TrueBeam

t-Test: Two-Sample Assuming Unequal		
Variances		
	Agility	TrueBeam
Mean	13.98911902	4.060630838
Variance	51.67419728	16.87636427
Observations	90	119
Hypothesized Mean Difference	0	
df	132	
t Stat	11.7336711	
P(T<=t) one-tail	1.60214E-22	
t Critical one-tail	1.65647927	
P(T<=t) two-tail	3.20428E-22	
t Critical two-tail	1.978098842	



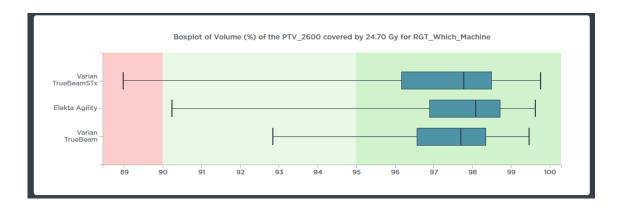
Heart mean dose also statistically significant

0		
t-Test: Two-Sample Assuming		
Unequal Variances		
	Agility	TrueBeam
Mean	0.808044502	0.424842114
Variance	0.028031001	0.027466569
Observations	90	119
Hypothesized Mean Difference	0	
df	191	
t Stat	16.45589812	
P(T<=t) one-tail	9.074E-39	
t Critical one-tail	1.652870547	
P(T<=t) two-tail	1.8148E-38	
t Critical two-tail	1.97246199	

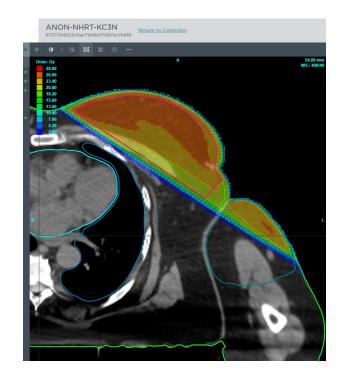


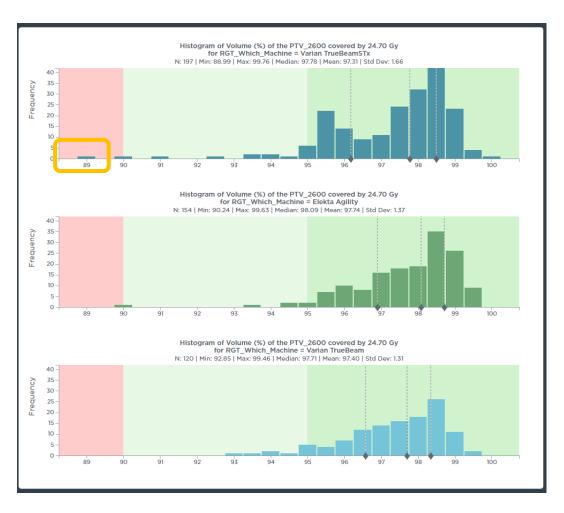
What about the lung volume in the treatment field? V7.8Gy [%]

t-Test: Two-Sample Assuming Unequal Variances		
	Agility	TrueBeam
Mean	6.611917156	5.581726901
Variance	4.959961116	4.771257337
Observations	154	120
Hypothesized Mean Difference	0	
df	258	
t Stat	3.840145394	
P(T<=t) one-tail	7.73946E-05	
t Critical one-tail	1.650781102	
P(T<=t) two-tail	0.000154789	
t Critical two-tail	1.969201386	



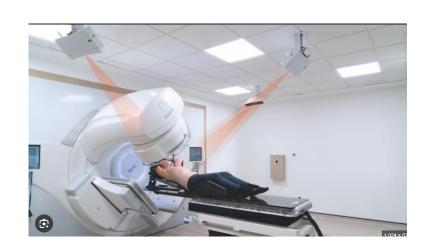
Volume of PTV_2600 covered by 95% isodose


t-Test: Two-Sample Assuming Unequal Variances		
	Agility	TrueBeam
Mean	97.73565609	97.40030085
Variance	1.89811365	1.717397006
Observations	154	120
Hypothesized Mean Difference	0	
df	261	
t Stat	2.054764222	
P(T<=t) one-tail	0.020448643	
t Critical one-tail	1.650712727	
P(T<=t) two-tail	0.040897285	
t Critical two-tail	1.969094724	



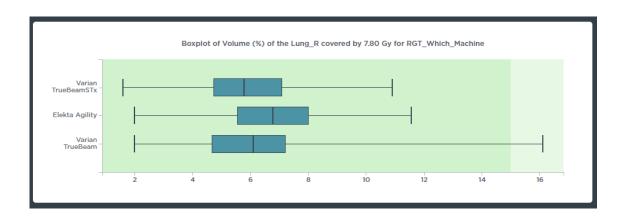
Left Breast Coverage

• What happened here?

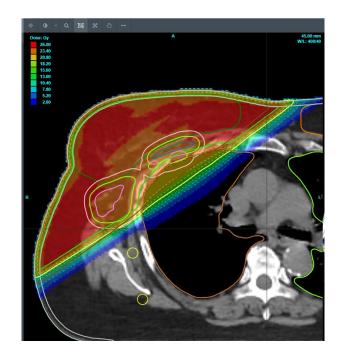


Why?

- Recap:
 - Statistically significant reduction in OAR doses for Left sided 26 Gy/5#s breasts on TrueBeam
 - Modest reduction in PTV coverage at 95% isodose
- Confounding variables
 - More complex cases may end up on Agility (not true anymore)
 - Beam model and dose calculation
 - New TrueBeams have AlignRT to support DIBH
 - DIBH pre-dates TrueBeams
 - Used for left sided breasts when tolerated



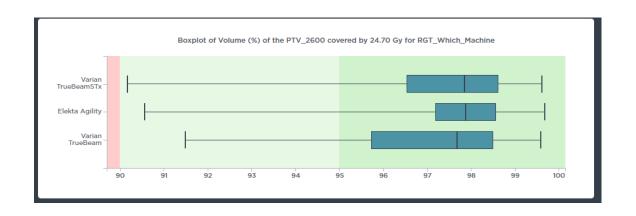
• What about the lung volume in the treatment field? V7.8Gy [%]


t-Test: Two-Sample Assuming Unequal Variances		
	Agility	TrueBeam
Mean	6.835347594	6.178773846
Variance	3.903161863	5.52371742
Observations	135	53
Hypothesized Mean Difference	0	
df	82	
t Stat	1.79945095	
P(T<=t) one-tail	0.03781294	
t Critical one-tail	1.663649184	
P(T<=t) two-tail	0.07562588	
t Critical two-tail	1.989318557	



Right Breast Ipsilateral Lung

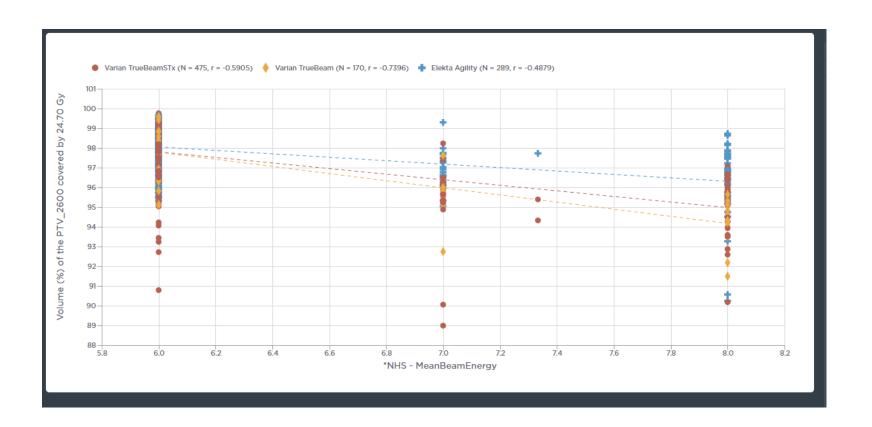
What happened here?



Volume of PTV_2600 covered by 95% isodose

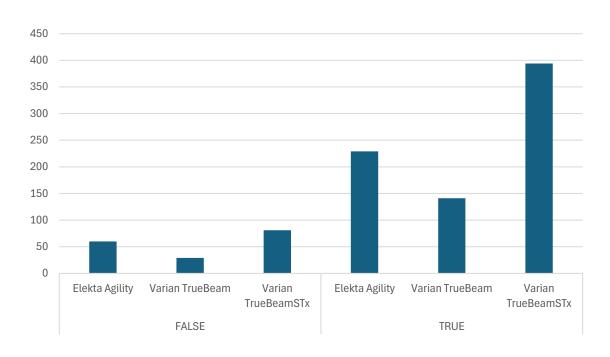
t-Test: Two-Sample Assuming Unequal Variances		
	Agility	TrueBeam
Mean	97.75390405	97.10974467
Variance	1.357466739	3.621328653
Observations	135	53
Hypothesized Mean Difference	0	
df	68	
t Stat	2.300829469	
P(T<=t) one-tail	0.012236828	
t Critical one-tail	1.667572281	
P(T<=t) two-tail	0.024473655	
t Critical two-tail	1.995468931	

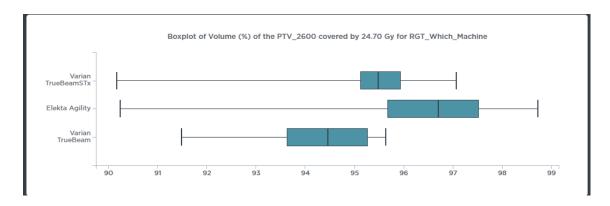
Recap



- On both left and right sided breasts 26 Gy/5#s comparing Agility and TrueBeam
 - Statistically significant reduction in OAR doses on TrueBeam
 - Modest reduction in PTV_2600 coverage at 95% isodose
- Why?

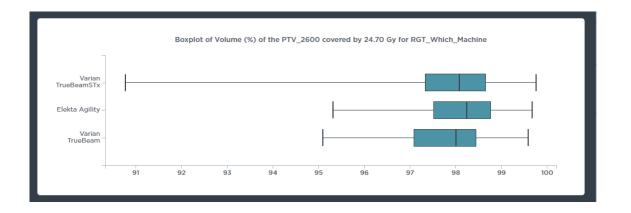
Combined Breast Data


- Pooled breast data using the compare collections feature
- Grouped by treatment machine and mean energy

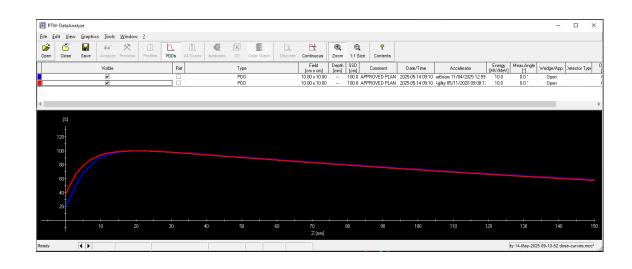

Observations			
	Elekta Agility	<u>TrueBeam</u>	Row totals
10X	60	29	89
No 10X	229	141	370
Col totals	289	170	459
Expected			
	Elekta Agility	<u>TrueBeam</u>	
<u>10X</u>	56.03703704	32.96296296	
<u>No 10X</u>	232.962963	137.037037	
Chi-Square			
	Elekta Agility	<u>TrueBeam</u>	
<u>10X</u>	0.280262417	0.476446109	
<u>No 10X</u>	0.067414473	0.114604605	
	SUM	0.938727604	
	P-Value	0.332605284	

10X Beams Only - Coverage

- Pooled Breast Data
- Plans with 10X tangent beams
- Statistically significant difference in coverage when using 10X on Agility beam model


Agility	TrueBeam
96.35774901	94.26601934
3.170622737	1.507019086
41	16
0	
40	
5.050646383	
5.03695E-06	
1.683851013	
1.00739E-05	
2.02107539	
	3.170622737 41 0 40 5.050646383 5.03695E-06 1.683851013 1.00739E-05

- What about the 6X case?
- Also statistically significant, but is it clinically significant?


t-Test: Two-Sample Assuming Unequal Variances		
	Agility	TrueBeam
Mean	98.0596574	97.79591245
Variance	0.937966865	0.983110645
Observations	229	141
Hypothesized Mean Difference	0	
df	291	
t Stat	2.506933906	
P(T<=t) one-tail	0.006361735	
t Critical one-tail	1.650106758	
P(T<=t) two-tail	0.012723471	
t Critical two-tail	1.968149554	

- TrueBeam Blue, Agility Red
- TrueBeam 10X harder beam
- Consider increasing 6X SMLC beam
 weighting to top-up coverage when using
 10X tangents on TrueBeam
- Uniform margins for structures via scripting would be helpful

Summary

- Talked through semi-automated approach to ProKnow data collection @ CUH
 - DICOM forwarding + small script in RayStation to help with local collection assignment
 - National collections are populated as and when...
- Audited simplest breast fractionation 25Gy/5#s
 - Compared TrueBeam & Agility plan quality
 - Statistically significant reduction in OAR dose on TrueBeam
 - Confounded by introduction of SGRT
 - Statistically significant reduction in coverage at the 95% level on TrueBeam
 - 10X worse than 6X

Liam Stubbington, RT Physicist liam.stubbington@NHS.net