

Dual Signal Optical Logic Architecture (DSOLA)

All-Optical Logic for a Post-electronic Era

Author: Jaime Arago ja@lightmultinary.com

1 Dual-Signal Optical Encoding:

-Logic Without NOT Gates-

Traditional binary encoding: 1 wire; 2 signals (1,0)

DSOLA uses **dual optical waveguides**: signal in waveguide '1' represents logic high (1), while signal in waveguide '0' represents logic low (0)

Dual-encoded logic gates double waveguides:

Logic reconfiguration made easy. Simply reverse Y1 ↔ Y0 to turn an AND into a NAND, without the need for additional NOT gates

ADVANTAGE #1

- -Data robustness (transmission & processing)
- -No need for $\underline{\text{NOT gates}} \rightarrow \text{simpler, faster,}$ lower-power design

2 Laser-threshold transistor:

-A Building Block for Optical Logic Gates-

The laser-threshold transistor:

Pumped just below lasing threshold

One input = no output

Two inputs \rightarrow threshold surpassed \rightarrow <u>laser fires</u>

ADVANTAGE #2

-No individual pumps needed. All transistors share one optical pump

3 All-optical Logic Gates:

-Laser Speed Logic-

DSOLA AND gate:

Uses 3 laser-threshold transistors.

Only when both inputs (A1 and B1) are active, output goes to waveguide '1' (logic 1).

All other cases → waveguide '0' (logic 0)

Other gates (NAND, OR, NOR, XOR, XNOR) use similar transistor layouts with adjusted output routing.

ADVANTAGE #3

-Only one laser-transistor is activated per input combination for any logic operation:

extremely fast logic execution