
Cardano-cli:~$ Study sheets

Part 2: stake pool, KES keys renewal and metadata

The second part of this document is used to explain how to generate the three key pairs, the cold counter, the operational certificate for your pool.
It will also explain how to register your pool and its metadata using the cardano-cli. We are going to simplify some commands that have already

been explained in the first part of this document. We invite you to return to the previous exercises if the commands seem a little less familiar to you.

First exercise: Creation of the cold keys and the counter file

Air Gap

Hot Node

= Cold Environment (Offline)

= Synchronized Node (Online)

First, locate the branch that you are going to use for your
cold keys.1 There are 3 options in total each requiring the

name for the new files.

 cardano-cli node key-gen

--cold-verification-key-file cold.vkey
--cold-signing-key-file cold.skey
--operational-certificate-issue-counter-file <FILE>

 cardano-cli node key-gen

--cold-verification-key-file cold.vkey
--cold-signing-key-file cold.skey
--operational-certificate-issue-counter-file <FILE>

The cold keys are required to register a stake pool, to
update a stake pool registration certificate

parameters, to rotate a stake pool KES keys and to
retire a stake pool. They are among the most

important keys of your pool and should never leave
your offline environment under any circumstances.

2 There are 3 options in total each requiring the
name for the new files.

The counter file tracks the number of times an
operational certificate has been generated for the

relevant stake pool. We will explain all this in detail
during the exercise about creating the operational

certificate.

3

 cardano-cli node key-gen

--cold-verification-key-file cold.vkey
--cold-signing-key-file cold.skey
--operational-certificate-issue-counter-file cold.counter

 cardano-cli node key-gen

--cold-verification-key-file cold.vkey
--cold-signing-key-file cold.skey
--operational-certificate-issue-counter-file cold.counter

Air Gap

This is what you will see on your terminal.

user@computer:~$ cardano-cli node key-gen \
> --cold-verification-key-file cold.vkey \
> --cold-signing-key-file cold.skey \
> --operational-certificate-issue-counter-file cold.counter

4 When you open your cold.counter file, this is what you should see the first time.
Pay particular attention to this. We'll talk about that later.

{
 "type": "NodeOperationalCertificateIssueCounter",
 "description": "Next certificate issue number: 0",
 "cborHex": "82005820dcee462fec1d06f40ddbd6c120043a19b68beb384"
}

5

Second exercise: Creation of the VRF keys Air Gap

First, locate the branch that you are going
to use for your VRF keys.1 What exactly are VRF keys for?

The Cardano network uses the Verifiable Random
Function (VRF) to choose a random validator every

epoch. In a vulgar way we can compare your VRF keys
as your lottery ticket (ID) which will allow you to be
chosen randomly as slot leader during an epoch in

order to forge blocks. Your vrf.skey will also allow you
to know the precise date and time when you will have

the opportunity to forge them. (If you are chosen)

2

cardano-cli node key-gen-VRF

--verification-key-file <FILE>
--signing-key-file <FILE>

cardano-cli node key-gen-VRF

--verification-key-file <FILE>
--signing-key-file <FILE>

So, nothing new, let's identify our 2 keys.3

cardano-cli node key-gen-VRF

--verification-key-file vrf.vkey
--signing-key-file vrf.skey

cardano-cli node key-gen-VRF

--verification-key-file vrf.vkey
--signing-key-file vrf.skey

This is what you will see on your terminal.

user@computer:~$ cardano-cli node key-gen-VRF \
> --verification-key-file vrf.vkey \
> --signing-key-file vrf.skey \

4

Third exercise: Creation of the KES keys Air Gap

First, locate the branch that you are going to
use for your KES keys.1 What exactly are KES keys for?

KES stands for Key Evolving Signature, which means
that after a certain period, the key evolves to a new
key and discards its old version, making it impossible

for an attacker to rewrite history. You specify the
validity of the KES key using the start time and key

period parameters and this KES key needs to be
updated every 90 days.(More explanation in the next

exercise.)

2

cardano-cli node key-gen-KES

--verification-key-file <FILE>
--signing-key-file <FILE>

cardano-cli node key-gen-KES

--verification-key-file <FILE>
--signing-key-file <FILE>

Let's identify our 2 keys.3

This is what you will see on your terminal.

user@computer:~$ cardano-cli node key-gen-KES \
> --verification-key-file kes.vkey \
> --signing-key-file kes.skey \

4

cardano-cli node key-gen-KES

--verification-key-file kes.vkey
--signing-key-file kes.skey

cardano-cli node key-gen-KES

--verification-key-file kes.vkey
--signing-key-file kes.skey

Before moving on to the next exercise, you should know what an operational node certificate is. An operational node certificate represent
the link between the operator’s offline key and their operational key. A certificate’s job is to check whether or not an operational key is

valid, to prevent malicious interference. The certificate identifies the current operational key, and is signed by the offline key.
(the cold.skey)

This tutorial is designed to
be used with the Printable
version of the Cardano-cli

cheat sheet V8.0.0

Fourth exercise: Creation of the operational node certificate

Fifth exercise: Understanding of KES key renewal

First, locate the branch that you are going to
use for your operational certificate.1 Again,an operational certificate job is to check whether or not an operational key is valid to prevent malicious

interference. Which is why it needs 4 things.2

cardano-cli node issue-op-cert

(--kes-verification-key <STRING> | --kes-verification-key-file <FILE>)
--cold-signing-key-file <FILE>
--operational-certificate-issue-counter-file <FILE>
--kes-period <NATURAL>
--out-file <FILE>

cardano-cli node issue-op-cert

(--kes-verification-key <STRING> | --kes-verification-key-file <FILE>)
--cold-signing-key-file <FILE>
--operational-certificate-issue-counter-file <FILE>
--kes-period <NATURAL>
--out-file <FILE>

• The KES verification key of the
operational key its going to valid.

• The cold key signature to make the link
between the operator’s offline key and
the operational key.

• The counter file to track the certificate
issue number. (more on that later)

• The KES current period to validate the
KES key, its evolution and its expiration.

For now you can specify the PATH to your kes.vkey, your
cold.skey and your cold.counter.

For the '--kes-period' option, you must determine the KES period in which
we are currently in order to be able to prove the validity of your KES key,
follow its evolution and at the same time, know its expiration date. To do

this, you will need to know the current slot number by performing the
command specified in part 1, exercise 6 of this document.

(cardano-cli query tip)

3

cardano-cli node issue-op-cert

(--kes-verification-key <STRING> | --kes-verification-key-file kes.vkey)
--cold-signing-key-file cold.skey
--operational-certificate-issue-counter-file cold.counter
--kes-period <NATURAL>
--out-file <FILE>

cardano-cli node issue-op-cert

(--kes-verification-key <STRING> | --kes-verification-key-file kes.vkey)
--cold-signing-key-file cold.skey
--operational-certificate-issue-counter-file cold.counter
--kes-period <NATURAL>
--out-file <FILE>

Here is an example of the result of the
command (cardano-cli query tip)

{
 "block": 8749305,
 "epoch": 411,
 "era": "Babbage",
 "hash": "505e4af96abc19e1d8e0d54cb508e564...",
 "slot": 94027764,
 "syncProgress": "100.00"
}

4

user@computer:~$ cardano-cli query tip \
> --mainnet

You also need to know how many slots there are
per KES period. (1 slot = 1 second) 5

This information is written in the last few lines of your
node shelley-genesis.json file

 "networkId": "Mainnet",
 "initialFunds": {},
 "maxLovelaceSupply": 45000000000000000,
 "networkMagic": 764824073,
 "epochLength": 432000,
 "systemStart": "2017-09-23T21:44:51Z",
 "slotsPerKESPeriod": 129600,
 "slotLength": 1,
 "maxKESEvolutions": 62,

You now know the current slot number
and the number of "slotsPerKESperiod"6

You can calculate what KES period you are
currently in by dividing the current slot number
(94027764) by the "slotsPerKESPeriod" (12960)

user@computer:~$ expr 94027764 / 129600
725

KES actual period

Add it to your cardano-cli command as well as the name of your
operational node certificate.7

cardano-cli node issue-op-cert

(--kes-verification-key <STRING> | --kes-verification-key-file kes.vkey)
--cold-signing-key-file cold.skey
--operational-certificate-issue-counter-file cold.counter
--kes-period 725
--out-file node.cert

cardano-cli node issue-op-cert

(--kes-verification-key <STRING> | --kes-verification-key-file kes.vkey)
--cold-signing-key-file cold.skey
--operational-certificate-issue-counter-file cold.counter
--kes-period 725
--out-file node.cert

This is what you will see on your terminal.

user@computer:~$ cardano-cli node issue-op-cert \
> --kes-verification-key-file kes.vkey \
> --cold-signing-key-file cold.skey \
> --operational-certificate-issue-counter-file cold.counter \
> --kes-period 725 \
> --out-file node.cert

8 Now that you have created your node.cert file (which have a counter of 0), check
the content of your cold.counter file and notice what has just changed.

{
 "type": "NodeOperationalCertificateIssueCounter",
 "description": "Next certificate issue number: 1",
 "cborHex": "134553546cee462fec1df5440ddbd6c11453a19b68bac5678"
}

9

This number has
changed from 0 to 1

You can now transfer your kes.skey, vrf.skey and your node.cert to the node that will serve as your block producer. What will follow will be
extremely important to understand. If you are unable to properly renew your KES key when it expires, you could lose your blocks despite

the fact that they have been assigned to you and they will be considered invalid until you rectify the situation. To do this, you will need to
understand how it works and the role of the counter file when renewing your node.cert and your KES keys.

Air Gap

Air Gap

First, we'll need to run the ‘’cardano-cli query
kes-period-info’’ command on your hot node.1

Hot Node

Nothing too complicated, you will only use
the 2 mandatory options among these.2

cardano-cli query kes-period-info

--socket-path <SOCKET_PATH>
[--shelley-mode
| --byron-mode [--epoch-slots <SLOTS>]
| --cardano-mode [--epoch-slots <SLOTS>]
]
(--mainnet | --testnet-magic <NATURAL>)
--op-cert-file node.cert
[--out-file <FILE>]

cardano-cli query kes-period-info

--socket-path <SOCKET_PATH>
[--shelley-mode
| --byron-mode [--epoch-slots <SLOTS>]
| --cardano-mode [--epoch-slots <SLOTS>]
]
(--mainnet | --testnet-magic <NATURAL>)
--op-cert-file node.cert
[--out-file <FILE>]

This command will allow us to obtain information on the
current KES period and on our operational certificate.

user@computer:~$ cardano-cli query kes-period-info \
> --mainnet \
> --op-cert-file node.cert

3

✓ Operational certificate's KES period is within the correct KES period interval
✓ The operational certificate counter agrees with the node protocol state counter
{
 "qKesCurrentKesPeriod": 785,
 "qKesEndKesInterval": 787,
 "qKesKesKeyExpiry": "2023-07-16T21:44:51Z",
 "qKesMaxKESEvolutions": 62,
 "qKesNodeStateOperationalCertificateNumber": 0,
 "qKesOnDiskOperationalCertificateNumber": 0,
 "qKesRemainingSlotsInKesPeriod": 251200,
 "qKesSlotsPerKesPeriod": 129600,
 "qKesStartKesInterval": 725
}

This is the ideal situation because "qKesNodeStateOperationalCertificateNumber" and
"qKesOnDiskOperationalCertificateNumber" have exactly the same number.4

last counter registered OnChain

(KesNodeState)

Counter value on your disk

(KesOnDisk)

 When your pool has forged at
 least one block with the current
operational certificate the values will
match. So, in this particular case, the

pool produced one or more blocks
during the 62 KES periods of its

operational certificate. You just have
to renew your KES keys and make new

node.cert in your ''Air Gap''
environment. Then transfer them to

your block producer and you're done.
(repeat exercise 3 and 4 of this part)

✓ Operational certificate's KES period is within the correct KES period interval
✗ No blocks minted so far with the operational certificate at: node.cert
 On disk operational certificate counter: 0
{
 "qKesCurrentKesPeriod": 785,
 "qKesEndKesInterval": 787,
 "qKesKesKeyExpiry": "2023-07-16T21:44:51Z",
 "qKesMaxKESEvolutions": 62,
 "qKesNodeStateOperationalCertificateNumber": null,
 "qKesOnDiskOperationalCertificateNumber": 0,
 "qKesRemainingSlotsInKesPeriod": 251200,
 "qKesSlotsPerKesPeriod": 129600,
 "qKesStartKesInterval": 725
}

Otherwise, if you had not produced any blocks during the 62 KES periods you would have obtained this.5

 In this case, you cannot issue a
 new operational certificate

because the OnDisk counter would
differs from the OnChain counter by
more than 1 resulting in an invalid

certificate. And any blocks forged with
such a certificate will be invalid blocks.

The solution to this is to issue a new
counter and then, issue the new

operational certificate.

Both values are not the same.

No block forged.

So that you can fully understand how these counters
work, we will give you a chronological example.6

{
 "type": "NodeOperationalCertificateIssueCounter",
 "description": "Next certificate issue number: 0",
 "cborHex": "82005820dcee462fec1d06f40dd120048beb384..."
}

{
 "type": "NodeOperationalCertificateIssueCounter",
 "description": "Next certificate issue number: 1",
 "cborHex": "134553546cee462fe1df5440ddb19b68bac5678..."
}

If you observe at the very beginning of the part 2, even
before having created your first operational certificate on
your‘’Air Gap’’computer . Your cold.counter was indicating

that the next certificate issue number would be 0.

To better understand, here is the normal KES key and node.cert rotation process. (value 0 counts as a counter)7

Then when you create your first node.cert (which will have
a value of 0), your cold.counter will change accordingly for

your next renewal and so on.

O
n

C
h

ai
n

O
n

D
is

k
A

ir
G

ap

NodeState

node.cert

cold.counter

Next counter: 0

OnDisk counter: 0

NodeState
counter: null

NodeState
counter: 0

Next counter: 1

OnDisk counter: 1

NodeState
counter: 1

Produce at least a block

Next counter: 2

OnDisk counter: 2

NodeState
counter: 2

Next counter: 3

OnDisk counter: 3

This is what will happen if you do not produce a block as presented in 6 and you issue another node.cert without issuing a new cold.counter.8

O
n

C
h

ai
n

O
n

D
is

k
A

ir
G

ap

NodeState

node.cert

cold.counter

Next counter: 0

OnDisk counter: 0

NodeState
counter: null

NodeState
counter: null

Next counter: 1

OnDisk counter: 1

Blocks will be invalid

5

And here is what you will learn to do if you produce no blocks during the 62 KES periods specified in 6 .9

O
n

C
h

ai
n

O
n

D
is

k
A

ir
G

ap

NodeState

node.cert

cold.counter

Next counter: 0

OnDisk counter: 0

NodeState
counter: null

NodeState
counter: null

Next counter: 1

OnDisk counter: 0

5

Next counter: 0

NodeState
counter: 0

Next counter: 1

OnDisk counter: 1

NodeState
counter: 1

Next counter: 2

OnDisk counter: 2

This is how to fix problem 5 .10

{
 "type": "NodeOperationalCertificateIssueCounter",
 "description": "Next certificate issue number: 1",
 "cborHex": "134553546cee462fe1df5440ddb19b68bac5678..."
}

5

You need to issue a new cold.counter and increment it by
exactly 1 more than

‘’qKesNodeStateOperationalCertificateNumber’’ value.

You cannot use this cold.counter file to issue a new
node.cert because its counter value will be 1 if you do. And
this value will be 2 more than the NodeState counter value.

To do this you will use the command ''cardano-cli
node new-counter'' on your ‘’Air Gap’’ environment.11

cardano-cli node new-counter

(--stake-pool-verification-key <STRING>
| --genesis-delegate-verification-key <STRING>
| --cold-verification-key-file <FILE>
)
--counter-value <INT>
--operational-certificate-issue-counter-file <FILE>

cardano-cli node new-counter

(--stake-pool-verification-key <STRING>
| --genesis-delegate-verification-key <STRING>
| --cold-verification-key-file <FILE>
)
--counter-value <INT>
--operational-certificate-issue-counter-file <FILE>

Use the mandatory options of your choice among
the first 3. Also use your actual cold.counter.12

cardano-cli node new-counter

(--stake-pool-verification-key <STRING>
| --genesis-delegate-verification-key <STRING>
| --cold-verification-key-file cold.vkey
)
--counter-value <INT>
--operational-certificate-issue-counter-file cold.counter

cardano-cli node new-counter

(--stake-pool-verification-key <STRING>
| --genesis-delegate-verification-key <STRING>
| --cold-verification-key-file cold.vkey
)
--counter-value <INT>
--operational-certificate-issue-counter-file cold.counter

Next, Take the OnChain counter and increment it
by exactly 1, In our case, it will be 0. (null+1=0)13

cardano-cli node new-counter

(--stake-pool-verification-key <STRING>
| --genesis-delegate-verification-key <STRING>
| --cold-verification-key-file cold.vkey
)
--counter-value 0
--operational-certificate-issue-counter-file cold.counter

cardano-cli node new-counter

(--stake-pool-verification-key <STRING>
| --genesis-delegate-verification-key <STRING>
| --cold-verification-key-file cold.vkey
)
--counter-value 0
--operational-certificate-issue-counter-file cold.counter

This is what you will see on your terminal.

user@computer:~$ cardano-cli node new-counter \
> --cold-verification-key-file cold.vkey \
> --counter-value 0 \
> --operational-certificate-issue-counter-file cold.counter

14 Do not panic!15

{
 "type": "NodeOperationalCertificateIssueCounter",
 "description": "",
 "cborHex": "82005820dcee462fec1d06f40dd120048beb384..."
}

When you check your cold.counter file after changing its
counter, you should see this. Don't worry, the counter has

been successfully issued.

As soon as it is used, the cold.counter description
will return to normal.16

So by repeating the procedure of the third and fourth
excercise to renew your KES key and your node.cert, the

value 0 of your cold.counter will be used and will increase
by 1 for your next renewal.

{
 "type": "NodeOperationalCertificateIssueCounter",
 "description": "Next certificate issue number: 1",
 "cborHex": "134553546cee462fe1df5440ddb19b68bac5678..."
}

✓ Operational certificate's KES period is within the correct KES period interval
✗ No blocks minted so far with the operational certificate at: node.cert
 On disk operational certificate counter: 0
{
 "qKesCurrentKesPeriod": 785,
 "qKesEndKesInterval": 847,
 "qKesKesKeyExpiry": "2023-08-12T20:54:51Z",
 "qKesMaxKESEvolutions": 62,
 "qKesNodeStateOperationalCertificateNumber": null,
 "qKesOnDiskOperationalCertificateNumber": 0,
 "qKesRemainingSlotsInKesPeriod": 8035005,
 "qKesSlotsPerKesPeriod": 129600,
 "qKesStartKesInterval": 785
}

Here is an example of what you could get.17

You can now transfer your renewed kes.skey and
node.cert to your block producer node and check their

validity with the "cardano-cli query kes-period-info"
command from the beginning of this exercise.

 Make sure that the value
of "qKesStartKesInterval" is

equal to that of
"qKesCurrentKesPeriod"

Also make sure that the value of
 "qKesOnDiskOperationalCertificateNumber"

is greater than the value of
"qKesNodeStateOperationalCertificateNumber"

by exactly one. And that’s it.

Sixth exercise: Pool Metadata and metadata hash.

You can now transfer your kes.skey, vrf.skey(if needed) and your node.cert to the node that will serve as your block producer and start it.
You still have to generate your pool metadata and submit your stake pool certificate so that your pool becomes visible to all cardano

wallets available. This way, people from the community will finally be able to stake their ada to your pool.

First, you must create your pool’s metadata and make it available in .json
format on a domain(URL) that you maintain. Here is the pattern to use:1

Your pool's metadata contains information about your pool such as: its name, its
ticker, a description of the pool and a website link which will appear in each cardano
wallets.
Ensure that the Stake pool metadata consists of at most 512 bytes, with the URL being
less than 65 characters long.

 {
 "name": "TestPool",
 "description": "The pool that tests all the pools",
 "ticker": "TEST",
 "homepage": "https://teststakepool.com"
 }

This is the command to perform to know the hash of your pool’s metadata that you
will have to use for your stake pool certificate in the next exercise.2

cardano-cli stake-pool metadata-hash

--pool-metadata-file <FILE>
[--out-file <FILE>]

cardano-cli stake-pool metadata-hash

--pool-metadata-file <FILE>
[--out-file <FILE>]

user@computer:~$ cardano-cli stake-pool metadata-hash \
> --pool-metadata-file testpool.json
1ee45c2686de8429c831300d2de4cc2afef579fbe4c6e7355f0c76f8b8829d95

user@computer:~$ cardano-cli stake-pool metadata-hash \
> --pool-metadata-file <(curl -s -L your_URL_link_to_Metadata)
1ee45c2686de8429c831300d2de4cc2afef579fbe4c6e7355f0c76f8b8829d95

On your server

Hot Node Air Gap

On your domain (URL)

Seventh exercise: Creating the stake pool certificate

Once your metadata is submitted onchain with the stake pool certificate, you will be able to check if your metadata is valid and if your URL
resolves to the metadata hash submitted with SMASH. Cardano Stakepool Metadata Aggregation Server (SMASH) is a server that

aggregates common metadata about registered stakepools on the Cardano blockchain, such as the name of the stakepool, its "ticker"
name, and homepage. SMASH aims to ensure that registered stake pools are valid, avoid duplicated ticker names or trademarks. (More

about that after the next exercise.

First, locate the branch that you are going to use for your stake pool registration
certificate.1

Air Gap

There are 21 options in total with priority columns for relay options. We will
explain them all one by one.2

cardano-cli stake-pool registration-certificate

(--stake-pool-verification-key <STRING>
| --cold-verification-key-file <FILE>
)
(--vrf-verification-key <STRING> | --vrf-verification-key-file <FILE>)
--pool-pledge <LOVELACE>
--pool-cost <LOVELACE>
--pool-margin <RATIONAL>
(--pool-reward-account-verification-key <STRING>
| --pool-reward-account-verification-key-file <FILE>
)
(--pool-owner-verification-key <STRING>
| --pool-owner-stake-verification-key-file <FILE>
)
[[--pool-relay-ipv4 <STRING>]
 [--pool-relay-ipv6 <STRING>]
 --pool-relay-port <INT>
| --single-host-pool-relay <STRING> [--pool-relay-port <INT>]
| --multi-host-pool-relay <STRING>
]
[--metadata-url <URL> --metadata-hash <HASH>]
(--mainnet | --testnet-magic <NATURAL>)
--out-file <FILE>

cardano-cli stake-pool registration-certificate

(--stake-pool-verification-key <STRING>
| --cold-verification-key-file <FILE>
)
(--vrf-verification-key <STRING> | --vrf-verification-key-file <FILE>)
--pool-pledge <LOVELACE>
--pool-cost <LOVELACE>
--pool-margin <RATIONAL>
(--pool-reward-account-verification-key <STRING>
| --pool-reward-account-verification-key-file <FILE>
)
(--pool-owner-verification-key <STRING>
| --pool-owner-stake-verification-key-file <FILE>
)
[[--pool-relay-ipv4 <STRING>]
 [--pool-relay-ipv6 <STRING>]
 --pool-relay-port <INT>
| --single-host-pool-relay <STRING> [--pool-relay-port <INT>]
| --multi-host-pool-relay <STRING>
]
[--metadata-url <URL> --metadata-hash <HASH>]
(--mainnet | --testnet-magic <NATURAL>)
--out-file <FILE>

This one may seem a little confusing but we won't let you down. We will get through this
together and in a simple and understandable way.

First set of options:3
Your pool ID will be taken from your cold verification key,

which will of course need to be signed by your
cold.skey(offline) before submitting your certificate.

cardano-cli stake-pool registration-certificate

(--stake-pool-verification-key <STRING>
| --cold-verification-key-file <FILE>
)
(--vrf-verification-key <STRING> | --vrf-verification-key-file <FILE>)
--pool-pledge <LOVELACE>
--pool-cost <LOVELACE>
--pool-margin <RATIONAL>

cardano-cli stake-pool registration-certificate

(--stake-pool-verification-key <STRING>
| --cold-verification-key-file <FILE>
)
(--vrf-verification-key <STRING> | --vrf-verification-key-file <FILE>)
--pool-pledge <LOVELACE>
--pool-cost <LOVELACE>
--pool-margin <RATIONAL>

Next is vrf-verification-key-file4
linked to your certificate, it will be your lottery ticket for

your leader slots assignements. (if you get any)

Next, we have pool pledge. (in lovelace)5
The pool pledge refers to the amount of ADA that a stake
pool owner commits to delegate to their pool.

cardano-cli stake-pool registration-certificate

(--stake-pool-verification-key <STRING>
| --cold-verification-key-file cold.vkey
)
(--vrf-verification-key <STRING> | --vrf-verification-key-file <FILE>)
--pool-pledge <LOVELACE>
--pool-cost <LOVELACE>
--pool-margin <RATIONAL>

cardano-cli stake-pool registration-certificate

(--stake-pool-verification-key <STRING>
| --cold-verification-key-file cold.vkey
)
(--vrf-verification-key <STRING> | --vrf-verification-key-file <FILE>)
--pool-pledge <LOVELACE>
--pool-cost <LOVELACE>
--pool-margin <RATIONAL>

cardano-cli stake-pool registration-certificate

(--stake-pool-verification-key <STRING>
| --cold-verification-key-file cold.vkey
)
(--vrf-verification-key <STRING> | --vrf-verification-key-file vrf.vkey)
--pool-pledge <LOVELACE>
--pool-cost <LOVELACE>
--pool-margin <RATIONAL>

cardano-cli stake-pool registration-certificate

(--stake-pool-verification-key <STRING>
| --cold-verification-key-file cold.vkey
)
(--vrf-verification-key <STRING> | --vrf-verification-key-file vrf.vkey)
--pool-pledge <LOVELACE>
--pool-cost <LOVELACE>
--pool-margin <RATIONAL>

Next, we have pool cost. (1000000 lovelace=1 ada)6
The pool cost across the Cardano network is 340 ADA minimum.
It cannot be any lower. This is the minimum amount you will
have each epoch you produce blocks. You can also set it higher.

cardano-cli stake-pool registration-certificate

(--stake-pool-verification-key <STRING>
| --cold-verification-key-file cold.vkey
)
(--vrf-verification-key <STRING> | --vrf-verification-key-file vrf.vkey)
--pool-pledge 5000000000
--pool-cost <LOVELACE>
--pool-margin <RATIONAL>

cardano-cli stake-pool registration-certificate

(--stake-pool-verification-key <STRING>
| --cold-verification-key-file cold.vkey
)
(--vrf-verification-key <STRING> | --vrf-verification-key-file vrf.vkey)
--pool-pledge 5000000000
--pool-cost <LOVELACE>
--pool-margin <RATIONAL>

Next, we have pool margin. (0.02 = 2%)7
Pool margin in Cardano refers to the variable margin fee set by
the pool operator, which is usually between 0%-10%.

cardano-cli stake-pool registration-certificate

(--stake-pool-verification-key <STRING>
| --cold-verification-key-file cold.vkey
)
(--vrf-verification-key <STRING> | --vrf-verification-key-file vrf.vkey)
--pool-pledge 5000000000
--pool-cost 340000000
--pool-margin 0.02

cardano-cli stake-pool registration-certificate

(--stake-pool-verification-key <STRING>
| --cold-verification-key-file cold.vkey
)
(--vrf-verification-key <STRING> | --vrf-verification-key-file vrf.vkey)
--pool-pledge 5000000000
--pool-cost 340000000
--pool-margin 0.02

Then, what will be the reward account of your
pool?8

You can use your stake.vkey or the staking address of your choice
for your pool rewards.

cardano-cli stake-pool registration-certificate

--pool-margin 0.02
(--pool-reward-account-verification-key <STRING>
| --pool-reward-account-verification-key-file <FILE>
)
(--pool-owner-verification-key <STRING>
| --pool-owner-stake-verification-key-file <FILE>

)

cardano-cli stake-pool registration-certificate

--pool-margin 0.02
(--pool-reward-account-verification-key <STRING>
| --pool-reward-account-verification-key-file <FILE>
)
(--pool-owner-verification-key <STRING>
| --pool-owner-stake-verification-key-file <FILE>

)

Then you need to identify the owner(s) of your
pool.9

You can add your stake.vkey. You can also add multiple owners
by repeating the option.

cardano-cli stake-pool registration-certificate

--pool-margin 0.02
(--pool-reward-account-verification-key <STRING>
| --pool-reward-account-verification-key-file stake.vkey
)
(--pool-owner-verification-key <STRING>
| --pool-owner-stake-verification-key-file <FILE>

)

cardano-cli stake-pool registration-certificate

--pool-margin 0.02
(--pool-reward-account-verification-key <STRING>
| --pool-reward-account-verification-key-file stake.vkey
)
(--pool-owner-verification-key <STRING>
| --pool-owner-stake-verification-key-file <FILE>

)

And now to the options group about relays.10
You can have one or more public relays. Simply repeat the chosen option for each relay. You can declare their address in ipv4, ipv6,
single host (DNS) or multi-host (DNS). For each address, you must mention the port number of your node. In our example below, the
operator declared 2 public relays. **WARNING! Do not declare the ip address of your block producer. Only your public relays.**

cardano-cli stake-pool registration-certificate

| --pool-owner-stake-verification-key-file stake.vkey
)
[[--pool-relay-ipv4 <STRING>]
 [--pool-relay-ipv6 <STRING>]
 --pool-relay-port <INT>
| --single-host-pool-relay <STRING> [--pool-relay-port <INT>]
| --multi-host-pool-relay <STRING>
]

cardano-cli stake-pool registration-certificate

| --pool-owner-stake-verification-key-file stake.vkey
)
[[--pool-relay-ipv4 <STRING>]
 [--pool-relay-ipv6 <STRING>]
 --pool-relay-port <INT>
| --single-host-pool-relay <STRING> [--pool-relay-port <INT>]
| --multi-host-pool-relay <STRING>
]

cardano-cli stake-pool registration-certificate

| --pool-owner-stake-verification-key-file stake.vkey
)
--pool-relay-ipv4 123.123.123.123
--pool-relay-port 3001
--pool-relay-ipv4 234.234.234.234
--pool-relay-port 3001

cardano-cli stake-pool registration-certificate

| --pool-owner-stake-verification-key-file stake.vkey
)
--pool-relay-ipv4 123.123.123.123
--pool-relay-port 3001
--pool-relay-ipv4 234.234.234.234
--pool-relay-port 3001

Next options, the metadata url and its hash.11
This option is not mandatory since you can decide to operate a
private stake pool with a closed circle of investors. Otherwise,
use your metadata URL and its hash as practiced in exercise 6.

cardano-cli stake-pool registration-certificate

--pool-relay-ipv4 123.123.123.123
--pool-relay-port 3001
--pool-relay-ipv4 234.234.234.234

--pool-relay-port 3001

[--metadata-url <URL> --metadata-hash <HASH>]
(--mainnet | --testnet-magic <NATURAL>)
--out-file <FILE>

cardano-cli stake-pool registration-certificate

--pool-relay-ipv4 123.123.123.123
--pool-relay-port 3001
--pool-relay-ipv4 234.234.234.234

--pool-relay-port 3001

[--metadata-url <URL> --metadata-hash <HASH>]
(--mainnet | --testnet-magic <NATURAL>)
--out-file <FILE>

Write the network used.12

cardano-cli stake-pool registration-certificate

--pool-relay-ipv4 123.123.123.123
--pool-relay-port 3001
--pool-relay-ipv4 234.234.234.234

--pool-relay-port 3001

--metadata-url https://testpool.com/metadata.json
--metadata-hash 1ee45c2686de8429c831300d2de4cc2afef579fb...

(--mainnet | --testnet-magic <NATURAL>)
--out-file <FILE>

cardano-cli stake-pool registration-certificate

--pool-relay-ipv4 123.123.123.123
--pool-relay-port 3001
--pool-relay-ipv4 234.234.234.234

--pool-relay-port 3001

--metadata-url https://testpool.com/metadata.json
--metadata-hash 1ee45c2686de8429c831300d2de4cc2afef579fb...

(--mainnet | --testnet-magic <NATURAL>)
--out-file <FILE>

Finally, write the name of your stake pool
registration certificate.13

cardano-cli stake-pool registration-certificate

--pool-relay-ipv4 123.123.123.123
--pool-relay-port 3001
--pool-relay-ipv4 234.234.234.234

--pool-relay-port 3001

--metadata-url https://testpool.com/metadata.json
--metadata-hash 1ee45c2686de8429c831300d2de4cc2afef579fb...

(--mainnet | --testnet-magic <NATURAL>)
--out-file pool.cert

cardano-cli stake-pool registration-certificate

--pool-relay-ipv4 123.123.123.123
--pool-relay-port 3001
--pool-relay-ipv4 234.234.234.234

--pool-relay-port 3001

--metadata-url https://testpool.com/metadata.json
--metadata-hash 1ee45c2686de8429c831300d2de4cc2afef579fb...

(--mainnet | --testnet-magic <NATURAL>)
--out-file pool.cert

This is what you will see on your terminal.

user@computer:~$ cardano-cli stake-pool registration-certificate \
> --cold-verification-key-file cold.vkey \
> --vrf-verification-key-file vrf.vkey \
> --pool-pledge 5000000000 \
> --pool-cost 340000000 \
> --pool-margin 0.02 \
> --pool-reward-account-verification-key-file stake.vkey \
> --pool-owner-stake-verification-key-file stake.vkey \
> --pool-relay-ipv4 123.123.123.123 \
> --pool-relay-port 3001 \
> --pool-relay-ipv4 234.234.234.234 \
> --pool-relay-port 3001 \
> --metadata-url https://testpool.com/metadata.json \
> --metadata-hash 1ee45c2686de8429c831300d2de4cc2afef579fbe4c6e7355f0c76f8b8829d95 \
> --mainnet \
> --out-file pool.cert

14

Now that your stake pool registration certificate is ready, you will need to redo a delegation certificate in order to stake to your own pool
with your main wallet. But don't worry, because thanks to Cardano's UTXO transaction model, you can submit them at the same time in
the same transaction. To do this, you will have to use the method in ‘’part 1, exercise 13'’ of this document but in a slightly different way
this time. Since your pool is technically still not registered onchain, it will be difficult for you to find your pool ID on cexplorer.io to stake

the ada of your pool owner wallet. So here's how to do it:

Eighth exercise: Creation of a delegation certificate for stake pool owners

First, locate the branch that you are going to use
for your certificate.1 First group of options.

The first option is what will identify your stake credential.
For the example we will use the stake address once again.

2

cardano-cli stake-address delegation-certificate

(--stake-verification-key <STRING>
| --stake-verification-key-file <FILE>
| --stake-script-file <FILE>
|--stake-address <ADDRESS>
)
(--stake-pool-verification-key <STRING>
| --cold-verification-key-file <FILE>
| --stake-pool-id <STAKE-POOL-ID>
)
--out-file <FILE>

cardano-cli stake-address delegation-certificate

(--stake-verification-key <STRING>
| --stake-verification-key-file <FILE>
| --stake-script-file <FILE>
|--stake-address <ADDRESS>
)
(--stake-pool-verification-key <STRING>
| --cold-verification-key-file <FILE>
| --stake-pool-id <STAKE-POOL-ID>
)
--out-file <FILE>

And here is the difference...

This time, you will need to use your cold.vkey to serve as
the Pool ID to delegate to your own pool. (Be aware that it

is still possible to generate your pool ID from your
cold.vkey using the command ''cardano-cli stake-pool id''

but the result will be the same).

3

cardano-cli stake-address delegation-certificate

(--stake-verification-key <STRING>
| --stake-verification-key-file <FILE>
| --stake-script-file <FILE>
|--stake-address stake.addr
)
(--stake-pool-verification-key <STRING>
| --cold-verification-key-file cold.vkey
| --stake-pool-id <STAKE-POOL-ID>
)
--out-file delegation.cert

cardano-cli stake-address delegation-certificate

(--stake-verification-key <STRING>
| --stake-verification-key-file <FILE>
| --stake-script-file <FILE>
|--stake-address stake.addr
)
(--stake-pool-verification-key <STRING>
| --cold-verification-key-file cold.vkey
| --stake-pool-id <STAKE-POOL-ID>
)
--out-file delegation.cert

This is the final result on your terminal.

user@computer:~$ cardano-cli stake-address delegation-certificate \
> --stake-address stake.addr \
> --cold-verification-key-file cold.vkey
> --out-file delegation.cert

4

Air Gap

Ninth exercise: Creation of the transaction to submit your certificates

Once again, from your ''Air Gap'' environment, you will create your draft transaction, calculate the fees, rework your draft transaction by
adding the missing information and sign it. We won't change the method because it will include sensitive data like your cold.skey, your

payment.skey, your stake.skey, your stake pool certificate and your delegation certificate.That being said, there is also a stake pool
deposit to be made ''Onchain'' at the same time as the registration.

Air Gap

We have gathered for you all the necessary options for
your transaction.1

cardano-cli transaction build-raw

--tx-in <TX-IN>
--tx-out <ADDRESS VALUE>
[--invalid-hereafter <SLOT>]
[--fee <LOVELACE>]
--certificate-file <CERTIFICATEFILE>
--out-file <FILE>

cardano-cli transaction build-raw

--tx-in <TX-IN>
--tx-out <ADDRESS VALUE>
[--invalid-hereafter <SLOT>]
[--fee <LOVELACE>]
--certificate-file <CERTIFICATEFILE>
--out-file <FILE>

This transaction will be done to yourself in order to submit your 2
certificates ''Onchain''. You can repeat exercises 6 to 8 from part 1.
The procedure and way of doing it are the same. Exept for ‘’--
certificate-file’’ option which will slightly differ.

Your draft should look similar to this.

You set the values to 0 in the meantime to
calculate the costs of the transaction you are

building.
WARNING Make sure that your UTXO in

transaction input(s) can cover the 500 ada deposit
for the registration of your stake pool.

2

cardano-cli transaction build-raw
--tx-in 4536a4d18e9dkhb34234kjbvd81e5677d#0
--tx-out $(cat paymentwithstake.addr)+0
--invalid-hereafter 0
--fee 0
--certificate-file pool.cert
--certificate-file delegation.cert
--out-file tx.raw

cardano-cli transaction build-raw
--tx-in 4536a4d18e9dkhb34234kjbvd81e5677d#0
--tx-out $(cat paymentwithstake.addr)+0
--invalid-hereafter 0
--fee 0
--certificate-file pool.cert
--certificate-file delegation.cert
--out-file tx.raw

And now the fees calculation.

The only option value that will differ from exercise 9 of part
1 is the witness count. (the number of signing key used)

3

cardano-cli transaction calculate-min-fee

--tx-body-file <FILE>
[--mainnet | --testnet-magic <NATURAL>]
(--genesis <FILE> | --protocol-params-file <FILE>)
--tx-in-count <NATURAL>
--tx-out-count <NATURAL>
--witness-count <NATURAL>
[--byron-witness-count <NATURAL>]

cardano-cli transaction calculate-min-fee

--tx-body-file <FILE>
[--mainnet | --testnet-magic <NATURAL>]
(--genesis <FILE> | --protocol-params-file <FILE>)
--tx-in-count <NATURAL>
--tx-out-count <NATURAL>
--witness-count <NATURAL>
[--byron-witness-count <NATURAL>]

But why 3 signing keys?

• cold.skey = to validate the stake pool registration certificate
• payment.skey = for the transaction itself
• stake.skey = to validate the stake credential of your wallet in

each of the 2 certificates

4

cardano-cli transaction calculate-min-fee

--tx-body-file tx.raw
[--mainnet | --testnet-magic <NATURAL>]
(--genesis <FILE> | --protocol-params-file protocol.json)
--tx-in-count 1
--tx-out-count 1
--witness-count 3
[--byron-witness-count <NATURAL>]

cardano-cli transaction calculate-min-fee

--tx-body-file tx.raw
[--mainnet | --testnet-magic <NATURAL>]
(--genesis <FILE> | --protocol-params-file protocol.json)
--tx-in-count 1
--tx-out-count 1
--witness-count 3
[--byron-witness-count <NATURAL>]

What happens during the fee calculation?

The command will consider:
• The 2 certificates contained in the transaction body file.
• The number of transaction inputs
• The number of transaction outputs
• The number of signing key to be used (--witness-count)
• The parameters in the protocol parameters file that could have an influence on your transaction.

5

user@computer:~$ cardano-cli transaction calculate-min-fee \
> --tx-body-file tx.raw \
> --mainnet \
> --protocol-params-file protocol.json \
> --tx-in-count 1 \
> --tx-out-count 1 \
> --witness-count 3
 197181 Lovelace

user@computer:~$ cardano-cli transaction build-raw \
--tx-in 4536a4d18e9dkhb34234kjbvd81e5677d#0
--tx-out $(cat paymentwithstake.addr)+0
--invalid-hereafter 0
--fee 0
--certificate-file pool.cert
--certificate-file delegation.cert
--out-file tx.raw

What is stake pool deposit?6
The stake pool deposit is an amount specified in the
protocol.json file that each operator must deposit

''onchain'' in order to register their pool. This process is
similar to registering a stake address.

Now calculate your UTXO(s) minus the fees and the
stake pool deposit to determine the value of --tx-out 7

user@computer:~$ expr 5600000000 - 197181 – 500000000

Amount of the UTXO

Fee

Stake pool deposit

user@computer:~$ expr 5600000000 - 197181 – 500000000
5099802819
user@computer:~$

Add the transaction fees and the output value.

For the ‘’--invalid-hereafter’’ option, you must get the
node's current tip and then add several minutes to the
result to allow you to sign and submit your transaction

before its ''onchain expiration'' (1 slot = 1 second).
Refer to exercise 6 of part 1 of this document

8

cardano-cli transaction build-raw
--tx-in 4536a4d18e9dkhb34234kjbvd81e5677d#0
--tx-out $(cat paymentwithstake.addr)+5099802819
--invalid-hereafter 0
--fee 197181
--certificate-file pool.cert
--certificate-file delegation.cert
--out-file tx.raw

cardano-cli transaction build-raw
--tx-in 4536a4d18e9dkhb34234kjbvd81e5677d#0
--tx-out $(cat paymentwithstake.addr)+5099802819
--invalid-hereafter 0
--fee 197181
--certificate-file pool.cert
--certificate-file delegation.cert
--out-file tx.raw

Add them here

Now all your options have their final values, you will
then be ready to sign the transaction.9

user@computer:~$ cardano-cli transaction build-raw \
--tx-in 4536a4d18e9dkhb34234kjbvd81e5677d#0 \
--tx-out $(cat paymentwithstake.addr)+5099802819 \
--invalid-hereafter 92030834 \
--fee 197181 \
--certificate-file pool.cert \
--certificate-file delegation.cert \
--out-file tx.raw

Don't forget to use your 3 signing keys as
previously explained.10

user@computer:~$ cardano-cli transaction sign \
--tx-body-file tx.raw \
--signing-key-file payment.skey \
--signing-key-file stake.skey \
--signing-key-file cold.skey \
--mainnet \
--out-file tx.signed

Transfer it and submit it on your11
user@computer:~$ cardano-cli transaction submit \
--mainnet \
--tx-file tx.signed

user@computer:~$ cardano-cli transaction submit \
> --mainnet \
> --tx-file tx.signed
transaction successfully submitted

Hot Node

Congratulation! You now have a registered stake pool. In order to ensure the validity of the metadata that you have just submitted
''Onchain'', we advise you to follow this next exercise ''off-topic'' but useful for the proper transmission of your metadata to the Cardano

wallets . This exercise does not involve the cardano-cli but rather SMASH as mentioned before.

Off-topic exercise: Validating your pool metadata with SMASH

About SMASH...1
The purpose of SMASH is to aggregate off-chain metadata that

stake pools provide when they register on the Cardano
blockchain.

SMASHSMASH

Metadata
URL

Metadata
URL

Metadata
URL

Metadata
URL

Metadata
URL

Metadata
URL

Metadata
URL

Metadata
URL

Metadata
URL

Metadata
URL

What does that mean exactly?2
The integrity and reputation of Cardano depends
on ensuring that registered stake pools are valid,

that they do not duplicate ticker names or
trademarks, and do not feature content that
users are likely to find offensive. SMASH was

designed to improve visibility on verified stake
pool information for Cardano users and enable

convenient navigation options

 Metadata

- owner
- pool name
- pool ticker
- homepage
- pledge address
- short description

SMASH collects the off-chain data to make it more
convenient, performant, and reliable.3

The SMASH server also addresses a second consideration: the
desire to moderate the content of stake pool metadata

without a centralized censoring entity. More information
about SMASH at: https://github.com/input-output-hk/

cardano-db-sync/blob/master/doc/smash.md

SMASHSMASH

Metadata
URL

Metadata
URL

SMASHSMASH

You will not build a SMASH server in this tutorial but you will use it to validate the metadata of your stake pool like this:4
user@computer:~$ curl "https://smash.cardano-mainnet.iohk.io/api/v1/errors/Your_pool_ID_in_HEX_format"
user@computer:~$

user@computer:~$ curl "https://smash.cardano-mainnet.iohk.io/api/v1/errors/45cfc42a91bfd8f0aeb037dty546453c6f88661b5d4e0e5b94069459e345"
[{"cause":"Hash mismatch from when fetching metadata from https://testpool.github.io/poolmeta.json. Expected
622cc2ae712eec7d14c52f6c86a9abe9d9434c1295f4955dc31725b9f93ec154 but got
efa01f807d1e76b9d5d1be497e7c416568de0c0c1c9cee0316acb9b1f418e29c.","poolHash":"622cc2ae712eec7d14c52f6c86a9abe9d9434c1295f4955dc31725b9f93ec1
54","poolId":"48cfc42a91bfd8f0aeb03722e5465645654561b5d4e0e5b94069459e703","retryCount":0,"time":"29.05.2023.
17:46:54","utcTime":"1685382414.958924s"},{"cause":"URL parse error from for pool1fr8ug253hlv0pt4sxu3w6577665npkh2wpedegp55t8nsx28rkma resulted in :
InvalidUrlException \"pool1fr8ug253hlv0pt4sxu3w20665744npkh2wpedegp55t8nsx28rkma\" \"Invalid URL\
"","poolHash":"9f26210c80b9a5aee145e19d46d097e04b056b167ed6f68c93c157a9b","poolId":"48cfc42a91bfd8f0aeb03725665661b5d4e0e5b94069459e703","retryC
ount":1,"time":"29.05.2023. 17:08:32","utcTime":"1685380112.692856s"},{"cause":"Hash mismatch from when fetching metadata from https://testpool.github.io/
poolmeta.json. Expected 9f26210c80b9a5aee145e19d46d097e04b08b006f8f4b167ed6f68c93c157a9b but got
4488b447422ede85692e6ad8675d7526ac638c1148eee9fb0d172e193142afe2.","poolHash":"9f26210c80b9a5aee145e19d46d097e04b08b006f8f4b167ed6f68c93c157
a9b","poolId":"48cfc42a91bfd8f0aeb03722e53c6f88661b5d4e0e5b94069459e703","retryCount":0,"time":"29.05.2023.
16:23:36","utcTime":"1685377416.851803s"},{"cause":"URL parse error from for pool1fr8ug253hlv0pt4sxu3w20r03pnpkh2wpedegp55t8nsx28rkma resulted in :
InvalidUrlException \"pool1fr8ug253hlv0pt4sxu3w20r03pnpkh2wpedegp55t8nsx28rkma\" \"Invalid URL\
"","poolHash":"84f4e43bf074058623bcd16e7df038e936522671308fc8dc3635b54da7b82b0c","poolId":"48cfc42a91bfd8f0aeb03722e53c6f88661b5d4e0e5b94069459
e703","retryCount":1,"time":"29.05.2023. 06:42:10","utcTime":"1685342530.604564s"}]user@computer:~$

 If nothing happens, then
 that's great news. it just
means that your metadata is

valid. Congratulations.

On the other hand, if you get something like this (see below), it means that you have probably made a mistake in the writing of your metadata or submitted a metadata
hash that does not match the one from your URL.**Refer to exercise 6, part 2 to re-edit your metadata.**5

 You can read several clues from
 these logs(in yellow) in order to
rectify the problem surrounding your
metadata as quickly as possible. And
when this is done and corrected, you
will have to resubmit another stake
pool certificate and recheck if there
are new error logs with the SMASH

servers

We will finish the part 2 of this tutorial with a quote from Adam Dean, a great Cardano DEV and programmer:
“Moms everywhere since forever: If your friend was jumping off a cliff, would you follow them?

-Crypto: hold my beer.”
@adamKDean

	Cardano-cli command examples workload.vsdx
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7

