FLUORESCENT

OATALOG OF LARGE

Progress/s Our Most Imporiant Product

GENERAL (36) ELECTRIC

3

This Catalog has been prepared as a service to utilities and agents, commercial, industrial and residential customers and all other interests concerned with the practical use of the most efficient General Electric lamps available for specific lighting services.

Of the tens of thousands of lamps developed by General Electric, only those in popular demand are included in the Catalog. These are the types and sizes that represent the great majority of the nation's annual lamp requirements. They include such recent General Electric developments as Coloramic Lamps, Bonus Line Lamps, Colored Reflector and Projector Lamps, High Output and Power Groove Fluorescent Lamps and White Mercury Lamps. They do not include any of numerous special service lamps, photographic lamps, automotive, flashlight and other miniature lamps.
Essential technical information, scaled illustrations and brief descriptions of usage are given to assist buyers and sellers in selecting the right lamp for any particular application. For no matter what the lighting requirement may be, there is a General Electric lamp designed specifically for that service. Information on lamps for more specialized services, as well as additional types of lamps for services listed, may be obtained through your General Electric Lamp Sales or Service District representative.

LARGE LAMP DEPARTMENT
 GENERAL (2) ELECTRIC

Edison's incomparable skill and genius and his tireless research efforts produced the first practical incandescent lamp. This first unit of the industry also laid the pattern for General Electric lamp development laboratories and research programs from which have come many memorable achievements that highlight three quarters of a century of continuous progress.

Page			Page
FILAMENT LAMPS	7-48	MERCURY	52-55
INDUSTRIAL INFRARED	49	BLACK LIGHT	56
HEAT	50	FLUORESCENT	57-69
SUN	50	FLUORESCENT	
GERMICIDAL	51	INDEX BY WATTAGE	70-71
OZONE	51	DISTRICT MAP	72
G-E LAMPS BY LIGHTMNG SERVICES OR TYPES			
Appliance Lamps	28.29	Industrial Infrared Lamps	49
Airport Lamps	42-43	Locomotive Lamps	40-41
Black Light Lamps	56	Low Voltage Service (Lamps 6v, 12v,)	48
Coloramic	20-21	Lumiline Lamps	26
Decorative Lamps	22.23	Marine Lamps	46
DeLuxe White Lamps	19	Mercury Lamps	52-56
Floodlight Lamps	32	Mine Lamps	39
Fluorescent Lamps (Operation and Types)	57-61	Night Lite Lamps	28-29
With Starters	62.65	Optical Devices Lamps	27
Without Starters	65.69	Ozone Lamps	51
Instant Start	65	Projector Lamps	34-35
R.F.	65	Reflector Lamps	36-37
Rapid Start	66	Rough Service Lamps	38
High Output	67	Show case Lamps	33
Power Groove	67	Sign and Decorative Lamps	24-25
Slimline Lamps Circline	$68-69$ $68-69$	Spotlight Lamps	30-32
Circline .	68-69	Studio and Theatre	30-31
General Lighting Incandescent Lamps Inside Frosted	10-11	Display . .	32
Clear Lamps .	12-13	Street Lighting Lamps	44-45
Silvered and Semi-Silvered Bowl.	14-15	Street Railway Lamps	47
Daylight Lamps	16	Sun Lamps . .	50
White Bowl Lamps	16	Three Lite Lamps	17
GA Lamps (Decorative Enamel)	18	Traffic Signal Lamps	47
Germicidal Lamps	51	Train Lamps	40.41
Heat Lamps	50	Tubular Lamps	33
High Voltage Lamps	48	Vibration Lamps	38
Indicator Lamps	28-29	Yellow Lamps	18

Progress /s Our Most Important Product

In General Electric's new Lamp Development Laboratories at Nela Park a staff of experts carry on a broad program of research and experimentation with greatly expanded facilities and supported by a vast accumulation of scientific data. From these efforts will come continued progress in the development of
more efficient lamps and new types of lamps to meet new lighting requirements-progress that will pass along to the public huge benefits in the form of tremendous savings in the cost of light and broader horizons of living made possible by better lamps and better lighting.

Installed in this section are nearly 300 lamps, 22 different types and sizes, making possible innumerable combinations of lighting effects.

Progress in application engineering is demonstrated in several "classrooms" of the General Electric Lighting Institute at Nela Park. Here, during each year, new light sources and techniques in lighting are explained and demonstrated to many thousands of "students" by the most authoritative staff of lighting experts in the world. In the above section of the Lighting Institute is demonstrated applications of lighting in retail store areas. In other sections, with equal flexibility, lighting of industrial plants, offices, schoolrooms, recreation centers, restaurants, streets, homes and many other special fields are demonstrated.

Visitors to the Institute include representatives from every division of the lighting industry; utility executives, architects, engineers, students, lighting equipment manufacturers, wholesalers, salesmen and many thousands of others who have special interest in the newest developments in lamps and lighting for home, industry or commerce.
A feature display at the Institute is a panorama of lamp types which portray the amazing range of services for which General Electric has developed specialized sources of light and related radiation. It suggests the scope of available manufacturing, engineering and distribution services.

The Measure of QUALITY!

The basic function of a lamp is to transform electric current into light. How efficiently it performs this function during its normal life is the measure of its quality.
The current any lamp consumes costs many times the cost of the lamp itself. For instance a 100 -watt lamp which costs 23 cents may use more than 10 times its cost in current during its life of 750 hours. A lamp that initially, or at any time during its life, is as little as one percent less efficient than another is therefore an extravagance regardless of its cost or life rating.
Lamp quality begins with design. To make the best lamp possible for any particular lighting service requires the skill of the most expert in lamp design. For each of the more than 10,000 different types of General Electric incandescent lamps now manufactured, complete specification for each lamp part is required.

There are at present about 700 different specifications for glass parts, 200 specifications for bases, about 6000 specifications for lead-in wires and supports, a countless variety of filament wire sizes, lengths, diameters and processing schedules and more than 200 different chemicals or components. Each item must contribute to the quality
of the finished product.
Each specification, length and diameter of filament, spacing between coils, mandrel size and so forth is specified sometimes to a one hundredthousandth part of an inch. A filament which in a single spot is 1% less in diameter (in a 6 -watt lamp that is five-millionths of an inch) than specified, may reduce its life $\mathbf{2 5 \%}$. All specifications, for more than 10,000 different types of lamps, are promptly revised when new data indicates a possible improvement.

Also essential to uniform high quality is the development of lamp-making machinery and manufacturing procedures that will assure each lamp's conformance with all details of design. This is a challenge to the greatest ingenuity and skill. General Electric specialists have always met this challenge and produced machines and methods of such amazing accuracy that the most rigid standards of quality are attainable in the manufacture of any type of lamp. To make sure that all quality standards are maintained, a comprehensive testing of lamps is made during each phase of manufacture - 480 tests and checks are made from raw material to finished product-and millions of sample lamps are tested every year.

> This photo shows part of the extensive life test and photometric facilities at Nela Park which are employed constantly in quality testing of lamps. Random selections of lamps from all factories arrive daily for testing. There are over 12,000 sockets for
lamps of all types and sizes. Voltage is controlled by electronic devices to within one tenth of a volt in 120 -volt circuits. Time of burning is determined by automatic time recorders.

G-E FILAMENT LAMPS

FILAMENTS

Electric current passing through the filament must overcome its resistance and the power consumed heats the filament to incandescence. The almost universally used filament material is tungsten. The filament may be straight wire, a coil, or a coiled-coil (indicated respectively by the letters S, C and CC). Coiling the wire reduces gas losses, increases efficiency. The illustrations show some of the commonly used filament forms (numerals) and their specific burning positions.

Gas

Used in most lamps of 40 watts and above, prevents rapid evaporation of the filament, permitting higher temperatures which result in higher efficiencies. Gasfilled lamps are indicated by the letter C, vacuum Iamps by the letter B. Usual gas is a mixture of nitrogen and argon. Some lamps for special services may use krypton.

Lead-in Wires

Conduct the current to and from the filament; copper used from base to stem press and nickel from stem press to filament.

Stem Press

The glass and lead-in wires have an airtight seal here. To have substantially the same coefficient of expansion as the glass, the lead-in wire at this point is a combination of a nickel-iron alloy core and a copper sleeve (Dumet wire).

Exhaust Tube

It is through this tube, projecting beyond the bulb during manufacture, that the air is exhausted and the bulb filled with inert gases. The tube is then sealed off short enough for the base to fit over it.

Support Wires

Molybdenum wires hold the filament in place; minimum number desirable to reduce heat losses.

Button

The glass is softened during assembly and the support wires stuck in it. It is supported by the button rod.

Reduces circulation of hot gases into neck of bulb protecting stem press, stem and socket from excessive temperatures. Used in higher wattage general service lamps and in other types when needed.

Fuse

Designed to open the circuit if the filament arcs. By reducing sputtering of the metal, cracking of the bulb is prevented. It also protects the circuit and prevents blowing of the line fuses.

C-7
Base Up

$\mathrm{C}-22$
Any

7

Screw bases in one of several sizes are used on most lamps. Bipost or prefocus bases are used where accurate position of light source with relation to optical elements is important. Mechanical bases are used in some high wattage lamps, flood lights and street series lamps to provide greater strength and better all around performance.

BULB SHAPES

G-E INSIDE FROSTED LAMPS

These lamps, which are recommended for most general lighting applications, have an inside frosting which diffuses the light, eliminates striations and helps soften shadows. The outer bulb surfaces are smooth, easy to clean, and the frosting absorbs very little light.
The range of wattages and lumen values is comprehensive. These lamps, combined with the many types of good equipments now available, provide tools to meet the many and diverse needs for residential, commercial and industrial lighting. There are small units for local lighting
and low mounting heights and larger ones for higher mounting and wider spacing. The right lamp in combination with the right reflector is essential for effective and comfortable lighting.

The 750 -watt, and 1000 -watt lamps are listed with tubular bulbs of heat-resistant glass and medium bipost bases. These lamps make possible the design of commercial and industrial lighting equipments smaller in size than would be necessary if designed for equal wattages in standard PS bulbs.

$300 \mathrm{M} / \mathrm{IF}$

Lamp Ordering Abbreviation	Watts	Bulb	Base	Volts	Std. Pkg. Qty.	Class	Filament	Approx. Hours Life	Lumens	Light Cntr. Lsth.	Max. Ovil. Lgth.
10S14/IF	10	S-14	Med.	120	120	B	C-9	1500	79	/	
15 A15	15	A-15	Med.	120	120	B	C-9	1200	142	23/2	$\begin{aligned} & 31 / 2 \\ & 31 \% \end{aligned}$
25A	25	A-19	Med.	120	120	B	C-9	1000	265	21\%	$31 / 2$
40A	40	A-19	Med.	120	120	${ }^{\text {C }}$	C-9	1000	465	21/2	$3 \frac{15}{16}$ $41 / 4$
50A	50	A-19	Med.	120	120	C	C-6	1000	665	31/8	$41 / 4$ 4.7 16
60A	60	A-19	Med.	120	120	${ }_{C}$	CC-6	1000	665 840	$31 / 8$ $31 / 8$	$4 \frac{1}{16}$ 47 7
75A	75 100	A-19	Med.	120	120	c		750	1150	$31 / 8$	$\begin{array}{r}4 \frac{1}{16} \\ 47 \\ \hline 16\end{array}$
100A	100	A-21	Med.	120	120	C	CC-6	750	1640	37/8	$4 \frac{7}{16}$ $5 \frac{5}{16}$
150A	150	A-23	Med.	120	60	C	CC-6	750	2700	45/8	$5 \frac{1.6}{1.6}$ $6 \frac{5}{16}$
150	150	PS-25	Med.	120	60	C	C-9	750	2600	51/4	6 $6 \frac{16}{16}$
200A	200	A-25	Med.	120	60	C	C--6	750	3800	51/4	$6{ }^{6} \frac{15}{16}$
200/IF	200	PS-30	Med.	120	60	C	c-6	750	3700	$6^{1 / 4}$	$6 \frac{15}{16}$ $8 \frac{1}{16}$
$300 \mathrm{M} / \mathrm{IF}$	300	PS-30	Med.	120	60	C	C-9	750	5950	6	$8 \frac{1}{16}$ $8 \frac{1}{16}$
$300 / I F$	300	PS-35	Mog.	120	24	C	C-9	750 1000	5950 5700	6	$8 \frac{1}{16}$ 93
500/IF	500	PS-40	Mog.	120	24	C	C-9	1000	9900	7	$93 / 4$
$750 / I F$	750	PS-52	Mog.	120	24	C	C-9	1000	16700	$91 / 2$	$93 / 4$ $13 \frac{1}{16}$
750โ24(2)(3) $1 \mathrm{M} / \mathrm{T}^{24(2)(3)}$	750 1000	T-24	Md. Bip.	120	24	\bigcirc	C-13	1000	14200	51/2	13 $91 / 8$
$1 \mathrm{M} / \mathrm{T} 24$ (3) ${ }^{(3)}$	1000	T-24	Md. Bip.	120	24	C	C-13	1000	20000	512	91/8
1000/IF	1000	PS-52	Mog.	120	6		C-8	1000	23000	91/2	
1500/IF(1)	1500	PS-52	Mog.	120	6	C	C-7A	1000	$\begin{aligned} & 23000 \\ & 33000 \end{aligned}$	91/2	$\begin{aligned} & 13 \frac{1}{16} \\ & 13 \frac{1}{16} \end{aligned}$

() Recommended burning position any within 60° vertically base up or base down but lumen maintenance is best when burned (2)Burn base up. (a)Special glass bulb - Heat-resistant.

G-E CLEAR LAMPS

Clear lamps are suitable for general lighting where the bright filaments are modified by diffusing equipments or are adequately shielded by reflectors.

Gala lighting for amusement and festive areas can be obtained with clear, lowwattage lamps, unshielded. Or the lamps may be partially shielded by prisms, beads and spangles.

Some reflecting or refracting units, designed for defined beam patterns, need clear lamps for a control more accurate than is obtainable with frosted lamps.

The $1 \mathrm{M} / \mathrm{PS} 52 / 44$ and $1500 / \mathrm{PS} 52 / 46$ lamps are made with bulbs of heat-resistant glass. They are intended for use in open floodlights for lighting outdoor sports, gas stations and parking areas. Lamp Nos. 750 and 1000 are bonus line lamps. With the new type filament in these lamps, light output is increased 15%.

In most cases 750 - and 1000 -watt bonus line lamps are advantageous for floodlighting service. In special cases where the beam pattern formed by the axial filament in these lamps is not satisfactory, the former C-7A filament lamps ($750 / 7$ and $1000 / 7$) are available.

Lamp Ordering Abbreviation	Watts	Bulb	Base	Volts	Std. Pkg. Oty.	Class	Filament	Approx. Hours Life	Approx. Initial Lumens	Light Cntr. Lgth.	Max. Ovrl. Lsth.
10S14	10	S-14	Med.	120	120	B	C-9	1500	80	1/2	1/2
15A15/CL	15	A-15	Med.	120	120	B	C-9	1200	144	$23 / 8$	$31 / 2$
25A/CL	25	A-19	Med.	120	120	B	C-9	1000	270	$21 / 2$	$3 \frac{15}{16}$
40A/CL	40	A-19	Med.	120	120	C	C-9	1000	465	$27 / 8$	41/4
50A/CL	50	A-19	Med.	120	120	C	C-6 6	1000	665	$31 / 8$	$4{ }^{4} 4$
60A/CL	60	A-19	Med.	120	120	C		1000	840	$31 / 8$	$4{ }^{\frac{7}{16}}$
75A/CL	75	A-19	Med.	120	120	C	CC-6	750	1150	$31 / 8$	$4 \frac{18}{16}$ $4 \frac{7}{16}$
100A/CL	100	A-21	Med.	120	120	C	CC-6	750	1640	$37 / 8$	$5 \frac{16}{16}$
150A/CL	150	A-23	Med.	120	60	C	CC-6	750	2700	45%	$6 \frac{16}{16}$
150/CL	150	PS-25	Med.	120	60	C	C-9	750	2600	$51 / 4$	$16 \frac{15}{16}$ 6
200A/CL	200	A-25	Med.	120	60	C	CC-6	750	3800	$51 / 4$	6 ${ }^{15}$
200	200	PS-30	Med.	120	60	C	C-9	750	3700	$6{ }^{1 / 4}$	816 $8 \frac{1}{16}$
200PS30/12	200	PS-30	Mog.	120	60	C	C-9	750	3650	63/8	$8 \frac{16}{16}$ $8 \frac{7}{16}$
300 M	300	PS-30	Med.	120	60	C	C-9	750	5950	6	$8 \frac{16}{16}$ $8 \frac{1}{16}$
300	300	PS-35	Mog.	120	24	C	C-9	1000	5700	7	93/8
500	500	PS-40	Mog.	120	24	C	C-9	1000	9900	7	93/4
750	750	PS-52	Mog.	120	6	C	CC-8	1000	16700	$91 / 2$	$13 \frac{1}{16}$
1000	1000	PS-52	Mog.	120	6	C	CC-8	1000	23000	$91 / 2$	$13 \frac{1}{16}$
$1500 \text { (2) }$	1500	PS-52	Mos.	120	6	C	C-7A	1000	33000	$91 / 2$	$13 \frac{1}{16}$
$1 \mathrm{M} / \mathrm{PS} 52 / 44$ (1)	1000	PS-52	Mog.	120	6	$\stackrel{C}{C}$	C-7A	1000	21500	9112	$13 \frac{1}{16}$
1500PS52/46(1)(2)	1500	PS-52	Mos.	120	6	C	C-7A	1000	33000	$91 / 2$	$13 \frac{1}{16}$

(1) Special glass bulb - heat-resistant.
(2) Recommended burning position any within 60° of vertically base up or base down but lumen maintenance is best when burned
vertically, base up.

g-E SILVERED AND SEMI-SILVERED BOWL

The process by which G-E Silvered Bowl lamps are silvered assures a high quality reflecting surface which does not dull, tarnish or deteriorate throughout the life of the lamp. The bulb is first chemically cleaned and sensitized to receive a coating of pure silver. A protective copper layer is then electrolytically deposited over the silver to prevent oxidation due to filament heat. To this is added, further, a surface of overlapping aluminum flakes. These metallic deposits, approximately $1 / 5000$ th of an inch in thickness, are firmly sealed to the glass to create a highly efficient, mirror-like reflector.
Silvered Bowl and Semi-Silvered Bowl lamps should be burned base up. Sizes from 100 -watt and up should be burned in porcelain sockets.

SILVERED BOWL LAMPS

Lamp Ordering Abbrevlation	Watts	Bulb	Base	Volls	Description	$\begin{aligned} & \text { Std, } \\ & \text { Plkg. } \\ & \text { Oty. } \end{aligned}$	Class	Filament	Approx. Hours Life	Light Cint. Lsth.	Max. Ovil. Leth.
60A/SB	60	A-19	Med.	120	I. F. Silvered	120		CC-6	100		
100A/1SB	100	A-21	Med.	120	I. F. Silvered	120	C	CC-6	1000	$37 / 8$	4 $4 \frac{1}{18}$
100A/1SBIF 1	100	A-21	Med.	120	I. F. Silvered	120	C	CC-6	1000	37/8	$5 \frac{16}{16}$
150/SB	150	PS-25	Med.	120	I. F. Silvered	60	C	C-9	1000	$51 / 4$	- 615
200/SBIF	200	PS-30	Med.	120	1. F. Silvered	60	C	C-9	1000	6	8 8 8 1 16
200/SBIF/1	200	PS-30	Med.	120	I. F. Semi-Silv.	60	C	C-9	1000	6	$88 \frac{16}{16}$
300MS/SBIF	300	PS-35	Md. Skt.	120	i. F. Silvered	24	C	C-9	1000	$71 / 2$	$8 \frac{1}{16}$
300/SBIF	300	PS-35	Mog.	120	I. F. Silvered	24	C	C-9	1000	7	$93 / 8$
300/SBIF/1	300	PS-35	Mog.	120	I. F. Semi-Silv.	24	C	C-9	1000	7	93/8
500/SBIF	500	PS-40	Mog.	120	I. F. Silvered	24	C	C-9	1000	7	$93 / 4$
500/SBIF/1	500	PS-40	Mog.	120	I. F. Semi-Silv.	24	C	C-9	1000		93/4
$750 / \text { SBIF }$	750	PS-52	Mog.	120	I. F. Silvered	6	C	C-7A	1000	91/2	$13 \frac{1}{16}$
1000/SBIF	1000	PS-52	Mog.	120	I. F. Silvered	6	C	C-7A	1000	91/2	$13 \frac{1}{16}$

[^0]
G-E DAYLIGHT LAMPS

Daylight lamps give a somewhat "whiter" color quality of light than regular filament lamps. The use of either frosted or clear daylight lamps is usually simply a matter of choice.

However, the frosting diffuses light and helps reduce glare and sharp shadows. The clear lamps give more sparkle and shine to merchandise, such as jewelry.

DAYLIGHT LAMPS

Lamp Ordering Abbreviation	Watts	Bulb	Base	Volts	Description	Std. Pkg. Qty.	Class	Filament	Approx. Hours Life	Lumens	Light Cntr. Lsth.	Max. Ovil. Lgth.
	10	S-14	Med.	115-125	Clear	120	B	C-9	1500	47	21/2	$31 / 2$
25A/D	25	S. 19	Med.	115-125	Clear	120	B	C-9	1000	169	91/2	$3 \frac{15}{16}$
60A/D	60	A-19	Med.	115-125	Inside Frosted	120	C	CC-6	1000	490	$31 / 8$	$4 \frac{7}{18}$
100A/D	100	A-23	Med.	115-125	Inside Frosted	120	C	CC-6	750	980 1320	$43 / 8$	$6 \frac{1}{16}$
150/D	150	PS-25	Med.	115-125	Inside Frosted	60	C	C-9	1000	1320	$51 / 4$	615
$150 / \mathrm{DCL}$	150	PS-25	Med.	115-125	Clear	60	C	C-9	1000	1320	51/4	618
200/D	200	PS-30	Med.	115-125	Clear	60	C	C-9	1000	2000	6	8

g-E WHITE BOWL LAMPS

White Bowl lamps are designed principally for use in open type direct lighting fixtures. They have a white enamel coating on the inside of the bowl which redirects about 80% of the light upward. About 20% of the light is diffused downward through the bowl. This redirection and diffusion improves the quality of illumination by softening shadows and reducing glare.

150/WB

200/WB
300/WB

WHITE BOWL LAMPS

G-E THREE-LITE LAMPS

Three-lite lamps with their two filaments provide three levels of lighting. Each filament is of a different wattage and may be lighted individually or in combination with the other.

The lower wattage is for decorative or casual effects. The combined wattage of the two filaments is for use where seeing requirements are important.

The $30 / 230 \mathrm{M} / \mathrm{W}, 50 / 150$ and $100 / 300$-watt
sizes are particularly applicable to floor, table and wall lamps having diffusing bowls. However, the $50 / 150 \mathrm{R} / \mathrm{W}$ is especially for use in portable lamps without diffusing bowls because of its shape and special white diffusing coating. The $30 / 100$ finds much use in vanity and dresser lamps.

Three-lite lamps are designed for base down operation with the exception of the mogul base 50/150-watt size.

THREE-LITE LAMPS

Lamp Ordering Abbreviation	Watts	Bulb	Base	Volts	Std. Pkg. Oty.	Class	Filament	Approx. Hours Life	Light Center Length	Max. Ovrl. Length	Approx. Initial Lumens
30/100	$\left\{\begin{array}{r}30 \\ 70 \\ 100 \\ 30\end{array}\right\}$	A-21	3c Med.	120	120	C	2C-9	750	33/4	$5 \frac{5}{16}$	300, 980, 1280
$30 / 230 \mathrm{M} / 1 \mathrm{~W}$	$\left\{\begin{array}{l}200 \\ 230\end{array}\right\}$	A-25	3c Med.	120	120	C	2C-2R	1000	$37 / 8$	$5 \frac{15}{1} 6$	270,3250,3520
50/150M	$\left\{\begin{array}{r}50 \\ 100 \\ 150\end{array}\right\}$	PS-25	3c Med.	120	60	C	2C-2R	750	37/8	$5 \frac{15}{16}$	610,1520, 2130
50/150	$\left\{\begin{array}{r}50 \\ 100 \\ 150 \\ 50\end{array}\right\}$	PS-25	3c Mag.		60	C	2C-2R	1000	5	$6 \frac{13}{16}$	590, 1450, 2040
50/150M/W	$\left\{\begin{array}{l}100 \\ 150\end{array}\right\}$	PS-25	3c Med.	120	60	C	2C-2R	750	$37 / 8$	$5 \frac{15}{16}$
50/150R/W	$\left\{\begin{array}{r}50 \\ 100 \\ 150\end{array}\right\}$	R-40	3c Med.	120	24	C	$2 \mathrm{C}-2 \mathrm{R}$	1000		61/8	580, 1420, 2000
100/300	$\left\{\begin{array}{l}100 \\ 200 \\ 300\end{array}\right\}$	G-30	3c Mog.	120	60	C	2C-2R	1000	$33 / 4$	63/4	1410, 3250, 4660

[^1]

Lamp Ordering Abbreviation	Watts	Bulb	Base	Volts	Description	Std. Pkg. Oty.	Class	Filament	Approx. Hours Life	Lumens	Max. Ovrl. Lgth.
50GA	50	GA-25	Med.	115-125	Semi Indirect(1) I. F. Decorated Enamel Bowl	60	C	C-9	1000	600	$4 \frac{7}{16}$
50GA/DPK	50	GA-25	Med.	115-125	Dawn Pink (1) Enamel Bowl	60	C	C-9	1000	600	$4 \frac{7}{16}$
100GA	100	GA-30	Med.	115-125	Semi Indirect(1) I. F. Decorated Enamel Bowl	60	C	C-9	1000	1450	$6 \frac{3}{16}$

[^2]The Decorative Enamel Bowl lamp - "The lamp with the built-in shade" - is a complete lighting device in itself and is ready to use in open-type single and cluster ceiling fixtures now using bare lamps. Designed for base-up burning, the lamp has an enameled bowl of a warm pleasing tint for homes and similar interiors which directs approximately $2 / 3$ of the light upward and $1 / 3$ downward.
The 50 -watt lamp in ivory or pink, is especially appropriate for two, three, four and five light fixtures. The 100 -watt size in ivory only is recommended for single socket fixtures. The graceful contours and unusual style of these lamps appeal to the decorative tastes of many users such as homes, hotels, clubs, restaurants and public buildings.

G-E YELLOW LAMPS

G-E Enameled Yellow Lamps, excellent for decorative lighting, are designed primarily for outdoor lighting during the season of nightflying insects. They have less attraction for insects than lamps of other colors.

Yellow lamps are used on open porches, outdoor recreation areas, filling stations, camps, roadside stands, carnivals - any place where people enjoy outdoor activities under lights.

Lamp Ordering Abbreviation	Watts	Bulb	Base	Volts	Std. Pkg. Qty.	Class	Filament	Approx. Hours Life	Max. Ovil. Lgth.
25A/Y	25	A. 19	Med.	115-125	120	B	C-9	1000	$3{ }^{\frac{15}{16}}$
40A/Y	40	A.21	Med.	115-125	120	B	C-9	1000	$4 \frac{7}{16}$
$60 \mathrm{~A} / \mathrm{Y}$	60	A-19	Med.	115-125	120	C	CC-6	1000	$4 \frac{7}{16}$
100A21/61Y	100	A-21	Med.	115-125	120	C	CC-6	1000	$5 \frac{16}{16}$
$150 P S 25 / Y$	150	PS-25	Med.	115-125	60	C	C-9	1000	$6 \frac{15}{16}$

G-E DE LUXE WHITE BULBS

De Luxe white lamps have a fine coating of silica on the inside of the bulb. This coating gives a high degree of diffusion which softens shadows and reduces shiny reflection. The light output of white lamps is approximately the same as that of inside frosted lamps of the same wattage. Since bulb blackening is not apparent through this new diffuse coating the lamps appear clean and white throughout life. The $50 / 150 \mathrm{M} / \mathrm{W}$ lamp is for base down burning in floor, table or wall lamps.
The 60A/W and 100A/W lamps are especially suitable for use in residential fixtures and portable lamps.

The $30 / 230 \mathrm{M} / \mathrm{W}$ provides the highest range between high and low levels of light.
The $150 \mathrm{R} / \mathrm{W}$ and $50 / 150 \mathrm{R} / \mathrm{W}$ have a special bulb shape and diffusing coatings with a variation in density which produces a controlled distribution of light when used in portable floor, table and wall lamps without diffusing bowls.

DE LUXE WHITE LAMPS

Lamp Ordering Abbreviation	Watts	Bulb	Base	Volts	Description	Std. Pkg. Oly.	Class	Filament	Approx. Hours Life	Lumens	Light Cntr. Lgth.	Max. Ovil. Lsth.
$30 / 230 \mathrm{M} / 1 \mathrm{~W}$	$\begin{array}{r} 30- \\ 200- \\ 230 \end{array}$	PS-25	$3 C$	120	High-Low De Luxe White ${ }^{(1)}$	60	C	2C-2R	1000	$\begin{array}{r} 270 \\ 3250 \\ 3520 \end{array}$	37/8	$5 \frac{15}{16}$
60A/W	60	A-19	Med.	120	White	120	C	CC-6	1000	835		$4 \frac{7}{16}$
100A/W	100	A-21	Med.	120	White	120	C	CC-6	750	1640	$37 / 8$	$5 \frac{8}{16}$
150R/W	150	R-40	Med.	120	White Indirect(1)	24	C	C-9	1000	2200	,	$61 / 8$
50/150R/W	$\begin{array}{r} 50- \\ 100- \\ 150 \end{array}$	R-40	3C. Med.	120	White Indirect (1) Three Lite	24	C	2C-2R	1000	$\begin{array}{r} 580 \\ 1420 \\ 2000 \end{array}$	\ldots	61/8
$50 / 150 \mathrm{M} / \mathrm{W}$	$\begin{array}{r} 50- \\ 100- \\ 150 \end{array}$	PS-25	3C. Med.	120	White Indirect(1)	60	C	2C-2R	750		37/8	$5 \frac{15}{6}$
100/300	$\begin{aligned} & 100- \\ & 200- \\ & 300 \end{aligned}$	G-30	3C. Mog.	120	White Indirect Three Lite (1)	60	C	2C-2R	1000	$\begin{aligned} & 1410 \\ & 3250 \\ & 4660 \end{aligned}$.	63/4

[^3]
G-E COLORAMIC LAMPS

150A

100A

These new G-E Coloramic Lamps introduce a new concept in residential lighting and provide new lighting effects for shops, hotels, restaurants and special displays. The four colors were selected to work harmoniously with a wide variety of colors and color schemes. The light from each color is also softened by the diffuse ceramic enamel coating on the lamp bulbs.
All four colors in the Coloramic line achieve highly desirable and pleasing effects on both furnishings and complexions because each contains a special exclusive G-E development - the "Red Component" of color. This is the element in light that gives the vital glow of life and health to all it touches. Even in light from Spring Green and Sky Blue bulbs, the warm tones persist. One or more colors may be used with pleasant color effects in any room, with any color scheme. They enhance the appearance of any material, woods, fabrics, metals, leather and bring out soft glowing skin tones. All colors produce intriguing changes from ordinary white light.

The four General Electric Coloramic colors are Sun Gold, Dawn Pink, Spring Green and Sky Blue. The Dawn Pink is the previous Deluxe Pink.

Each color of light is delicate and each is related to the colors of light found in nature's effects which each name suggests.
Sun gold is luminous, radiant, warm, - like the sunset.
Dawn Pink is rosy, warm, soft - like the tinted early morning clouds.
Spring Green is mildly cool, verdant - the color of new foliage.
Sky Blue is cool and soft. Its rosy overtones create new warmth and glow. Everything that is red is brought to life even though the light is bluish.

Each of the four Coloramic colors are available in four wattages $-75,100,150$ and $50 / 100$ watts.

$\begin{gathered} \text { Oramp } \\ \text { Abdering } \\ \text { Abriation } \end{gathered}$	Watts	Bulb	Base	Volts	Description	$\begin{aligned} & \text { Sid. } \\ & \text { Pkg. } \\ & \text { Oly. } \end{aligned}$	Class	Filament	Approx. Hours Life	Max Ovrl. Lgth.	$\begin{aligned} & \text { Light } \\ & \text { Center } \\ & \text { Lgth. } \end{aligned}$
25F/DPK	25	F15 Decorative	Med.	115-125	Coloramic Dawn Pink	120	B	C-9	750	41/2	\ldots
50GA/DPK	50	GA-25	Med.	115-125	Coloramic Enamel Bowl Dawn Pink	60	C	C-9	1000	4 $\frac{7}{16}$	\ldots
60A/DPK	60	A-19	Med.	115-125	Coloramic Dawn Pink	120	C	CC-6	1000	4 $\frac{7}{16}$	37/8
100/300/DPK	$\left.\begin{array}{l} 100 \\ 200 \\ 300 \end{array}\right\}$	G-30	$\begin{aligned} & \text { 3C. } \\ & \text { Mos. } \end{aligned}$	115-125	Three-Lite Indirect Coloramic Dawn Pink	60	C	2C-2R	1000	63/4	37/8
50/150M/SKY	$\left.\begin{array}{r} 50 \\ 100 \\ 150 \end{array}\right\}$	PS-25	3C. Med.	115-125	Coloramic Three-Lite Sky Blue	60	C	2C-2R	750	$5 \frac{15}{16}$	37/8
50/150M/SPG	$\left.\begin{array}{r} 50 \\ 100 \\ 150 \end{array}\right\}$	PS-25	3C. Med.	115-125	Coloramic Three-Lite Spring Green	60	C	2C-2R	750	$5 \frac{15}{16}$	3718
50/150M/SUN	$\begin{array}{r} 50 \\ 100 \\ 150 \end{array}$	PS-25	3C. Med.	115-125	Coloramic Three-Lite Sun Gold	60	C	2C-2R	750	$5 \frac{15}{16}$	$37 / 8$
50/150M/DPK	$\left.\begin{array}{r} 50 \\ 100 \\ 150 \end{array}\right\}$	PS-25	3C. Med.	115-125	Coloramic Three-Lite Dawn Pink	60	C	2C-2R	750	$5 \frac{15}{16}$	$37 / 8$
75A/SKY	75	A-19	Med.	115-125	Coloramic Sky Blue	120	C	CC-6	1000	4 $\frac{7}{16}$	37/8
75A/SPG	75	A-19	Med.	115-125	Coloramic Spring Green	120	C	CC-6	1000	4 $\frac{7}{16}$	37/8
75A/SUN	75	A-19	Med.	115-125	Coloramic Sun Gold Coloramic	120	C	CC-6	1000	4 $\frac{7}{16}$	37/8
75A/DPK	75	A-19	Med.	115-125	Coloramic Dawn Pink Coloramic	120	C	CC-6	1000	4 $\frac{7}{16}$	37/8
100A/SKY	100	A-21	Med.	115-125	Sky Blue	120	C	CC-6	1000	$5 \frac{5}{16}$	$3 \frac{7}{16}$
100A/SPG	100	A-21	Med.	115-125	Spring Green	120	C	CC-6	1000	$5 \frac{5}{16}$	37/8
100A /SUN	100	A-21	Med.	115-125	Coloramic Sun Gold	120	C	CC-6	1000	$5 \frac{5}{16}$	37/8
100A/DPK	100	A-21	Med.	115-125	Coloramic Dawn Pink Coloramic	120	C	CC-6	1000	$5 \frac{5}{16}$	37/8
150A/SKY	150	A-23	Med.	115-125	Sky Blue	60	C	CC-6	1000	$6 \frac{5}{16}$	$37 / 8$
150A/SPG	150	A-23	Med.	115-125	Coloramic Spring Green	60	C	CC-6	1000	$6 \frac{5}{16}$	37/8
150A/SUN	150	A-23	Med.	115-125	Coloramic Sun Gold	60	C	CC-6	1000	6 $\frac{5}{16}$	37/8
150A/DPK	150	A-23	Med.	115-125	Coloramic Dawn Pink	60	C	CC-6	1000	$6 \frac{5}{16}$	37/8

G-E DECORATIVE LAMPS

These lamps are designed for interior applications such as cove lighting, decorative designs, and special effects in homes, theatres, public buildings, restaurants, lobbies, and foyers. Outside coated lamps are not recommended for outdoor use.

DECORATIVE LAMPS

Lamp Ordering Abbreviation	Watts	Bulb	Base	Volts	Description	Std. Pkg. Qty.	Class	Filament	Approx. Hours Life	Lumens	Light Cntr. Length	Max. Ovil. Length
$\begin{aligned} & \text { 6S6/R } \\ & \text { 6S6/W } \end{aligned}$	$\begin{aligned} & 6 \\ & 6 \end{aligned}$	$\begin{aligned} & \text { S-6 } \\ & \text { S-6 } \end{aligned}$	Cand. Cand.	$\begin{aligned} & 115-125 \\ & 115-125 \end{aligned}$	Red White	$\begin{aligned} & 240 \\ & 240 \end{aligned}$	$\begin{aligned} & B \\ & B \end{aligned}$	$\begin{aligned} & C-7 A \\ & C-7 A \end{aligned}$	$\begin{aligned} & 1500 \\ & 1500 \end{aligned}$			$\begin{aligned} & 17 / 8 \\ & 17 / 8 \end{aligned}$
$7 \frac{1}{2} \mathrm{~S}$	71/2	S-11	Med.	115-125	Clear	120	B	C-7A	1400	52		
712S/CO	7112	S-11	Med.	115-125	Orange	120	B	C-7A	1400			21
$7 \frac{1}{2} \mathrm{~S} / \mathrm{CB}$	$71 / 2$	S-11	Med.	115-125	Blue	120	B	C-7A	1400			21/4
712S/CG	71/2	S-11	Med.	115-125	Green	120	B	C-7A	1400			21/4
$7 \frac{1}{2} S / C R$	$71 / 2$	S-11	Med.	115-125	Red	120	B	C-7A	1400			21/4
712S/CW	71/2	S-11	Med.	115-125	White	120	B	C-7A	1400			21/4
15FC	15	F-10	Cand.	115-125	Clear	60	B	C-7A	750	145		$3 \frac{1}{16}$
15FC/FT	15	F-10	Cand.	115-125	OC-Flametint	60	B	C-7A	750	145		$3 \frac{16}{16}$
15FC/V	15	F-10	Cand.	115-125	OC-lvory	60	B	C-7A	750			$3 \frac{1}{16}$
15FC/W	15	F-10	Cand.	115-125	OC-White	60	B	C-7A	750			$3 \frac{1}{16}$
15 FN	15	F-10	Inter.	115-125	Clear	60	B	C-7A	750	145		$31 / 8$
15FN/W	15	F-10	Inter.	115-125	White	60	B	C-7A	750			31/8
15S11/13	15	S-11	Cand.	115-125	Clear	120	B	C-7A	750	145	15/8	21/4
15T8C	15	T-8	Cand.	115-125	Clear	60	B	C-7A	750	144		$3 \frac{1}{16}$
15T8C/W	15	T-8	Cand.	115-125	OC-White	60	B	C-7A	750			$3 \frac{1}{16}$
15T8/N	15	T-8	Inter.	115-125	Clear	60	B	C-7A	750	144	\ldots	$31 / 8$
15B91/2	15	B-91/2	Cand.	115-125	Clear	60	B	C-7A	750	147	$3 \frac{5}{16}$
15B91/2/W	15	B-91/2	Cand.	115-125	OC-White	60	B	C-7A	750			$3 \frac{5}{16}$
25F	25	F-15	Med.	115-125	Clear	120	B	C-9	750	275	. . .	41/2
25F/FT	25	F-15	Med.	115-125	OC-Flametint	120	B	C-9	750		...	41/2
25F/V	25	F-15	Med.	115-125	OC-lvory	120	B	C.9	750			41/2
25F/W	25	F-15	Med.	115-125	OC-White	120	B	C-9	750			$41 / 2$
25G161/2C	25	G-161/2	Cand.	115-125	Clear	60	B	C-7A	750	260		3
25G161/2C/W	25	G-161/2	Cand.	115-125	White	60	B	C-7A	750			3
25G181/2/FT	25	G-181/2	Med.	115-125	OC-Flametint	120	8	C-9	750			$3 \frac{9}{16}$
25G181/2/V	25	G-181/2	Med.	115-125	OC-lyory	120	B	C-9	750			$3 \frac{9}{16}$
25G181/2/W	25	G-181/2	Med.	115-125	OC-White	120	B	C-9	750			$3 \frac{9}{16}$
25G25/FT	25	G-25	Med.	120	OC-Flametint	60	B	C-9	750		$4 \frac{7}{16}$
25G25/V	25	G-25	Med.	120	OC-lvory	60	B	C-9	750			$4 \frac{7}{16}$
25G25/W	25	G-25	Med.	120	OC-White	60	B	C-9	750			$4 \frac{7}{16}$
40F15	40	F-15	Med.	115-125	Clear	120	C	C-9	750	450		
40F15/W	40	F-15	Med.	115-125	White	120	C	C-9	750			41/2
40G/FT	40	G-25	Med.	115-125	OC-Flametint	60	B	C-9	750			$4 \frac{7}{16}$
40G/V	40	G-25	Med.	115-125	OC-lvory	60	B	C-9	750			$4 \frac{7}{16}$
40G/W	40	G-25	Med.	115-125	OC-White	60	B	C-9	750			$4 \frac{7}{16}$
60A21/AO	60	A-21	Med.	115-125	OC-Amber							
60A21/B	60	A-21	Med,	115-125	Or-Blue	120	$\stackrel{C}{C}$	C-9 C-9	1000		$33 / 8$	4$4 \frac{15}{16}$ $4 \frac{15}{16}$ 18
60A21/FT	60	A-21	Med.	115-125	OC-Flametint	120	C	C-9	1000	. . .	$33 / 8$	$4 \frac{16}{16}$ 418
60A21/G	60	A-21	Med.	115-125	OC-Green	120	C	C-9	1000	. . .	33/8	$4 \frac{16}{16}$
60A21/V	60	A-21	Med.	115-125	OC-lvory	120	C	C-9	1000		33/8	$4 \frac{15}{16}$
60A21/RO	60	A-21	Med.	115-125	OC-OId Rose	120	C	C-9	1000		33/8	$4 \frac{18}{16}$
60A21/R	60	A-21	Med.	115-125	OC-Red	120	C	C-9	1000		33/8	$4 \frac{15}{16}$
60 A21/Y	60	A-21	Med.	115-125	OC-Yellow	120	C	C-9	1000	$33 / 8$	$4 \frac{16}{16}$

G-E SIGN AND DECORATIVE LAMPS

interior applications. The color is a fired ${ }^{2}$ on, glass-like material that will not scratch, chip, peel, or come off when exposed to the weather. Colors are clear and bright, and they are designed for maximum appeal both in combination and alone.

SIGN AND DECORATIVE LAMPS

$\begin{gathered} \text { Lomp } \\ \text { Obdering } \\ \text { Abbreviation } \end{gathered}$	Watts	Bulb	Base	Vols	Description	$\begin{aligned} & \text { Std. } \\ & \text { Pks. } \\ & \text { Oty. } \end{aligned}$	Class	Filament	Approx. Hours Lile	Lumens	Light Leth.	$\begin{aligned} & \text { Max. } \\ & \text { Mavi. } \\ & \text { Ogth. } \end{aligned}$
$\begin{aligned} & 6 \text { 6S14 } \\ & \text { 6S14/IF } \end{aligned}$	$\begin{aligned} & 6 \\ & 6 \end{aligned}$	$\begin{aligned} & \mathrm{S}-14 \\ & \mathrm{~S}-14 \end{aligned}$	Med Med.	$\begin{aligned} & 115-125 \\ & 115-125 \end{aligned}$	Clear Inside Frosted	$\begin{aligned} & 120 \\ & 120 \end{aligned}$	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~B} \end{aligned}$	$\begin{aligned} & \mathrm{C}-9 \\ & \mathrm{C}-9 \end{aligned}$	$\begin{aligned} & 1500 \\ & 1500 \end{aligned}$	$\begin{aligned} & 41 \\ & 41 \end{aligned}$	$\begin{aligned} & 21 / 2 \\ & 91 \end{aligned}$	$31 / 2$
10 S 11 N	10	S-11	Inter.	115-125	Clear	120	B	C-7A	1500	80		
$10 \mathrm{S11N} / \mathrm{CB}$	10	S-11	Inter.	115-125	Blue	120	B	C-7A	1500		1/8	2. ${ }^{\frac{5}{16}}$
$10 \mathrm{~S} 11 \mathrm{~N} / \mathrm{CG}$	10	S-11	Inter.	115-125	Green	120	${ }^{\text {B }}$	C-7A	1500			2 $2 \frac{6}{16}$
$10 S 11 \mathrm{~N} / \mathrm{CR}$	10	S-11	Inter.	115-125	Red	120	B	C-7A	1500			- 215
10511 N/CO	10	S-11	Inter.	115-125	Orange	120	B	C-7A	1500			${ }^{2} \frac{1}{16}$
10S11N/CFT	10	S-11	Inter.	115-125	Flametint	120	B	C-7A	1500		..	- ${ }^{16}$
10S11N/CY	10	S-11	Inter.	115-125	Yellow	120	B	C-7A	1500			216
10S11N/CW	10	S-11	Inter.	115-125	White	120	B	C-7A	1500			2 $\frac{16}{16}$
11S14	11	S-14	Med.	120	Clear	120	B	$\mathrm{C}-9$	3000	80	$31 / 2$	21/2
11S14IF	11	S-14	Med.	120	Inside Frosted	120	B	C-9	3000	79	31/2	$21 / 2$
11S14/B	11	S-14	Med.	115-125	Blue	120	B	C-9	3000		$31 / 2$	$21 / 2$
11S14/G	11	S-14	Med.	115-125	Green	120	B	C-9	3000		$31 / 2$	$21 / 2$
11S14/O	11	S-14	Med.	115-125	Orange	120	B	C-9	3000		$31 / 2$	$21 / 2$
11S14/R	11	S-14	Med.	115-125	Red	120	B	C-9	3000	$31 / 2$	$21 / 2$
11S14/W	11	S-14	Med.	115-125	White	120	B	C-9	3000	$31 / 2$	$21 / 2$
11S14/Y	11	S-14	Med.	115-125	Yellow	120	B	C-9	3000		$31 / 2$	$21 / 2$
10S14/CB	10	S-14	Med.	115-125	Blue	120	B	C-9	1500			31/2
10S14/CG	10	S-14	Med.	115-125	Green	120	B	C-9	1500		...	$31 / 2$
10S14/CR	10	S-14	Med.	115-125	Red	120	B	C-9	1500		31/2
10S14/CO	10	S-14	Med.	115-125	Orange	120	B	C-9	1500	$31 / 2$
10S14/Cy	10	S-14	Med.	115-125	Yellow	120	B	C-9	1500		\ldots	$31 / 2$
10S14/CW	10	S-14	Med.	115-125	White	120	B	C-9	1500		$31 / 2$
10S14/CFT	10	S-14	Med.	115-125	Flametint	120	B	C-9	1500		$31 / 2$
10S14/CV	10	S-14	Med.	115-125	Ivory	120	B	C-9	1500		$31 / 2$
10S14/CR2	10	S-14	Med.	115-125	Rose	120	B	C-9	1500			$31 / 2$
15A17/AO	15	A-17	Med.	115-125	Amber-Orange	120	B	C-9	1200			
15A17/B	15	A-17	Med.	115-125	Blue	120	B	C-9	1200		35/8
15A17/FT	15	A-17	Med.	115-125	Flametint	120	B	C-9	1200	$35 / 8$
15A17/G	15	A-17	Med.	115-125	Green	120	B	C-9	1200		35\%
15A17/V	15	A-17	Med.	115-125	lvory	120	B	C-9	1200	\ldots	35\%
15A17/RO	15	A-17	Med.	115-125	Old Rose	120	B	C-9	1200		\ldots	35\%
15A17/W	15 15	A-17	Med.	115-125	Red	120	B	C-9	1200		\ldots	35%
15A17/Y	15	A-17	Med.	115-125	Yellow	120	B	C-9	1200			
20A17/5	20	A-17	Med.	115-125	Clear	120	C	C-9	1000	150	23/8	35/8
25A/O	25	A-19	Med.		Flashing Sign							
25A/FT	25	A-19	Med.	115-125	Flametint	120	${ }_{8}$	C-9	1000	$3 \frac{15}{16}$
25A/Y	25	A-19	Med.	115-125	Yellow	120	B	C-9	1000			
25A/R2	25	A-19	Med.	115-125	O. Rose	120	B	C-9	1000		...	
25A/B	25	A-19	Med.	115-125	Blue	120	B	C-9	1000			
25A/G	25	A-19	Med.	115-125	Green	120	${ }^{\text {B }}$	C-9	1000			
25A/R	25	A-19	Med.	115-125	Red	120	B	C-9	1000		\ldots	
25A/W	25	A-19	Med.	115-125	White	120	B	C-9	1000	220		3
25A/V	25	A-19	Med.	115-125	Ivory	120	B	C-9	1000			31618
40A/O	40	A-21	Med.	115-125	Oranse	120	B	C-9	1000			
40A/B	40	A-21	Med.	115-125	Blue	120	B	C-9	1000			$4{ }^{\frac{1}{16}}$
40A/FT	40	A-21	Med.	115-125	Flametint	120	B	C-9	1000			4 4
40A/G	40	A-21	Med.	115-125	Green	120	B	C-9	1000	$4{ }^{\frac{1}{18}}$
40A/V	40	A-21	Med.	115-125	Ivory	120	B	C-9	1000		4179
$\begin{aligned} & \text { 40A/R } \\ & 40 A / R 2 \end{aligned}$	40	A-21	Med.	115-125	Red	120	B	C-9	1000		...	$4 \frac{7}{16}$
$40 A / Y$	40	A-21	Med.	115-125	Rose	120	B	C-9	1000		...	$4 \frac{7}{16}$
	40	A-21	Med.	115-125	Yellow	120	B	C-9	1000	$4 \frac{7}{16}$

G-E LUMILINE LAMPS

Lamp Ordering Abbreviation	Watts	Bulb	Base	Volts	Description	Std. Pkg. Oty.	Class	Filament	Approx. Hours Life	Lumens	Max. Ovil. Lgth.
L30/IF	30	T-8	Disc	115-125	Inside Frosted	24	B	C-8	1500	255	$173 / 4$
L30/W	30	T-8	Dise	115-125	White	24	B	C-8	1500	210	173/4
L40	40	T-8	Disc	115-125	Clear	24	B	C-8	1500	370	113/4
L40/IF	40	T-8	Dise	115-125	Inside Frosted	24	B	C-8	1500	365	113/4
L $40 / \mathrm{MB}$	40	T-8	Disc	115-125	Moonlight Blue	24	B	C-8	1500		$113 / 4$
L40/EM	40	T-8	Disc	115-125	Emerald	24	B	C-8	1500		$113 / 4$
L40/O	40	T-8	Disc	115-125	Orange	24	B	C-8	1500		$173 / 4$
L40/SPK	40	T-8	Disc	115-125	Surprise Pink	24	B	C-8	1500	. . .	$113 / 4$
L40/ST	40	T-8	Disc	115-125	Straw	24	B	C-8	1500	...	$113 / 4$
L40/W	40	T-8	Disc	115-125	White	24	B	C-8	1500		113/4
L40/R	40	T-8	Disc	115-125	Red	24	B	C-8	1500		$113 / 4$
L60	60	T-8	Disc	115-125	Clear	24	B	C-8	1500	565	$173 / 4$
L60/IF	60	T-8	Disc	115-125	Inside Frosted	24	B	C-8	1500	560	173/4
L60/MB	60	T-8	Dise	115-125	Moonlight Blue	24	B	C-8	1500		173/4
L60/EM	60	T-8	Disc	115-125	Emerald	24	B	C-8	1500 1500		$173 / 4$ $173 / 4$
L60/O	60	T-8	Disc	115-125	Orange	24	B	C-8	1500	.	173
L60/SPK	60	T-8	Disc	115-125	Surprise Pink	24	B	C-8	1500	\cdots	173/4
L60/ST	60	T-8	Disc	115-125	Straw	24 24	B		1500		$173 / 4$
L60/W	60	T-8	Disc	115-125	White	24	B	C-8	1500	470	17\%4

G-E LAMPS FOR OPTICAL DEVICES

A complete catalog of all General Electric lamps for optical devices would fill many pages. These lamps serve important functions throughout the fields of science, industry and education. The lamps on this page are merely a suggestion of the many types of construction and the variety of uses of such lamps. In most of these lamps, the applications for which they are intended impose exacting standards of quality and precision in design and manufacture.

Lamp Ordering Abbreviation	Watts or Amperes	Bulb	Base	Volts	Principle Uses	Filament	Approx. Hours Life	Lumens	L.C.L.	M.O.L.
5A/T8SCP	5A	T-8	S.C. Pref.	6	Photoelectric Cell Excitation	C-	3000	375	$1 / 8$	31/8
5A/G161/2/3	5A	G-161/2	S.C. Pref.	20	Contour Map\&Micro. Proj.	CC-6	50	2500	138	
$7.5 \mathrm{~A} / \mathrm{T8SCP}$	7.5A	T-8	S.C. Pref.	10	Sound Reproduction	C-6	100	1550	$1{ }^{185}$	$31 / 8$
7.5A/T8/92SC	7.5A	T-8	S.C. Bay.	10	Sound Reproduction	C-8	100	1510	$13 / 4$	$31 / 8$
25T61/2DC	25	T-61/2	D.C. Bay.	120	Scale Illumination	C-8	1000	240		$51 / 2$
25T61/2DC/IF	25	T-61/2l.F.	D.C. Bay.	120	Scale lllumination	C-8	1000	240		$51 / 2$
10018 $1 / \frac{1}{1 / 8}$	100	T-81/2	Med. Pf.	120	Microscope Illumination	CC-13	50	1850	$2 \frac{3}{16}$	$53 / 4$
100781/2/9	100	T-81/2	Med.	120	Microscope Illumination	CC-13	50	1850		$51 / 2$
18A/T10/2P	18A	T-10	Med. Pf.	6	Slit Illumination \&					
125T10P					Microscopes	SR-6A	50	2000	$2 \frac{3}{16}$	$3 / 4$
150T8/2SC	125	T-10	Med. Pf.	120	Dental Spotlight	C-13B	500	1750	$2 \frac{3}{16}$	$53 / 4$
		-8	S.C. Bay.	120	Advertising Projection	2CC-8	200		13/8	35/8
150P25/10	150	P-251.F.	Med.	120	Hospital Spotlight	C-5	200	2100	3	$43 / 4$
150/400	150 250	PS-35	3C. Mog.	120	Hospital Spotlight	2C-7A	200	2100	7	$93 / 8$
	400									
500T20/64	500	T-20	Med. Pf.	120	Display Spotlight			9500		
750T12/34	750	T-12	Med. Pf.	120	Advertising Projection	C-13D	200	9500	$\begin{aligned} & \frac{16}{16} \\ & 2 \frac{16}{16} \end{aligned}$	534

G-E LAMPS FOR APPLIANCE AND INDICATOR SERVICE

Appliance and indicator lamps add to the sales appeal, beauty, convenience and safety of a wide variety of equipment for home and commercial and industrial use. Lamps, properly used, provide effective illumination of equipment exteriors and interiors and also give clear indications of operations in progress. General Electric offers a complete line of lamps to appliance and equipment designers and engineers. These pages illustrate the more popular types which effectively serve most applications.

Incandescent lamps designed for use on equipment where they may be subjected to vibration or shock have special features such as filament wire, mount construction or filament windings. In general, these lamps can be burned in any position. However, when vibration or shock exist, better performance is obtained by mounting the lamp parallel to the principal direction of the vibration or shock. Fluorescent lamps in the shorter sizes have also proven to be good performers under vibration conditions.

For recessed locations in the walls of refrigerators and freezers, the $15 \mathrm{~T} 7,25 \mathrm{~T} 8,40 \mathrm{~T} 61 / 2 / 2$ and $40-$

T10/IF lamps are particularly effective. Other lamps popular for refrigerator service are the $40 \mathrm{~A} 15 / 1$ and $15 \mathrm{~S} 11 / 102$.

Ozone lamps in home laundry equipment provide a freshening effect on laundered fabrics. The $40 \mathrm{~A} 15 / 1$ is used to ballast the ozone lamp and light the interior of the washer or dryer if it can be in a dry location. If the lamp is located where water may strike the bulb, the 35A/A15 should be used.

Lamps for service in high ambient temperatures (ovens, rotisseries, etc.) have special basing cement and several other features which provide improved performance and longer life under such conditions. The 40A15/22 withstands temperatures up to $475^{\circ} \mathrm{F}$. Commercial oven lamps are tested at $550^{\circ} \mathrm{F}$.
The small S-6 lamps and the 7-watt, C-7 lamps have many applications in homes and industry but are not designed to withstand shock and vibration. The $6 T 41 / 2 / 1$ lamp is used where space requires a small standard-voltage lamp. The 10C7/4 provides more light than other indicator types.

APPLIANCE AND INDICATOR LAMPS

Lamp Ordering Abbreviation	Watts	Bulb	Base	Volts	Principle Uses	Filament	Approx. Hp, Life	Lumens	M.O.L
6S6	6	S-6	Cand.	12	Indicator, Coin Machine	C-2V	1500	50	17/8
3S6/5	3	S-6	Cand.	120		C-7A	1500	12	17/8
6S6	6	S-6	Cand.	120		C-7A	1500	41	17/8
6S6	6	S-6	Cand.	135,145		C-7A	1500	36	178
6S6DC	6	S-6	D.C. Bay.	120		C-7A	1500	40	$\begin{aligned} & 188 \\ & 1 \frac{12}{16} \end{aligned}$
6S6/R	6	S-6	Cand.	115-125 (1)	Indicators(5)	C-7A	1500		$17 / 8$
6S6/W	6	S. 6	Cand.	115-125 (1)	Indicators	C-7A	1500	32	17/8
6T41/2/1	6	T-41/2	Cand.	120		C-7A	1500	41	$17 / 8$
10S6/10	10	S. 6	Cand.	$\underset{\text { High }}{ }$		C-1	1500	- 67	17/8
7C7/W	7	C-7	Cand.	115-125	Night Light, Clock	C-7A	3000	36	21/8
$7 C 7$	7	C-7	Cand.	115-125 (1)	Indicators(3),	C-7A	3000	45	21/8
7C7/R	7	C-7	Cand.	115-125(1)	Toys. Novelties,	C-7A	3000	$21 / 8$
10C7/4	10	C-7	Cand.	115-125 (1)	Decorative	C-7A	1500	80	$21 / 8$
$10 \subset 7$	10	C-7	Cand.	115-125 (1)	*	C-7A	(2)	40	$21 / 8$
$\begin{aligned} & 10 C 7 D C \\ & 40 A 15 / 1 \end{aligned}$	10	C-7	D.C. Bay.	115-125 115	**	C-7A	(2)	39	$2 \frac{3}{6}$
$\begin{aligned} & 40 A 15 / 1 \\ & 35 A / A 15 \end{aligned}$	40 $.35 A$	A-15	Med.	115-125 110	Orone Ballast	C-9	1000	460	$31 / 2$
15S11/102	. 15	S-11	Med	115	Ozone Ballast	-9	2000	325	$31 / 2$
40T61/2/2	40	T-61/2	Inter.	115-125 (1)	Refrig. Freezer	C-8	400	140 460	$51 / 2$
40T10/IF	40	T-10	Med.	120	Rerig. Freezer	C-8	1000	460 425	5 $5 / 8$
15T7C	15.	T-7	Cand.	115-125		C-7A	(3)	118	$25 / 8$
15T7DC	15	T-7	D.C. Bay.	115-125		C-7A	(3)	115	$25 / 8$
15T7DC/IF	15	T-7	D.C. Bay.	115-125(1)		C-7A	(3)	113	25/8
15T7N	15	T-7	Inter.	115-125	Most Appliances,	C-7A	(3)	115	25/8
$\begin{aligned} & 25 \text { T8DC } \\ & 25 \text { T8DC/IF } \end{aligned}$	25 25	T-8	D.C. Bay.	115-125 (1)	Coin Machines	C-7A	(4)	240	$25 / 8$
$\begin{aligned} & 25 \mathrm{TBDCD} / \mathrm{IF} \\ & 25 T 8 \mathrm{~N} \end{aligned}$	25	T-8	D.C. Bay.	115-125(1)		C-7A	(4)	235	$25 / 8$
25 T8N	25	T-8	Inter.	115-125		C-7A	(4)	240	$25 / 8$
40A15/22	40	A-15	Med.	115-125(1)	Home Oren	CC-9	750	460	4
$\begin{aligned} & 100 \mathrm{~A} 23 / 20 \\ & 15 \mathrm{~T} 6 \end{aligned}$	100 15	A-23 T-6	Med.	115-125	Commercial Oven	C-6	1000	1550	$6 \frac{1}{16}$
$15 T 6$	15	T-6	Cand.	120	Power Switch-	$C-1$	2000	119	$3 \frac{1}{16}$
$15 T 6$	15	T-6 S-11	Cand.	140	board, Clocks	C-1	2000	114	$3 \frac{1}{16}$
OZ4S11	4	S-11	Inter.	10	Washer, Dryer		4000		2814

(1) Design Volts 120.
(0) Other colors available.
(2) Indefinite-long life, dependent on service conditlons.
(3) Average laboratory vibration life is 600 hours for sewing machine service.
(4) Average leboratory vibration life is 200 hours for vacuum cleaner service.
(5) Not recommended where shock or vibration is present.

* Indicators, Toys, Novelties, Coin Machines, Range, Air Cond., Clocks.
** Refrig., Ozone Ballast.

g-E SPOTLIGHT LAMPS FOR THEATRES, PHOTOGRAPHIC AND TELEVISION STUDIOS

These lamps are designed with concentrated filaments for maximum light output in the controlled beams of spotlights used in theatres, television studios, motion picture and other photographic studios. For best lighting results, the filaments of these lamps must be accurately positioned, and the lamps should include mounting characteristics that will properly locate the filament in relation to the spotlight optical system. Therefore, most of the preferred spotlight lamps employ bipost or prefocus bases to assure accurate filament positioning. Older designs of spotlights used the lamps shown with screw bases and C-5 filaments; by changing sockets better performance is achieved with the lamps having more concentrated filaments and bipost or prefocus bases.

Spotlight lamps generally are designed for a life of 200 hours, to produce high light output with reasonable life. These lamps are used for stage lighting and for lighting television studio sets. In motion picture studios, however, even greater output is desired, particularly in the blue and green portions of the spectrum. For this service, lamps
are designed to produce color temperatures of 3200 K and 3350 K , to complement the sensitivity characteristics of color films. These highly efficient lamps have shorter lives, determined by the wattage and color temperature desired.
In studios where sensitive microphones are used near the lights, high-wattage lamps in certain lighting equipment sometimes produce enough audible noise to affect sound quality. To minimize this problem, General Electric employs a special low-noise construction in spotlight lamps with mogul bipost bases and G-48 bulbs.
For effective spotlight service, it is often necessary to design lamps of high wattage in relatively small bulbs. Also, the concentrated filament forms must have their coil segments spaced closely together. These characteristics require that the lamps be operated at the recommended burning positions shown in the table below to prevent filament segments from shorting together and to avoid glass temperatures that may cause the bulb to soften and bulge.

G-E SPOTLIGHT LAMPS For Theatres, Photographic and Television Studios

| Lamp ORdering
 Abbreviotion | Watts | Bulb | Base | Volts | Primary Application | Filament | Approx.
 Hours
 Life | Initial
 Lumens | L.C.L. M.O.L. |
| :--- | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

[^4]

G-E FLOODLIGHT LAMPS AND SPOTLIGHT LAMPS

These lamps have concentrated filaments and are used in equipments which produce accurately controlled beams of light. There are several "companion listings" of spotlight and floodlight lamps having the same dimensions but differing in life design. Floodlight lamps are used where burning hours are long, such as in building floodlighting and show window lighting. Spotlight lamps are used for those applications where burning hours are short and higher light output is needed - particularly in the blue and green portions of the visible spectrum. The T-12 and T-14 lamps are for use in ellipsoidal projectors where used for show windows and interior displays. The floodlight lamps are used also for underwater units.

FLOODLIGHT LAMPS

Lamp Ordering Abbreviation	Watts	Bulb	Base	Volts	Burning Position	Std. Pkg. Oty.	Class	Filament	Approx. Hours Life	Lumens	Light Cntr. Lgth.	Max. Ovil. Lg th.
$250 \mathrm{G} / \mathrm{FL}$	250	G-30	Med.	120		60	C	C-5	800	3850	3	51/8
$400 \mathrm{G} / \mathrm{FL}$	400	G-30	Med.	120	Base	60	C	C-5	800	6700	3	51/8
$500 \mathrm{G} / \mathrm{FL}$	500	G-40	Mog.	120	To	24	C	C-5	800	8800	$41 / 4$	$7 \frac{1}{16}$
$1 \mathrm{M} / \mathrm{G} 40 \mathrm{FL}$	1000	G-40 ${ }^{3}$	Mog.	120	Horizontal	24	C	C-5	800	19000	$51 / 4$	8
$1500 \mathrm{G48} / 6$	1500	G-48	Mog.	120	Horizontal	6	C	C-5	800	31000	51/4	85/8

SPOTLIGHT LAMPS

Lamp Ordering Abbreviation	Watts	Bulb	Base	Volls	Burning Position	Sid. Pkg. Oty.	Class	Filament	Approx. Hours Life	Lumens	Light Cntr. Lgth.	Max. Ovil. Lgth.
500T12/8	500	T-12	Med. Pf.	120	Base Up	24	C	C-13	800		$31 / 2$	61/8
$500 \text { T14/7 }$	500	T-14	Med. Bip.	120	Base Up	24		C-13	-800	. . .	4	$63 / 8$
500120/45	500	T-20	Med.	120		24	C	C-13	500		3	$51 / 2$
500T20/64	500	T-20	Med. Pf.	120	Base	24	C	C-13	500		$2 \frac{3}{16}$	$53 / 4$
400G / SP	400	G-30	Med.	120	Down To	60	\bigcirc	C-5	200	7800	31	$51 / 8$
500G/SP	500	G-40	Mog.	120	Horizontal	24	C	C-5	200	10100	414	$7 \frac{1}{16}$
$1 \mathrm{M} / \mathrm{G} 40 \mathrm{SP} 41 / 4$	1000	G-40 ${ }^{(3)}$	Mog.	120	(1)	24	C	C-5	200		$41 / 4$ 315	
$1 \mathrm{M} / \mathrm{G} 40 \mathrm{PSP}$	1000	G-40 (3)	Mog. PF.	120	(1)	24	C	C-5	200	22500	316	$8 \frac{1}{16}$

(1) Not recommended for bur ning between horizontal and base up. (2) Spotlight Light IF hard glass button. (1) Heat resistant glass.

G-E SHOW CASE LAMPS

Tubular bulb lamps are for use in showcases, in displays of shallow depth, and in small trough type reflectors.
The reflector-type lamp has an inside reflectorized surface covering one side of the bulb. The conventional screw base and a spring contact on the base allow desired positioning.

| Lamp
 Ordering
 Abbreviation | Watts | Bulb | Base | Volts | Descriptlon | Std.
 Pkg.
 Qty, | Class | Filament | Approx.
 Hours.
 Life | Lumens |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | Max.
 Ovil.
 Lgth, |
| :---: |
| 25T61/2 |

G-E PROJECTOR LAMPS

75 PAR/FL

150PAR/3FL

General Electric projector and reflector lamps are self-contained spotlighting and floodlighting units. They are widely used in commercial, industrial, and home applications. Principal advantages are compactness, convenience, and elimination of reflector deterioration due to dirt.

PAR-38 projector lamps may be used outdoors in exposed locations; other projector lamps require shielding from moisture. External devices such as color roundels, louvers, and shields can be clipped directly to the PAR-38 bulbs. Side-prong lamps are designed to be supported by the bulb rim or metal shell of base and used with a heat resistant flexible connector.

Heat-resistant glass although more expensive, allows higher wattage in the same bulb size and will withstand greater thermal shocks such as from moisture on the hot bulb. PAR Lamps.
$500-$ watt PAR lamps - Narrow Spot, Medium
Flood, and Wide Flood, produce a controlled
beam essentially rectangular in pattern. The lamps
are made of heat-resistant glass but must be pro-
tected from moisture in both interior and exterior
applications. They are designed for spot lighting
and flood lighting areas where a higher intensity
of light is required than is provided by other PR

Ordering Abbreviation	$\begin{aligned} & \text { Watts } \\ & \text { and } \\ & \text { Rudl } \end{aligned}$	$\begin{aligned} & \text { Base } \\ & \text { Type } \end{aligned}$	$\begin{aligned} & \text { Beam } \\ & \text { Type } \end{aligned}$	Std. Pkg.		Approx Initial Lumens \qquad	Approx. Lumens	Approx. Initial CP Av. in 10° Cone (3)	$\begin{gathered} \text { Max. } \\ \text { Overall } \\ \text { Length } \end{gathered}$
$\begin{aligned} & \text { 75PAR/SP(1) } \\ & \text { 75PAR/FL(1) } \end{aligned}$	75-Watt PAR 38	Med. Skt. Med. Skt.	Spot Flood	$\begin{aligned} & 12 \\ & 12 \end{aligned}$	-		$\begin{aligned} & 770 \\ & 770 \end{aligned}$	二	$\begin{aligned} & 5 \frac{5}{16} 5 \\ & 5 \frac{5}{16} \end{aligned}$
$\begin{aligned} & \text { 150PAR /SP } \\ & 150 \mathrm{PAR} / 3 \mathrm{SP} \\ & 150 \mathrm{PAR} / \mathrm{FL} \\ & \text { 150PAR } / 3 \mathrm{FL} \end{aligned}$	150-Watt PAR 38	Med. Skt. Med. Side-prong Med. Skt. Med. Side-prong	Spot Spot Flood Flood	$\begin{aligned} & 12 \\ & 12 \\ & 12 \\ & 12 \end{aligned}$	$\begin{aligned} & 30^{\circ} \times 30^{\circ} \\ & 30^{\circ} \times 30^{\circ} \\ & 60^{\circ} \times 60^{\circ} \\ & 60^{\circ} \times 60^{\circ} \end{aligned}$	$\begin{aligned} & 1,100 \\ & 1,100 \\ & 1,350 \\ & 1,350 \end{aligned}$	$\begin{array}{r} 1,730 \\ 1,730 \\ 1,730 \\ 1,730 \end{array}$	10,500 10,500 3,400 3,400	$\begin{aligned} & 5 \frac{5}{16} 5 \\ & 4 \frac{1}{16} \\ & 5 \frac{5}{16} 5 \\ & 4 \frac{5}{15} \end{aligned}$
200PAR46/3NSP 200PAR46/3MFL	$\begin{aligned} & \text { 200-Watt } \\ & \text { PAR } 46 \end{aligned}$	Med. Side-prong Med. Side-prong	Narrow Spot Med. Flood	$\begin{aligned} & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & 17^{\circ} \times 23^{\circ} \\ & 20^{\circ} \times 40^{\circ} \end{aligned}$	$\begin{aligned} & 1,200 \\ & 1,300 \end{aligned}$	$\begin{aligned} & 2,350 \\ & 2,350 \end{aligned}$	$\begin{aligned} & 30,000 \\ & 11,000 \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \end{aligned}$
300PAR56/NSP 300PAR56/MFL 300PAR56/WFL	300-Watt PAR 56	Mog. End prong Mog. End prong Mog. End prong	Narrow Spot Med. Flood Wide Flood	$\begin{aligned} & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & 15^{\circ} \times 20^{\circ} \\ & 20^{\circ} \times 35^{\circ} \\ & 30^{\circ} \times 60^{\circ} \end{aligned}$	$\begin{aligned} & 1,800 \\ & 2,000 \\ & 2,100 \end{aligned}$	$\begin{aligned} & 3,650 \\ & 3,650 \\ & 3,650 \end{aligned}$	$\begin{aligned} & 70,000 \\ & 22,000 \\ & 10,000 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \end{aligned}$
500PAR64/NSP 500PAR64/MFL 500PAR64/WFL	$\begin{aligned} & \text { 500-Watt } \\ & \text { PAR } 64 \end{aligned}$	Ext. Mog. End prong Ext. Mog. End prong Ext. Mog. End prong	Narrow Spot Med. Flood Wide Flood	$\begin{aligned} & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & 13^{\circ} \times 20^{\circ} \\ & 20^{\circ} \times 35^{\circ} \\ & 35^{\circ} \times 65^{\circ} \end{aligned}$	$\begin{aligned} & \begin{array}{l} 3,000 \\ 3,400 \\ 3,500 \end{array} \end{aligned}$	$\begin{aligned} & 6,000 \\ & 6,000 \\ & 6,000 \end{aligned}$	$\begin{array}{r} 110,000 \\ 35,000 \\ 72,000 \end{array}$	$\begin{aligned} & 6 \\ & 6 \\ & 6 \end{aligned}$

[^5]

150PAR/B

150PAR/PK

150PAR/BW

150PAR/R

150PAR/G

150PAR/Y

These new General Electric Projector Color Lamps provide a simple convenient way to obtain a variety of colored lighting effects. There are four basic colors and two tints similar to G. E. Reflector Color Lamps. Colors may be mixed to produce many other colors and tints.
Projector Lamps have more accurate beam control than Reflector Lamps which makes it possible to project decorative color over a wide area. The beam spread is slightly broader than that of standard PAR-38 Flood Lamps. The colors are obtained from translucent ceramic enamel permanently fused
to the bulb face. They resist fading, peeling and cracking.
Projector Color Lamp Bulbs are precision molded from weather-resistant glass. Where lamps are used outdoors and aimed below horizontal they need not be shielded. When aimed above horizontal, water breakage is best avoided by mounting lamps in sheltered locations or by use of covering glass. These lamps are used extensively for lighting Motels, Restaurants, Drive-ins, Carnivals and Fairs, Gardens, Building Fronts and Entrances, Churches and many other places for decorative flood lighting.

Lamp Ordering Abbreviation	Description	Watts	Bulb	Base	Std. Pkg. Oty,	Class	Filament	Maximum Overall Inches Length	Approx. Hours Life
150PAR /B	Blue	150	PAR-38	Med. Skt.	12	C	CC-6	$5 \frac{5}{16}$	2000
150PAR/BW	Blue White	150	PAR-38	Med. Skt.	12	C	CC-6	$5 \frac{5}{16}$	2000
150PAR/G	Green	150	PAR-38	Med. Skt.	12	C	CC-6	$5 \frac{5}{16}$	2000
$150 \mathrm{PAR} / \mathrm{PK}$	Pink	150	PAR-38	Med. Skt.	12	C	CC-6	$5 \frac{5}{1.6}$	2000
150PAR/R	Red	150	PAR-38	Med. Skt.	12	C	CC-6	$5 \frac{16}{16}$	2000
$150 \mathrm{PAR} / \mathrm{Y}$	Yellow	150	PAR-38	Med. Skt.	12	C	CC-6	$5 \frac{5}{16}$	2000

G-E REFLECTOR LAMPS

G-E Reflector lamps all have built-in mirrorlite reflecting surfaces. The 30 -watt, 75 -watt, 150 watt and 300 -watt lamps, made of ordinary glass, must be protected from weather. The 300 -watt and the 500 -watt heat resistant hard glass lamps may be used outdoors without protection. Performance is better, however, when they are shielded from moisture. Spots and Floods are similar in construction but the Floods have more deeply frosted bulbs to provide a wider beam spread.

The R-52 lamps, in 500- and 750 -watts, are especially designed for high-bay lighting in industrial plants. The contour of the silvered portion of the bulb, and the filament position, are designed for favorable light distribution and shielding. Substantially even illumination results
when spacing between units does not exceed mounting height. These lamps are widely used in plants where there is rapid collection of dirt on lighting equipment. They are of special advantage where lighting units can be reached for maintenance only at high cost, or where production may be interrupted by tying up a crane. Typical applications are in foundries, railroad car shops, steel mills, and welding shops. Almost no dirt collects on the bottom face of the R-52, where the light is emitted. The bulb should be protected from moisture.

Lamp No's. 150R/SP, 150R/FL, 300R/SP, 300R/FL, should not be used in equipment when the base temperature will exceed $500^{\circ} \mathrm{F}$.

G. E. REFLECTOR LAMPS

Orderins Abbreviation	$\begin{aligned} & \text { Watts } \\ & \text { Band } \\ & \text { Bulb } \end{aligned}$	$\begin{aligned} & \text { Base } \\ & \text { Type } \end{aligned}$	$\begin{aligned} & \text { Beam } \\ & \text { Type } \end{aligned}$	$\underset{\substack{\text { Std. } \\ \text { Pkg. } \\ \hline}}{ }$	$\begin{gathered} \text { Approx. } \\ \text { Beam } \\ \text { Spread } \\ \text { Degrees (3) } \end{gathered}$	$\begin{gathered} \text { Approx. } \\ \text { Initial } \\ \text { Beam } \\ \text { Lumens(2) } \end{gathered}$	Approx. Lumens	$\begin{aligned} & \text { Approx. } \\ & \text { Initial } \\ & C P \text { Av, in } \\ & 10^{\circ} \text { Cone } \end{aligned}$	Max. Overall Length
30R20	$\begin{aligned} & \text { 30-W Watt } \\ & \text { R-20 } \end{aligned}$	Medium	Flood	60	85°	144	200	290	$3 \frac{15}{16}$
$\begin{aligned} & \text { 75R30/SP } \\ & \text { 75R30/FL } \end{aligned}$	$\begin{aligned} & \text { 75-Watt } \\ & \text { R-30 } \end{aligned}$	Medium Medium	Spot Flood	$\begin{aligned} & 60 \\ & 60 \end{aligned}$	$\begin{array}{r} 50^{\circ} \\ 130^{\circ} \end{array}$	$\begin{aligned} & 400 \\ & 610 \end{aligned}$	$\begin{aligned} & 770 \\ & 770 \end{aligned}$	$\begin{array}{r} 1,800 \\ 430 \end{array}$	$\begin{aligned} & 53 / 8 \\ & 53 / 8 \end{aligned}$
$\begin{aligned} & \text { 150R/SP } \\ & 150 \mathrm{R} / \mathrm{FL} \end{aligned}$	$\begin{aligned} & \text { 150-Watt } \\ & \text { R-40 } \end{aligned}$	Medium Medium	Spot Flood	$\begin{aligned} & 24 \\ & 24 \end{aligned}$	$\begin{array}{r} 40^{\circ} \\ 110^{\circ} \end{array}$	$\begin{array}{r} 810 \\ 1,500 \end{array}$	$\begin{aligned} & 1,780 \\ & 1,780 \end{aligned}$	$\begin{aligned} & 6,000 \\ & 1,250 \end{aligned}$	$\begin{aligned} & 61 / 2 \\ & 61 / 2 \end{aligned}$
$\begin{aligned} & 300 \mathrm{R} / \mathrm{SP} \\ & 300 \mathrm{RP} / 1 \text { (1) } \\ & 300 \mathrm{RPSP(1)} \\ & 300 \mathrm{R} / \mathrm{FP} \\ & 300 \mathrm{FL} / 1 \text { (1) } \\ & 300 \mathrm{R} / 3 \mathrm{FL}(1) \end{aligned}$	$\begin{aligned} & \text { 300-Watt } \\ & \text { R-40 } \end{aligned}$	Medium Medium Mogul Medium Medium Mogul	Spot Spot Spot Flood Flood Flood	$\begin{aligned} & 24 \\ & 24 \\ & 24 \\ & 24 \\ & 24 \\ & 24 \end{aligned}$	$\begin{array}{r} 35^{\circ} \\ 35^{\circ} \\ 35^{\circ} \\ 115^{\circ} \\ 115^{\circ} \\ 115^{\circ} \end{array}$	$\begin{aligned} & 1,800 \\ & 1,600 \\ & \hdashline 2,800 \\ & 2,700 \\ & 2,700 \end{aligned}$	$\begin{aligned} & 3,700 \\ & 3,700 \\ & 3,700 \\ & 3,700 \\ & 3,700 \\ & 3,700 \end{aligned}$	$\begin{array}{r} 13,500 \\ 13,500 \\ 12,700 \\ 2,700 \\ 2,700 \end{array}$	$\begin{aligned} & 61 / 2 \\ & 67 / 8 \\ & 71 / 4 \\ & 61 / 2 \\ & 67 / 8 \\ & 71 / 4 \end{aligned}$
$\begin{aligned} & \text { 500R/3SP(1) } \\ & 500 \mathrm{R} / 3 \mathrm{FL}(1) \\ & 500 \mathrm{R} 5 \end{aligned}$	$\begin{aligned} & \text { 500-Watt } \\ & \text { R-40 } \\ & \text { 500R-52 } \end{aligned}$	Mogul Mogul Mogul	Spot Flood Refl. FI.	$\begin{array}{r} 24 \\ 24 \\ 6 \end{array}$	$\begin{array}{r} 35^{\circ} \\ 115^{\circ} \end{array}$	$\begin{aligned} & 3,100 \\ & 5,400 \end{aligned}$	$\begin{aligned} & 6,400 \\ & 6,400 \\ & 7,550 \end{aligned}$	$\begin{array}{r} 22,000 \\ 5,200 \end{array}$	$\begin{array}{r} 71 / 4 \\ 71 / 4 \\ 113 / 4 \end{array}$
750R52	750R-52	Mogul	Refl. FI.	6	-	-	12,700	. -	113/4
JM/RB52	1000-RB-52	Mogul	Refl. FI.	6	-	-	16,300	-	123/4

[^6](1) Heat Resistant glass.

G-E REFLECTOR COLOR LAMPS

G-E Reflector Color lamps provide dramatic display and lighting effects, and are ideal for many kinds of decorative lighting both indoors and outdoors. In show windows the four basic colors, red, green, yellow and blue are ideal for lighting backgrounds to accentuate merchandise on display.
Pink and blue-white provide general illumination as well as color effects. Pink is used for warmth and blue-white for cool highlights.
Intermediate hues are obtained by mixing appropriate pairs of the basic colors in various
combinations. For instance red and blue produce purple. Tints are created by adding white light to the four basic colors. White light is created by combining complementary colors.

Reflector color lamps fit in regular sockets and holders. The silvered reflector is built right into the lamps, - cannot get dirty or tarnish. Color is fused onto the glass so it cannot fade, chip or peel.

When used outdoors these lamps should be sheltered or housed in suitable fixtures to protect them from rain or snow.

REFLECTOR COLOR LAMPS

Lamp Ordering Abbreviation	Description	Watts	Bulb	Base	Volts	Std. Pkg. Qty.	Class	Filament	Max. Over-all Length Inches	Appiox. Hours Life
150R/R	Red	150	R-40	Medium	115-125	12	C	C-11	67/8	2000
150R/PK	Pink	150	R-40	Medium	115-125	12	C	C-11	67/8	2000
150R/G	Green	150	R-40	Medium	115-125	12	C	C-11	$67 / 8$	2000
150R/Y	Yellow	150	R-40	Medium	115-125	12	C	C-11	$67 / 8$	2000
150R/BW	Blue White	150	R-40	Medium	115-125	12	C	C-11	$67 / 8$	2000
150R/B	Blue	150	R-40	Medium	115-125	12	C	C-11	67/8	2000

G-E ROUGH SERVICE LAMPS AND VIBRATION LAMPS

ROUGH SERVICE 200PS30/23

Rough Service lamps are used in extension cords in garages, industrial plants and similar locations where they are subjected to excessive shock in service. The special construction of the filament enables these lamps to withstand sudden bumps and other forms of rough treatment.

VIBRATION LAMPS

Vibration lamps are particularly designed for use on or near rotating machinery and other places where relatively high-frequency vibration exists. Certain of these lamps are equipped with a special type of filament wire designed to operate suitably under vibration conditions.

ROUGH SERVICE LAMPS

Lamp Ordering Abbreviation	Watts	Bulb	Base	Volts	Description	$\begin{aligned} & \text { Std. } \\ & \text { Pkg. } \\ & \text { Qty. } \end{aligned}$	Class	Filament	Approx. Hours Life	Lumens	Light Cntr. Lgth.	Max. Ovil. Lgth.
25A/RS	25	A-19	Med.	120	Inside Frosted	120	B	C-17	1000	225	21/2	$3 \frac{15}{16}$
50A/RS	50	A-19	Med.	120	Inside Frosted	120	B	C-22	1000	460	21/2	$3 \frac{15}{16}$
50A19/5	50	A-19	Med.	120	Clear	120	B	C-22	1000	465	21/2	315
50A19/3	50	A-19	Med.	120	I. F.Out. Ctd. Cl. Lacquer	120	B	C-22	1000	460	21/2	$3 \frac{15}{16}$
75A21/RS	75	A-21	Med.	120	Inside Frosted	120	B	C-22	1000	710	27/8	$4 \frac{7}{16}$
100A/RS	100	A-21	Med.	120	Inside Frosted	120	C	C-17	1000	1230	37/8	$5 \frac{5}{16}$
150/RS	150	PS-25	Med.	120	Inside Frosted	60	C	C-17	1000	2100	51/4	$6 \frac{15}{16}$
200PS30/23	200	PS-30	Med.	120	Inside Frosted	60	C	C-9	1000	3380	6	$8{ }^{16}$
200PS30/24	200	PS-30	Med.	120	Clear	60	C	C-9	1000	3380	6	$8 \frac{1}{16}$
300/RS	300	PS-35	Mog.	120	Clear	24	C	C-9	1000	5250	7	$93 / 8$
500/RS	500	PS-40	Mog.	120	Clear	24	C	C-9	1000	9400	7	93/4
VIBRATION LAMPS												
25A/VS	25	A-19	Med.	120	Inside Frosted	120	B	C-9	1000	250	21/2	$3 \frac{15}{16}$
25A/CL/VS	25	A-19	Med.	120	Clear	120	B	C-9	1000	255	$21 / 2$	$3 \frac{15}{16}$
50A/VS	50	A-19	Med.	120	Inside Frosted	120	B	C-9	1000	550	$21 / 2$	$3 \frac{15}{16}$
50A/CL/VS	50	A-19	Med.	120	Clear	120	B	C-9	1000	- 555	$21 / 2$	$3 \frac{15}{18}$
100A23/28	100	A-23	Med.	120	Inside Frosted	120	C	C-9	1000	1350	43/8	6 -1. ${ }^{\frac{1}{16}}$
. $1.50 \% \mathrm{VS}$	150	PS-25	Med.	120	Inside Frosted	60	C	C-9	1000	2250	51/4	$6 \frac{15}{16}$

Mine lamps, ranging from 50 to 200 watts, are available in either 275 or 300 volts for use in haulageways, pits, shop lighting and other general lighting areas.

The PAR lamps are designed for mine locomotives, loaders, shuttle cars, and other equipment. They will give long service under severe mine conditions because of their resilient filament mounts.

The 150 PAR46/1, 32 -volt lamp is especially designed for locomotive service. It has rugged filament construction and its concentrated beam closely fits haulage ways.

Proper resistors must be used in series with 32 -volt and 115 -volt lamps. Resistors to operate 150 -watt lamps from nominal 275 -volt supply should be selected to provide 4.69 amperes through 32 -volt lamps and 1.30 amperes through 115 -volt lamps.

MINE LAMPS

Lamp Ordering Abbreviation	Watts	Bulb	Base	Volts	Description	Std. Pgk. Oty.	Class	Fila.	Approx. Hours Life	Lumens	Light Cntr. Lgth.	Max. Oril. Lgth.
50A19	50	A-19	Med.	275	Inside Frosted	120	B	C-17	1000	460	21/2	$3 \frac{15}{16}$
50A19/35	50	A-19	Med.	275	Clear	120	B	C-17	1000	465	21/2	$3 \frac{18}{18}$
50A19	50	A-19	Med.	300	Inside Frosted	120	B	C-17	1000	460	$21 / 2$	318
50A19/35	50	A-19	Med.	300	Clear	120	B	C-17	1000	465	21.	318
100A	100	A-23	Med.	275	Inside Frosted	120	C	C-7A	1000	1150	37/8	$5 \frac{5}{16}$
100A	100	A-23	Med.	300	Inside Frosted	120	C	C-7A	1000	1150	37\%	$5 \frac{9}{16}$
200	200	PS-30	Med.	275	Clear	60	C	C-9	1000	2650	6	$8 \frac{1}{16}$
200	200	PS-30	Med.	300	Clear	60	C	C-9	1000	2650	6	$8 \frac{1}{16}$
150PAR46/1	150	PAR-46	S.C.Term.	32	Locomotive Headlight	8	C	CC-8	800			8
150PAR46	150	PAR-46	S.C.Term.	115	Locomotive Headlight	8	C	C-13	1000	4

[^7]
G-E TRAIN AND LOCOMOTIVE LAMPS

Train lighting lamps are specially designed to withstand the intense vibrations and shocks encountered in this service. In general they are available for operation on either 30 -, 34 - or 60 -volt direct current circuits. To insure satisfactory life, voltage regulating devices must be kept adjusted to the proper voltage so that the voltage at the lamp socket corresponds with that shown on the lamp marking.

TRAIN LIGHTING LAMPS

Lamp Ordering Abbreviation	Watts	Bulb	Base	Volts	Description	Sid. Pkg. Qty.	Class	Filament	Approx. Hours Life	Lumens	Light Cntr. Lgth.	Max. Ovil. Lgth.
6S6	6	S-6	Cand,	30	Train	240	B	C-2V	1500	50		$17 / 8$
15A	15	A. 17	Med.	30	Inside Frosted	120	C	C-9	1000	179	23/8	$35 / 8$
15A	15	A-17	Med.	60	Inside Frosted	120	B	C-9	1000	150	$23 / 8$	$35 / 8$
15A	15	A-17	Med.	75	Inside Frosted	120	B	C-9	1000	145	23/8	$35 / 8$
25A	25	A-19	Med.	30	Inside Frosted	120	C	C-9	1000	350	$21 / 2$	$3 \frac{15}{16}$
25A	25	A-19	Med.	34	Inside Frosted	120	C	C-9	1000	400	$21 / 2$	$3 \frac{15}{16}$
25A	25	A-19	Med.	60	Inside Frosted	120	C	C-9	1000	285	$21 / 2$	$3 \frac{1}{16}$
25A	25	A-19	Med.	75	Inside Frosted	120	B	C-9	1000	240	21/2	$3 \frac{18}{18}$
$25 \mathrm{~T} \frac{1}{2} / \mathrm{IF}$	25	T-81/2	Med.	30	Inside Frosted	60	C	C-8	1000	350		$53 / 8$
30S11DC	30	S-11	D. C. Bay.	64	Train Marker	120	C	C-7A	500	365	11/4	23/8
40A	40	A-19	Med.	30	Inside Frosted	120	C	C-9	1000	600	27/8	$41 / 4$
40A	40	A-19	Med.	60	Inside Frosted	120	C	C-9	1000	525	$27 / 8$	$41 / 4$
50A21	50	A-21	Med.	30	Inside Frosted	120	C	C-9	1000	810	$33 / 8$	418
50 A21	50	A-21	Med.	34	Inside Frosted	120	C	C-9	1000	920	33/8	$4 \frac{15}{16}$
50 A21	50	A-21	Med.	60	Inside Frosted	120	C	C-9	1000	720	33/8	$4 \frac{18}{16}$
50A21	50	A-21	Med.	75	Inside Frosted	120	C	C-9	1000	725	33/8	$4 \frac{18}{16}$
100A	100	A-23	Med.	30	Inside Frosted	120	C	C-9	1000	1850	43/8	$6 \frac{1}{10}$
100A	100	A-23	Med.	34	Inside Frosted	120	C	C-9	1000	2100	$43 / 8$	$6{ }_{1}^{16}$
100 A	100	A-23	Med.	60	Inside Frosted	120	C	C-9	1000	1650	$43 / 8$	$6 \frac{1}{16}$

250 P25

300P25P
for switching service. In similar equipment used on road locomotives the 250 -watt P. 25 lamp is recommended.

LOCOMOTIVE CAB LIGHTING

The 34 -volt lamps are intended for use in steam locomotive cabs. The 60 -volt lamps are for Diesel-electric locomotives equipped with voltage regulators, whereas the 75 -volt lamps
are for use in Diesel-electric Jocomotives not thus equipped.
The 6S6 lamps are used either as indicators or for instrument lighting. The 25 - and 50 -watt lamps are for use in the engine compartment as well as for cab lighting.

The 30-watt S-1 1 lamp is mainly a marker or classification lamp, operated in series with a resistance on Diesel-electric locomotives.

DIESEL ELECTRIC LOCOMOTIVE LAMPS

$\begin{gathered} \text { Lamp } \\ \text { Ordering } \\ \text { Abbreviation } \end{gathered}$	Watts	Bulb	Base	Volts	Description	$\begin{aligned} & \text { Std. } \\ & \text { Pikg. } \\ & \text { Oty. } \end{aligned}$	Class	Filament	Approx. Hours Life	Lumens	$\begin{aligned} & \text { Light } \\ & \text { Cntr. } \\ & \text { Cgth. } \end{aligned}$	Max. Ovil. Ogrt.
6S6/5SC	6	S-6	S. C. Bay.	60	Train	120	B	C-1	1500	45	$1 \frac{1}{16}$	$1 \frac{13}{65}$
15S11/3DC	15	S-11	D. C. Bay.	75	Train	120	B	C-1	1000	150	11/4	$23 / 8$
15S14/IF	15	S-14	Med.	34	Loco. Cab	120	B	C-9	1000	144	21/2	31/2
25A17/RS	25	A-17	Med.	75	I. F. Train	120	B	C-9	1000	250	23/8	3. ${ }^{\frac{5}{16}}$
30S11/DC	30	S-11	D. C. Bay.	64	Rough Serv. Marker	120	C	C-7A	500	365	11/4	$23 / 8$
50A19/RS	50	A-19	Med.	75	I. F. Train Rough Sery	120	B	C-9	1000	545	21/2	$3 \frac{15}{16}$

DIESEL ELECTRIC LOCOMOTIVE HEADLIGHTING LAMPS

$\begin{gathered} \text { Lamp } \\ \text { Abddering } \\ \text { Abbiation } \end{gathered}$	Watts	Bulb	Base	Volts	Burning Position	$\begin{aligned} & \text { Std. } \\ & \text { Pkg. } \\ & \text { Oty. } \end{aligned}$	Class	Filament	Approx. Hours Life	Lumens	$\begin{aligned} & \text { Light } \\ & \substack{\text { Cnhtr } \\ \text { Coth. }} \end{aligned}$	$\begin{aligned} & \text { Max. } \\ & \text { Mari. } \\ & \text { Lgeth. } \end{aligned}$
100A21/3	100	A-21	Med.	32	Base Down to Horiz. (1)	120	C	C-5	500	1550	3	$4 \frac{7}{16}$
200PAR	200	PAR-56	Screw Term.	30	Horizontal	8	C	CC-8	500			$41 / 2$
250P25	250	P-25	Med.	32	Base Down to Horiz. (1)	60	C	C-5A	500	4500		$43 / 4$
250P25/22	250	P-25	Med. Pf.	32	Base Down to Horiz. (1)	60	C	C-5A	500	4500	$2 \frac{3}{16}$	5

STEAM LOCOMOTIVE LAMPS (Cab and Headlighting)

15S14/IF	15	S-14	Med.	34	Any	120	B	C-9	1000	144		$31 / 2$
100A21/3	100	A-21	Med.	32	Base Down to Horiz. (1)	120	C	C-5	500	1550		$4 \frac{1}{16}$
200PAR	200	PAR-56(2)	Screw Term.	30	Horizontal	8	C	CC-8	500		4
250P25	250	P-25	Med.	32	Base Down to Horiz. (1)	60	C	C-5A	500	4500	3	43/4
250P25/22	250	P-25	Med. Pf.	32	Base Down to Horiz. (1)	60	C	C-5A	500	4500	$2 \frac{3}{16}$	5

(1) Unsatisfactory lamp operation is likely to occur in burning positions between horizontal and base up, particularly between 45° from base up and base up.
(2) Heat resistant Glass.

G-E LAMPS FOR AIRPORTS

G-E airport lamps provide vital lighting for safety at the nation's landing fields. Beacons help pilots identify individual airports quickly and accurately. Approach-lighting systems guide aircraft safely from the airways to the runways in adverse weather. On the ground, lamps outline the runways and taxiways for safe travel; also, obstruction markers identify possible hazards.
Most airport lighting equipment uses optical systems for effective control of light. To make best use of the optics, airport lamps are often of the precision-made PAR construction, or they employ bipost or prefocus bases. Concentrated filaments are accurately located in relation to the base or PAR-type reflector.
Approach, runway, and taxiway lighting systems are served by three types of power systems. Smaller airports usually use multiple distribution and 120 volt lamps. Many major commercial fields light approaches and runways with constant-current distribution, 20 -ampere approach lamps and 6.6 -ampere runway lamps. Military fields usually use 6.6 ampere lamps.
Code Beacon Lamps are frequently used as ob-
struction markers on tall structures. The 500PS$40 / 45$ rated at 1000 hours is generally used where lamp replacement is easy. The 3000 -hour 620PS40 P allows the economy of group replacement especially where maintenance is difficult.
Present practice in Airport Approach Lighting uses "line-shaped" fixtures having between 5 and 10 PAR-56 sealed beam type of lamps mounted in a row. Whatever the length of fixture or pattern of fixture arrangement, the three PAR-56 lamps listed are the basic light sources.
Low intensity, semi-flush Airport-Runway Marker lights, about 2 inches high, use A-21 lamps. Medium intensity elevated lights, about 2 feet high, use T-10 lamps. Higher intensity elevated lights, on runways where instrument landings are made, use T-14 and T-20 lamps.
Constant improvement in G-E lamps helps flying safety to keep abreast of aircraft development. An example is the new 1200 T 20 beacon lamp; its CC-8 filament gives beacons a greater vertical beam spread; thus pilots of jet aircraft can identify their airfields from greater distances at higher altitudes.

G-E AIRPORT LAMPS

Lamp Ordering Abbreviation	Watts of Amperes	Bulb	Base	Volts Amperes	Principle Uses	Filament	Approx. Hours Life	Initial Lumens	L.C.L.	M.O.L.
40A21P	40	A-21	Med. Pf.	120	Runway, Boundry, Obstruction	CC-2V	2000	365	$23 / 4$	$5 \frac{5}{16}$
75A21P	75	A. 21	Med. Pf.	120	\{Runway, Threshold,	CC-2V	2000	875	$23 / 4$	$5 \frac{5}{16}$
100A21P	100	A-21	Med. Pf.	120	Obstruction(3)	CC-2V	2000	1,170	$23 / 4$	$5 \frac{6}{16}$
325/66/A21	325L	A-21	Med. Pf.	6.6 A	Runway-Taxiway	-	2000	320	23/4	$5 \frac{5}{16}$
1020/66/A21	1020L	A-21	Med. Pf.	6.6 A	Runway-Obstruction	C-8	2000	1,000	$23 / 4$	$5 \frac{5}{16}$
300PAR56	300	PAR-56	Mog. End Prong	25	Approach(1)	C-13	100			5
6.6A/PAR56/2	200	PAR-56	Mog. End Prong	6.6A	Approach(1)	C-13	500	5
20A/PAR56	300	PAR-56	Mog. End Prong	20 A	Approach(1)	C-6	100	\cdots	5
$500 \mathrm{PS} 40 / 45$	500 620	PS-40 PS-40	Mog. Pf.	120 120	Code Beacon Code Beacon	C-9 $\begin{gathered} -9 \\ C-7 A \end{gathered}$	$\begin{aligned} & 1000 \\ & 3000 \end{aligned}$	$\begin{array}{r} 9,850 \\ 10,800 \end{array}$		$\begin{aligned} & 10 \frac{1}{16} \\ & 10 \frac{1}{10} \end{aligned}$
620PS40/P	620	PS-40	Mog. Pf.	120 $6.6 A$	Code Beacon Runway-Taxiway (2)	$\begin{aligned} & C-7 A \\ & C-2 V \end{aligned}$	$\begin{aligned} & 3000 \\ & 1000 \end{aligned}$	10,800 390	$5 \frac{1}{16}$	$\begin{array}{r} 10 \frac{1}{16} \\ 3 \frac{15}{16} \end{array}$
6.6A/T10/1P	30 45	T-10 T-10	Med. Pf.	6.6A	Runway-Taxiway ${ }^{(2)}$ Runway-Taxiway ${ }^{(2)}$	$\begin{gathered} C-2 V \\ C-2 A \end{gathered}$	$\begin{aligned} & 1000 \\ & 1000 \end{aligned}$	390 630	11/2	$3 \frac{15}{16}$ $3 \frac{15}{16}$
6.6A/T10P	45 200	T-10	Med. Pf.	6.6 $6.6 A$	Runway-Taxiway ${ }^{\text {(2) }}$ (2)	C-13	1000 75	4,900	$2 \frac{3}{16}$	$5 \frac{16}{4}$
6.6A/T20/2P	205	T-20*	Med. Pf.	6.6 A	Runway-Threshold(4)(2)	C-13	500	4250 (est)	$3 \frac{3}{16}$	$53 / 4$
20A/T20/5	500	T-20*	Med. Bip.	20 A	\{Runway, Threshold(4)(2)	C-13	500	11,300	$21 / 2$	61/2
500T20/25	500	T-20*	Med. Pf.	120	Overrun(2)	C-13	50	13,000	$2 \frac{3}{16}$	$53 / 4$
500T20/13	500	T-20*	Med. Bip.	120	Beacon(2)	C-13B	500	9,250	3	$71 / 2$
$1 \mathrm{M} / \mathrm{T} 20 \mathrm{BP}$	1000	T-20*	Mog. Bip.	120 120	Beacon(2)	C-13	500 750	20,000 27,500	4	91/2

[^8]
G-E STREET LIGHTING LAMPS

Filament forms and support constructions of lamps in light

Street series lamps, operated on constant current series circuits, have a slow increase in wattage and filament temperature throughout life. Hence the light output is maintained throughout life at a high percentage of initial value.

Current variations affect sharply the performance of street series lamps. The current in street series circuits should therefore be adjusted as nearly as possible to rated value.

The relative use of multiple lamps in street lighting is steadily increasing. A multiple street lamp having a certain value of nominal lumens is
designed to deliver the same average light output throughout rated life as the series lamp with the corresponding value for rated initial lumens. Multiple lamps are also available in combinations of bulb, base and light center length other than those listed below-to make possible a greater degree of luminaire standardization.

The 3,000 -hour street lighting lamps are intended for group replacement twice a year. The standard-life (2,000-hour series and 1,500-hour multiple) street lighting lamps are widely used for group replacement three times a year.

MULTIPLE STREET LIGHTING LAMPS - REGULAR

Lamp Ordering Abbreviation	Lumens	Watts	Bulb	Base	Volts	Burning Position	Std. Pkg. Oty.	Class	Filament	Approx. Hours Life	Light Cntr. Lgth.	Max. Oyrl. Lgth.
85A23/48	1000	85	A-23	Med.	120	Any	120	C	C-9	1500	43/8	$6 \frac{1}{16}$
175PS25/63	2500	175	PS-25	Med.	120	Any	60	C	C-9	1500	51/4	$6 \frac{15}{16}$
268PS35/55	4000	268	PS-35	Mog.	120	Any ,	24	C	C-9	1500	7	$93 / 8$
370PS40/50	6000	370	PS-40	Mog.	120	Any	24	C	C-9	1500	7	93/4
575PS40/51	10000	575	PS-40	Mog.	120	Any	24	C	C-7A	1500	7	93/4
800PS52/79	15000	800	PS-52	Mog.	120	Any	6	C	C-7A	1500	91/2	$13 \frac{1}{16}$

MULTIPLE STREET LIGHTING LAMPS - GROUP REPLACEMENT

58A19/62	600	58	A-19	Med.	120	Any	120	c	C-9	3000	27/8	41/4
92A23/49	1000	92	A-23	Med.	120	Any	120	C	C-9	3000	$43 / 8$	$6 \frac{1}{16}$
189PS25/64	2500	189	PS-25	Med.	120	Any	60	C	C-9	3000	51/4	$6 \frac{1}{16}$
295PS35/58	4000	295	PS-35	Mog.	120	Any	24	C	C-9	3000	7	$93 / 8$
405PS40/54	6000	405	PS-40	Mog.	120	Any	24	C		3000	7	93/4
620PS40/53	10000	620	PS-40	Mog.	120	Any	24	C	C-7A	3000		933/4
860PS52/80	15000	860	PS-52	Mog.	120	Any	6	C	C-7A	3000	91/2	$13 \frac{1}{16}$

SERIES STREET LIGHTING LAMPS - REGULAR

Lamp Ordering Abbreviation	Rated Initial Lumens	Clear Bulb	Base	Volts	Amps.	Burning Position	Std. Pkg. Qty.	Class	Filament	Avg. Life	Avg. Light Center Lsth.	Max. Ovrl. Lgth.
600/66	600	PS-25	Mog.	6.4	6.6	Any	60	C	C-8	2000	53/8	$71 / 8$
$1 \mathrm{M} / 66$	1000	PS-25	Mog.	9.5	6.6	Any	60	C	C-8	2000	53/8	$71 / 8$
$1 \mathrm{M} / 75$	1000	PS-25	Mog.	8.3	7.5	Any	60	C	C-8	2000	$53 / 8$	$71 / 8$
2500/66PS25	2500	PS-25	Mog.	21.5	6.6	Base Up	60	C	C-2V	2000	53/8	$71 / 8$
2500/66	2500	PS-35	Mog.	21.6	6.6	Any	24	C	$\mathrm{C}-2 \mathrm{~V}$	2000	7	$93 / 8$
2500/75	2500	PS-35	Mog.	19.2	7.5	Any	24	C	$\mathrm{C}-2 \mathrm{~V}$	8000	7	$93 / 8$
4M/66	4000	PS-35	Mos.	32.8	6.6	Any	24	C	$\mathrm{C}-2 \mathrm{~V}$	2000	7	$93 / 8$
4M/75	4000	PS-35	Mog.	29.1	7.5	Any	24	C	$\mathrm{C}-2 \mathrm{~V}$	2000	7	$93 / 8$
$4 \mathrm{M} / 15 \mathrm{BU}$	4000	PS-35	Mog.	13.8	15	Base Up	24	C	C-2V	2000	7	$93 / 8$
4M/15BD	4000	PS-35	Mog.	13.8	15	Base Down	24	C	$\mathrm{C}-2 \mathrm{~V}$	2000	61/4	$93 / 8$
6M/66	6000	PS-40	Mos.	48.4	6.6	Any	24	C	C-2V	2000	7	$93 / 4$
$6 \mathrm{M} / 20 \mathrm{BU}$	6000	PS-40	Mog.	14.9	20	Base Up	24	C	C-2V	2000		$93 / 4$
$6 \mathrm{M} / 20 \mathrm{BD}$	6000	PS-40	Mos.	14.9	20	Base Down	24	C	$\mathrm{C}-2 \mathrm{~V}$	2000	61/4	$93 / 4$
$10 \mathrm{M} / 20 \mathrm{BU}$	10M	PS-40	Mog.	24.4	20	Base Up	24	C	C-7	2000	7	93/4
$10 \mathrm{M} / 20 \mathrm{BD}$	10M	PS-40	Mog.	24.4	20	Base Down	24		C-7	2000	61/4	$93 / 4$
$10 \mathrm{M} / 66$	10M	PS-40	Mog.	79.7	6.6	Any	24	C	C-7A	2000	7	$93 / 4$
$15 \mathrm{M} / 20 \mathrm{BU}$	15M	PS-40	Mos.	35.9	20	Base Up	24	C	C-7	2000	7	93/4

SERIES STREET LIGHTING LAMPS - GROUP REPLACEMENT

600/66R	600	PS-25		Mog.	6.7	6.6	Any	60	C	C-8	3000	$53 / 8$	$71 / 8$
$1 \mathrm{M} / 66 \mathrm{R}$	1000	PS-25		Mog.	9.8	6.6	Any	60	C	C-8	3000	$53 / 8$	$71 / 8$
1M/75R	1000	PS-25		Mog.	8.7	7.5	Any	60	C	C-8	3000	$53 / 8$	$71 / 8$
2500/66R/PS25	2500	PS-25		Mog.	22.3	6.6	Base Up	60	C	C-2V	3000	53/8	71/8
2500/66R	2500	PS-35		Mog.	22.4	6.6	Any	24	C	C-2V	3000	7	$93 / 8$
2500/75R	2500	PS-35		Mos.	19.8	7.5	Any	24	C	$\mathrm{C}-2 \mathrm{~V}$	3000	7	$93 / 8$
4M/66R	4000	PS-35		Mog.	34.2	6.6	Any	24	C	$\mathrm{C}-2 \mathrm{~V}$	3000	7	$93 / 8$
4M/75R	4000	PS-35		Mog.	30.0	7.5	Any	24	C	$\mathrm{C}-2 \mathrm{~V}$	3000	7	$93 / 8$
4M/15R/BU	4000	PS-35		Mog.	14.6	15	Base Up	24	C	$\mathrm{C}-2 \mathrm{~V}$	3000	7 61	$93 / 8$
4M/15R/BD	4000	PS-35		Mog.	14.6	15	Base Down	24	C	C-2V	3000	61/4	$93 / 8$
6M/66R	6000	PS-40		Mog.	50.0	6.6	Any	24	C	$\mathrm{C}-2 \mathrm{~V}$	3000	7	$93 / 4$
6M/20R/BU	6000	PS-40		Mog.	15.7	20	Base Up	24	c	C-2V	3000	7	$93 / 4$
6M/20R/BD	6000	PS-40		Mog.	15.7	20	Base Down	24	C	$C-2 V$	3000	61/4	$93 / 4$
10M/66R	10000	PS-40	*	Mog.	86.6	6.6	Any	24	C	C-7A	3000	7	$93 / 4$
10M/20R/BU	10000	PS-40		Mos.	25.3	20	Base Up	24	C	C-7	3000	7	$93 / 4$
10M/20R/BD	10000	PS-40		Mog.	25.3	20	Base Down	24	C	C-7	3000	61/4	$93 / 4$

Marine lamps are used on shipboard to outline and identify vessels for seaway safety, and to signal between ships. On land, they provide a source for lighthouse beacons. Underwater, they illuminate areas where divers must work. G-E marine lamps are designed specifically for these demanding services. Other G-E filament and fluorescent lamps effectively provide general illumination in ship cabins and work areas.

Ordering Abbreviation	Service	Watts	Volts	Base	Std. Pkg. Qty	Class	Fila.	Approx. Hours Life	Lumens	Light Center Length	Max. Over-all Length
1M/G25	Diving* ${ }^{\text {(1) }}$	1000	115-125 cable leads 120 3c mog.			4 C	C-5	50	25M	83/4	103/4
50/50P25/28	Running \dagger	50 50				60 C	5	750	375	$3 \frac{5}{16}$	$5 \frac{1}{16}$
100/100P25 /29	Running \dagger	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	120	3 c		60 C	$\begin{aligned} & C-5 \\ & C-9 \end{aligned}$	750	1050	$3 \frac{5}{16}$	$5 \frac{1}{16}$
1M/T20/5	Lt.house \dagger (1)	1000	120			12 C	2 C	1000		$43 / 4$	9 $\frac{1}{16}$
46A/S8SCP	Signal	. 46 A	6.2	S.C.		100 B	C-8	500		11/8	2
70A/58	Signal	.70A	6.2	S.C.		100 C	C-8	500	.	11/8	2

* To be burned only under water. Withstands 300 pounds per square inch water pressure. † Burn base down. (1) Heat resistant glass.

G-E STREET RAILWAY LAMPS

Headlight lamps are designed for operation in series with four lamps of corresponding wattage and voltage used elsewhere in the car.

Car Lighting, 5 -in-series, lamps are of the vacuum type. The 36 -watt and 56 -watt lamps provide more satisfactory performance when operated in the vertical base-up position.

The 30 -volt cut-out lamps are of the gas-filled type
and are provided with a cut-out feature which short circuits the individual lamp upon burnout.

Shop and Yard Lighting-Arc-resisting lamps are provided with a feature built into the stem of the lamp to minimize the tendency to arc when a lamp in the 5 -in-series circuit burns out They are chiefly used in the lighting of shops and yards.

STREET RAILWAY LAMPS

Lamp Ordering Abbreviation	Watts	Bulb	Base	Volts	Description	Sid. Pkg. Oty.	Class	Fila.	Approx. Hours Life	Lumens	Light Cntr. Lgth.	Mex. Ovrl. Lgth.
94 P 25	94	P-25	Med.	120	Headlight (.863A)	60	B	C-5	1000	920	$2 \frac{1}{16}$	$43 / 4$
150P25/15	150	P-25	Med.	120	Headlight	60	C	C-5	500	1900	3	$43 / 4$
CAR LIGHTING	(5-in-Series)											
36A/RY	36	A-21	Med.	120	$.342 \mathrm{~A}$	120	B	C-9	2000	365	27/8	$4 \frac{7}{16}$
56 A 21	56	A-21	Med.	120	.519A	120	B	C-9	2000	590	278	$4 \frac{7}{16}$

G-E TRAFFIC SIGNAL LAMPS

The traffic-signal beam candlepowers recommended by the Institute of Traffic Engineers are based on the light output of the standard 60 watt traffic signal lamp. The 64 -watt and 69 -watt lamps are equivalent in light out-put to the 60 -watt lamp and have longer life for group replacement which usually reduces maintenance expense and signal outages due to lamp burnouts.

The 100 -watt and 107 -watt and 116 -watt lamps are used where there is high background brightness or where a special hazard may call for a signal having unusually high attention-value.

Lamp Ordering Abbreviation	Watts	Bulb	Base	Volts	Burning Position	Std. Pkg. Qty.	Class	Filament	Rated Ayg. Life	Approx. Initial Lumens	Light Center Length	Max. Ovil. Length
40A /TS	40	A-21	Med.	120		120	C	C-9	2000	360	$2 \frac{1}{16}$	$4 \frac{7}{16}$
60A21/TS	60	A-21	Med.	120	Burn	120	C	C-9	2000	665	$2 \frac{7}{16}$	$4 \frac{7}{16}$
64A21/TS	64	A-21	Med.	120	Base	120	C	C-9	3000	665	$2 \frac{7}{16}$	$4 \frac{7}{16}$
69A21/TS	69	A-21	Med.	120	Down	120	C	C-9	6000	665	$2 \frac{3}{16}$	$4 \frac{7}{16}$
100A21/TS	100	A-21	Med.	120	To	120	C	C-9	2000	1260	$2 \frac{7}{16}$	$4 \frac{7}{16}$
107A21/TS	107	A-21	Med.	120	Horizontal	120	C	C-9	3000	1260	$2 \frac{7}{10}$	$4 \frac{7}{16}$
116A21/TS	116	A-21	Med.	120		120	C	C-9	6000	1260	$2 \frac{7}{16}$	$4 \frac{7}{16}$

G-E HIGH VOLTAGE LAMPS (230-250 Volts) FOR GENERAL LIGHTING SERVICE

(1) Recommended burning position any within 60° of vertically base up or base down but lumen maintenance is best when burned vertically base up.

G-E LOW VOLTAGE LAMPS

6- and 12 -volt lamps are used on battery-generator outfits, for automobiles, boats, airplanes and places where electric service is not available.

SIX VOLT AND TWELVE VOLT LAMPS

Lamp Ordering Abbreviation	Watts	Bulb	Base	Volts	Deseription	Std. Pkg. Cty.	Class	Filament	Approx. Hours Life	Lumens	Llght Cntr. Lgth.	Max Oril. Lgth.
25A	25	A-19	Med.	6	Inside Frosted	120	C	C-6	1000	350	21/2	$3 \frac{15}{16}$
50A21	50	A. 21	Med.	6	Inside Frosted	120	C	C-6	1000	780	$33 / 8$	$4 \frac{15}{16}$
6S6	6	S-6	Cand.	12	Clear	240	B	C-2V	1500	50		$17 / 8$
25A	25	A-19	Med.	12	Inside Frosted	120	C	-6	1000	370	21/2	$3 \frac{15}{16}$
50 A 21	50	A-21	Med.	12	Inside Frosted	120	C	C-6	1000	830	$33 / 8$	$4 \frac{15}{16}$

G-E INDUSTRIAL INFRARED LAMPS

Infrared lamps have many uses in commercial and industrial applications for heating and drying, and on the farm for brooding of poultry and animals. Important features of these lamps include rapid heat transfer, efficient operation, simple oven construction, low oven first cost, adaptability to conveyor line production, cleanliness and low maintenance cost. The several wattages in each bulb size permits a wide range of temperatures.
The 250 PS30/33 Brooder lamp is a specially
designed, low cost lamp, particularly effective for brooding older chicks and larger animals. It is interchangeable with R-40 lamps in existing brooder equipment. It eliminates "hot spots" and provides a wider distribution of heat.
The T-3 Infrared Quartz lamps are capable of delivering over three times the energy concentration provided by the 375 -watt R- 40 lamps. May be used in compact trough reflectors for concentrated radiation.

Lamp Ordering Abbreviation	Waits	Bulb	Base	Volts	Description	Std. Pkg. Qty.	Class	Filament	Llght Center Length	Maxlum Over-all Length
125G30	125	G-30	Med. Skt.	115-125	(1)	60	C	C-7A	5	$71 / 8$
250G30	250	G-30	Med. Skt.	115-125	(1) (2)	60	C	C-7A	5	$71 / 8$
375G30	375	G-30	Med. Skt.	115-125	(1) (2)	60	C	C-7A	5	$71 / 8$
500G30/1	500	G-30	Med. Skt.	115-125	(1) (2)	60	C	C-7A	5	$71 / 8$
125R40	125	R-40	Med. Skt.	115-125	Light l. F.(1)	24	C	C-9		$71 / 4$
250R40/4	250	R-40	Med. Skt.	115-125	Light I. F. (1)	24	C	C-9		$71 / 4$
250PS30/33	250	PS-30	Med.	115-125	Brooder	60	C	C-9	6	$8 \frac{1}{16}$
375R40	375	R-40	Med. Skt.	115-125	Light I. F.(1)	24	C	C-9		$71 / 4$
375R40/1	375	R-40	Med. Skt.	115-125	(1)(3)	24	C	C-9		$75 / 8$
500T3	500	T-3	6" Flex. leads	115-125	Infrared Quartz(3)	12	C	C-8		$8 \frac{13}{16}$
$1 \mathrm{M} / \mathrm{T} 40 / 3$	1000	T-40	6/'Fpecial	115-125	Triangular Fil.(1)(3)	24	C		$3 \frac{1}{16}$	$71 / 4$
1 MT3	1000	T-3	6 'Flex. leads	230-250	Infrared Quartz	12	C	C-8	16	131 $\frac{18}{16}$

RS

G-E heat lamps are useful as heat sources for relieving muscular aches, reducing sinus discomfort, and for other warming and drying applications in the home. The 250R40/1 and 250R40/10 heat lamps are designed to produce short-wave infrared radiation. The 250R40/10 is equipped with a bulb of heat-resisting glass to minimize the possibility of breakage if water splashes on it; it also has a built-in red filter to reduce brightness in applications where the lamp must be used near the eyes.

Sunlamps are effective producers of skin-tanning ultraviolet energy. They also provide a source of vitamin D , which is important in the development of children, poultry and animals. Regular exposure
to sunlamp energy will produce tanning of the skin in certain individuals. The sunlamps shown here also produce enough radiant heat to provide comfort in rooms that might otherwise be too cool for body exposure.

The RS sunlamp is particularly convenient, containing its own reflector and filament ballast; it can be operated without external accessories from any standard household outlet supplying 50 - or 60 -cycle alternating current. Its convenience and effectiveness make the RS sunlamp highly popular. The S-1 sunlamp is available for replacement in the special equipment designed for it.

$\begin{gathered} \text { Lamp } \\ \text { Ordering } \\ \text { Abbreviation } \end{gathered}$	Wath	Bulb	Base	Volts	Description	Std. Pkg. Cily.	Approx. Hours Life	Max. Ovil. Lsth.	Light Center Length
250R40/1	250	R-40	Med.	115-125	Light I. F.	24	(1)	$61 / 2$	\ldots
250R40/10	250	R-40	Med.	115-125	Red Bowl	24	(1)	67/8
RS	275	R-40	Med.	110-125	*Refl. Sunlamp-I. F.	6	1000(2)	7	
S1	400	PS-22	Mog.		\star I. F.	6	500	$6 \frac{7}{16}$	5

[^9]
G-E GERMICIDAL LAMPS

G8T5

G30T8
213
Germicidal lamps provide $2537^{\circ} \mathrm{A}$ ultraviolet, effective in destroying molds and bacteria. They have wide application in hospital nurseries, contagious wards and surgeries, as well as in schools, offices, theatres and other places where air sanitation is needed. They also provide product protection for foods, pharmaceuticals and beverages. On farms they offer an important supplement to the usual sanitation methods practiced by poultrymen, dairymen, and stock raisers.
Reference: General Electric Lamp Division Bulletins LD-11, LD-14.

$\begin{gathered} \text { Lamp } \\ \text { Ordering } \\ \text { Abbreviation } \end{gathered}$	Watts	Bulb	Base	$\begin{aligned} & \text { Std. } \\ & \text { Skgg. } \\ & \text { PRy. } \end{aligned}$	Approx. Hours Life	$\begin{aligned} & \text { Max. } \\ & \text { Ovil. } \\ & \text { Lgth. } \end{aligned}$
G4T4/1	4	T-4 \star	Oval Small 4-Pin	24	5000(1)	$3 / 8$
G8T5	8	T-5	Min. Bip.	24	5000 (2)	12
G15T8	15	T-8	Med. Bip.	24	7500(2)	18
G30T8	30	T-8	Med. Bip.	24	7500(2)	36

(1) Life under specifled test conditions with (2) Life under specified test condiLire under specified test conditions with
lamps turned off and restarted no oftener
(2) Lions under specitied test condi-
tamps turned off and three burning hours. * Bent tube construction every 8 burning hours.

G-E OZONE LAMP

Short-wave ultraviolet from the General Electric ozone lamp passes through the special lamp bulb and acts on the oxygen in the air to form ozone. Ozone occurs outdoors - particularly after an electrical storm. It has a pleasant odor which masks many objectionable odors.
The G-E Ozone Lamp will banish the odors in rooms - particularly the odors a short time after cooking. It will reduce mustiness and the stale after-odors of tobacco smoke. Ozone lamps are generally operated in shielded fixtures mounted on the wall just above eye level.

Caution: Never use more than one lamp per thousand cubic feet of space in an inhabited room. Do not use in nurseries, sickrooms, or in atmospheres containing the vapors of chlorinated hydro-carbons (carbon tetrachloride, for example). Rays of lamp must be shielded from direct view. If not, ordinary glasses and clothing should be worn to protect eyes and skin.

A ballast must be used with the ozone lamps - G-E catalog number 89G504 is available for operation on $110-125$-volt, 60 -cycle current. A standard 40 -watt filament lamp may also be used as a ballast.

OZONE LAMPS

Lamp Oddering Abbreviation	Watts	Bulb	Base	Description	Std. Pkg. Oty.	Approx. Hours Life	Mox. OVtl. Lsth.
OZ4S11	4	$\mathrm{~S}-11$	Inter.	Clear	120	4000 (1)	$21 / 4$

(1) Approximate life under specified test conditions with continuous burning.

Mercury lamps are highly versatile sources of radiant energy. They are efficient generators of visible light for general lighting applications for factories, for street lighting and outdoor floodlighting. They are also common sources of ultraviolet energy used for sunlamps and for black light and photochemical effects.

Mercury lamps require correctly designed ballasts for their operation; all lamps with the same suffix number in the lamp order abbreviation are interchangeable and will operate from the same ballast design.

The characteristic blue-green light from mercury lamps appears as a "white light" but distorts the color appearance of colored objects, and for that reason are often combined with filament lamps for interior illumination.
In color improved lamps a fluorescent phosphor is coated on the inside of the outer bulb. This phosphor is activated by the ultraviolet radiation and converts this energy which otherwise is wasted into light to fill in the red portion of the spectrum not present from mercury radiation alone. The resultant color of the light is approximately the same as when equal wattage of mercury and filament lamps are combined.

OPERATING PRINCIPLES

Fundamentally the principle of all mercury vapor lamps is the same - that of an electron flow between electrodes through ionized mercury vapor. Each lamp takes a design best adapted to efficient performance for the particular service intended. This is the reason for the widely different appearance of the various types.

Lamps for general lighting service are designed to put as much energy within the visible spectrum as possible and comparative efficiency is stated in lumens output. For ultraviolet applications the luminous efficiency is less important-sometimes unwanted; in the case of black light applications, light absorbing filters must be used.

Lamps are designed for one specific terminal voltage, and all provisions for the supply of this required voltage are governed by proper selection of transformer designed for operation on line voltage conditions encountered in service. Where the lamp operating volts are approximately half of the service voltage simple reactors may be used, otherwise combination auto transformers ballast designs are required. The variations influence transformer size, weight, and cost.

The listing below includes all of the more popular ratings of G-E mercury lamp transformers, most of which are carried in distributor or factory stocks.

TULAMP TRANSFORMERS generally provide high overall power factor, line starting current lower than operating current, lower first cost, and lower wiring costs. Lead-lag tulamp transformers should not be used for operation of lamps in ambient temperatures below 32 degrees F. Leadlag transformers should be used for operation of lamps indoors only.

TRANSFORMERS FOR MERCURY LAMPS - 60 CYCLES

Watts-Type (1)	Type of Transformer	G-E Model Number* OThent 9764
H 85-C3	Core and Coil	4009
$\begin{aligned} \text { H } 100-\mathrm{AL4} \\ \text { L4, M4 } \\ \text { SP4, FL4 } \end{aligned}$	Stabilized Output Transformer Core and Coil Enclosed Single Moistureproof Single Enclosed Single	$\begin{aligned} & 4017 \\ & 3518 \\ & 1019 \\ & 3271 \\ & 0020 \end{aligned}$
$\mathrm{H} 250-\underset{\mathrm{J} 5}{\mathrm{~A} 5}$	Enclosed Tulamp Core and Coil Enclosed Single Enclosed Single	$\begin{aligned} & 0022 \\ & 3516 \\ & 1017 \\ & 0021 \\ & \hline \end{aligned}$
	Enclosed Single Enclosed Single Enclosed Single Enclosed Single Pendant, Mounted Enclosed Single Reactor Enclosed Single Reactor Core and Coil Reactor Moistureproof Single Core and Coil Enclosed Single Weatherproof Single (2) Enclosed Tulamp Enclosed Tulamp Enclosed Tulamp Enclosed Tulamp	1006 6 7 8 2001 1005 1004 3504 3000 3500 9 3020 0016 0025 0026 0019
H1000-H6	Core and Coil	4010
$\begin{aligned} & \text { A12, C12 } \\ & \left.\mathrm{H} 1000-\begin{array}{c} \text { A15 } \\ \text { C15 } \end{array}\right\} \end{aligned}$	Enclosed Single Reactor Enclosed Single Reactor Enclosed Tulamp Reactor Enclosed Single Enclosed Single	$\begin{array}{r} 4016 \\ 28 \\ 4013 \\ 4012 \\ 4007 \end{array}$
H3000-A9	Enclosed Single Enclosed Single	$\begin{aligned} & 3751 \\ & 3750 \end{aligned}$

[^10]
G-E MERCURY LAMPS

H1000-C12
H1000-C15

REFLECTOR-TYPE LAMPS

The light distribution from the elongated arc tube of the mercury lamp is mostly in a horizontal pattern. Suitable reflectors intercept and control about 80% of the light-only 20% downward being uncontrolled by usual reflector design.

This large percentage of the light output subjected to reflector control puts a premium on keeping reflecting surfaces bright and clean, since any depreciation of reflecting surfaces due to dust and dirt means just that much waste of light paid for but not utilized. The advantage of reflectortype lamps is that the sealed-in silvered reflecting surfaces do not deteriorate throughout the life of the lamp. The expense and nuisance of cleaning fixtures has always been a bothersome problem to the point of actual neglect which means not only a waste of both lamp and current but more significant in over-all effect is the loss of illumination for production efficiency.

The H400-R1 is the unmodified mercury lamp in an internally silvered R-52 reflector bulb. It's maintenance cost is low and it gives up to 54% more light than the H400 A1 lamp and up to 36%
more than the H400 E1 lamp shown on the next page.
The H400-RC1 combines top color improvement with high efficiency. In this color-improved lamp a phosphor coating is used instead of the metallic reflector. This white powder acts as a diffuse reflector but allows approximately one-third of the light to be transmitted through the coating. This upward light may be used to illuminate the ceiling and upper side walls, or may be redirected by an external reflector which also acts as a shield against high lamp brightness; also as a protection to the lamp from thermal or mechanical shock. The White Mercury RW- 1 is recommended for most 400 -watt mercury applications. It provides more light than other 400 -watt mercury lamps, low maintenance cost and the specially designed phosphor produces a desirable white light, but not as much color improvement as the RC-1.

The half phosphor coated, color improved H1000 RC-15 or H1000 RC-12 produce up to 10% more light than the H1000 A-15 or H1000 A-12 and up to 29% more light than the H1000 C-15 or H1000 C-12 lamps.

G-E MERCURY LAMPS

During the past three years many improvements have been made in General Electric 400 -watt Mercury Lamps. These include silver plated wire supports for the arc tube; white-finish resistor relocated behind the heat reflector disc; improved electrodes; purified quartz parts and specially treated outer bulb.

The newest improvement, a specially designed phosphor, has resulted in even higher efficiency
for the H400-RW 1 and H400-EW 1 lamps. This new phosphor converts ultraviolet radiation into appreciably more white light. A new group of 400 -watt weather-resistant lamps is also available at slightly higher prices. They are identical except for glass to their counterparts listed below and are identified by "/WR" after ordering abbreviation. These new lamps will find application wherever water breakage problems occur with regular lamps.

Lomp Ordering Abbreviation	Watts	Bulb	Base	Description See Footnote No.	Std. Pkg. Oty.	Approx. Hours Life	Approx. Initial Lumens	Max. Over-all Length	Light Center Length
H100-SP4	100	PAR-38	Admed. Ski.	\star Black Light (Spot)-Use separate filter (3,4)	12	6000	2300 ${ }^{(2)}$	$5 \frac{7}{16}$.
H100-FL4		Projector		\star Black Light (Flood)-Use separate filter (3, 4.)	12	6000	2300(2)	$5 \frac{7}{16}$	
H100-L4	100	PS-25	Mog.	Street Lighting (3)	24	6000	3500(1)	$71 / 8$	5
H100-M4				General and Street Lighting Color Improved (3)	24	6000	3300(1)	71/8	5
H100-A4	100	T10	Admed.	\star General Lighting; Black Light Use separate filter (3, 5)	12	6000	3500(1)	5/8	$3 \frac{7}{18}$
H100-BL4	100	T-16	Admed.	*Black Light-Integral filter(6,7)	12	1000	51/2	$3 \frac{7}{18}$
H175-A22	175	BT-28	Mog.	General and Street Lighting Black Light-Use separate filter $(9,8,3)$	12	6000	7000	81/4	5
H175-C22				General and Street Lighting Color Improved (9, 8, 3)	12	6000	6700	81/4	5
H250-A5	250	BT-28	Mog.	Black Light-Use separate filter; General and St. Ltg. (9, 8, 3)	12	6000	11000(A)	81/4	5
H250-J5				General and Street Lighting Color Improved (9, 8, 3)	12	6000	10500	81/4	5
H400-E-1	400	BT-37	Mog.	General and St. Ltg. Black Lt. Use separate filter (9,8)	6	6000	21000(8)	111/2	7
H400-EW1				Gen. \& St. Lig. Wh. Mercury (9,8)	6	6000	23000	111/2	7
H400-J1				General and Street Lighting Color Improved (9, 8)	6	6000	20000(c)	111/2	7
H400-E1T	400	T-20	Mog.	\star General and Street Ltg. Black Light-Use separate filter (8)	12	6000	20000	11	7
H400.A1	400	T-16	Mog.	\star Gen. \& St. Ltg. Base Up (10,11)	12	6000	15500(D)	13	73/4
H400-B1				\star General and Street Lighting Base Down (12, 16)	12	6000	15500(D)	13	$73 / 4$
H400-R1	400	R-52	Mog.	Reflector High Bay I. F. (9)	6	6000	18000(E)	113/4	\ldots
H400-RW1				High Bay White Mercury (9)	6	6000	22000	113/4
H400-RC1				High Bay Color improved (9)	6	6000	20500(F)	113/4	\ldots
H1000-A12	1000	BT-56	Mog.	\star General Lighting (9, 3, 13)	6	6000	54000(G)	$15 \frac{1}{16}$	93/8
H1000-C12				\star General Ltg. Color Improved (9,	13)6	6000	51500(H)	$15 \frac{1}{16}$	93/8
H1000-RC12				\star Semi-Reflector High Bay-Colo Improved (9, 3)	6	6000	53000 1)	$15 \frac{1}{16}$	93/8
H1000-A15				\star Gen. St. \& Industrial Ltg. (9, 31	3,) 6	6000	54000(G)	$15 \frac{1}{16}$	$93 / 8$
H1000-C15				\star General Ltg. Color Improved(9,3	13)6	6000	51500(H)	$15 \frac{1}{16}$	93/8
H1000-RC15				\star Semi-Reflector High Bay-Colo Improved (9, 3)	6	6000	53000(1)	$15 \frac{1}{16}$	93/8
H3000-A9	3000	T-91/2	S. C. Term.	*High Bay Industrial Ltg. (3)	1	6000	132000(J)	55	. . .

[^11]
G-E MERCURY BLACK LIGHT LAMPS

H100-SP4

H100-FL4

H100-A4

H100-BL4
"Black Light" is a popular name for near ultraviolet energy in the $3200 \mathrm{~A}-4000 \mathrm{~A}$ band. These invisible rays cause many materials to glow. The process is used for stage and decorative effects, industrial inspection and production, detective work, mineral exploration, medical applications, and advertising.
To be effective visible light emitted by
the source must be absorbed by a filter. In the H100-BL4, F15T8/BLB, and in the F40T12/BLB the lamp bulb itself is the filter made of dark purple glass which absorbs nearly all the visible light and transmits a high percentage of black light.
Fluorescent Black Light Lamps are more efficient than Mercury types but require more space.

Lamp Ordering Abbreviation	Watts	Bulb	Base	Std. Pkg. Oty.	Approx. Hours Life	Lumens	Light Cnht. Lgth.	Max. Ovil. Lgth.
H100-SP4 ${ }^{\text {(2) (3) }}$	100	PAR-38	Admed. Skt.	12	2000	. . . ${ }^{\text {a }}$		$5 \frac{7}{16}$
H100-FL4 ${ }^{\text {(2) }}$ (3)	100	PAR-38	Admed. Skt.	12	2000			$5 \frac{7}{16}$
H100-A4 ${ }^{\text {(2) }}$	100	T-10	Admed.	12	6000	3500	$3 \frac{7}{16}$	5 5/8
H100-BL4 ${ }_{\text {- }}$ (2)	100	T-16	Admed.	12	1000		$3 \frac{7}{16}$	$51 / 2$
H250-A5	250	BT-28	Mog.	12	6000	11000	5	$81 / 4$

g-E FLUORESCENT BLACK LIGHT LAMPS

F40T12/BL \quad F40T12/BL/RS

F40T12/BLB

Lamp Ordering Abbreviation	Nominal Lamp Watts	Bulb	Length, Inches	Base	Standard Package Quantify	His. Life
F15T8/BL	15	T-8	18	Med. Bip.	24	7500
F15T8/BLB(1)	15	T-8	18	Med. Bip.	24 .	7500
F30T8/BL	30	T-8	36	Med. Bip.	24	7500
F40T12/BL	40	T-12	48	Med. Bip.	24	7500
F40T12/BLB(1)	40	T-12	48	Med. Bip.	24	7500
F40T12/BL/RS	40	T-12	48	Med. Bip.	24	7500
F40T12/BLB/RS ${ }^{\text {(1) }}$	40	T-12	48	Med. Bip.	24	7.500

(1) Integral filter
(2) Life under specified conditions with lamps turned off and restarted no oftener than once every 5 burning hours.
(3) Opaque coating on reflecting section of bulb.

G-E FLUORESCENT LAMPS

In fluorescent lamps, gas acts as the conductor of electricity and light is produced by electronic activity, as opposed to electrically heating a filament to incandescence to produce light in an incandescent lamp.
A fluorescent lamp is a complex electrical device. For this reason its light output and performance can be greatly affected by the quality and design of materials used to make it, by precautions taken during manufacture, and also by the equipment used for starting and operating the lamp.
In appraising the value of a fluorescent lamp the following factors must be considered in addition to price: Light output, Maintenance of light, Dependability, Uniformity, Color, Life.

TYPES OF FLUORESCENT LAMPS

Fluorescent lamps may be grouped according to types of starters and bases:

1. a. Bipin-base lamps for use in fixtures having starters or manual starting switches.
b. Bipin-base Rapid-Start lamps for use on rapid-start ballasts to get quick starting without starters. These lamps may also be used in fixtures with glow-type starters.
c. Recessed base Rapid-Start, High Output and Power-Groove lamps for higher light ouptut.
d. Bipin-base Instant-start lamps for fixtures with instant-start ballasts.
2. Slimline fluorescent lamps are instant-start types with single-pin bases.
3. Circline fluorescent lamps have circular shapes and use 4-prong connector-type bases.

CATHODES

Two cathodes, placed one at each end of the lamp, are the source of electrons by which the current is conducted in a fluorescent lamp. The design and treatment of the cathode has a decided effect on the performance of the lamp.

TRIPLE-COIL TUNGSTEN CATHODES

Used in instant-start single-pin and bipin-base lamps, and also in the Rapid Start Lamps. This is a unique cathode design developed by General Electric, giving improved life performance on Instant-start and Rapid Start ballasts because the cathode holds more emission material and holds it more securely. Too, the fine wire heats up quickly during starting, which also increases life.

COILED-COIL TUNGSTEN CATHODES

Used in general line lamps intended for starter service, and also for Trigger-start ballasts.
In manufacture, the coiled tungsten wires shown below are coated with the electronemitting material.

Triple-Coil

G-E FLUORESCENT LAMP OPERATING

There are a number of different methods by which fluorescent lamps may be started and operated. Each method requires the selection of a particular combination of fluorescent lamp and auxiliary equipment. The choice depends upon lamp characteristics, application requirements, and cost versus convenience factors. For example, if lamps are to be operated outdoors in cold weather, only a few types will perform with best results.

There are five principle methods of operation. Some lamps may be operated by only one method; some lamps may be operated by more than one. The following describes these five operating methods and lists the lamp sizes appropriate to each.

1. Preheat or Switch Starting (with starters or manual starting switches)

If fluorescent lamp cathodes are pre-heated before the lamps is started, relatively inexpensive ballasts may be used. Such preheating is readily accomplished by means of manual switches (used in desk lamps and portable lamps) or by automatic starters (where fixtures are controlled from a wall switch). Starters are available in either standard or no-blink types. The latter are obtainable in either the manual reset (Watch Dog) or automatic reset designs and in the range of sizes needed for the different lamps. The Watch Dog is recommended in most instances because it eliminates "flashing" or "blinking" at the end of lamp life, saves ballast wear, and lasts much longer.

REPLACEABLE STARTERS

Starter			Lamp Wats	Cose
FS-5 FS-2 FS-20 FS-25 FS-4 FS-4DC FS-30 FS-12 FS-4AR(1) FS-40 FS-400(2) FS-44(3). FS-44DC FS-64(4) FS-6 FS-850 FS-850S FS-852			4, 6, 8	A
			14, 15, 20	A
			14, 15, 20	B
			22, 25	A
			13,30, 40	A
			13, 30, 40	A
			30	B
			32	A
			40	A
			40	B
			40	B
			40	B
			40	D
			90,100	D
			90, 100	C
			90, 100	E
			$90^{\prime}, 100$	E
			90, 100	(5)
(1) Automatic reset lockout starter. Consumes $1 / 4$ watt during lamp operation (2) See text.				
(3) Thermal starter. Consumes $1 / 2$ watt during operation. For use with watt preheat lamps for operation down to $0^{\circ} F$. (4) Thermal starter. Consumes $11 / 2$ watts during lamp operation. (5) Watch Dog, two-terminal mogul base.				

These are the lamps which may be operated with starters: 4-, 6., 8-, and 13-watt T-5; 15and 30 -watt T-8; $14-, 15-, 20-, 25-$, and $40-$ watt T-12; 90- and 100 -watt T-17.
2. Trigger Start (no starters)

This newer method permits operation of some smaller preheat-start fluorescent lamps without starters, yet gives practically instant starting. Although lamp life is a little shorter and thus lamp cost a little higher, maintenance is greatly simplified and convenience of use much improved. No special lamp is required, but the lighting fixture must be equipped with the proper size of Trigger Start ballast. This automatically provides cathode preheat without starters. Trigger-Start ballasts are currently available for $14,15,20$, and 30 -watt General Line fluorescent lamps and for $8^{\prime \prime}$ and $12^{\prime \prime}$ Circline lamps.
3. Rapid Start (no starters)

This newest of systems used with Rapid Start, High Output and Power-Groove lamps combines the simplicity of Trigger Start with the low cost of conventional switch starting. It requires the use of special low-loss triplecoiled cathodes to reduce cathode heating losses, and is coated with Dri-Film to assure rapid starting even under adverse conditions. Rapid-Start lamps will give good perforntance in fixtures employing glow-type starters. The lamps should be used with Rapid Start ballasts designed to automatically provide adequate prebeat with low losses. Lamps glow as soon as turned on and come up to uniform full brightness in approximately two seconds.

STARTERS

The function of the starter switch is to complete, and then open, a circuit through the cathodes of the preheat type of fluorescent lamp. When the starter switch is closed, current flows through the cathodes, heating them and causing them to emit electrons. This electron emission makes the arc "strike" at much lower voltage than would be needed with unheated cathodes. When the starter switch is opened, the resulting inductive "kick" from the ballast starts the lamp.

All but two of the starters listed are of the glow-switch type. The FS-44 and FS-64 are thermal starters, and are recommended for the operation of the $40-$ and 100 -watt lamps, respectively, for reliable starting down to $0^{\circ} \mathrm{F}$.
Watch Dog starters provide automatic cut-off at end of lamp life. This eliminates blinking, and protects the ballast. When a new lamp is installed, a touch of the manual reset button makes the starter operative again.
The FS- 400 starter is specially designed to minimize instant starting of 40 -watt lamps on the lead circuits of tulamp ballasts, thus lengthening lamp life. It is particularly recommended where group relamping is practiced.

General Electric Lamp Division's Bulletin LS-101 lists technical data on fluorescent lamps, ballasts, starters, and lampholders.

While lamp and ballast prices are slightly higher, these are offset by elimination of the starter and starter maintenance costs. RapidStart lamps are available in the 40-watt T-12 size, $16^{\prime \prime}$ Circline and in High Output and Power Groove lamps designed for greater current to secure higher light output.

4. Instant Start (no starters)

Through the use of higher-voltage ballasts, these lamps may be started without preheat. They are equipped with triple-coiled cathodes that afford in general the same long life obtained from the popular sizes of general line switch-start lamps. While they look just like switch-start lamps of the same wattage, instant-start lamps are not electrically interchangeable with them, for the cathode leads are short-circuited inside the lamp base to insure safety in use. Therefore instant-start lamps cannot be preheated in starter-type circuits, Further, general line lamps should not be used on instant-start ballasts or much shorter lamp life will result.

Instant-start lamps are available in 40 -watt T-12 and 40 -watt T-17 sizes. They are also available, on special order, in the 30 -watt T-8 size.
5. Slimline (instant start without starters)

Slimline lamps combine all the advantages of the instant-start lamp with much greater convenience in handling and easier maintenance. The lamps are equipped with extra-strong single-pin bases that fit easily and solidly in rugged push-pull sockets. This combination makes lamp installation fast and easy.

In the eight foot sizes, slimlines are among the most efficient lamps made. In addition to increased efficiency, the longer length reduces the number of lamps and fixtures required in a given installation. This, together with the elimination of starters, reduces the amount of maintenance required in a fluorescent lighting system.

These advantages, together with the long trouble-free life offered by G-E slimline lamps assure continuing growth in popularity.
Slimline fluorescent are available in $42^{\prime \prime}$ and $64^{\prime \prime}$ lengths in the T-6 bulb size, in $72^{\prime \prime}$ and $96^{\prime \prime}$ lengths in T-8, and in $48^{\prime \prime}, 72^{\prime \prime}$ and $96^{\prime \prime}$ lengths in the most popular T-12 diameter.

G-E FLUORESCENT LAMP COLORS

G-E Fluorescent Lamps are available in a range, of strong colors and in several different "whites." The saturated colors - red, pink, gold, green and blue - are used for decorative effects while the whites serve for both decorative and general lighting purposes. All fluorescent lamps except gold and red are white when unlighted. Different phosphors produce the different colors when lamps are lighted.

White fluorescent lamps are designed to combine three elements important in lighting effects - (1) efficiency - most light per dollar; (2) color-rendering properties - the ability to bring out the beauty of colored materials and objects and (3) "Whiteness" - their appearance in relation to either natural outdoor daylight or the traditional artifical illumination such as filament lamps.

The choice among fluorescent "whites" always involves compromise among these three elements. Obtaining best color rendering properties necessitates reduction in efficiency. Choice of whiteness affects both efficiency and color rendering properties. The descriptions below outline the effects obtained from the most popular whites.

Cool White combines high efficiency with reasonably good color rendition. It is the most
widely used fluorescent lamp color in factories, offices and schools. It blends well with natural daylight.

Warm White provides the highest efficiency in white fluorescent lamps, it emphasizes orange, yellow and yellow-green at the expense of other colors. Generally used where highest efficiency is more important than color rendition.

De Luxe Cool White most closely simulates the appearance and color-rendering properties of natural daylight. It is widely used in stores such as supermarkets, florists, men's wear shops and other places where excellent color rendition of natural daylight is needed. Also used in factory and office installations where best appearance of colors is important.

Home-lite (formerly De Luxe Warm White) simulates the warm friendly effects of filament lighting in both "whiteness" and color rendering. Usually first choice in residence, restaurants, beauty parlors, department stores, bakeries and other places where "homelike" lighting effects are wanted.

Daylight, Soft White, White, are still available for replacement purposes in existing installations and for new installations where their appearance or color-rendering properties are particularly suitable.

BALLASTS FOR FLUORESCENT LAMPS

Since fluorescent lamps have a negativeresistance characteristic and the lamp voltage decreases as the current increases, the lamp will destroy itself unless the current is limited. This protection is provided by the "ballast" which usually takes the form of a choke coil. The ballast must be designed for the size and type of fluorescent lamp used, as well as for the voltage and frequency of the electrical system.
The life and light output ratings of fluorescent lamps are based on their use with ballasts providing proper operating characteristics. Ballasts that do not provide proper electrical values may substantially reduce either lamp life or light output, or both.

Single-Lamp Ballasts Using Starters

$\begin{gathered} \text { Nominal } \\ \text { Lamp } \\ \text { Watts } \\ \hline \end{gathered}$	$\begin{gathered} \text { G-E } \\ \text { Catalog } \\ \text { Number } \end{gathered}$	Approx. Sixe, Inches
6,8	89G435	$1 \frac{9}{32} \times 1 \frac{5 \pi}{32} \times 3 \frac{1}{16}$
13	89G713	$13 / 8 \times 1 \frac{10}{16} \times 61 / 2$
13	89G414	$1 \frac{11}{16} \times 93 / 8 \times 10$
14,15,20	89G381	$1 \frac{5}{12} \times 1 \frac{35}{32} \times 3 \frac{1}{16}$
14	89G424	$111 \times 23 / 8 \times 81 / 4$
15	89G422	$111 \times 23 / 8 \times 81 /$
20	89G423	$1110 \times 23 / 8 \times 81 / 4$
22 (circ.)	89G499	$1 \frac{3}{16} \times 1 \frac{35}{32} \times 3 \frac{1}{16}$
25	89G482	$11 / 4 \times 1 \frac{13}{\frac{1}{2}} \times 3 \frac{3}{16}$
30	89G704	$13 / 8 \times 116 \times 61 / 2$
30	89G706	$1110 \times 23 / 8 \times 91 / 2$
32 (circ.)	89G700	$13 / 8 \times 118 \times 61 / 2$
40	89G707	$13 / 8 \times 1 \frac{18}{6} \times 61 / 2$
40	89G711	$1110 \times 238 \times 91 / 2$
90,100	89G603	$23 / 8 \times 31 / 8 \times 113 / 4$
Multiple Lamp Ballasts Using Starters		
(2) 15	89G428	$1 \frac{11}{16} \times 23 / 8 \times 10$
(2) 20	89G429	$11 \frac{16}{16} \times 23 / 8 \times 10$
(2) 30	89G780	$1 \frac{11}{16} \times 2388 \times 91 / 2$
(2) 40	6G1000	$1110 \times 23 / 8 \times 91 / 2$
(2) $90-100$	89G562	$25 / 8 \times 31 / 8 \times 191 / 4$
*(4) 90-100	59G265	$25 / 8 \times 31 / 8 \times 191 / 4$
*For 240-280 volt circuits only.		
Trigger Start and Rapid Start Ballasts No Starters Required		
14-15 (T12)	89G701	$13 / 8 \times 1^{156} \times$
15 (T8), 20 (T12)	89G702	$13 / 8 \times 1 \frac{16}{16} \times 61 / 2$
(12	89 G 322	$1111 \times 23 / 8 \times 61 / 2$
32	89G332	${ }_{1}^{116} 11 \times 23 / 8 \times 61 / 2$
(2) $14,15,20$	89G440	$11 \frac{1}{16} \times 23 / 8 \times 81 / 4$
40	89G325	$1 \frac{11}{16} \times 23 / 8 \times 61 / 2$
40	89G708	$1116 \times 23 / 8 \times 91 / 2$
(2) 40	89G545	$1111 \times 23 / 8 \times 91 / 2$
40 (circ.)	89G327	$1 \frac{11}{16} \times 23 / 8 \times 61 / 2$

Slimline Lamp Ballasts - No Starters Required Approx. Power Factor 90\%

$\begin{aligned} & \text { Lamp } \\ & \text { Size } \end{aligned}$	Averase Lamp Watts	G-E Catalog Number	Approx. Size, Inches
42T6	25	89G580	$13 / 4 \times 31 / 8 \times 91 / 2$
4216	(2) 25	89G584	$13 / 4 \times 31 / 8 \times 14 \frac{5}{16}$
48 T 12	38	89G693	$13 / 4 \times 31 / 8 \times 91 / 2$
48 T 12	(2) 38	89G628	$13 / 4 \times 31 / 8 \times 14 \frac{5}{16}$
48112	(2) 38	89G600	$13 / 4 \times 31 / 8 \times 91 / 2$
64 T 6	37	89G581	$13 / 4 \times 31 / 8 \times 91 / 2$
6476	(2) 37	89G586	$13 / 4 \times 31 / 8 \times 14 \frac{5}{16}$
7218	36.5	89G581	$13 / 4 \times 31 / 8 \times 91 / 2$
$72 T 8$	(2) 36.5	89G586	$13 / 4 \times 31 / 8 \times 14 \frac{5}{16}$
72 T 12	55	89G762	$13 / 4 \times 31 / 4 \times 113 / 4$
72 T 12	(2) 55	89G490	$25 / 8 \times 31 / 8 \times 14 \frac{5}{16}$
72 T 12	(2) 55	6G1010	$13 / 4 \times 31 / 8 \times 113 / 4$
9678	(2) 32	89G588	$13 / 4 \times 31 / 8 \times 14 \frac{5}{16}$
9618	49	89G743	$13 / 4 \times 31 / 8 \times 91 / 2$
$96 T 8$	(2) 49	89G589	$23 / 8 \times 31 / 8 \times 14 \frac{5}{16}$
$96 T 8$	(2) 65	89G590	$25 / 8 \times 31 / 8 \times 14 \frac{5}{16}$
$96 T 12$	74	89G762	$13 / 4 \times 31 / 8 \times 113 / 4$
$96 T 12$	(2) 74	89G490	$25 / 8 \times 31 / 8 \times 14 \frac{5}{16}$
$96 T 12$	(2) 74	6G1010	$13 / 4 \times 31 / 8 \times 113 / 4$

High Output and Power-Groove Ballasts

48T12/HO	$2-60$	$89 G 817$	$23 / 8 \times 31 / 8 \times 113 / 4$
72T12/HO	$2-85$	$89 G 605$	$25 / 8 \times 31 / 8 \times 14 \frac{5}{16}$
96T12/HO	$2-105$	$89 G 836$	$25 / 8 \times 31 / 8 \times 16 \frac{11}{16}$
48PG17	$2-107$	$89 G 732$	$25 / 8 \times 31 / 8 \times 19 \frac{1}{16}$
96PG17	$2-200$	$89 G 754 \&$	$25 / 8 \times 31 / 8 \times 14 \frac{5}{16}$
		$89 G 755$	

For a list of more than 100 ballasts, see LS-101, "Fluorescent Lamps and Auxiliary Equipments."

FLUORESCENT LAMP SUMMARY
Illustrated are 29 standard lamps of different sizes and constructions which make up the line of fluorescent lamps．The availability of many of these in various spectral colors and design modifications for specialized operation adds up to more than 350 separate catalog listings．
The wattage range is from 4 to 200 watts nominally．Slimline types may be operated at different wattages，depending on the current rating of the ballast used．The light output for ＂white＂light ranges from about 75 lumens to over 13,000 lumens at lamp efficiencies ranging from 20 to well over 70 lumens－per－watt．Actual output depends on the spectral quality of the

Types，and Sizes Available
light，the operating current and voltage，as well as the temperature environment．For＂colored＂ light，efficiency ranges from 1．5－4．5 lumens per watt for red，to $30-95$ lumens per watt for green light．

GENERAL LINE
CIRCLINE

Nominal Watts	4	6	8	13	14	15	15	20	25	30	40	40	90	100	22	32	40
Length（Inches）	6	9	12	21	15	18	18	24	33	36	48	60	60	60	8idia．	12 dia．	16dia．
Bulb＊	T－5	T－5	T－5	T－5	T－12	T－8	T－12	T－12	T－12	T－8	T－12	T－17	T－17	T－17	T－9	T－10	T－10
Average Lamp Watts	3.8	5.8	7.9	13.0	14.0	15.0	14.1	19.7	26.0	30.0	39.0	41.0	90	99	21	31.5	39
Lamp Current（Ma．）	125	145	160	160	390	300	330	380	490	355	430	425	1550	1520	390	435	420
Lamp Volts	33	45	58	97	37.5	55	45.5	56	60	98	00	101	62	68	60	80	107
Lumens，Cool White	100	210	330	700	540	730	620	1000	1600	1890	2500	2500	5150	4850	930	1550	2200
Lumens，Warm White	10	220	340	710	570	760	650	1030	1660	1930	2600	2600	5300	5150	960	1600	2250

SLIMLINE

Length（Inches）	42	48	64	72	72	96	96
Bulb Size	T－6	T－12	T－6	T－8	T－12	T－8	T－12
＋Watts	25.0		37.0	36.5		49.0	
\sum Volts	145		225	210		285	
Con CW	1480		2450	2550		3550	
¢ Lumens WW	1570		2550	2650		3600	
Watts		38.0			55.0		74.0
亏 Volts		97			145		192
吅午（CW		2300		，	3600		5050
$\underset{\sim}{0}$ Lumens WW		2400			3700		5100

Home－line Lamps
All＂De Luxe Warm White＂Fluorescent lamps are now identified
All＂De Luxe Warm
as＂Home－line＂lamps．

HIGH OUTPUT

Watts or Length	40 watts	48 inches	72 inches	96 inches
Base	Med．Bipin	Recessed D．C．		
Avg．Lamp Watts	39.0	60.0	85.0	105
Lamp Current（Ma．）	430	800	800	800
Lamp Volts	100	80	115	148
Lumens，Cool White	2500	3250	5200	7300
Lumens，Warm White	2600	3350	5350	7500

POWER GROOVE

Length（inches）	48	72	96
Base	Recessed D．C．		
Avg．Lamp Watts	107	155	200
Lamp Current（ma．）	1500	1500	1500
Lamp Volts	84	120	160
Lumens，Cool White	6000	9300	13，000

G-E FLUORESCENT LAMPS

The 4 -, 6 -, 8 -, and 13 -watt T-5 fluorescent lamps are generally used where space for lamps is limited and where the inherent cool light and color quality of fluorescent is desired. In stores they are applied in niches, showcases, and shelving to enhance the function and appearance of miniature displays, signs and models. In indus-
trial plants they supply light locally for machine work, fine assembly, inspection, and other supplementary lighting applications. In offices they are built into business machines and similar devices for increased visibility of dials, scales, and keyboards.

FLUORESCENT LAMPS (FOR USE WITH STARTERS)

Lamp Ordering Abbreviation	Nominal Lamp Watts	Bulb	Length, Inches	Base	Description	Standard Packase Quantity	Approx, Hours Life	Approx Initial Lumens (2)	Approx. Lumens at 40% Rid Ave Rid. Ave. Life
F4T5/CW	4	T-5	6	Min. Bip.	Cool White	24	4000	100	60
F6T5/CW	6	T-5	9		Cool White	24	6000	210	150
F6T5/W	6	T-5	9	Min. Bip.	White	24	6000	220	155
F8T5/CW	8	T-5	12	Min. Bip.	Cool White	24	6000	330	240
F8T5/W	8	T-5	12	Min. Bip.	White	24	6000	340	250
F13T5/CW	13	T-5	21	Min. Bip.	Cool White	24	6000	700	540

(1) Life under specified test conditions with lamps turned off and (2) Approximate initial lumens after $\mathbf{1 0 0}$ hours operation.
restarted no offener than once every 3 burning hours.

Life and Lumen Output

The life and light output ratings of fluorescent lamps are based on their use with ballasts providing proper operating characteristics. Ballasts that do not provide proper electrical values may substantially reduce either lamp life or light output, or both.
Ballasts certified as built to the specifications adopted by the Certified Ballast Manufacturers (CBM) do provide values that meet or exceed minimum requirements. This certification assures the user, without individual testing, that lamps will operate at values close to their ratings.
Lumen Output and efficiency values apply at the end of 100 hours operation, where measured
at $80^{\circ} \mathrm{F}$ ambient temperature and under specified test conditions.

Lamp Life - All life ratings are based on three burning hours per start. Less frequent starting tends to increase lamp life. When lamps are operated at six or twelve burning hours per start, average life is increased by 25% or 60% respectively. For continuous burning, average life is $21 / 2$ times the rated value. Since light output depreciates steadily as lamps are burned, greatest lighting value usually results when lamps are replaced before they reach their average life.

G-E FLUORESCENT LAMPS

σ

FLUORESCENT LAMPS (FOR USE WITH STARTERS)

Lamp Ordering Abbreviation	$\begin{aligned} & \text { Nominal } \\ & \text { Lamp } \\ & \text { Watts } \end{aligned}$	Bulb	Length,	Base	Description	Standard Package Quantity	Approx. Hours Life (1)	Approx. Initial Lumens (3)	Approx, Lumens at 40% Rtd. Ave. Life
F15T8/CW	15	T.8	18	Med, Bip.	Cool White	24	7500	730	590
F1518/CWX	15	T.8	18	Med. Bip.	De Luxe Cool White	24	7500	500	375
F15T8/WWX	15	T-8	18	Med. Bip.	Home-line	24	7500	500	375
F15T8/D	15	T-8	18	Med. Bip.	Daylight	24	7500	680	550
F15T8/W	15	T-8	18	Med. Bip.	White	24	7500	760	615
F1518/WW	15	T-8	18	Med. Bip.	Warm White	24	7500	760	615
F15T8/SW	15	T-8	18	Med. Bip.	Soft White	24	7500	470	350
F15T8/B	15	T-8	18	Med. Bip.	Blue	24	7500
F15T8/G	15	T-8	18	Med. Bip.	Green	24	7500
F15T8/GO	15	T-8	18	Med. Bip.	Gold	24	7500		
F15T8/PK	15	T-8	18	Med. Bip.	Pink	24	7500		
F1518/R	15	T-8	18	Med. Bip.	Red	24	7500		
F30T8/CW	30	T-8	36	Med. Bip.	Cool White	24	7500	1890	1570
F30T8/CWX	30	T-8	36	Med. Bip.	De Luxe Cool White	24	7500	1200	900
F30T8/WWX	30	T-8	36	Med. Bip.	Home-line	24	7500	1200	900
F3018/D	30	T-8	36	Med. Bip.	Daylight	24	7500	1740	1440
F30T8/W	30	T-8	36	Med. Bip.	White	24	7500	1930	1600
F30T8/WW	30	T-8	36	Med. Bip.	Warm White	24	7500	1930	1600
F30T8/SW	30	T-8	36	Med. Bip.	Soft White	24	7500	1150	870
F30T8/B	30	T-8	36	Med. Bip.	Blue	24	7500
F30T8/G	30	T-8	36	Med. Bip.	Green	24 24	7500	\cdots	\ldots
F30T8/GO	30	T-8	36	Med. Bip.	Gold	24	7500	\ldots
F30T8/PK	30	T-8	36	Med. Bip.	Pink	24 24	7500 7500	\ldots	,
F30T8/R	30	T-8	36	Med. Bip.	Red	24	7500

[^12]
G-E FLUORESCENT LAMPS

The 14-watt T-12 lamp is used for supplementary lighting in stores and industry. It is applied where space does not permit use of the longer 15 -watt lamp. It has been employed in portable lamps using a low-wattage filament lamp for a ballast.
The 15 -watt T-12 lamp has a lower bulb-brightness than the 15 T 8 lamp for about the same amount of light. It is preferred over the T-8 lamp if used without shielding as is sometimes done for bathroom mirror lighting and some other applications. Its many uses paralled those of the 15 -watt T-8.

The 20 -watt T- 12 lamp is one of the most widely used fluorescent lamps. It is employed in home fixtures for lighting in kitchens, bathrooms, basements, and recreation rooms. It is used in window valances and under shelving and cupboards for decorative and utilitarian lighting. It may be used to light closets, washrooms and small areas. It is also employed for supplementary lighting in offices and factories. In stores it lights fitting mirrors, niches, and wallcase displays. It may be operated by trigger-start ballasts.
The 25 -watt T-12 33 -inch lamp is the longest T- 12 lamp which can be operated from 120 volts'a-c with a simple choke ballast. It is principally used in homes, either in general lighting fixtures or built into window valances and kitchen work spaces.

FLUORESCENT LAMPS (FOR USE WITH STARTERS)

$\begin{gathered} \text { Lamp } \\ \text { Ordorino } \end{gathered}$ $\begin{aligned} & \text { Obdering } \\ & \text { Abbreviation } \end{aligned}$	Nominal Wamp Watts	Bulb	Length, Inches	Base	Descripllon	Standard Package Quantity	Approx. $\substack{\text { Hours } \\ \text { Life } \\ \text { Lif } \\ \text { (i) }}$	Approx. Lumens (3)	Approx. Lumens A Ave. Life
F14T12/CW	14	T-12	15	Med. Bip.	Cool White	24	6000	540	420
F14T12/CWX	14	T-12	15	Med. Bip.	De Luxe Cool White	24	6000	390	280
F14T12/WWX	14	T-12	15	Med. Bip.	Home-line	24	6000	390	280
F14T12/D	14	T-12	15	Med. Bip.	Daylight	24	6000	500	390
F14T12/W	14	T-12	15	Med. Bip.	White	24	6000	570	445
F14T12/WW	14	T-12	15	Med. Bip.	Warm White	24	6000	570	445
F14T12/W/1	14	T-12	15	Med. Bip.	White(3)	24	6000	570	
F15T12/CW	15	T-12	18	Med. Bip.	Cool White	24	7500	620	520
F15T12/CWX	15	T-12	18	Med. Bip.	De Luxe Cool White	24	7500	435	330
F15T12/WWX	15	T-12	18	Med. Bip.	Home-line	24	7500	435	330
F15T12/D	15	T-12	18	Med. Bip.	Daylight	24	7500	570	460
F15T12/W	15	T-12	18	Med. Bip.	White	24	7500	650	550
F15T12/WW	15	T-12	18	Med. Bip.	Warm White	24	7500	650	550
F20T12/CW	20	T-12	24	Med. Bip.	Cool White	24	7500	1000	
F20T12/CWX	20	T-12	24	Med. Bip.	De Luxe Cool White	24	7500	690	555
F20T12/WWX	20	T-12	24	Med. Bip.	Home-line	24	7500	690	555
F20T12/D	20	T-12	24	Med. Bip.	Daylight	24	7500	920	770
F20T12/W	20	T-12	24	Med. Bip.	White	24	7500	1030	900
F20T12/WW	20	T-12	24	Med. Bip.	Warm White	24	7500	1030	900
F20T12/SW	20	T-12	24	Med. Bip.	Soft White	24	7500	680	540
F20T12/B	20	T-12	24	Med. Bip.	Blue	24	7500		
F20T12/G	20	T-12	24	Med. Bip.	Green	24	7500
F20T12/GO	20	T-12	24	Med. Bip.	Gold	24	7500
F20112/PK	20	T-12	24	Med. Bip.	Pink	24	7500
F20T12/R	20	T-12	24	Med. Bip.	Red	24	7500		
F20T12/CW/1	20	T-12	24	Med. Bip.	Cool White(3)	24		
F20T12/D/1	20	T-12	24	Med. Bip.	Daylight(3)	24		
F25T12/CW/33	25	T-12	33	Med. Bip.	Cool White		7500		
F25T12/WWX/33	25	T-12	33	Med. Bip.	Home-line	24	7500	1130	900
F25T12/D/33	25	T-12	33	Med. Bip.	Daylight	24	7500	1470	1270

(1) Life under specified test conditions with lamps turned off and restarted ${ }^{\text {(3) }}$ Approximate initial lumens after 100 hours operation.
no oftener than onee every 3 burning hours. no oftener than onee every 3 burning hours.
(5) D. C. Operation.

All G-E Fluorescent lamps should be used only with auxiliary equipment designed to produce proper electrical values. Unless otherwise noted, ratings apply to operation in a-c circuits. Lamps may be burned in any position.

The 40 -watt T-12 preheat lamp is used extensively for general lighting in every field of application. It is employed in strips or channels for lighting valances in homes and stores, for display fixtures, show windows, and hundreds of other services. The 90watt T-17 lamps produce more light per foot than any other preheat lamps. The 90 -watt lamp is used in industry for general lighting and also in offices, stores and show windows. Specially designed low temperature lamps are recommended for use in temper-
atures from $50^{\circ} \mathrm{F}$ to $0^{\circ} \mathrm{F}$.

INSTANT START LAMPS

Instant-start types reduce maintenance and insure more reliable starting when used outdoors in cold weather.

The 40 -watt T-17 lamp has a comparatively low surface brightness. It is used for highquality lighting installations in schools and offices and for special industry applications where it is important to minimize direct and reflected glare.

FLUORESCENT LAMPS (FOR USE WITH STARTERS)

Lamp Ordering Abbreviation	Nominal Lamp Watts	Bulb	Length, Inches	Base	Description	Standard Package Quantity	Approx. Hours Lifie	Approx. Initial Lumens (3)	Approx. Lumenz At 40% Rtd. Ave, Life
F40T12/CW	40	T-12	48	Med. Bip.	Cool White	24	7500	2500	2200
F40T12/CWX	40	T-12	48	Med. Bip.	De Luxe Cool White	24	7500	1840	1470
F40T12/WWX	40	T-12	48	Med. Bip.	Home-line	24	7500	1840	1470
F40T12/D	40	T-12	48	Med. Bip.	Daylight	24	7500	2300	2000
F40T12/W	40	T-12	48	Med. Bip.	White	24	7500	2600	2250
F40T12/WW	40	T-12	48	Med. Bip.	Warm White	24	7500	2600	2250
F40T12/SW	40	T-12	48	Med. Bip.	Soft White	24	7500	1700	1370
F40T12/B	40	T-12	48	Med. Bip.	Blue	24	7500	1120	
F40T12/G	40	T-12	48	Med. Bip.	Green	24	7500	3000	
F40T12/GO	40	T-12	48	Med. Bip.	Gold	24	7500	1500	
F40T12/PK	40	T-12	48	Med. Bip.	Pink	24	7500	1120	
F40T12/R	40	T-12	48	Med. Bip.	Red	24	7500	150	
F40T12/W/LT	40	T-12	48	Med. Bip.	White	24	6000	2600	. .
F90T17/CW	90	T-17	60		Cool White	12	7500	5150	4250
F90T17/D	90	T-17	60	Mog. Bip.	Daylight	12	7500	4800	4000
F90T17/W	90	T-17	60	Mog. Bip.	White	12	7500	5300	4400

INSTANT START FLUORESCENT LAMPS (NO STARTERS USED) (3)

F40T12/CW/IS	40	T-12	48	Med. Bip.	Cool White	24	7500	2500	2200
F40T1//CW/IS	40	T-17	60	Mog. Bip.	Cool White	12	6000	2500	2200

Life under specified test conditions with lamps turned off and restarted no oftener than once every 3 burning hours.
(2) Approximate initial lumens after $\mathbf{1 0 0}$ hours operation. (3) The pins of these lamps are short clrcuited inside the end caps and lamp will not operate on preheat ballast circuits.

G-E RF FLUORESCENT LAMPS

F85T10

RF lamps have special bases and are available for replacement in RF equipment.

RF FLUORESCENT LAMPS

Lamp Ordering Abbreviation	Nominal $\begin{aligned} & \text { Lamp } \\ & \text { Watts } \end{aligned}$ Watis	Bulb	Base	Description	Standard Package Quantity	$\begin{gathered} \text { Appox. } \\ \begin{array}{c} \text { Hours } \\ \text { Life } \end{array} \end{gathered}$	Approx. Initial and	Approx. Lumens A Ave. Life
F85T10/IW	85	T-10	3 \& 2 prong	Industrial White	24	7500	4000	3000

RAPID START FLUORESCENT LAMPS (NO STARTERS USED)

Lamp Ordering Abbreviation	Nominal Lamp Watts	Bulb	Length Inches	Base	Description	Std. Package Oty.	Approx. Hours Life	Approx. Initial Lumens	Approx. Lumens at 40% Rid. Ave. Life
F40T12/CW/RS	40	T-12	48	Med. Bipin	Cool White	24	7500	2500	2200
F40T12/CWX/RS	40	T-12	48	Med. Bipin	De Luxe Cool White	24	7500	1840	1470
F40T12/WWX/RS	40	T-12	48	Med. Bipin	De Luxe Warm White	24	7500	1840	1470
F40T12/D/RS	40	T-12	48	Med. Bipin	Daylight	24	7500	2300	2000
F40T12/W /RS	40	T-12	48	Med. Bipin	White	24	7500	2600	2250
F40T12/WW/RS	40	T-12	48	Med. Bipin	Warm White	24	7500	2600	2250
F40T11/SW/RS	40	T-12	48	Med. Bipin	Soft White	24	7500	1700	1370
F40T12/B/RS	40	T-12	48	Med. Bipin	Blue	24	7500	1120
F40T12/G/RS	40	T-12	48	Med. Bipin	Green	24	7500	3000
F40T12/GO/RS	40	T-12	48	Med. Bipin	Gold	24	7500	1500	\cdots
F40T12/PK/RS	40	T-12	48	Med. Bipin	Pink	24	7500	1120
F40T12/R/RS	40	T-12	48	Med. Bipin	Red	24	7500	150

Rapid Start 40-watt T-12 fluorescent lamps simplify lighting maintenance for the user and give, in effect, instant starting at costs comparable to those of the 40 -watt preheat lamp. Starters are eliminated from the electrical circuit. This is accomplished with a cathode design in the lamp somewhat different from that of the preheat lamp and with a ballast having low-voltage windings which apply heating to the cathodes at starting abd during operation. Rated lamp life and light output are the same as for the preheat.

Dimming - 40-watt T-12 rapid start lamps can be dimmed from full brightness to nearly full blackout. There are two models of G-E
thyratron dimmers: Model 9T63Y6001 for 110-125-volt circuits, and Model 9T63Y6000 for 228-250-volt circuit. Up to 32 lamps can be dimmed with either model.
A simplified dimming circuit, lower in cost and somewhat less versatile, is also in use; controls for this circuit are available from manufacturers of variable-voltage transformers.
Flashing - Special ballasts similar to the dimming ballasts, but providing somewhat higher cathode-heating current, have been designed for flashing rapid start and high output lamps. Lamp life in flashing service is not yet established but is expected to reach normal rated values.

g-E HIGH OUTPUT AND POWER-GROOVE LAMPS

HIGH OUTPUT LAMPS

The high output line of T12 lamps (24-in. to $96-\mathrm{in}$.) operates at $800-1000 \mathrm{ma}$. Since the lamps are of rapid start design, two electrical contacts are required at each base. The recessed double contact base was developed to meet this requirement and, at the same time, to eliminate any hazard from electrical shock.

The high output rapid start lamp gives about 40 per cent more light than the 96 T 12 slimline or 40 -watt lamp. Because of the higher current load and thus higher bulb wall temperature, this lamp performs best in ventilated fixtures. Typical open-top fixtures that allow substantial amounts of upward light provide excellent ventilation. Efficient surface-mounted and recessed fixtures have also been developed.

Because of the higher bulb wall temperature, the high output lamps perform better in low temperature applications than 430 -ma. lamps.

POWER GROOVE LAMPS

- Still another step in higher output fluorescent
lamps is the Power Groove lamp. This lamp has a U- or crescent-shaped cross-section. The exciting ultraviolet radiation produced within the bulb has a shorter distance to travel before striking the fluorescent material or phosphor than it would bave from the center of a corresponding bulb of circular cross section. The full benefit of the greater amount of ultraviolet radiation generated is obtained with the Power Groove construction. Less opportunity is provided for reabsorption of this radiation by the mercury vapor before it strikes the phosphor. The "rails" along the grooves serve to keep the mercury pressure inside the bulb near the optimum value, by providing cool spots, which condense out excessive mercury vapor. The bridges between the grooves assure adequate bulb strength.

Like the high output lamp, the Power Groove lamp maintains its light output well at low temperatures. Enclosed fixtures will provide maximum output in most low temperature applications.

G-E HIGH OUTPUT FLUORESCENT LAMPS

4
48T12/CW/HO

72T12/CW/HO

F96T12/CW/HO

F100T12/CW/HO

G-E POW ER GROOVE FLUORESCENT LAMPS

F48PG17/CW

F72PG17/CW

F96PG17/CW

This new lamp will provide more economical lighting in many applications. It will find wide use for general lighting in stores, offices and industrial areas.

With this lamp, much higher lighting levels can be reached with the same number of fixtures, and at considerably lower initial cost per footcandle.
Many high-bay areas, now using filament or mercury, now can gain the advantages of fluorescent at favorable maintenance costs.
Power-Groove offers the opportunity to double present lighting levels from valances, coves, and
other architectural elements, where the maximum light is needed - but where only a limited number of lamps can be used.

In outdoor applications-street lighting, floodlighting, sign lighting, building front lighting, etc. the new Power-Groove lamps offer even greater advantages. In addition to doubling the light per lamp - meaning higher lighting levels and brighter signs - the new lamps will maintain their light well at low temperatures.

The Power-Groove lamps are not interchangeable with any other lamps. New ballasts and lampholders are required.

HIGH OUTPUT FLUORESCENT LAMPS (NO STARTERS USED)

| | Lamp
 Otdering
 Abbreviation | Nominal
 Lamp
 Wats | Bulb |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

[^13]
G-E SLIMLINE FLUORESCENT LAMPS

Slimline Lamps of all lengths are popular for use in illuminating outdoor plastic signs.

G-E CIRCLINE FLUORESCENT LAMPS

Circline fluorescent lamps are now available in three diameters. They are widely used in home lighting fixtures and portable lamps. They are also used for decorative lighting in restaurants, theatres, lobbies, lounges, and other commercial areas. They are adapted for some inspection processes in industry. The 8 - and 12 -inch diameter lamps may be operated on trigger-start ballasts.

SLIMLINE FLUORESCENT LAMPS (INSTANT START)

T-6 Approx. $3 / 4^{\prime \prime}$ Diameter

Lamp Ordering Abbreviation	Nóminal Lamp Watts	Bulb	Length, Inches	Base	Description	Standard Package Quantity	Approx. Hours Life (1)	Approx. Initial Lumens (3) (3)	Approx. Lumens at 40% Rid. Ave. Life
F42T6/CW	17.5-32.5	T-6	42	Single Pin	Cool White	24	7500		1230
F42T6/CWX	17.5-32.5	T-6	42	Single Pin	De Luxe Cool White	24	7500	1050	1830 800
F42T6/W WX	17.5-32.5	T-6	42	Single Pin	Home-line	24	7500	1050	800
F42T6/W	17.5-32.5	T-6	42	Single Pin	White	24	7500	1570	1300
F42T6/WW	17.5-32.5	T-6	42	Single Pin	Warm White	24	7500	1570	1300
F42T6/SW	17.5-32.5	T-6	42	Single Pin	Soft White	24	7500	1000	760
	25.5-48	T-6	64	Single Pin	Cool White	24	7500	2450	2000
F64T6/CWX	25.5-48	T-6	64	Single Pin	De Luxe Cool White	24	7500	1740	1380
F64T6/WWX F64T6/W	25.5-48	T-6	64	Single Pin	Home-line	24	7500	1740	1380
F64T6/W F64T6/WW	25.5-48	T-6	64	Single Pin	White	24	7500	2550	2100
F64T6/WW F64T6/SW	$25.5-48$	T-6	64	Single Pin	Warm White	24	7500	2550	2100
F64T6/SW	25.5-48	T-6	64	Single Pin	Soft White	24	7500	1660	1250

T-8 Approx. $1^{\prime \prime}$ Diameter

F72T8/CW	24.5-48.5	T-8	72	Single Pin	Cool White	24	7500	2550	2050
F72T8/CWX	24.5-48.5	T-8	72	Single Pin	De Luxe Cool White	24	7500	1810	1460
F72T8/WWX	24.5-48.5	T-8	72	Single Pin	Home-line	24	7500	1810	
F72T8/W	24.5-48.5	T-8	72	Single Pin	Home-line White	24 24	7500	1810	1460 2350
F72T8/WW	24.5-48.5	T-8	72	Single Pin	Warm White	24	7500	2650	2350
F96T8/CW	32-65	T-8	96	Single Pin	Cool White	24	7500	3550	
F96T8/CWX	32-65	T-8	96	Single Pin	De Luxe Cool White	24	7500	3550 2550	2050
F96T8/WWX F96T8 /W	32-65	T-8	96	Single Pin	Home-line	24	7500	2550	2050
F96T8/W F96T8/WW	32-65	T-8	96	Single Pin	White	24	7500	3600	3150
F96T8/WW	32-65	T-8	96	Single Pin	Warm White	24	7500	3600	3150
F96T8/D	32-65	T-8	96	Single Pin	Daylight	24	7500	3250	2900

(3) Approximate initial lumens for F42T6 and F72T8 lamps are for operation at 200 ma.

T-12 Approx. $1 \frac{1}{2} 2^{\prime \prime}$ Diameter

$\begin{aligned} & \text { F48T12/CW } \\ & \text { F48T12/CWX } \end{aligned}$	38	T-12	48	Single Pin	Cool White	24	7500	2300	2000
F48T12/CWX	38	T-12	48	Single Pin	De Luxe Cool White	24	7500	1700	1460
F48T12/WWX	38	T-12	48	Single Pin	Home-line	24	7500	1700	1460
F48T12/W	38	T-12	48	Single Pin	White	24	7500	2400	2100
F48T12/WW	38	T-12	48	Single Pin	Warm White	24 24	7500	2400	2100 2100
F48T12/D	38	T-12	48	Single Pin	Daylight	24	7500	2150	1850
F72T12/CW	55	T-12	72	Single Pin	Cool White	12	7500	3600	3150
F72T12/CWX	55	T-12	72	Single Pin	De Luxe Cool White	12	7500	2600	2200
F72T12/WWX	55	T-12	72	Single Pin	Home-line	12	7500	2600	2200
F72T12/W	55	T-12	79	Single Pin	White	12	7500	3700	3200
F72T12/WW	55	T-12	72	Single Pin	Warm White	12	7500	3700	3200
	74	T-12	96	Single Pin	Cool White	12	7500	5050	4500
F96T12/CWX	74	T-12	96	Single Pin	De Luxe Cool White	12	7500	3750	3200
F96T12/WWX	74	T-12	96	Single Pin	Home-line	12	7500	3750	3200
F96T12/W	74	T-12	96	Single Pin	White	12	7500	5100	4550
F96T12/WW	74	T-12	96	Single Pin	Warm White	12	7500	5100	4550
F96T12/SW	74	T-12	96	Single Pin	Soft White	12	7500	3400	455
F96T12/D	74	T-12	96	Single Pin	Daylight	12	7500	4650	4100

FLUORESCENT CIRCLINE LAMPS (RAPID START*)

Lamp Ordering Abbreviation	Nominal Lamp Watts	Bulb	Length, Inches	Base	Description	Standard Package Quantity	Approx. Hours Life (1)	Approx. Initial Lumens (2)	Approx. Lumens of 40% Rtd. Ave. Life
FC8T9/CW	22	T-9	Outside	4-Pin	Cool White	12	7500	930	710
FC8T9/WWX	22	T-9	Dia. 81/4 ${ }^{\prime \prime}$ \}	4-Pin	Home-line	12	7500	690	
FC12T10/CW	22	T-10	Outside $\}$	4-Pin	Cool White	12	7500	1550	
FC12T10/WWX	32	T-10	Dia. 12' ${ }^{\prime \prime}$	4-Pin	Home-line	12	7500	1100	$\begin{array}{r} 1250 \\ 820 \end{array}$
$\begin{aligned} & \text { FC16T10/CW } \\ & \text { FC16T10/WWX } \end{aligned}$	40 40	T-10 T-10	$\left.\begin{array}{l}\text { Outside } \\ \text { Dia. 16' }\end{array}\right\}$	4-Pin $4-\mathrm{Pin}$	Cool White	12	7500	2200	1850

* In addition to rapid start operation these lamps will give fully as good performance in any present circuit as the pre-
vious lamps did.

[^14]| Order Abbreviation | Listed On Page |
| :---: | :---: |
| 3S6/5 | 29 |
| 6S6 | 48 |
| 6S6 | 29 |
| 6S6/R | 23 |
| 6S6/W | * |
| 6S6/DC | 29 |
| 6S14 | 25 |
| 6S14/IF | ، |
| 6T41/2/1 | 29 |
| 7C7 | 29 |
| 7C7/R | * |
| 7C7/W | " |
| $71 / 2 \mathrm{~S}$ | 23 |
| 71/2S/CO | ، |
| $71 / 2 S / C B$ | 6 |
| 71⁄2S/CG | " |
| 71⁄2S/CR | ، |
| 71/2S/CW | * |
| 10 C 7 | 29 |
| 10C7DC | * |
| 10C7/4 | 6 |
| 10S6/10 | " |
| 10S11N | 25 |
| 10S11N/CB | 6 |
| 10S11N/CFT | " |
| 10S11N/CG | * |
| 10S11/CO | * |
| 10S11N/CR | ، |
| $10 \mathrm{S11N} / \mathrm{CW}$ | " |
| 10S11N/CY | " |
| 10S14 | 13 |
| 10S14/IF | 11 |
| 10S14/D | 16 |
| 10S14/CB | 6 |
| 10S14/CG | ، |
| 10S14/CR | " |
| 10S14/CO | " |
| 10S14/CY | " |
| 10S14/CW | " |
| 10S14/CFT | ، |
| 10S14/CV | 6 |
| 10S14/CR2 | " |
| 11S14 | 13 |
| 11S14/IF | 11 |
| $11 \mathrm{~S} 14 / \mathrm{B}$ | 25 |
| 11S14/G | " |
| 11S14/O | * |
| 11S14/R | * |
| 11S14/W | " |
| 11S14/Y | " |
| 1.5Ad 5 | 11 |
| 15A15/CL | 13 |

Order $\stackrel{\text { Lamp }}{\text { Lampeviation }}$	Listed On Page	Order Abbreviation	Listed On Page
15A	48	25F/W	21
15A17/AO	25	$25 \mathrm{G} 161 / 2 \mathrm{C}$	،
15A17/B	*	25G161/2C/W	6
15A17/FT	،	$25 \mathrm{Gl8} 1 / 2 / \mathrm{FT}$	${ }^{6}$
15A17/G	6	25G181/2/V	"
15A17/V	"	25G181/2/W	6
15A17/RO	"	$25 \mathrm{G} 25 / \mathrm{FT}$	"
15A17/R	،	$25 \mathrm{G} 25 / \mathrm{V}$	6
15A17/W	6	25G25/W	"
15A17/Y	"	25 T61/2	33
15B91/2	23	$25 \mathrm{TG} 1 / 2 / \mathrm{IF}$	"
15B9 $1 / 2 / \mathrm{W}$	،	25 T ¹/2DC	27
15 FC	"	25T61/2DC/IF	،
15FC/FT	"	$25 \mathrm{T8DC}$	29
15FC/V	"	$25 \mathrm{T8DC/IF}$	"
$15 \mathrm{FC} / \mathrm{W}$	*	$25 \mathrm{T8} / \mathrm{N}$	"
15 FN	*	$25 \mathrm{~T} 81 / 2 \mathrm{IF}$	41
15FN/W	6	25 T 10	33
15S11/13	"	25T10/IF	،
15S11/3DC	41	25T10/RFL	"
15S11/102	29		
15S14/IF	41	30R20	
15 T 6	29	30S11/DC	41
15T7DC	،	L30/IF	26
15'7DC/IF	6	L30/W	"
15T7C	"	30/100	17
15 T 7 N	"	$30 / 330 \mathrm{M} / 1 \mathrm{~W}$	*
15T8C	23	$30 / 230 \mathrm{M} / 1 \mathrm{~W}$	
15T8C/W	"	36A/RY	47
15T8/N	"		
20A17/5	25	40A15/1	29
25A	11	40A15/22	"
25A/CL	13	40A	11
25A	48	40A/CL	13
25A/D	16	40A	41
25A/R	25	40A/O	25
25A/W	*	40A/B	*
25A/AO	6	40A/FT	6
25A/W	"	40A/G	6
25A/B	*	40A/V	*
25A/FT	،	40A/R2	*
25A/G	*	40A/R	"
25A/V	"	40A/Y	،
25A/O	"	40A/Y	18
25A/R2	،	40A/TS	47
25A/R	"	40A21P	43
25A/Y	18	40F15	23
25A/RS	38	40F15/W	،
25A/VS	"	40G/FT	*
25A/CL/VS	6	40G/V	"
25F	23	40G/W	"
25F/DPK	21	$40 \mathrm{~T} 61 / 2 / 2$	29
25F/ET	"	40 T 8	33
25F/V	"	40'T8/IF	،

Order Abbreviation	$\begin{aligned} & \text { Listed } \\ & \text { On Page } \end{aligned}$
L40	26
L40/IF	"
L40/MB	"
L40/EM	"
L40/O	"
L40/SPK	"
L40/ST	"
L40/W	"
L40/R	"
40 T 10	33
40T10/IF	"
40T10/RFL	"
50A/RS	38
50A19/RS	41
50A19/3	38
50A	48
50A	11
50A/CL	13
50A19/37	"
50A/RS	48
50A19	39
50A19/35	"
50A19/5	38
50A19/3	"
50A/VS	"
50A/CL/VS	"
50 A 21	48
50GA	18
50GA/DPK	21
50/50P25/28	46
56A21	47
50/150M	17
50/150	"
50/150R/W	19
50/150M/W	17
50/150M/Coloramic21	
50/150R/W	17
60A	11
60A/D	16
60A/CL	13
60A/SB	15
60A/W	19
60A/Y	18
60A21/DPK	21
60A21/Colors	23
60A21/TS	47
60 A 21	48
L60	26
L60/IF	"
L60/MB	"
L60/EM	"
L60/O	"

Order Abbreviation	Listed On Page	Order $\stackrel{\text { Lamp }}{\text { Abbreviation }}$	Listed On Page	Order Abbreviation	$\begin{aligned} & \text { Listed } \\ & \text { OnPage } \end{aligned}$	Order Abbreviation	Listed On Page
L60/SPK	26	500T12/9	30	250 PS30/33	49	$500 \mathrm{~T} 14 / 8$	30
L60/ST	،	150PAR/Colors	35	250R40/10	"	500T14/7	30 32
L60/W	،	150PAR/3FL	34			500T20/25	32 43
60T10/64	33	150PAR/3SP	،	300M	13	$500 \mathrm{~T} 20 / 45$	43 32
		150PAR46	39	$300 \mathrm{M} / \mathrm{IF}$	11	620PS40/P	43
64A21/TS	47	150PAR46/1	"	300MS/SBIF	15		
69A21/TS	"	150A	11	300 MS	48	750	13
75A	11	150A/Coloramic	21	300	13	750/IF	11
75A/Coloramic	21	150A/CL	13	300	48	750/SBIF	15
75A/CL	13	150P25/15	47	300/IF	"	750	48
75A21/RS	38	$150 \mathrm{P} 25 / 10$	27	300/IF	11	750/IF	،
75A21P	43	150	11	300/WB	16	750R52	36
75PAR/FL	35	150/CL	13	300 PAR 56	43	750T12/9	30
75PAR/SP	"	150/WB	16	300PAR56/NSP	34	750T12/34	27
75R30/SP	36	150/DCL	*	300PAR56/MFL	6	750 T 14	30
75R30/FL	"	150/D	"	300PAR56/WFL	"	750 T 24	11
$75 \mathrm{~T} 10 / 45$	33	150/SB	15	300/SBIF	15	750T24/5	30
94P25	47	150PS25/Y	18	300/SBIF/1	"	750T24/13	،
100A21/61Y	18	150/PS25	48	300R/SP	36	750T24/16	"
100A	11	150/RS	38	300R/FL	"		
100A	48	150/VS	6	300R/FL/1	"	1M/G25	46
100A/Coloramic	21	150/400	27	300/RS	38	1M/G40SP41/4	32
100A/CL	13	150R/SP	36	300R/SP/1	36	1M/G40/23	30
100A21P	43	150R/FL	"	300R/3SP	"	1M/G40PSP	32
100A21/TS	47	150R/W	19	300R/3FL	،	1M/G40FL	"
100A/W	19	150R/B	37				
$100 \mathrm{~A} / 1 \mathrm{SB}$	19	150R/BW	"	325/66/A21	43	1000	13
100A/1SB	15	150R/G	"	375G30	49	1000/IF	11
100A/1SBIF	39	150R/PK	"	375R40/1	"	1000/SBIF	15
100A	39	150R/R	"	375 R 40	"	1000	48
100A/D	16	150R/Y	'6			1M/PS52/44	13
100A23/20	29	$150 \mathrm{~T} 8 / 2 \mathrm{SC}$	27	400G/SP	32	1M/T20/5	46
100A23/28	38	200PAR46/3NSP	34	400G/FL	"	1M/T20BP	43
100A (Low V)	48	200PAR46/3MFL	'6	-			43
100A/RS	38	200PAR46/3MFL	13	500G30/1	49	1M/T24/5	30
100A/RS	48	200	13	500G/FL	32	1M/T24	11
100G161/2/29SC	30	200/IF	11	500G/SP	"	1 M/T3	49
100G161/2/29DC	"	200A	،	500	13	$1 \mathrm{M} / \mathrm{T} 40 / 3$	*
100GA	18	200A/CL	13	500/IF	11	1M/G48/11	30
100A21/SP	32	200/WB	16	500PAR64/NSP		1020/66/A2 1	43
10078	27	200/D	6		"	1200 T 20	"
$100181 / 2 / 8$ $100 \mathrm{~T} 81 / 2 / 9$	"	200/SBIF	15		¢	1500G48/6	32
100T81/2/9		200/SBIF/1	*	500PAR64/WFL	6		
100/100P25/29	46	200PS30/24	38	500/SBIF	15	1500PS52/46	13
		200PS30/23	"	500SBIF/1	،	1500	'6
100/300	17	200PS30/12	13	500/RS	38	1500/IF	11
100/300/DPK	21	200	48	500PS40/45	43	1500	48
		2001F	"	500	48	1500T24/6	30
107A21/TS	47		39	500/IF	"		
116A21/TS	*	200	39	500R/3SP	36	2M/G48/14	30
125G30	49			500R/3FL	'6	2M/G48/17	6
125R40	"	250G/SP	30	500 R 52	"	2M/G48/18	،
125T10P	27	$250 \mathrm{G} / \mathrm{FL}$	32	500T3	49	2M/T30/1	*
		250G30	49	500T20/64	27	5M/T64/1	43
150PAR/SP	34	250R40/1	'6	500T20/13	43	5M/G64/3	30
150PAR/FL	6	250R40/4	*	500'T12/8	32	5M/G64/7	$\stackrel{3}{6}$

General Electric Large Lamp Sales and Service District Offices

SERVICE DISTRIGE

SAIES DISTRICTS

(To Obtain Sales and Technical Information)

(To Order Lamps and to Obtain Shipping Information Local Warehouse Stocke maintained at these Points)

Buffalo Serv. Dist., 98 Hydraulic St., Buffalo 10, N. Y. 680 Murphy Ave., S. W. - 10 Plaza 5-5756 1401 Parker Rd. 27 CIrcle 2-5700

50 Industrial Place 64 DEcatur 2-6200 98 Hydraulic St. 10 MOhawk 0800 634 South Cedar St. 1 EDison 2-2141 4201 So. Pulaski Rd. 32 CLiffside 4-6161 49 Central Ave. 2 GArfield 1-6810 1133 E. 152nd St. 10 LIberty 1-1700 6500 Cedar Springs Rd. 35 FLeetwood $1-3725$ 1863 Wazee St. 2 AMherst 6-0285 1448 Wabash Ave. 16 WOodward 2-9650 5534 Armour Dr. 20 WAlnut 3-2549 5534 Armour Dr. . . 49° Central Ave., Cincinnati 2, Ohio 200 East 16th Ave. 16 GRand 1-3568 2747 Malt Ave. 22 RAymond 3-2541 1179 Morehead St. 7 JAckson 3-1441 Chicago Serv. Dist., 4201 So. Pulaski Rd., Chicago 32, Ill. 500 Stinson Blvd, 13 STerling 9-2286 500 Stinson Blvd, 13 STerling 9-2 286
133 Boyd St. 3 BIgelow 3-4500 133 Boyd St. . 50 Industrial Place (Newton Upper Falls 64, Mass.)
4800 River Rd.. 21 VErnon 5-6421
N. Y. Serv. Dist., 75-11 Woodhaven Blvd., Glendale 27, N. Y. 999 - 98th Ave, 3 LOckhaven 9-3422 32nd \& Walnut Sts. 4 EVerg'n 6-9600 238 W. Carson St. 2800 N. W. Nela St.
P. O. Box 7427, Baltimore 27, Md.

111 Fourth Ave.
10 CApital 3-2101
11 Fourth Ave. . . - 8-3405
Portland Serv. Dist., 2800 N. W. Nela St., Portland 10, Ore.
710 No. Twelfth Blvd. 1 CHestnut 1-8920
815 North 26th St. 1 4-4174

In addition to the Sales District Headquarters cities listed above, G-E Lamp salesmen are resident in 79 other cities. Consult your telephone directory under General Electric Company Lamp Division.

General Offices: Nela Park, Cleveland 12, Ohio
LARGE LAMP DEPARTMENT

Litho, in U. S. A.

[^0]: (1) For use only in porcelain sockets and in fixtures so designed that the temperatures of the lamp and fixture do not exceed limits for satisfactory operation.

[^1]: (1) Burn Base Down.

[^2]: (1) Burn Base Up.

[^3]: (1) Burn Base Down

[^4]: Recommended Burning Positions
 (1) Base down to horizontal
 (3) Any
 (3) Base down to 45 degrees with filament support bridges horizontal
 (4) Base up

[^5]: * Jhe rated average life of Projector (PAR) lamps is 2,000 hours. The average lumens and candlepower is 85% of initial,
 (1) Heat Resistant glass.
 (2) To 10% of maximum candlepower.
 (3) Candlepower average in the central 5° cone for SP and NSP, in 10° cone for MFL and WFL.

[^6]: The rated average life of Reflector (R) lamps is 2,000 hours. The average lumens and candlepower are 85% of initial.

[^7]: (1) Burning position, plane through lamp axis and base terminals horizontal.

[^8]: * Indicates that the lamp has a special heat-resistant glass bulb.
 (1) Burning position 45 degrees base down to horizontal,
 (2) Burn Base down.
 (9) Burn base down to horizontal.
 (4) Collector Grid used in lamp.

[^9]: (1) Averase laboratory life exceeds 5000 hours. \star Special Glass Eulb - Heat-resistant.
 (2) Life under test conditions at 5 burning hours per start. Useful life in home applications averages about 600 applications of fom 5 to 30 minutes each.

[^10]: (1) Lamps having the same last numeral in the ordering designation use the same transformer types. The letter preceding the numeral simply indicates modification in lamp construction.
 For outdoor operation of H400-E1, G-E transformers 9 T64Y3272 (for Jow power factor) and $9764 Y 0016$ (for high power factor) which are desighed for higher open circuit voltages, are required when outdoor temperatures as low as-90 degrees F, are encountered.

 * The prefix 9T64Y-should be used with each identifying number given below

[^11]: (1) Rated values corrected to 95.5 watts which is representative of field service.
 (2) Rated values corrected to 96.7 watts which is representative of field service.
 (3) Approximate life under specified test conditions with 5 or more burning hours per start.
 (4) Opaque coating on reflecting section of bulb.
 (6) When $\mathrm{H} 100-\mathrm{A} 4$ lamps are operated on direct current a polarity reversing switch should be Installed to avoid the possibility of electrolysis in the lamps.
 (6) Designed for service other than illumination.
 (7) Life under speciffed test conditions with lamps turned off and restaried no oftener than once every 5 burning hours.
 (®) Horizontal burning approved with or without magnet, so operaled, published life ratings apply but watts and lumens are reduced.
 (b) May not give satisfactory performance if any aceessory equipment is attached to, or touches the glass bulb, should be shielded asainst moisture falling on the bulb.
 (10) Burning position within 10° of vertical base up.
 (1) Horizontal burning approved with magnet holding arc approximately centered, so operated, published life ratings apply but watts and lumens are reduced.
 (1) Burning position must be within 10° of vertical base down.
 (B3) The H 1000 watt lamps will operate satisfactorily on $\mathbf{7 0 0}$ watt ballasts in street and industrial applications.
 Approx. Mean Lumens: (A) 8900, (B) 16,400, (C) 15600 (D) 13600, (E) 14900, (F) 17000, (G) 40500, (H) 36100, (I) 3800 , (J) 103000. \star Special Glasn Bulb - Heat-resistant.

[^12]: (1) Life under specified test conditions with lamps turned off and (2) Approximate initial lumens after $\mathbf{1 0 0}$ hours operation. restarted no oftener than once every 3 burning hours.

[^13]: (1) This lamp is designed and rated lor operation in supplementary cathode preheat circuits, for which specifications are available from the lamp manufacturer.
 (2) Life under specified test conditions with lamps turned off and restarted no oftener than once every three burning hours,
 (3) Approximate initial lumens after 100 hours operation.
 (4) Life under specified test conditions with lamps turned off and restarted no oftener than once every 10 burning hours.

[^14]: (1) Life under specified test conditions with lamps turned off and
 (2) Approximate initial lumens after 100 hours operation.

