
by Steven H. Strogatz and Ian Stewart

A subtle mathematical thread
connects clocks, ambling elephants,

brain rhythms and the onset of chaos

weight at the end of a string can take
any of an infinite number of closed
paths through phase space, depending
on the height from which it is released.
Biological systems (and clock pendu
lums), in contrast, tend to have not only
a characteristic period hut also a char
acteristic amplitude. They trace a par
ticular path through phase space, and
if some perturbation jolts them out of
their accustomed rhythm they soon re
turn to their former path. If someone
startles you, say, by shouting, "Boo!",
your heart may start pounding but soon
relaxes to its normal behavior.

Oscillators that have a standard wave
form and amplitude to which they re
turn after small pertUIbations are known
as limit-eycle oscillators. They incorpo
rate a dissipative mechanism to damp
oscillations that grow too large and a
source of energy to pump up those that
become too smali.

THOUSANDS OF FIREFllES Dash in syn
chrony in this time exposure of a noctur
nal mating display. Each insect bas its
own rhythm, but the sight of its neigh·
bors' lights brings that rhythm into har
mony with those around it. Such cou
plings among oscillators are at the heart
of a wide variety of natural phenomena.

A:ingle oscillator traces out a sim
ple path in phase space. When
two or more oscillators are cou

pled, however, the range of possible be
haviors becomes much more complex.
The equations governing their behavior
tend to become intractable. Each oscil
lator may be coupled only to a few im
mediate neighbors-as are the neuro
muscular oscillators in the smali intes
tine-or it could be coupled to ali the
oscillators in an enormous communi
ty. The situation mathematidans find

are espedaliy conspicuous in living
things: pacemaker cells in the heart; in
sulin-secreting cells in the pancreas; and
neural networks in the brain and spinal
cord that control such rhythmic behav
iors as breathing, running and che\ving.
indeed, not all the oscillators need be
confined to the same organism: consid
er crickets that chirp in unison and con
gregations of synchronously flashing
fireflies (see "Synchronous Fireflies," by
John and 8isabeth Buck; SCIENTIFIC
AMERICAN, May 19761.

Since about 1960, mathematical bi
ologists have been studying simplified
models of coupled oscillators that re
tain the essence of their biological proto
types. During the past few years, they
have made rapid progress, thanks to
breakthroughs in computers and com
puter graphics, collaborations with ex
perimentalists who are open to theory,
ideas borrowed from physics and new
developments in mathematics itself.

To understand how coupled oscilla
tors work together, one must first un
derstand how one oscillator works by
itself. An oscillator is any system that
executes periodic behavior. A swinging
pendulum, for example, returns to the
same point in space at regular inter
vals; furthermore, its velodty also rises
and falis with (clockwork) regularity.

Instead of just considering an oscil
lator's behavior over time, mathemati
dans are interested in its motion through
phase space. Phase space is an abstract.
space whose coordinates describe the
state of the system. The motion of a
pendulum in phase space, for instance,
would be drawn by releasing the pen
dulum at various heights and then plot
ting its position and velocity. These tra
jectories in phase space turn out to be
closed curves, because the pendulum,
like any other oscillator, repeats the
same motions over and over again.

A simple pendulum consisting of a
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I n February 1665 the great Dutch
physidst Christiaan Huygens, inven
tor of the pendulum clock, was con

fined to his room by a minor illness.
One day, with nothing better to do, he
stared aimlessly at two clocks he bad
recently built, which were hanging side
by side. Suddenly he noticed something
odd: the two pendulums were swinging
in perfect synchrony.

He watched them for hours, yet they
never broke step. Then he tried disturb
ing them-within half an hour they re
gained synchrony. Huygens suspected
that the clocks must somehow be influ
endng each other, perhaps through tiny
air movements or imperceptible vibra·
tions in their common support. Sure
enough, when he moved them to oppo
site sides of the room, the clocks grad
ualiy fell out of step, one losing five sec
onds a day relative to the other.

Huygens's fortuitous observation ini
tiated an entire subbranch of mathe
matics: the theory of coupled oscilla
tors. Coupled oscillators can be found
throughout the natural world, but they
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age drops instantly to zero-this pat
tern minlics the firing of a pacemaker
cell and its subsequent return to base
line. Then the voltage starts rising again,
and the cycle begins anew.

A ilistinctive feature of Peskin's mod
el is its physiologically plausible form
of pulse coupling. Each oscillator affects
the others orily when it fires. It kicks
their vollage up by a fixed amount; if
any cell's voltage exceeds the thresh
old, it fires immeiliately. With these niles
in place, Peskin stated two provocative
conjectures: first, the system would al
ways eventually become synchronized;
second, it would synchronize even if
the oscillators were not quite identical.

When he tried to prove his conjec
tures, Peskin ran into technical road
blocks. There were no established math
ematical procedures for handling arbi
trarily large systems of oscillators. So
he backed off and focused on the sim
plest possible case: two identical oscilla
tors. Even here the mathematics was
thorny. He restricted the problem fur
ther by allowing orily infinitesimal kicks
and infinitesimal leakage through the
resistor. Now the problem became man
ageable-ror this spedal case, he proved
his first conjecture.

Peskin's proof relies on an idea intro
duced by Henri Poincare, a virtuoso
French mathematician who lived in the
early 1900s. Poincare's concept is the
mathematical equivalent of strobo
scopic photography, Take two identical
pulse-coupled oscillators, A and B, and

attached. Dutch physicist Christiaan Huygens invented the
pendulwn clock and was the first to observe this phenom
enon, inaugurating the study of coupled oscillators.

to handle mathematically because it in
troduces discontinuous behavior into
an otherwise continuous model and so
stymies most of the standard mathe
matical techniques.

Recently one of us (StTOgatz), along
\I;th Renato E. Mirollo of Boston Col
lege, created an idealized mathematical
model of fireflies and other pulse-cou
pled oscillator systems. We proved that
under certain circumstances, oscillators
started at different times will always be
come synchronized Isee "8ectronic Fire
flies," by Wayne Garver and Frank Moss,
"The Amateur Scientist," page 1281.

Our work was inspired by an earlier
study by Charles S. Peskin of New York
University. In 1975 Peskin proposed a
highiy schematic model of the heart's
natural pacemaker, a cluster of about
10,000 cells called the sinoatrial node.
He hoped to answer the question of how
these cells synchronize their indMdual
electrical rh\'!hms to generate a normal
heartbeat.

Peskin modeled the pacemaker as a
large number of identical oscillators,
each coupled equally strongly to all the
others. Each oscillator is based on an
electrical circuit consisting of a capaci
tor in parallel with a resistor. A constant
input current causes the voltage across
the capacitor to increase steadily. As the
voltage rises, the amount of current pas
sing through the resistor increases, and
so the rate of increase slows down.
When the voltage reaches a threshold,
the capacitor discharges, and the volt-

PENDULUM CLOCKS placed near each other soon become
synchronized (above) by tiny coupling forces transmitted
through the air or by vibrations in the wall to which they are

easiest to describe arises when each os
cillator affects all the others in the sys
tem and the force of the coupling in
creases with the phase difference be
t'veen the oscillators. In this case, the
interaction between two oscillators that
are moving in synchrony is minimal.

Indeed, synchrony is the most famil
iar mode of organization for coupled
oscillators. One of the most spectacu
lar examples of this kind of coupling
can be seen along the tidal rivers of Ma
laysia, Thailand and ew Guinea, where
thousands of male fireflies gather in
trees at night and flash on and off in
unison in an atlempt to attract the fe
males that cruise overhead. When the
males arrive at dusk, their llickerings are
uncoordinated. As the night deepens,
pockets of synchrony begin to emerge
and grow. Eventually whole trees puJ
sate in a silent, hypnotic concert that
continues for hours.

Curiously, even though the fireflies'
display demonstrates coupled oscilla
tion on a grand scale, the details of this
behavior have long resisted mathemat
ical analysis. Fireflies are a paradigm of
a "pulse coupled" oscillator system: tlley
interact only when onc sees the sudden
flash of another and shifts its rhythm
accordingly. Pulse coupling is common
in biology-consider crickets chirping
or neurons communicating via electri
cal spikes called action potentials-but
the impulsive character of the coupling
has rarely been included in mathemati
cal models. Pulse coupling is awkward
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eral description of the onset of oscilla
tion. He started by considering systems
that have a rest point in phase space (a
steady state) and seeing what happened
when one approximated their motion
near that point by a simple linear func
tion. Equations describing certain sys
tems behave in a peculiar fashion as
the system is driven away from its rest
point. Instead of either returning slow
ly to equilibrium or moving rapidly out·
ward into instability, they oscillate. The
point at \vhich this transition takes place
is termed a bifurcation because the sys
tem's behavior splits into two branch
es-an unstable rest state coexists with
a stable oscillation_ Hopf proved that
systems whose linearized form under
goes this type of bifurcation are Iimit
cycle oscillators: they have a preferred
waveform and amplitude. Stewart and
Golubitsk'Y showed that Hopf's idea can
be c"'<:tended to systems of coupled iden
tical oscillators, whose states undergo
bifurcations to produce standard pat
terns of phase locking.

For example, three identical oscillators
coupled in a ring can be phase-locked
in four basic patterns. All oscillators can
move synchronously; successive oscilla
tors around the ring can move so that
their phases differ by one third; two os
cillators can move synchronously while
the third moves in an unrelated manner
(except that it oscillates with the same
period as the others); and two oscilla
tors may be moving half a phase out of
step, while the third oscillates t\\oce as
rapidly as its neighbors.

The strange half-period oscillations
that occur in the fourth pattern were a

PERJODIC MOTION can be represented
in tenns of a time series or a phase por
trait. The phase portrait combines posi
tion and velocity, thus showing the entire
range of states that a system can dis
play. Any system that undergoes peri
odic behavior, no matter how complex,
will eventually trace out a closed curve
in phase space.
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Synchrony is the most obvious case
or a general effect called phase
locking: many oscillators tracing

out the same pattern but not necessari
ly in step. When two identical osciJIators
are coupled, there are exactly two pos
sibilities: synchrony, a phase difference
of zero, and antisynchrony, a phase dif
ference of one half. For example, when
a kangaroo hops across the Australian
outback, its powerful hind legs oscillate
periodically, and both hit the ground at
the same instant. When a human nms
after the kangaroo, meanwhile, his legs
hit the f:,'Tound alternately. If the nehvork
has more than t\vo oscillators, the range
of possibilities increases. In 1985 one of
us (Stewart), in collaboration with Mar
tin Golubitsl,y of the University of Hous
ton, developed a mathematical classifi
cation of the patterns of networks of
coupled oscillators, follOWing earlier
work by James C. Alexander of the Uni
versity of Maryland and Ciles Auchmu
ty of the University of Houston.

The classification arises from group
theory (which deals "oth symmerries in
a collection of objects) combined with
Hopf bifurcation (a generalized descrip
tion of how oscillators "switch on"). In
1942 Eberhard Hopf established a gen-

it is not inevilable. Indeed, coupled os
dilators often fail to synchronize. The
explanation is a phenomenon known
as s)"lnmetry breaking, in which a single
symmetric state-such as synchrony
is replaced by several less symmetric
states that together embody the origi
nal symmetry. Coupled oscillators are
a rich source of symmetry breaking.

chart their evolution by taking a snap
shot every time A fires.

What does the series of snapshots
look l.ike? A has just fired, so it always
appears at zero voltage. The voltage of·
B, in contrast, changes from one snap
shot to the next. By solving his circuit
equations, Peskin found an explicit but
messy formula for the change in B's
voltage between snapshots. The formu
la revealed that if the voltage is less
than a certain critical value, it will de
crease until it reaches zero, whereas if
it is larger, it will increase. In either case,
B \vill eventually end up synchronized
with A.

There is one exception: if B's volt
age is precisely equal to the critical volt
age, then it can be driven neither up nor
down and so stays poised at critical
ity. The oscillators fire repeatedly about
half a cycle out of phase from each
other. But this equilibrium is unstable,
like a pencil balancing on its point. The
slightest nudge tips the system tQ\vard
synchrony.

Despite Peskin's successful analysis
of the two-oscillator case, the case of
an arbitrary number of oscillators elud
ed proof for about 15 years. In 1989
Strogatz learned of Peskin's work in a
book on biological oscillators by Arthur
T. Winfree of the University of Arizona.
To gain intuition about the behavior of
Peskin's model, Strogatz wrote a com
puter program to simulate it for any
number of identical oscillators, for any
kick size and for any amount of leakage.
The results were unambiguous: the sys·
tern always ended up firing in unison.

Excited by the computer results, Stro
gatz discussed the problem with Mitollo.
They reviewed Peskin's proof of the two
oscillatar case and noticed that it could
be clarified by using a more abstract
model for the individual oscillators. The
key feature of the model turned out ta
be the slmving upward curve of voltage
(or its equivalent) as it rose toward the
firing threshold. Other characteristics
were unimportant.

Mitollo and Strogatz proved that their
generalized system always becomes
synchronized, for any number of oscil
lators and for almost all initial condi
tions. The proof is based on the notion
of "absorption"-a shorthand for the
idea that if one oscillator kicks another
over threshold, they "oil remain syn
chronized forever. They have identical
dynamics, after all, and are identically
coupled to all the others. The two were
able to show that a sequence of absorp
tions eventually locks all the oscillators
together.

Although synchrony is the simplest
state for coupled identical oscillators,
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surprise at first, even to Stewart and
Golubitsky, but in fact the pattern oc
curs in rcaltife. A person using a walk
ing stick moves in just this manner:
right leg, stick, left leg, stick, repeat. The
third osciIJator is, in a sense, driven by
the combined effects of the other two:
every time one of them hits a peak, it
gives the third a push. Because the first
two oscillators are predsely antisynchro
nallS, the third oscillator peaks twice
while the others each peak once.

The theory of symmetrical Hopf bi
furcation makes it possible to classify
the patterns of phase locking for many
different networks of coupled oscilla
tors. Indeed, Stewart, in collaboration
with James j. Collins, a biomedical en
gineer at Boston University, has been
investigating the striking analogies be
tween these patterns of phase locking
and the symmetries of animal gaits,
such as the trot, pace and gallop.

Quadruped gaits closely resemble the
natural patterns of four· oscillator sys
tems. When a rabbit bounds, for exam
ple, it moves its front legs together,
then its back legs. There is a phase dif
ference of zero bet\veen the two front
legs and of one half between the front
and back legs. The pace of a giraffe is
similar, but the front and rear legs on
each side are the ones that move to
gether. When a horse trots, the locking
occurs in diagonal fashion. An ambling
elephant lifts each foot in turn, ,,1th
phase differences of one quarter at each
stage. And young gazelles complete the
symmetry group with the prank, a four
legged leap in which all legs move in
synchrony [see "Mathematical Recrea
tions," by Ian Stewart; SClEN1l1'IC AMER
ICAN, April 1991).

More recently, Stewart and Collins
have extended their analysis to the
hexapod motion of insects. The tripod

SYMMETRY BREAKING governs the ways
that coupled oscillators can behave. Syn
chrony is the most symmetrical single
state, but as the strength of the cou
pling between oscillators changes, other
states may appear. Two oscillators can
couple in either synchronous or antisyn
chronous fashion (a, b), corresponding
roughly to the bipedal locomotion of a
kangaroo or a person. Three oscillators
can couple in four ways: synchrony (e),
each one third of a cycle out of phase
with the others (d), two synchronous
and one with an unrelated phase (e) or
in the peculiar rhythm of two oscilla
tors antisyncbronous and the third run
ning twice as fast (n. This pattern is also
the gait of a person walking slowly with
the aid of a stick.

/

b TWO OUT OF SYNCHRONY

a TWO IN SYNCHRONY

d THREE ONE THIRD OUT OF PHASE

C THREE IN SYNCHRONY

e TWO IN SYNCHRONY AND ONE WILD

f TWO OUT OF SYNCHRONY AND ONE TWiCE AS FAST

106 SCIENTIIX AMERICAN December 1993
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close to their limit cycles at all times.
This insight allowed him to ignore var
iations in amplitude and to consider
only their variations in phase. To incor
porate differences among the oscillators,
Winfree made a model that captured the
essence of an oscillator community by
assuming that their natural frequencies
are distributed according to a narrow
probability function and that in other
respects the oscillators are identical. In
a final and crucial simplification, he as
sumed that each oscillator is influenced
only by the collective rhythm produced
by all the others. In the case of fireflies,
for example, this would mean that each
firefly responds to the collective nash
of the whole population rather than to
any individual firefly.

To visualize Winfree's model, imag
ine a swarm of dots running around a
circle. The dots represent the phases of
the oscillators, and the circle represents
their common limit cycle. If the oscilla
tors were independent, all the dots would
eventually disperse over the circle, and
the collective rhythm would decay to
zero. Incoherence reigns. A simple rule
for interaction among oscillators can re
store coherence, however: if an oscilla
tor is ahead of the group, it slows down
a bit; if it is behind, it speeds up.

In some cases, this corrective cou
pling can overcome the differences in
natural frequency; in others (such as
that of Gonyaulax), it cannot. Winfree
found that the system's behavior de
pends on the width of the frequency
distribution. If the spread of frequencies
is large compared ",th the coupling, the
system always lapses into incoherence,
just as if it were not coupled at all. As
the spread decreases below a critical
value, part of the system spontaneous
ly "freezes" into synchrony.

Synchronization emerges coopera
tively. If a few oscillators happen to
synchronize, their combined, coherent
signal rises above the background din,
exerting a stronger effect on the others.

ahead, and the slower ones fall behind (h, c). A simple cou
pling force that speeds up slower oscillators and slows down
faster ones, however, can keep them all in phase (d).

c
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cies depends on the strength of the
coupling among them. If their inter
actions are too weak, the oscillators
will be unable to achieve synchrony. The
result is incoherence, a cacophony of
oscillations. Even if started in unison
the oscillators will gradually drift out
of phase, as did Huygens's pendulum
clocks when placed at opposite ends of
the room.

Colonies of the bioluminescent algae
Gonyaulax demonstrate just this kind
of desynchronization. J. Woodland Hast
ings and his colleagues at Harvard Uni
versity have found that if a tank full of
Gonyaulax is kept in constant dim light
in a laboratory, it exhibits a circadian
glow rhythm with a period close to 23
hours. As time goes by, the waveform
broadens, and this rhythm gradually
damps out. It appears that the individual
cells continue to oscillate, but they drift
out of phase because of differences in
their naturai frequencies. The glow of
the algae themselves does not maintain
synchrony in the absence of light from
the sun.

In other oscillator communities the
coupling is strong enough to overcome
the inevitable differences in natural fre
quency. Polymath Norbert Wiener point
ed out in the late 1950s that such os
cillator communities are ubiquitous in
biology and indeed in all of nature.
Wiener tried to develop a mathematical
model of collections of oscillators, but
his approach has not turned out to be
fn.tltful. The theoretical breakthrough
came in 1966, when Winfree, then a
graduate student at Princeton Univer
Sity, began exploring the behavior of
large populations of limit-cycle oscil
lators. He used an inspired combina
tion of computer simulations, mathe
matical analysis and experiments on an
array of 71 electrically coupled neon
tube oscillators.

Winfree simplified the problem tre
mendously by pointing out that if oscil
lators are weakJy coupled, they remain

ba

gait of a coclcroach is a very stable pat
tern in a ring of six oscillators. A trian
gle of legs moves in synchrony: front
and back left and middle right; then
the other three legs are lifted with a
phase difference nf nne half.

Why do gaits resemble the natural
patterns of coupled nscillatnrs in this
way? The mechanical design of animal
limbs is unlikely to be the primary rea
son. Limbs are nor passive mechanical
oscillators but rather complex systems
of bone and muscle controlled by equal
ly complicated nerve assemblies. The
mostllkely source of this concordance
between nature and mathematics is in
the architecture of the circuits in the
nervnus system that control locomotion.
Biologists have long hypothesized the
existence of networks of coupled neu
rons they call central pattern genera
tors, but the hypothesis has always been
controversial. Nevertheless, neurons of
ten act as oscillators, and so, if central
pattern generators exist, it is reason
able to expect their dynamics to resem
ble those of an oscillator network.

Moreover, symmetry analysis solves
a significant problem in the central-pat
tern generator hypothesis. Most ani
mals employ several gaits-horses walk,
trot, canter and gallop-and biologists
have often assumed that each gait re
quires a separate pattern generator.
Symmetry breaking, however, implies
that the same central-pattern generator
circuit can produce all of an animal's
gaits. Only the strength of the couplings
among neural oscillators need vary.

so far our analysis has been lim
ited to collections of oscillators
that are all strictly identical. That

idealization is convenient mathemat
ically, but it ignores the diversity that
is always present in biology. In any real
population, some oscillators will always
be inherently faster or slower. The be
havior of communities of oscillators
whose members have differing frequen-

NONIDENTICAL OSCIllATORS may start out in phase with one
another (as shown on circle a, in which 360 degrees mark one
oscillation), but they lose coherence as the faster Does move
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of an alignment of molecuies or elec
tronic spins in space.

The analogy to phase transitions
opened a new chapter in statistical me
chanics, the study of systems composed
of enormous numbers of interacting
subunits, In 1975 Yoshiki Kuramoto of
Kyoto University presented an elegant
reformulation of Winfree's model, Ku
ramoto's model has a simpler mathe
matical slructure that allows it to be an
alyzed in great detail. Recently Strogatz,
along with Mirella and Paul C. Matthews
of the University of Cambridge, found
an unexpected connection bet\veen Ku
ramoto's model and Landau damping,
a puzzling phenomenon that arises in
plasma physics when electrostatic waves
propagate through a highly rarefied me
dium. The connection emerged when we

24

Wben additional oscillators are pulled
into the synchronized nudeus, they am
plify its signal, This positive feedback
leads to an accelerating outbreak of syn
chrony. Some oscillators nonetheless re
main unsynchronized because their fre
quencies are too far from the value at
which the others have synchronized for
the coupling to pull them in.

In developing his description, Win
free discovered an unexpected link be
tween biology and pbysics. He saw that
mutual synchronization is strikingly
analogous to a phase transition such
as the freeZing of water or the sponta
neous magnetization of a ferromagnet.
The width of the oscillators' frequency
distribution plays the same role as does
temperature, and the alignment of oscil
lator phases in time is the counterpart

~ 72 00
TIME IN CONSTANT CONDITIONS (HOURS)

GONYAUlAX luminescent algae (top) change the intensity of their glow according
to an internal clock that is affected by light. If they are kept in constant dim ligbt,
the timing of the glow becomes less precise because the coupling among individu
al organisms is insufficient to keep them in sync (bottom)_
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of Nonlinear Science, Vol 3, No.3,
pages 349-392; July 1993.

studied the decay to incoherence in os
cillator communities in which the fre
Quency distribution is too broad to
support synchrony. The loss of coher
ence, it turns out, is governed by the
same mathematical mechanism as that
controlling the decay of waves in such
"collisionless" plasmas.

T he theory of coupled osdllators
has come a long way since Huy
gens noticed the spontaneous

synchronization of pendulum clocks.
Synchronization, apparently a very nat
ural kind of behavior, turns out to be
both surprising and interesting. It is
a problem to understand, which is not
an obvious consequence of symmetry.
Mathematidans have turned to the the
ory of symmetry breaking to classify
the general patterns that arise when
identical, ostensibly symmetric oscilla
tors are coupled. Thus, a mathematical
disdpline that has its most visible roots
in particle physics appears to govern
the leap of a gazelle and the ambling of
an elephant. Meanwhile techniques bor
rowed from statistical mechanics illumi
nate the behavior of entire populations
of oscillators. It seems amazing that
there should be a link between the vio
lent world of plasmas, where atoms rou
tinely have thelr electrons stripped off,
and the peaceful world of biological os
dilators, where fireflies pulse silent
ly along a riverbank. Yet there is a co
herent mathematical thread that leads
from the simple pendulum to spatial
patterns, waves, chaos and phase tran
sitions. Such is the power of mathemat
ics to reveal the hidden unity of nature.
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