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Recent functional imaging studies have revealed coactivation in
a distributed network of cortical regions that characterizes the
resting state, or default mode, of the human brain. Among the
brain regions implicated in this network, several, including
the posterior cingulate cortex and inferior parietal lobes, have
also shown decreased metabolism early in the course of Alzhei-
mer’s disease (AD). We reasoned that default-mode network
activity might therefore be abnormal in AD. To test this hypoth-
esis, we used independent component analysis to isolate the
network in a group of 13 subjects with mild AD and in a group
of 13 age-matched elderly controls as they performed a simple
sensory-motor processing task. Three important findings are
reported. Prominent coactivation of the hippocampus, detected
in all groups, suggests that the default-mode network is closely
involved with episodic memory processing. The AD group
showed decreased resting-state activity in the posterior cingu-
late and hippocampus, suggesting that disrupted connectivity
between these two regions accounts for the posterior cingulate
hypometabolism commonly detected in positron emission to-
mography studies of early AD. Finally, a goodness-of-fit analysis
applied at the individual subject level suggests that activity in
the default-mode network may ultimately prove a sensitive and
specific biomarker for incipient AD.

Reduced posterior cingulate cortex (PCC) activity is among
the most common findings in positron emission tomography

(PET) and single-photon emission computerized tomography
(SPECT) studies of early Alzheimer’s disease (AD) (1–3). Other
studies have shown hypometabolism in the PCC in cognitively
intact subjects with genetic susceptibility to AD (4–6). Most
recently, functional deactivation profiles in the PCC were shown
to differ between patients with AD and healthy controls in a
semantic classification task (7). The consistency with which the
PCC is implicated in these studies is puzzling in that this region
is not among the first to show the neuropathological changes of
AD (8). The leading hypothesis is that decreased PCC activity in
incipient AD reflects decreased connectivity with medial tem-
poral lobe (MTL) structures, such as the entorhinal cortex and
hippocampus, which are among the first regions targeted by AD
pathology (3, 9). This hypothesis is supported by data from the
animal literature showing prominent connectivity between the
PCC and the MTL (10–13) as well as hypometabolic changes in
PCC after rhinal cortex ablation (14). Human studies have
supported this hypothesis as well (15–17).

Although the PCC shows decreased resting-state activity in
incipient AD, it tends to be among the most metabolically active
regions in healthy subjects resting with their eyes closed (18).
Furthermore, the PCC is among the most commonly ‘‘deacti-
vated’’ brain regions, often showing increased activity during rest
or a cognitively simple baseline task compared to a cognitively
demanding experimental task (19). This combination of at-
tributes led Raichle et al. (18) to propose that the PCC forms part
of a ‘‘default mode’’ brain network. We subsequently used a

functional connectivity analysis of functional MRI (fMRI) data
to demonstrate significant resting-state coactivation of several
regions within this putative network, including the PCC, bilateral
inferior parietal cortex, left inferolateral temporal cortex, and
ventral anterior cingulate cortex (20). We also demonstrated that
the default-mode network persisted, virtually unchanged, during
a sensory task with little cognitive demand (passive viewing of
a flashing or still checkerboard). Although we detected a small
cluster of coactivation within the most posterior aspect of the
parahippocampal gyrus, we did not find conclusive evidence, at
a field strength of 3 T, for connectivity between the PCC and
other MTL structures such as the hippocampus or entorhinal
cortex. Nonetheless, the prominent role of the PCC in this
network led us to suspect that it might be abnormal in AD.

To test our hypothesis that the default-mode network might be
abnormal in AD, we examined a dataset (#2-2000-1118W) from
the fMRI data center (www.fmridc.org), an international repos-
itory of freely accessible raw fMRI data. These data were
generously contributed by Buckner et al. (21), who studied
healthy young subjects, healthy elderly subjects, and patients
with very mild to mild AD during a simple sensory-motor task.
Having previously detected the default-mode network not only
during an eyes-closed resting condition but also during a simple
visual processing task, we reasoned that the minimal cognitive
requirements of this sensory-motor task would not disrupt the
default-mode network, and that it would therefore be detectable
in this data set.

In our previous study, we used a functional connectivity MRI
analysis to detect coactivation in the network. This involves
specifying a region-of-interest (ROI), averaging the time series
of all of the voxels within it and using that time series as a
covariate of interest in a whole-brain linear regression statistical
parametric analysis. In the current study, we adapted indepen-
dent component analysis (ICA) to derive the default-mode
network in a more data-driven fashion (i.e., without requiring a
priori specification of a seed region). Examination of the default-
mode network in these groups revealed three critical findings:
there is significant coactivation of the hippocampus in the
default-mode network, the network is abnormal in the mildest
stages of AD compared to healthy aging, and network activity
holds potential as a noninvasive biomarker of incipient AD.

Methods
As a proof of concept, we first applied ICA to our previously
published resting-state data (referred to herein as Stanford
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University data), allowing us to compare the default-mode
network detected with ICA to that detected with the ROI
approach. An essentially identical ICA approach was then
applied to the three subject groups from Washington University
(referred to below as Washington University data). Further
details regarding methods are available in the original publica-
tions (20, 21).

Subjects and Tasks. Stanford University data. Fourteen healthy right-
handed subjects (seven females) participated in this study after
giving informed consent in accordance with Stanford Universi-
ty’s Institutional Review Board. Their ages ranged from 18 to 25
years, with a mean age of 21.2 years.

For the resting-state scan, subjects were instructed simply to
keep their eyes closed and not to think of anything in particular.
The scan lasted for 4 min.
Washington University data. Thirteen subjects with very mild to mild
AD, 14 healthy elderly subjects, and 14 healthy young subjects
were scanned during a simple sensory-motor paradigm (21). The
AD subjects (six males) ranged in age from 68 to 83 (mean age
77.2). The elderly subjects (five males) ranged in age from 66 to
89 (mean age 74.9). The 14 healthy young subjects (five male)
ranged in age from 18 to 24 (mean age 21.1). The subjects with
dementia were scanned at a relatively early stage of their illness:
8 of the 13 AD patients had a Clinical Dementia Rating (CDR)
of 0.5, placing them in the ‘‘very mild’’ category, whereas the
other five had a CDR score of 1, placing them in the ‘‘mild’’
category (22).

The basic task required subjects to respond with a button press
when a stimulus was presented. The stimulus, a flashing check-
erboard, was presented for 1.5 sec either singly or in a paired
sequential presentation with a 5.36-sec gap between presenta-
tions. Each run, A–D, consisted of 15 trials, pseudorandomly
intermixed so that there were eight trials of one type (single or
paired presentation) and seven trials of the other type per run.
Subjects completed four runs. One AD subject had data only for
three of four runs.

Imaging Methods. Stanford University data. Functional images were
acquired on a 3-T General Electric Signa scanner using a
standard whole-head coil. The following spiral pulse sequence
parameters were used: repeat time, 2,000 ms; echo time, 30 ms;
f lip angle, 80°; and one interleave. To aid in the localization of
functional data, a high-resolution T1-weighted spoiled grass
gradient recalled 3D MRI sequence with the following param-
eters was used: 124 coronal slices; 1.5-mm thickness; no skip;
repeat time, 11 ms; echo time, 2 ms; and flip angle, 15°. The
images were reconstructed as a 124 � 256 � 256 matrix with a
1.5 � 0.9 � 0.9-mm spatial resolution. The structural scans were
acquired on a 1.5-T General Electric Signa scanner.
Washington University data. Functional images were acquired on a
Siemens (Iselin, NJ) 1.5-T scanner with an asymmetric spin-echo
sequence sensitive to blood oxygenation level-dependent
(BOLD) contrast. The following parameters were used: repeat
time (TR), 2.68 sec; 3.75 � 3.75-mm in-plane resolution; T2*
evolution time, 50 ms; �, 90°. Whole-brain volumes were ac-
quired with 16 contiguous 8-mm-thick axial oblique slices (par-
allel to the plane connecting the anterior and posterior commi-
sures). Each functional run lasted 5.5 min. High-resolution
structural images were acquired in a series of three to four
separate T1-weighted MP-RAGE anatomic images with the
following parameters: resolution � 1 � 1 � 1.25 mm; TR, 9.7
msec; echo time, 4 msec; f lip angle, 10°; TI, 20 msec; TD, 500
msec.

Data Processing. Stanford University data. Data were preprocessed
and analyzed by using SPM99 (23) (www.fil.ion.ucl.ac.uk�spm).
Images were corrected for movement by using least-squares

minimization without higher-order corrections for spin history
and normalized (24) to stereotaxic coordinates of Talairach and
Tournoux (25). Images were then resampled every 2 mm by using
sinc interpolation and smoothed with a 4-mm Gaussian kernel to
decrease spatial noise.

Statistical maps were superimposed on a group average of the
normalized high-resolution T1-weighted images and cluster lo-
cations interpreted by using known neuroanatomical landmarks.
Washington University data. Raw structural and functional data
were received from the fMRI Data Center maintained at
Dartmouth College (Hanover, NH). Functional data were then
movement-corrected, normalized, and smoothed as described
with the Stanford University data above. Examination of the
smoothed images revealed a large spike artifact that contami-
nated each time point in one elderly subject’s data. This subject’s
data were removed from subsequent analyses.

Statistical maps were superimposed on a group average of the
normalized high-resolution T1-weighted images and cluster lo-
cations interpreted using known neuroanatomical landmarks.

Data Analysis. The following steps were done essentially identi-
cally, except where noted, on data from Stanford University and
Washington University.
Independent component analysis. For each subject, the smoothed
normalized fMRI images were concatenated across time to form
a single 4D image. For the Washington University data, the first
two time points were eliminated to allow for equilibration of the
magnetic field (this is done at the acquisition stage at Stanford
University). For each subject, the 4D dataset was then analyzed
with FSL MELODIC ICA software (www.fmrib.ox.ac.uk�fsl�
melodic2�index.html). ICA is a statistical technique that sepa-
rates a set of signals into independent uncorrelated and non-
Gaussian spatiotemporal components (26). When applied to the
T2* signal of fMRI, ICA allows not only for the removal of high-
and low-frequency artifacts (27, 28), but also for isolation of
task-activated neural networks (27, 29). Most recently, ICA has
been used to identify low-frequency neural networks that are
active during resting-state (visual fixation) fMRI data (30).
There is no consensus, as yet, on how to choose the optimal
number of components, although methods to do so are in
development (31). We chose to have the analysis output 24
components for the Stanford University data and 31 components
for the Washington University data (approximately one-fourth
to one-fifth the number of timepoints in the respective scans).
The ICA software could not converge on 31 components in a
total of 11 runs from nine subjects (two AD, two elderly, five
young). For these runs, the number of components generated
ranged from 22 to 42.
Selection of the best-fit component. An automated two-step process
was then used to select the component in each subject that most
closely matched the default-mode network. First, because func-
tional connectivity networks have been detected in low-
frequency ranges (32), a frequency filter was applied to remove
any components in which high-frequency signal (�0.1 Hz)
constituted 50% or more of the total power in the Fourier
spectrum. Next, a template of the default-mode network was
used to select the ‘‘best-fit’’ of the remaining low-frequency
components in each subject. To do this, we developed a non-
linear template-matching procedure that involved taking the
average z score of voxels falling within the template minus
the average z score of voxels outside the template and selecting
the component in which this difference (the goodness of fit)
was the greatest. z scores here reflect the degree to which a given
voxel’s time series correlates with the time series corresponding
to the specific ICA component.

A different template was used for selecting the best-fit com-
ponents in the two data sets. Because the PCC appears to be a
critical node in the default-mode network (20), we used the PCC
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cluster from our previous ROI-based study as the template in
selecting the best-fit component for the Stanford University
data. This also allowed us to demonstrate that the entire network
can be derived with ICA by using only one of the nodes as a
template. In an effort to better distinguish AD subjects from
elderly subjects, a broader template was chosen for the Wash-
ington University data consisting of all brain regions in the
default-mode network, rather than the PCC cluster alone.
Because AD subjects show metabolic deficits in the parietal
lobes (3) as well as in the PCC, we reasoned that incorporating
other regions into the goodness-of-fit calculation would allow a
better separation of the AD patients from the healthy elderly
controls. Thus, in selecting the best-fit components and their
associated goodness-of-fit scores for the Washington University
data, we used the entire default-mode network, as defined by
applying ICA to the Stanford University data (Fig. 1B), as the
template.
Group statistical maps. For the Stanford University data, the best-fit
components from each subject were then combined in a second-
level random-effects analysis to generate group statistical maps
for the default-mode network. Significant clusters of activation
were determined by using the joint expected probability distri-
bution (33) with height (P � 0.001) and extent (P � 0.001)
thresholds, corrected at the whole-brain level.

For the Washington University data, where 39 of 40 subjects
had four scans processed, a single median image was generated
from each subject’s four best-fit components (i.e., the highest
and lowest best-fit component images were discarded, and the
two middle best-fit components were averaged). In the AD
subject who underwent only three runs, the midvalue best-fit
component became the median image. Because of the increased
power associated with using median images, clusters of activation
for the young, elderly, and AD groups from Washington Uni-
versity were determined by using more stringent height and
extent thresholds of P � 0.0001, corrected at the whole-brain
level.

A two-sample t test was used to compare the healthy elderly
and AD group maps. To avoid detection of clusters that did not
appear in either group map, we used a masking procedure in
which we generated a group map for all 26 subjects (significant
clusters defined as in the single-group analyses above) and
limited the search for clusters that differed between the two
groups to this combined group map. Significant clusters of
activation for the two-sample t test were determined by using
combined height (P � 0.05) and extent (P � 0.05) thresholds,
corrected at the whole-brain level.

Goodness-of-fit analysis. In addition to the statistical maps, we
explored differences between the AD and elderly groups in the
goodness-of-fit metric. Each subject had a score for each of their
four best-fit components (one from each run) reflecting the
degree to which their best-fit component network matched the
default-mode template defined by the Stanford University data.
One AD subjects had scores for only three runs. We calculated
the median goodness-of-fit score for each subject. A two-sample
t test with a significance level of P � 0.05 was used to determine
whether the group means were significantly different. The
Mann–Whitney test was also used as a confirmatory test of
significance given the nonparametric nature of the data. The
individual subject data were also plotted as a scattergram, which
was used to select a cutoff point in the median goodness-of-fit
scores that provided the optimal sensitivity and specificity in
distinguishing AD subjects from healthy elderly controls.

Results
Behavioral Data. Mean response times across all trials were
available for all 14 elderly subjects and 11 of 13 AD subjects. The
group mean response time was 575.9 msec (SD 525.1) for the
elderly subjects and 630.3 msec (SD 534.4) for the AD subjects.
The means were not significantly different (P � 0.8, two-sample
t test). The numbers of correct responses across all trials were
available for all 14 elderly subjects and 12 of 13 AD subjects. Of
90 possible responses, the mean number of missed responses per
subject was 5.5 (SD 12.7) in the elderly group and 3.25 (SD 5.0)
in the AD group. The means were not significantly different (P �
0.6, two-sample t test). Please refer to the original paper by
Buckner et al. (21) for behavioral data in young subjects.

Validation of ICA Approach (Stanford University Data). Fig. 1 com-
pares the default-mode network as detected in our previous
publication by the ROI approach (Fig. 1 A) and as detected here
by the ICA approach (Fig. 1B). Significant overlap between the
two approaches is demonstrated across the majority of clusters
including the PCC, bilateral inferior parietal cortex, left infero-
lateral temporal cortex, medial prefrontal cortex, and ventral
anterior cingulate cortex. Specific cluster locations for the two
approaches are available as supporting information, which is
published on the PNAS web site.

Default-Mode Network in Healthy Young Subjects (Washington Uni-
versity Data). Fig. 2 demonstrates the default-mode network in 14
healthy young subjects from Washington University. Coronal
sections (Fig. 2B) highlight the prominent coactivation of the

Fig. 1. Validation of the ICA approach (Stanford University data). Axial images showing the default-mode network as detected with ROI-based (A) and
ICA-based (B) approaches in a group of healthy young adults scanned on a 3-T magnet at Stanford University. The blue arrows indicate the PCC. The left side
of the image corresponds to the left side of the brain. The numbers beneath each image refer to the z coordinate in Talairach space. T score bars are shown at
right. Functional images were overlaid on the group-averaged structural image. Joint height and extent thresholds of P � 0.001 were used to determine
significant clusters.
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MTL and hippocampus not detected in the 3-T data from
Stanford University. Specific cluster locations are available as
supporting information.

Default-Mode Network in Healthy Aging and AD Subjects (Washington
University Data). Fig. 3 compares the default-mode network in the
healthy elderly (Fig. 3A) and AD groups (Fig. 3B). Specific
cluster locations are available as supporting information.

Fig. 4A shows the statistical map resulting from the two-
sample t test comparing the default-mode network in the healthy
elderly vs. AD groups. Fig. 4B shows a coronal section of the
same contrast to highlight a 112-voxel cluster in the left hip-
pocampus that survived the height but not the extent threshold.
The reverse contrast (AD vs. healthy elderly) did not yield any
significant clusters.

Fig. 5 is a scattergram showing the median goodness-of-fit

metric for each subject in the two groups. The means were 2.4
(SD 0.9) for the healthy elderly group and 1.5 (SD 0.5) for the
AD group. The means were significantly different using both a
two-sample t test (P � 0.003) and a Mann–Whitney test (P �
0.007). Using a cutoff of 2.1, the test yields a sensitivity of 85%
and a specificity of 77% in distinguishing AD subjects from
healthy elderly subjects.

Discussion
Our study examining the default-mode network in early AD has
generated several important results pertaining both to AD
specifically and the default-mode network more generally. The
main findings were that the hippocampus appears to play a

Fig. 2. Hippocampal coactivation in the default-mode network (Washing-
ton University data). Axial (A) and coronal (B) images showing the default-
mode network for 14 healthy young subjects scanned on a 1.5-T magnet at
Washington University. The green arrows highlight the prominent bilateral
coactivation in the hippocampus and underlying entorhinal cortex. The num-
bers beneath each coronal image refer to the y coordinate in Talairach space.
Joint height and extent thresholds of P � 0.0001 were used to determine
significant clusters. Other details are as in Fig. 1.

Fig. 3. Default-mode network in healthy elderly and AD subjects (Washington University data). Axial images showing the default-mode network for the healthy
elderly (A) and AD (B) groups. The blue arrows indicate the PCC. The hippocampus and underlying entorhinal cortex (green arrows) were detected bilaterally
in healthy elderly subjects (A) but only in the right hemisphere in the AD group (B). Joint height and extent thresholds of P � 0.0001 were used to determine
significant clusters. Other details are as in Fig. 1.

Fig. 4. Increased default-mode network activity in healthy elderly. (A) Axial
images showing the results of a two-sample t test contrasting the default-
mode network in the healthy elderly group vs. the AD group. The blue arrow
indicates the PCC. The magenta arrows indicate the inferior parietal lobes. (B)
Coronal images showing a 112-voxel cluster in the left hippocampus (green
arrows) that survived the height but not the extent threshold. Joint height and
extent thresholds of P � 0.05 were used to determine significant clusters.
Other details are as in Fig. 1.
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prominent role in the default-mode network, network activity is
deficient in AD compared to healthy elderly controls, and a
metric of network activity shows promise as a clinical marker
of AD.

Currently, the behavioral correlates of the default-mode net-
work remain uncharacterized, although there are several poten-
tially inclusive hypotheses. Some investigators have suggested
that the network has a role in attending to environmental stimuli,
both internally and externally generated (18, 34). Others have
suggested that it mediates processes such as reviewing past
knowledge in preparing for future actions (35). The current
findings offer further support for our hypothesis that the default-
mode network is closely involved in episodic memory processing.
In our previous study, we hypothesized that the network might
have some role in memory processing based on the prominent
role of the PCC within it and evidence linking the PCC to
memory functions (16, 36, 37). Although we detected a cluster
of posterior parahippocampal coactivation in that 3-T study,
there was little else to implicate medial temporal memory
regions in the default-mode network. By contrast, we have now
detected significant bilateral hippocampal�entorhinal cortex
coactivation in the default-mode network in healthy young and
elderly subjects as well as unilateral MTL coactivation in the AD
group. We believe the discrepancy in hippocampal coactivation
between our initial study and the current study can be traced to
the different field strengths in the two studies. That is, the
hippocampal coactivation in the default-mode network detected
across all three groups here at 1.5-T was most likely lost to
susceptibility artifact at 3-T (38). One of the most consistent
species-independent findings in neuroscience is that the hip-
pocampus is integral to episodic memory processing (39). Fur-
ther, episodic memory loss is the cardinal feature of AD and the
most common presenting symptom (40). Combining these two
facts with our findings of (i) significant bilateral hippocampal
coactivation in the two healthy Washington University groups
and (ii) deficient hippocampal activity in the AD group makes
a compelling, albeit indirect, case that the network plays a critical
role in episodic memory processing. In future studies, we hope
to gain more insight into the putative memory functions of the

default-mode network by exploring correlations between net-
work activity and neuropsychological measures.

Although the MTL is the initial site of histopathological
changes in AD (8), the PCC is the most common site of early
metabolic and perfusion abnormalities. Disrupted connectivity
between the hippocampus�entorhinal cortex and the PCC has
been invoked as the mechanism behind PCC hypometabolism
and hypoperfusion in early AD (3, 9). There is evidence from a
number of human studies supporting prominent connectivity
between the PCC and MTL. PET studies have demonstrated
task-driven PCC and MTL interactions across groups of subjects
(15, 16). Studies of ‘‘retrosplenial amnesia’’ (41) and PCC
hypometabolism in amnestic patients without AD (17) also
provide support for PCC–MTL interactions. At the neuronal
level, connectivity between these two regions has been demon-
strated in animal studies (10–13). The ICA approach used here
extracts the network en bloc and does not provide direct mea-
sures of interregional connectivity. Nonetheless, based on bur-
geoning evidence in animal and human studies, a strong case can
be made that the coactivation of PCC and MTL detected here
reflects connectivity between these two regions. Activity in these
two regions was deficient in the AD group compared to the
elderly controls (Fig. 4). Although reduced connectivity with
parietal or other cortical regions could account for decreased
PCC activity, given the relatively focal MTL pathology in early
AD and the converging evidence for MTL-PCC connectivity, we
believe our findings support the hypothesis that impaired MTL–
PCC connectivity accounts for the decreased PCC metabolism�
perfusion detected in PET and SPECT studies (1, 2, 9).

A unique advantage provided by the method used here is that
it allows one to examine task-independent network activity in
individual subjects. It is this critical distinction that allowed us to
demonstrate the clinical potential of our approach in the diag-
nosis of AD. By using a standard template to select the best-fit
component for each subject, we have developed an automated
ICA technique for detecting the default-mode network. The
relative stability of the network across laboratories, field
strengths, and healthy subject populations also speaks to its
universality. It appears that the default-mode network is a
readily and reproducibly detectable neural network operating in
the resting state and in tasks with low cognitive demand.
Detection of the network at 1.5 T is important in that the vast
majority of clinical scans are done at this field strength. A
number of attributes make ICA-based detection of the default-
mode network a promising candidate in the ongoing quest to find
a safe noninvasive biomarker of incipient AD. Unlike most
structural imaging methods, the process can be automated,
minimizing manpower requirements and the potential for inves-
tigator bias. The absence of a task eliminates issues such as
performance differences among groups and practice effects with
repeated scanning. The enhanced spatial resolution and reliance
on endogenous signal rather than radionuclide tracers also make
this approach preferable to PET and SPECT methods.

We have reported a metric here, reflecting the goodness of fit
of a subject’s default-mode network to a standard default-mode
template, which distinguishes individual AD subjects from
healthy elderly subjects with a sensitivity of 85% and a specificity
of 77%. These sensitivity and specificity values are in the range
considered clinically relevant by a recent Working Group on
biomarkers in AD (42). The results are particularly encouraging
in light of the fact that 8 of 13 AD patients were in the earliest
stages of the disease (Clinical Dementia Rating score of 0.5)
(22). In subsequent studies, this approach may be optimized by
using a template that includes only regions where network
activity differs between AD subjects and elderly controls (Fig. 4).
It will also be important to determine whether better sensitivity
and specificity can be achieved by examining network activity
during a true resting paradigm, as opposed to during a sensory-

Fig. 5. Individual scores for goodness of fit to standard default-mode
network. A scattergram shows the median goodness of fit for each subject in
the AD and healthy elderly groups using the Stanford University ICA-derived
default-mode template. The group means were significantly different in a
two-sample t test (P � 0.01). The horizontal line indicates a cutoff point of 2.1
where 11 of 13 AD subjects and 10 of 13 elderly subjects are correctly cate-
gorized, yielding a sensitivity of 85% and a specificity of 77%.
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motor task, as was done here. Ideally, such an optimized network
metric might prove efficacious in making the critical clinical
distinction between which at-risk subjects will convert to AD and
which will not.
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