DETERMINING

DEPTH of WATER, CURRENT SPEED and DIRECTION

 OF TIDES at a give location and time

Georgia Hilton

www.captaingeorgia.com

READING TIDE TABLES
 Determining Tide at a given location and time:

STEP 1

Document Know information including CHARTED DEPTH (CD), DATE, TIME, PLANNED LOCATION (SUBSTATION)

EXAMPLE:
FInd the water depth at DENNIS PORT on OCT 28, 1983 at 0914 EST
Date: OCT 28, 1983
Time: 0914 EST
SubStation: Dennis Port (Planned location)
CHARTED DEPTH (CD) 14 Ft

STEP 2

Locate Tide differences by finding closest location (substation) number in INDEX for TABLE 2

EXAMPLE:
SubStation: Dennis Port index number : 1027

STEP 3

Document Differences noted in TABLE 2 for time/date of planned location HIGH TIDE DIFFERENTIAL TIME and HIGH TIDE DIFFERENTIAL IN FT (including + - or *)
LOW TIDE DIFFERENTIAL TIME and LOW TIDE DIFFERENTIAL IN FT (including + - or *)
EXAMPLE:
High Water time differential: +1 01 (1 hour and 1 min)
High Water height differential: *. 36 (* means to multiple) . 36 ft
Low Water time differential: +0 36 (36 minutes)
Low Water height differential: *. 36 (* means to multiple) . 36 ft

STEP 4

Go to top of TABLE 2 PAGE Selected for planned location (substation) and Find REFERENCE STATION at top. Go to REFERENCE STATION in table 1

EXAMPLE:
Reference Station: BOSTON (top of page)

STEP 5

FIND REFERENCE STATION, DATE, TIME
Note and Document CLOSEST HIGHT and LOW TIDES to planned original time
(original time should be between the two tides)
DOCUMENT the two tide informamation
HIGH TIDE TIME and HEIGHT
LOW TIDE TIME and HEIGHT

EXAMPLE:

Reference Station: BOSTON
DATE: OCT 28, 1983
ETA: 0914
Find the tides before and after:
Bracket 0914 between two tides:

HIGH TIDE time: 0337
HIGH TIDE height: +8.7 ft
LOW TIDE time: 0939
LOW TIDE height + 1 ft

STEP 6

DETERMINE ADJUSTED TIDE TIMES for planned Location (nearest substation)
ADD Time differential to HIGH and LOW TIDES
DETERMINE CORRECTED TIDE HEIGHTS for planned location \& time
(using + - or (* multiply)) add, subtract or multiply the HIGH and LOW TIDES for the REFERENCE STATION with the Planned location DIFFERENTIALS

ADD THESE TO CD (Charted Depth) to find corrected HIGH and LOW TIDE HEIGHT
EXAMPLE:
HIGH TIDE time: 0337 + 1 hr 1min = 0438
HIGH TIDE height: 8.7 ft x $.36=3.13 \mathrm{Ft}$
LOW TIDE time: $0939+36 \mathrm{~min}=1015$
LOW TIDE height $1 \mathrm{ft} x .36=.36 \mathrm{Ft}$
(charted depth) CD $=14$ Ft (from navigation chart)
CD 14 + ADJ High Tide 3.13 Ft = 17.13 ft HIGH TIDE
CD 14 + ADJ Low Tide 0.36 Ft $=14.23$ Ft LOW TIDE

STEP 7

DETERMINE DIFFERENTIALS for TIDE RANGE and TIDE DURATION (TIME)
HIGH TIDE HEIGHT - LOW TIDE HEIGHT = TIDE RANGE
HIGH TIDE TIME - LOW TIDE TIME = TIDE DURATION
EXAMPLE:
DURATION OF TIDE: Tide Time Differential 1015-0438 = 5 hours 37 min
Tlde Height Differential 17.13 Ft - 14.23 Ft = 2.9 Ft

STEP 8

FIND Differential between our ETA and the nearest TIDE
EXAMPLE:
Original ETA: 0914
Closest Tide: 1015 (LOW Tide)
DIFFERENTIAL BETWEEN OUR ETA ARRIVAL and CLOSEST TIDE: 1 hour

STEP 9

USING TABLE 3

Find TNT - TIme to Nearest Tide (TIME DIFFERENCE) follow that COLUMN down until you find RANGE OF TIDES that cloest match our TIDE RANGE.
Using TIDE DURATION in table 3, follow row until you find the closest matched duration.
Note that cross referenced CORRECTION IN HEIGHT
IF nearest tide is HIGH TIDE subtract the CORRECTION IN HEIGHT to HIGH TIDE IF nearest tide is LOW TIDE add the CORRECTION IN HEIGHT to LOW TIDE

USING THE CLOSEST TIDE TO OUR PLANNED TIME you now have the Tide Height at the planned location and planned time.

Some extrapoliation is required here:

EXAMPLE:
DIFFERENTIAL BETWEEN OUR ARRIVAL and CLOSEST TIDE: 1 hour DURATION OF TIDE: 5.5 Hours (5 hrs 37 min)

RANGE OF TIDE: 2.9 Ft

CORRECTION FACTOR from table: . 2

LOW TIDE 14.23 + . 2 = 14.42 Ft
Answer: 14.42 Ft at 0914 on COT 28, 1983 at DENNIS PORT

DETERMINING CURRENT AT A GIVEN LOCATION AND TIME

STEP 1

Document Know information including DATE, TIME, PLANNED LOCATION (SUBSTATION), PLANNED ARRIVAL TIME (ETA)
THEN FIND THE INDEX NUMBER for the SubStation (planned Icoation)
EXAMPLE:
FInd the current at BARNSTABLE HARBOR -
SubStation: (Planned location) :1251
Date: APRIL 3, 1983 at 13:43 EST
Time: 0914 EST

STEP 2

Goto TABLE 2 - find the INDEX number (planned location) and document the following:

EXAMPLE:
MINIMUM (SLACK WATER) BEFORE FLOOD
FLOOD (max FLOOD)
MINIMUM BEFORE EBB
EBB (Max EBB)
SPEED RATIO - (multiple) FLOOD max
SPEED RATIO - (multiple) EBB max
+19 minutes

+ 58 minutes
+ 22 minutes
+ 29 minutes
X 1.1
X1.0

STEP 3

Document the following from TABLE 2

SPEED RATIO (multiplier) and DIRECTIONS (directions are in DEGREES)

MINIMUM BEFORE FLOOD
FLOOD (max FLOOD)
MINIMUM BEFORE EBB
EBB (Max EBB)

STEP 4
FInd the REFERENCE STATION at the top of the page and go to TABLE 1

EXAMPLE:

REFERENCE STATION for Barnstable Harbor is BOSTON

STEP 5

Using table 1 FIND THE TWO TIDES THAT OCCUR BEFORE and AFTER OUR ETA DOCUMENT the following:

SLACK WATER (Minimum) TIME MAXIMUM CURRENT TIME (Flood) SLACK WATER (Minimum) TIME MAXIMUM CURRENT TIME (Ebb) VELOCITY (Kts) (note E = Ebb F=Flood) (SLACK WATER $=$ minimum current)

EXAMPLE:
SLACK WATER TIME
MAX CURRENT TIME

ETA
SLACK WATER TIME
MAX SURRENT TIME

SPEED FLOOD max

1.1 F SPEED EBB max

STEP 6

ADD the TIME DIFFERENCE for the selected SUBSTATION (our planned location) to TIME AT REFERENCE STATION
MULTIPLY the SPEED RATION from the SUBSTATION to the SPEED AT REFERENCE STATION
NOTE: YOU MUST add or SUBTRACK Times as listed (- or +) and MULTIPLE RATIOS for SPEED

EXAMPLE:

STATION	Min before Flood	Max Flood	Min before Ebb		Max Ebb	Speed Flood	Speed Ebb
BOSTON (Reference)	$9: 22$	$12: 37$	$15: 10$	$19: 35$	1.1	1.1	
Barnstable Harbor (dest)	19	58	22	29	1.1	1.2	
	$9: 41$	$13: 35$	$15: 32$	$20: 04$	1.2	1.3	
	time	time	time	time	Kts	Kts	

STEP 7

Bracket OUR time between the two times that are closest
NOTE: For direction of CURRENT: IF START at Flood use FLOOD direction, if START at ebb use EBB direction

EXAMPLE:
MAX FLOOD 13:35 selected
Original ETA: 13:43
MIN BEFORE FLOOD 15:32 selected
DIRECTION OF CURRENT from Table 2
$\begin{array}{ll}\text { FLOOD } 192 \text { degrees } \\ \text { EBB } & 004 \text { degrees }\end{array}$
EBB 004 degrees
Therefore: Direction will be 192 degrees upon arrival.

STEP 8

Go to TABLE 3 VELOCITY OF CURRENT AT ANY TIME

Determine DIfferential time between SLACK and MAX
Determine Differential time between SLACK and OUR ETA
Using closest available numbers (EXTRAPOLIATION IS REQUIRED HERE)
CROSS REFERENCE to find correction factor
multply the CORRECTION FACTOR and the SELECTED MAX CURRENT SPEED

EXAMPLE:
DIFF between Slack and MAX: \quad Slack 15:32 Maximun Flood 13:35 = 1 hr 57 min
DIFF between Slack and our ETA: Slack 15:32 Our ETA: 13:43 = 1. hr 49 min

STEP 9
MULTIPLE
CORRECTION FACTOR (step 8) X MAX FLOOD VELOCITY (from step 6) to get SPEED of CURRENT at our ETA

EXAMPLE:
Our original ETA: 13:43
Correction factor 1.0 X Maximum Flood Speed 1.2 Kts = 1.2 kts
(Use direction of current from step 7) Flood current direction 192 degrees

Therefore:
At our arrival to Barnstable Harbor on April 3, 1983 at 13:43 EST the direction of the current will be 192 degrees at a speed of 1.2 Kts.

