Navigation Notes:
The following are notes, hints, and help for you while sailing and for basic assistance Navigation that i've compiled. READ THE USCG REGS, COLREGS, and other appropriate NAVIGATION guides.

There are SIX basic Navigation types:

- Dead Reckoning (DR) - used to determine on going DR position from a know starting point using time, speed, distance... sometimes also taking Set \& Drift as well as Leeway into account.
- Piloting - Navigation in Restricted Waters using frequent or constant determination of position relative to geographic and hydrographic features.
- Celestrial Navigation - invloves using a sextant and angles/lines of position of stars and sun with tables, almanacs, or programs.
- Radio Navigation - Navigation using Radio Waves to determine position via various electronic devices.
- RADAR Navigation - navigation utilizing RADAR to determine distance, bearing, whose position in nown (RADAR is also used for collision avoidance)
- Satellite Navigation - using radio signals for satellites, with ground based correction at times, to determine position, speed, heading, etc

Some Acronyms

- CTS - Course To Steer
- COG - Course Over Ground
- SOG - Speed Over Ground
- HDG - Heading
- HDM - Heading Magnetic
- HDT - Heading True
- BWC - Bearng \& Distance to Waypoint
- BWW - Bearing Waypoint to Waypoint
- CTW - Course Through Water
- DPT - Depth of Water
- PSC - Per Standard MAgnetic Compass or Per Steering Compass
- SMG - Speed Made Good
- CMG - Course Made Good
- TMG - Track Made Good
- ETA - Estimate Time of Arrival
- ETD - Estimated Time of Departure
- LOP - Line of Position
- MB - Maneuvering Board
- RADAR - RAdio Direction And Range finder
- PPI - Planned Position Indicator
- MRM - Measurement of Relative Movement
- DRM - Direction of Relative Movement
- SRM - Speed of Relative Movement
- EBL - Elecronic Bearing Line
- CPA - Closest Point of Approach
- CE - Compass Error
- C - Compass reading
- CH - Compass Heading
- D - Deviation
- M - Magnetic
- TH or T - True heading
- BRG or B - Bearing
- G - Gyrocompass heading
- GE - Gyrocompass Error
- PGC - Per Gyro Compass
- DR - Dead Reckoning
- C/A - Course provided by GPS in civilian mode
- CBDR - Constant Bearing Decreasing Range
- AP - Assumed Position
- EPIRB - Electronic Position Indicating Radio Beacon
- GMT - Greenwich Mean Time
- INMARSAT - International Maritime Satellite Organization
- AIS - Automated Information System
- DGLONASS - Differential Globalnaya Navigazionnaya Sputnikovaya Sistema
- GLONASS - Globalnaya Navigazionnaya Sputnikovaya Sistema (RUS) (GLObal NAvigation Satellite System
- GPS - Global Positioning System (US)
- DR - Dead Reckoning
- DRcor - Dead Reckoning corrected Position
- WAAS - Wide Area Augmentation System to GPS
- XTE - Cross Track Error
- VTG - Track Made Good and Ground Speed
FIVE Types of Buoys maintained by the USCG
- Lateral marks - indicate port and starboard sides of a channel (IALA lateral marks are similar)
- Isolated danger marks - erected on, or moored near a specific danger
- Safe Water marks - indicates navigable water around the mark.
- Special marks - Indicates special area, or feature like ODAS buoys, ttraffic seperation, Spoil grounds, military zones, cables, pipelines, ecreational marks.
- Information Regulatory marks - marks that designate specific data such as speed limints, etc.

There is a 6th type within the IALA Cardinal Marks.

- Cardinal Marks - marks that are associated with the compass to inform mariners as to best / safest navigatble direction.

Buoys / Markers

NAV Lights / Sound Signals

Order	Vessel	day mark	mast lights	sound bell and/or gong - limited visibility	sound horn limited visibility (optional) (2 min intervals)	Special Notes	OTHER NOTES
	Anchored	\bullet	0 soc white light if over 50 m	$<100 \mathrm{~m} 5 \mathrm{sec}$ bell $>100 \mathrm{M} 5 \mathrm{sec}$ bell 5 sec gong (1 min interval)	warning		$<20 \mathrm{M}$ in special anchorage do not need to signal at anchor
Nuc	NOT under COMMAND	\bullet			warning		>100M add DECK lights at anchor
AGROUND	AGROUND	$\stackrel{+}{\bullet}$		<100m 3 bell (taps) then 5 sec ringing, then 3 taps, $>100 \mathrm{M}+5 \mathrm{sec}$ gong (2 min interval)	warning		short blast - 1 sec Long blast 4-6 sec
MINE	MINE SWEEPING	$\bullet \bullet$	\because				all around light 360° mast head 225 Stem light 135° Towing 135°
RAM	RESTRICTED in ability to MANEUVER		\bigcirc		warning		flashing 120 puise $/ m i n$ flashing $80-70$ puises/inin foelow) (intiand on targef)
dredge	dredge	98	$\bigcirc \bigcirc$				LEAVING DOCK \qquad Reverse Ops Danger/in doubt rounding a bend \qquad rounding a bend \qquad limited visibility \qquad -
	FISHING	$\boldsymbol{P}_{\text {gear our > } 150 \mathrm{~m}} \boldsymbol{A}$			warning	puising yelow for Purse Seiner style net	(COLREGS) meet: alt course to starboard
Fishina	trawler		0		warning	O O \bullet $\mathrm{O}_{\text {set }}$ $\ominus_{\text {haul }}$ ${ }_{\text {obstruction }}$	(COLREGS) meet: alt course to port
TOW	TOWING (Short)		$\begin{aligned} & 0 \\ & 0 \end{aligned}$		warning	short tow <200M stern yellow tow light	(COLREGS) overtake you on your starboard:
	TOWING (Long)		$\begin{array}{cc} \hline 0 & \\ 0 & 0 \\ 0 & \text { iftog }>50 \mathrm{~m} \end{array}$		warning	long tow >200M stern yellow tow light	(COLREGS) overtake you on your port
CBD	Constrained by draft		\bigcirc		warning	COLREGS only	(COLREGS) accepted
SAIL	SAILBOAT (under SAIL)				warning	top of mast $>20 \mathrm{~m}$	(COLREGS) not accepted/danger - ○○ -
POWER	SAILBOAT (under MOTOR SAIL)	∇	$)^{\text {stamming light }}$		warning	top of mast $>20 \mathrm{~m}$	(INLAND) meet: leave you to my port side
	Power boat		0 stesming light		warning making way not making way	additional white mast light if over 50M	(INLAND) meet: leave you to my starboard side
	Pilot Boat		\bigcirc		warning making way not making way -•••	- ${ }^{\circ}{ }^{\circ}$ piot boat ID signal - on duty	(INLAND) overtake you on your starboard on your port side
							do not impede crossing narrow channel RULE 9

General Lights

TOWING VESSEL and BARGES/Vessles being towed TOW LIGHTS

WHEN NOT TOWING
Vessel requires standard running lights when $<50 \mathrm{M}$ red/green forward / mast light / stern light Vessel requires standard running lights when $>50 \mathrm{M}$ red/green forward / mast light / stern light / range lights

NOTE: on above graphics, 3 in line towing lights (2 or 3) are not required when NOT Towing.

Towing (tow vessel >50M) Tow <200M

PUSHING - INTL

PUSHING - INLAND (<200 M)

INLAND

Wide barges with breath (width) over 25M must have a white all around light at each rorner large barges/vessels with length more than 100M must have white light on each side every 100M

GEOGRAPHIC RANGE TABLE

The following table gives the approximate geographic range of visibility for an object which may be seen by an observer at sea level. It is necessary to add to the distance for the height of any object the distance corresponding to the height of the observer's eye above sea level.

Height	Distance	Height	Distance	Height	Distance
Feet / Meters	Nautical Miles (NM)	Feet / Meters	Nautical Miles (NM)	Feet / Meters	Nautical Miles (NM)
5/1.5	2.6	70/21.3	9.8	250/76.2	18.5
10/3.1	3.7	75/22.9	10.1	300/91.4	20.3
15/4.6	4.5	80/24.4	10.5	350/106.7	21.9
20/6.1	5.2	85/25.9	10.8	400/121.9	23.4
25/7.6	5.9	90/27.4	11.1	450/137.2	24.8
30/9.1	6.4	95/29.0	11.4	500/152.4	26.2
35/10.7	6.9	100/30.5	11.7	550/167.6	27.4
40/12.2	7.4	110/33.5	12.3	600/182.9	28.7
45/13.7	7.8	120/36.6	12.8	650/198.1	29.8
50/15.2	8.3	130/39.6	13.3	700/213.4	31.0
55/16.8	8.7	140/42.7	13.8	800/243.8	33.1
60/18.3	9.1	150/45.7	14.3	900/274.3	35.1
65/19.8	9.4	200/61.0	16.5	1000/304.8	37.0
Example: Determine the geographic visibility of an object, with a height above water of 65 feet, for an observer with a height of eyeof 35 feet.				Enter above table;	
				Height of object 6	eet $=\quad 9.4 \mathrm{NM}$
				Height of observe	feet $=\quad 6.9 \mathrm{NM}$
				Computed geogra	c visibility=16.3 NM

CODE	Weather	VISIBILITY Distance
0	DENSE FOG	less than 50 yards
1	THICK FOG	$50-200$ yards
2	MODERATE FOG	$200-500$ yards
3	LIGHT FOG	$500-1000$ yards
4	THIN FOG	$1 / 2$ to 1 NM
5	HAZE	$1-2$ NM
6	LIGHT HAZE	$2-51 / 2 \mathrm{NM}$
7	CLEAR	$51 / 2-11 \mathrm{NM}$
8	VERY CLEAR	$11-27 \mathrm{NM}$
9	EXCEPTIONALLY CLEAR	$27+\mathrm{NM}$

Weather, Charting, Tides

Compass

TRUE NORTH

The Distance a ship runs on the same course to DOUBLE the angle of bearing on an object EQUALS it's distance away from the object at the time of the second bearing.

ONLY PLOT TRUE BEARINGS.. Then convert to Compass Bearing.

SPEED = DISTANCE / TIME DISTANCE = SPEED X TIME
 TIME = DISTANCE / SPEED

SET = Dlrection of Current
DRIFT = Speed of Current
LEEWAY = wind acting on Ship

TRUE - TRUE BEARING
VARIATION - MAGNETIC VARIATION FROM CHART or other upto date info
MAGNETIC - ACTUAL MAGNETIC BEARING
DEVIATION - change in magnetic field local to compass
COMPASS - COMPASS BEARING

DETERMINING COURSE TO STEER

compensating for set and drift
example
boat speed: 5 Kts you want to sail Due East 90* TRUE Current is setting 210* T at 2 Kts drift
Leeway of 3^{\star} from wind

New Channel Number	Old Channel Number	Ship Transmit MHz	Ship Receive MHz	Use
1001	01A	156.050	156.050	Port Operations and Commercial, VTS. Available only in New Orleans / Lower Mississippi area.
1005	05A	156.250	156.250	Port Operations or VTS in the Houston, New Orleans and Seattle areas.
06	06	156.300	156.300	Intership Safety
1007	07A	156.350	156.350	Commercial. VDSMS
08	08	156.400	156.400	Commercial (Intership only). VDSMS
09	09	156.450	156.450	Boater Calling. Commercial and Non-Commercial. VDSMS
10	10	156.500	156.500	Commercial. VDSMS
11	11	156.550	156.550	Commercial. VTS in selected areas. VDSMS
12	12	156.600	156.600	Port Operations. VTS in selected areas.
13	13	156.650	156.650	Intership Navigation Safety (Bridge-to-bridge). Ships $>20 \mathrm{~m}$ length maintain a listening watch on this channel in US waters.
14	14	156.700	156.700	Port Operations. VTS in selected areas.
15	15	--	156.750	Environmental (Receive only). Used by Class C EPIRBs.
16	16	156.800	156.800	International Distress, Safety and Calling. Ships required to carry radio, USCG, and most coast stations maintain a listening watch on this channel. See our Watchkeeping Regulations page.
17	17	156.850	156.850	State \& local govt maritime control
1018	18A	156.900	156.900	Commercial. VDSMS
1019	19A	156.950	156.950	Commercial. VDSMS
20	20	157.000	161.600	Port Operations (duplex)
1020	20A	157.000	157.000	Port Operations
1021	21A	157.050	157.050	U.S. Coast Guard only
1022	22A	157.100	157.100	Coast Guard Liaison and Maritime Safety Information Broadcasts. Broadcasts announced on channel 16.
1023	23A	157.150	157.150	U.S. Coast Guard only
24	24	157.200	161.800	Public Correspondence (Marine Operator). VDSMS
25	25	157.250	161.850	Public Correspondence (Marine Operator). VDSMS
26	26	157.300	161.900	Public Correspondence (Marine Operator). VDSMS
27	27	157.350	161.950	Public Correspondence (Marine Operator). VDSMS
28	28	157.400	162.000	Public Correspondence (Marine Operator). VDSMS
1063	63A	156.175	156.175	Port Operations and Commercial, VTS. Available only in New Orieans / Lower Mississippi area.
1065	65A	156.275	156.275	Port Operations
1066	66 A	156.325	156.325	Port Operations
67	67	156.375	156.375	Commercial. Used for Bridge-to-bridge communications in lower Mississippi River. Intership only.
68	68	156.425	156.425	Non-Commercial. VDSMS
69	69	156.475	156.475	Non-Commercial. VDSMS
70	70	156.525	156.525	Digital Selective Calling (voice communications not allowed)
71	71	156.575	156.575	Non-Commercial. VDSMS
72	72	156.625	156.625	Non-Commercial (Intership only). VDSMS
73	73	156.675	156.675	Port Operations
74	74	156.725	156.725	Port Operations
77	77	156.875	156.875	Port Operations (Intership only)
1078	78A	156.925	156.925	Non-Commercial. VDSMS
1079	79A	156.975	156.975	Commercial. Non-Commercial in Great Lakes only. VDSMS
1080	80A	157.025	157.025	Commercial. Non-Commercial in Great Lakes only. VDSMS
1081	81A	157.075	157.075	U.S. Government only - Environmental protection operations.
1082	82A	157.125	157.125	U.S. Government only
1083	83A	157.175	157.175	U.S. Coast Guard only
84	84	157.225	161.825	Public Correspondence (Marine Operator). VDSMS
85	85	157.275	161.875	Public Correspondence (Marine Operator). VDSMS
86	86	157.325	161.925	Public Correspondence (Marine Operator). VDSMS
87	87	157.375	157.375	Public Correspondence (Marine Operator). VDSMS
88	88	157.425	157.425	Commercial, Intership only. VDSMS
AIS 1	AIS 1	161.975	161.975	Automatic Identification System (AIS)
AIS 2	AIS 2	162.025	162.025	Automatic Identification System (AlS)

MAYDAY PROCEDURE

MAYDAY PROCEDURE

1. Ensure radio is switched on (turn VOL knob)
2. Lift red DISTRESS cover and press button ONCE
3. Press the ENT key, then use arrows to select nature of distress (fire, sinking, MOB etc.) followed by ENT key
4. Press and hold red DISTRESS key until alert is sent (approx. 5 secs)
5. Wait 15 secs, select Channel 16 and high power (H / L key on mic)
6. Hold down PTT button on mic and send the voice message on the right, slowly and clearly

MAYDAY, MAYDAY, MAYDAY

THIS IS YACHT LYSBETH, LYSBETH, LYSBETH
CALL SIGN 2GYL8 MMSI 235101558
MAYDAY YACHT LYSBETH CALL SIGN 2GYL8 MMSI 235101558
MY POSITION IS (distance and bearing from charted feature or lat/long position read from GPS)

NATURE OF DISTRESS (man overboard, fire, sinking etc.)
WE REQUIRE IMMEDIATE ASSISTANCE
NUMBER OF PERSONS ON BOARD
ANY OTHER INFORMATION (abandoning to liferaft etc.)
OVER
Release the PTT button and await a reply. If this message is not responded to promptly, repeat the above procedure

TURNING

- ADVANCE - Distance gained toward a direction of the original course AFTER the rudder is put over.
- TRANSFER - distance gained at RIGHT ANGLES to the original path of the boat when a 180^{*} turn is completed.
- STANDARD RUDDER - normal rudder angle to turn boat in a prescripbed diameter
- FINAL DIAMETER - diamter of a complete circle
- DRIFT ANGLE - Angle at any point on a turning circle between intersection if a tagent point and the boats keel
- KICK - Momentary turn of a boats stern outward when initiating a turn
- PIVOT POINT - point where the boat piviots around (About $1 / 3$ of the way aft from the bow)

DOCKING INTO A CURRENT

- DOCKING INTO A CURRENT V1. (PORT SIDE TO) - tie off a spring line about $1 / 4$ of the way aft. ease the bow toward the dock. tie off the spring line further aft. Ease into the dock with light touch in forward and with hard right rudder. The boat stern will settle to the dock.
OR
- DOCKING INTO A CURRENT V2. (PORT SIDE TO) (If more room is available) - tie off a spring line about $1 / 4$ of the way aft. ease the bow toward the dock. tie off the spring line on the dock ahead of the boat. . Ease into the dock with Iquick KICK in forward and with hard right rudder. The boat stern will settle to the dock.

If docking to Starboard, use hard LEFT rudder.

DOCKING WITH A CURRENT (required more room than against current)

- DOCKING INTO A CURRENT V1. (PORT SIDE TO) - tie off a spring line about $1 / 4$ of the way aft. ease the bow toward the dock. tie off the spring line further aft. Ease into the dock with light touch in forward and with hard right rudder. The boat stern will settle to the dock with the help of the current.
OR
- DOCKING INTO A CURRENT V2. (PORT SIDE TO) (If more room is available) - tie off a spring line about $1 / 4$ of the way aft. ease the bow toward the dock. tie off the spring line on the dock ahead of the boat. . Ease into the dock with Iquick KICK in forward and with hard right rudder. The boat stern will settle to the dock. Let Current help move you forward.

If docking to Starboard, use hard LEFT rudder.

DEPARTING FROM DOCK

back with left rudder with a forward spring line. Stern will turn out away, Wait for boat to have a relativly steep angle and let go the spring backing away from the dock, and shift rudder to amidships.

FIRE FIGHTING

Fire Classification Ratings:

Class A:	Used for all combustible solid materials; wood, paper, cloth, rubber and some plastics
Class B:	Used on flammable liquids including grease, oil, gasoline, kerosene, and other flammable liquids
Class C:	Used on fires in "live" electrical equipment
Class D:	Used on combustible metals

CLASS A - paper, wood, cloth, plastic
CLASS B - oil, gas, grease
CLASS C - electrical

- extinguish with WATER
- extinguish with DRY CHEMICAL
- extinguish with CO2, DRY CHEMICAL

CLASS D - potassium, sodium, zync, magnesium - require specialized agents

For the galley it is also advisable to have a FIRE BLANKET to assist in extungishing a small Gally fire.

Kidde 10 B-C Marine FIre Extinguisher is a good choice

Vessel length	Number of fixed systems	With approved fixed systems
Less than 26'	1 B-I	0
26' to less than 40'	2 B-I or 1-BII	1 B-I
40^{\prime} to 65'	3 B-I or 1 B-II and 1 B-I	2 B-I or 1 B-II

STABILITY

G - CENTER OF GRAVITY

KG or VCG - Height of CENTER OF GRAVITY is measured from the keel (Baseline) (KG Keel Gravity) (Vertical Center of Gravity) MOST IMPORTANT

TCG - Transverse (so many feet Port or Starboard of centerline) (CENTERLINE to PORT or CENTERLINE to STARBOARD)

LCG - Longitudial Center of Gravity - from center of gravity to STERN
As KG (VCG) increases, Stability decreases. Boat becomes "topheavy" G moves toward the added weight.

As KG (VCG) decreases, Stability increases. Weight is lower. "G moves toward the added weight. in this case it drops down.

G will always move toward loaded weight, and away from off loaded weight,
G will always move in the opposite directon of shifted weight. Weight shits forward, G moves aft. Weight shifts down to port, G shifts up and to starboard.

G moves down - KG decreases TCG stays the same VCG stays the same G moves up - KG increaes TCG stays the same VCG stays the same G moves forward - KGstays the same TCG increases VCG stays the same

Free surface liquids decrease stability as they slosh around.
Free surface liquids in a tank affects the boat as if G in the tank has moved up increasing KG and reducing Stability.

- Vessel with long rolling period (time to complete a roll) is said to be "TENDER" or "CRANK"
- Vessel with short rolling period is said to be "STIFF"
- Vessels that do not return to upright have NEGITIVE Stability
- Shape of a Vessel affects Stability along with weight and location of G
- Higher KG - Less stable
- Weight added to Vessel above G will make a vessel less stable

B - Bouyancy acts in the opposite direction as Gravity (geometric center of the underwater portion of vessel)

KB or VCB - Center of Bouyance - measured from Keel
LCB - Fore and Aft location (Longitudial)
Once load is stable KG won't move. But B moves with every roll. pitch, heel, trim, draft change etc \mathbf{B} will always move toward the LOW section of the boat.

When a boat is properly balanced or liaded G and B are in line and equal. As the vessel is rolled to one side by wind or waves, G stays in the center and B shifts to the low side trying to push the boat back to center.

RIGHTING ARM CURVE

The HORIZONTAL distance between \mathbf{G} and \mathbf{B}
GZ GZ is the RIGHTING LEVER or RIGHTING ARM
The displacement (weight) of the vessel) X the Length (distance) of $\mathbf{G Z}=$ RIGHTING MOMENT (or RIGHTING ARM)

The LONGER GZ (longer RIGHTING ARM) the greater the RIGHTING MOMENT or Rlighting energy.

NOTE:
The LOWER the position of G (Center of Gravity) the more Righting Arm is INCREASED The HIGHER the position of G (Center of Gravity) the more Righting Arm is DECREASED

RIGHTING ARM will increase at first as a Vessel rolls... IF the vessel rolls too far over GZ starts to decrease as the CENTER OF GRAVITY lines up with B (Center of Bouyance) the Vessel has NEUTRAL STABILITY and is in danger of rollin over.

T-ROLLING PERIOD (in seconds) indicates Stability
$\mathrm{T}=.44 \times$ (Beam in feet) / Squareroot of GM (Metricentre height)
GZ (Righting Moment) = Displacement X GZ (righting arm length)

METACENTER HEIGHT - GM DISTANCE from \mathbf{G} to \mathbf{M} (Center of gravity to MeterCenter A line drawn upward from B (Center of Gravity) is called the METACENTER - M

The larger GM (distance between G and M) the longer GZ becomes increasing the Righting Moment. If G (center of gravity) was above M (Metacenter) we would have a negitive Righting Arm G MUST ALWAYS BE KEPT BELOW M

KM - Dlstance from \mathbf{K} (Keel) to \mathbf{M} (Metacenter) is the HEIGHT OF THE METACENTER GM - Dlstance from G (Center of Gravity) to M (Metacenter)

SOME ADDITIONAL LIGHT INFO

Ahead, day signs

Ahead

Astern

Dredging or underwater operations, longer than 50 m , making way

Restricted in her ability to manoeuvre, making way through the water, longer than 50 m

Pilot boat, shorter than 50 m

Abeam, starboard side

Ahead

READING TIDE TABLES

Determining Tide at a given location and time:

STEP 1

Document Know information including CHARTED DEPTH (CD), DATE, TIME, PLANNED LOCATION (SUBSTATION)

EXAMPLE:
FInd the water depth at DENNIS PORT on OCT 28, 1983 at 0914 EST
Date: OCT 28, 1983
Time: 0914 EST
SubStation: Dennis Port (Planned location)
CHARTED DEPTH (CD) 14 Ft

STEP 2

Locate Tide differences by finding closest location (substation) number in INDEX for TABLE 2

EXAMPLE:
SubStation: Dennis Port index number : 1027

STEP 3

Document Differences noted in TABLE 2 for time/date of planned location
HIGH TIDE DIFFERENTIAL TIME and HIGH TIDE DIFFERENTIAL IN FT (including + - or *)
LOW TIDE DIFFERENTIAL TIME and LOW TIDE DIFFERENTIAL IN FT (including + - or *)
EXAMPLE:
High Water time differential: +1 01 (1 hour and 1 min)
High Water height differential: *. 36 (* means to multiple) . 36 ft
Low Water time differential: +0 36 (36 minutes)
Low Water height differential: *. 36 (* means to multiple) . 36 ft
Reference Station: BOSTON (top of page)

STEP 4

Go to top of TABLE 2 PAGE Selected for planned location (substation) and Find REFERENCE STATION at top.
Go to REFERENCE STATION in table 1
EXAMPLE:
Reference Station: BOSTON (top of page)

STEP 5

FIND REFERENCE STATION, DATE, TIME
Note and Document CLOSEST HIGHT and LOW TIDES to planned original time
(original time should be between the two tides)
DOCUMENT the two tide informamation
HIGH TIDE TIME and HEIGHT
LOW TIDE TIME and HEIGHT
EXAMPLE:
Reference Station: BOSTON
DATE: OCT 28, 1983
ETA: 0914
Find the tides before and after:
Bracket 0914 between two tides:
HIGH TIDE time: 0337
HIGH TIDE height: + 8.7 ft
LOW TIDE time: 0939
LOW TIDE height + 1 ft

STEP 6

DETERMINE ADJUSTED TIDE TIMES for planned Location (nearest substation)
ADD Time differential to HIGH and LOW TIDES
DETERMINE CORRECTED TIDE HEIGHTS for planned location \& time
(using + - or (* multiply)) add, subtract or multiply the HIGH and LOW TIDES for the REFERENCE STATION with the Planned location DIFFERENTIALS

ADD THESE TO CD (Charted Depth) to find corrected HIGH and LOW TIDE HEIGHT
EXAMPLE:
HIGH TIDE time: 0337 + 1 hr 1min $=0438$
HIGH TIDE height: $8.7 \mathrm{ft} x .36=3.13 \mathrm{Ft}$
LOW TIDE time: $0939+36 \mathrm{~min}=1015$
LOW TIDE height $1 \mathrm{ft} x .36=.36 \mathrm{Ft}$
(charted depth) $C D=14 \mathrm{Ft}$
CD 14 + ADJ High Tide 3.13 Ft = 17.13 ft HIGH TIDE
CD 14 + ADJ Low Tide 0.36 Ft $=$ 14.23 Ft LOW TIDE

STEP 7

DETERMINE DIFFERENTIALS for TIDE RANGE and TIDE DURATION (TIME)
HIGH TIDE HEIGHT - LOW TIDE HEIGHT = TIDE RANGE HIGH TIDE TIME - LOW TIDE TIME = TIDE DURATION

EXAMPLE:
DURATION OF TIDE: Tide Time Differential 1015-0438 = 5 hours 37 min
Tlde Height Differential 17.13 Ft - 14.23 Ft = 2.9 Ft

STEP 8

FIND Differential between our ETA and the nearest TIDE

EXAMPLE:

Original ETA: 0914
Closest Tide: 1015 (LOW Tide)
DIFFERENTIAL BETWEEN OUR ETA ARRIVAL and CLOSEST TIDE: 1 hour

STEP 9

USING TABLE 3
Find TNT - TIme to Nearest Tide (TIME DIFFERENCE) follow that COLUMN down until you find RANGE OF TIDES that cloest match our TIDE RANGE.
Using TIDE DURATION in table 3, follow row until you find the closest matched duration.
Note that cross referenced CORRECTION IN HEIGHT
IF nearest tide is HIGH TIDE subtract the CORRECTION IN HEIGHT to HIGH TIDE IF nearest tide is LOW TIDE add the CORRECTION IN HEIGHT to LOW TIDE

USING THE CLOSEST TIDE TO OUR PLANNED TIME you now have the Tide Height at the planned location and planned time.

Some extrapoliation is required here:

EXAMPLE:
DIFFERENTIAL BETWEEN OUR ARRIVAL and CLOSEST TIDE: 1 hour DURATION OF TIDE: 5.5 Hours (5 hrs 37 min)

RANGE OF TIDE: 2.9 Ft

CORRECTION FACTOR from table: . 2

DETERMINING CURRENT AT A GIVEN LOCATION AND TIME

STEP 1

Document Know information including DATE, TIME, PLANNED LOCATION (SUBSTATION), PLANNED ARRIVAL TIME (ETA)
THEN FIND THE INDEX NUMBER for the SubStation (planned Icoation)
EXAMPLE:
FInd the current at BARNSTABLE HARBOR -
SubStation: (Planned location) :1251
Date: APRIL 3, 1983 at 13:43 EST
Time: 0914 EST

STEP 2

Goto TABLE 2 - find the INDEX number (planned location) and document the following:

EXAMPLE:
MINIMUM (SLACK WATER) BEFORE FLOOD
FLOOD (max FLOOD)
MINIMUM BEFORE EBB
EBB (Max EBB)
SPEED RATIO - (multiple) FLOOD max
SPEED RATIO - (multiple) EBB max
+19 minutes
+58 minutes

+ 22 minutes
+ 29 minutes
X 1.1
X1.0

STEP 3

Document the following from TABLE 2
SPEED RATIO (multiplier) and DIRECTIONS (directions are in DEGREES)
MINIMUM BEFORE FLOOD
FLOOD (max FLOOD)
MINIMUM BEFORE EBB
EBB (Max EBB)

STEP 4
FInd the REFERENCE STATION at the top of the page and go to TABLE 1

EXAMPLE:

REFERENCE STATION for Barnstable Harbor is BOSTON

STEP 5

Using table 1 FIND THE TWO TIDES THAT OCCUR BEFORE and AFTER OUR ETA DOCUMENT the following:

SLACK WATER (Minimum) TIME MAXIMUM CURRENT TIME (Flood) SLACK WATER (Minimum) TIME MAXIMUM CURRENT TIME (Ebb) VELOCITY (Kts) (note E = Ebb F=Flood) (SLACK WATER $=$ minimum current)

EXAMPLE:
SLACK WATER TIME
MAX CURRENT TIME

ETA
SLACK WATER TIME MAX SURRENT TIME

SPEED FLOOD max

1.1 F SPEED EBB max

STEP 6

ADD the TIME DIFFERENCE for the selected SUBSTATION (our planned location) to TIME AT REFERENCE STATION
MULTIPLY the SPEED RATION from the SUBSTATION to the SPEED AT REFERENCE STATION
NOTE: YOU MUST add or SUBTRACK Times as listed (- or +) and MULTIPLE RATIOS for SPEED

EXAMPLE:

STATION	Min before Flood	Max Flood	Min before Ebb		Max Ebb	Speed Flood	Speed Ebb
BOSTON (Reference)	$9: 22$	$12: 37$	$15: 10$	$19: 35$	1.1	1.1	
Barnstable Harbor (dest)	19	58	22	29	1.1	1.2	
	$9: 41$	$13: 35$	$15: 32$	$20: 04$	1.2	1.3	
	time	time	time	time	Kts	Kts	

STEP 7

Bracket OUR time between the two times that are closest
NOTE: For direction of CURRENT: IF START at Flood use FLOOD direction, if START at ebb use EBB direction

EXAMPLE:

MAX FLOOD 13:35 selected

Original ETA: 13:43
MIN BEFORE FLOOD 15:32 selected
DIRECTION OF CURRENT from Table 2
FLOOD 192 degrees
EBB 004 degrees
Therefore: Direction will be 192 degrees upon arrival.

STEP 8

Go to TABLE 3 VELOCITY OF CURRENT AT ANY TIME

Determine DIfferential time between SLACK and MAX
Determine Differential time between SLACK and OUR ETA
Using closest available numbers (EXTRAPOLIATION IS REQUIRED HERE)
CROSS REFERENCE to find correction factor multply the CORRECTION FACTOR and the SELECTED MAX CURRENT SPEED

EXAMPLE:
DIFF between Slack and MAX: \quad Slack 15:32 Maximun Flood 13:35 = 1 hr 57 min
DIFF between Slack and our ETA: Slack 15:32 Our ETA: 13:43 = 1. hr 49 min

STEP 9
MULTIPLE
CORRECTION FACTOR (step 8) X MAX FLOOD VELOCITY (from step 6) to get SPEED of CURRENT at our ETA

EXAMPLE:
Our original ETA: 13:43
Correction factor 1.0 X Maximum Flood Speed 1.2 Kts = 1.2 kts
(Use direction of current from step 7) Flood current direction 192 degrees

Therefore:
At our arrival to Barnstable Harbor on April 3, 1983 at 13:43 EST the direction of the current will be 192 degrees at a speed of 1.2 Kts.

