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PROLOGUE

A	FEW	YEARS	AGO	a	man	won	the	Spanish	national	lottery	with	a	ticket	that
ended	in	the	number	48.	Proud	of	his	“accomplishment,”	he	revealed	the	theory
that	 brought	 him	 the	 riches.	 “I	 dreamed	 of	 the	 number	 7	 for	 seven	 straight
nights,”	he	said,	“and	7	times	7	is	48.”1	Those	of	us	with	a	better	command	of
our	multiplication	tables	might	chuckle	at	the	man’s	error,	but	we	all	create	our
own	view	of	the	world	and	then	employ	it	to	filter	and	process	our	perceptions,
extracting	meaning	from	the	ocean	of	data	that	washes	over	us	in	daily	life.	And
we	often	make	errors	that,	though	less	obvious,	are	just	as	significant	as	his.

The	 fact	 that	human	 intuition	 is	 ill	 suited	 to	 situations	 involving	uncertainty
was	 known	 as	 early	 as	 the	 1930s,	 when	 researchers	 noted	 that	 people	 could
neither	 make	 up	 a	 sequence	 of	 numbers	 that	 passed	 mathematical	 tests	 for
randomness	 nor	 recognize	 reliably	 whether	 a	 given	 string	 was	 randomly
generated.	 In	 the	past	 few	decades	a	new	academic	 field	has	emerged	 to	study
how	 people	 make	 judgments	 and	 decisions	 when	 faced	 with	 imperfect	 or
incomplete	information.	Their	research	has	shown	that	when	chance	is	involved,
people’s	 thought	 processes	 are	 often	 seriously	 flawed.	 The	 work	 draws	 from
many	 disciplines,	 from	 mathematics	 and	 the	 traditional	 sciences	 as	 well	 as
cognitive	 psychology,	 behavioral	 economics,	 and	 modern	 neuroscience.	 But
although	such	studies	were	legitimated	by	a	recent	Nobel	Prize	(in	Economics),
their	lessons	for	the	most	part	have	not	trickled	down	from	academic	circles	to
the	 popular	 psyche.	 This	 book	 is	 an	 attempt	 to	 remedy	 that.	 It	 is	 about	 the
principles	that	govern	chance,	the	development	of	those	ideas,	and	the	manner	in
which	 they	play	out	 in	politics,	 business,	medicine,	 economics,	 sports,	 leisure,
and	other	areas	of	human	affairs.	It	is	also	about	the	way	we	make	choices	and
the	processes	that	lead	us	to	make	mistaken	judgments	and	poor	decisions	when
confronted	with	randomness	or	uncertainty.

Information	that	is	lacking	often	invites	competing	interpretations.	That’s	why
such	 great	 effort	 was	 required	 to	 confirm	 global	 warming,	 why	 drugs	 are
sometimes	declared	safe	and	then	pulled	from	the	market,	and	presumably	why



not	 everyone	 agrees	 with	 my	 observation	 that	 chocolate	 milkshakes	 are	 an
indispensable	 component	 of	 a	 heart-healthy	 diet.	 Unfortunately	 the
misinterpretation	of	data	has	many	negative	consequences,	both	large	and	small.
As	we’ll	see,	for	example,	both	doctors	and	patients	often	misinterpret	statistics
regarding	the	effectiveness	of	drugs	and	the	meaning	of	important	medical	tests.
Parents,	teachers,	and	students	misunderstand	the	significance	of	exams	such	as
the	 SAT,	 and	 wine	 connoisseurs	 make	 the	 same	 mistakes	 about	 wine	 ratings.
Investors	 draw	 invalid	 conclusions	 from	 the	 historical	 performance	 of	 mutual
funds.

In	sports	we	have	developed	a	culture	in	which,	based	on	intuitive	feelings	of
correlation,	a	team’s	success	or	failure	is	often	attributed	largely	to	the	ability	of
the	coach.	As	a	 result,	when	 teams	 fail,	 the	coach	 is	often	 fired.	Mathematical
analysis	of	firings	in	all	major	sports,	however,	has	shown	that	those	firings	had,
on	average,	no	effect	on	team	performance.2	An	analogous	phenomenon	occurs
in	 the	corporate	world,	where	CEOs	are	 thought	 to	have	superhuman	power	 to
make	or	break	a	company.	Yet	time	and	time	again	at	Kodak,	Lucent,	Xerox,	and
other	companies,	that	power	has	proved	illusory.	In	the	1990s,	for	instance,	when
he	ran	GE	Capital	Services	under	Jack	Welch,	Gary	Wendt	was	thought	of	as	one
of	the	smartest	businessmen	in	the	country.	Wendt	parlayed	that	reputation	into	a
$45	 million	 bonus	 when	 he	 was	 hired	 to	 run	 the	 troubled	 finance	 company
Conseco.	 Investors	 apparently	 agreed	 that	 with	Wendt	 at	 the	 helm,	 Conseco’s
troubles	 were	 over:	 the	 company’s	 stock	 tripled	 within	 a	 year.	 But	 two	 years
after	 that	Wendt	 abruptly	 resigned,	Conseco	went	bankrupt,	 and	 the	 stock	was
trading	for	pennies.3	Had	Wendt’s	 task	been	 impossible?	Was	he	 asleep	 at	 the
wheel?	Or	had	his	coronation	rested	on	questionable	assumptions—for	example,
that	 an	executive	has	a	near-absolute	 ability	 to	 affect	 a	 company	or	 a	person’s
single	past	success	is	a	reliable	indicator	of	future	performance?	On	any	specific
occasion	one	cannot	be	confident	of	 the	answers	without	examining	the	details
of	the	situation	at	hand.	I	will	do	that	in	several	instances	in	this	book,	but	more
important,	I	will	present	the	tools	needed	to	identify	the	footprints	of	chance.

To	swim	against	the	current	of	human	intuition	is	a	difficult	task.	As	we’ll	see,
the	 human	 mind	 is	 built	 to	 identify	 for	 each	 event	 a	 definite	 cause	 and	 can
therefore	 have	 a	 hard	 time	 accepting	 the	 influence	 of	 unrelated	 or	 random
factors.	And	so	the	first	step	is	to	realize	that	success	or	failure	sometimes	arises
neither	from	great	skill	nor	from	great	incompetence	but	from,	as	the	economist



Armen	 Alchian	 wrote,	 “fortuitous	 circumstances.”4	 Random	 processes	 are
fundamental	in	nature	and	are	ubiquitous	in	our	everyday	lives,	yet	most	people
do	not	understand	them	or	think	much	about	them.

The	 title	The	Drunkard’s	Walk	 comes	 from	 a	mathematical	 term	 describing
random	motion,	 such	 as	 the	paths	molecules	 follow	as	 they	 fly	 through	 space,
incessantly	bumping,	and	being	bumped	by,	their	sister	molecules.	That	can	be	a
metaphor	 for	 our	 lives,	 our	 paths	 from	 college	 to	 career,	 from	 single	 life	 to
family	 life,	 from	 first	 hole	 of	 golf	 to	 eighteenth.	The	 surprise	 is	 that	 the	 tools
used	to	understand	the	drunkard’s	walk	can	also	be	employed	to	help	understand
the	 events	 of	 everyday	 life.	 The	 goal	 of	 this	 book	 is	 to	 illustrate	 the	 role	 of
chance	in	the	world	around	us	and	to	show	how	we	may	recognize	it	at	work	in
human	affairs.	 I	hope	 that	 after	 this	 tour	of	 the	world	of	 randomness,	you,	 the
reader,	will	begin	to	see	life	in	a	different	light,	with	a	deeper	understanding	of
the	everyday	world.



CHAPTER	1

Peering	through	the	Eyepiece	of	Randomness

I	 REMEMBER,	 as	 a	 teenager,	 watching	 the	 yellow	 flame	 of	 the	 Sabbath
candles	dancing	randomly	above	the	white	paraffin	cylinders	that	fueled	them.	I
was	 too	 young	 to	 think	 candlelight	 romantic,	 but	 still	 I	 found	 it	 magical—
because	of	the	flickering	images	created	by	the	fire.	They	shifted	and	morphed,
grew	 and	waned,	 all	 without	 apparent	 cause	 or	 plan.	 Surely,	 I	 believed,	 there
must	 be	 rhyme	 and	 reason	 underlying	 the	 flame,	 some	 pattern	 that	 scientists
could	 predict	 and	 explain	 with	 their	 mathematical	 equations.	 “Life	 isn’t	 like
that,”	my	father	told	me.	“Sometimes	things	happen	that	cannot	be	foreseen.”	He
told	me	of	the	time	when,	in	Buchenwald,	the	Nazi	concentration	camp	in	which
he	was	 imprisoned	and	starving,	he	 stole	a	 loaf	of	bread	 from	 the	bakery.	The
baker	had	the	Gestapo	gather	everyone	who	might	have	committed	the	crime	and
line	 the	 suspects	 up.	 “Who	 stole	 the	 bread?”	 the	 baker	 asked.	 When	 no	 one
answered,	he	 told	 the	guards	 to	shoot	 the	suspects	one	by	one	until	either	 they
were	 all	 dead	 or	 someone	 confessed.	My	 father	 stepped	 forward	 to	 spare	 the
others.	He	did	not	try	to	paint	himself	in	a	heroic	light	but	told	me	that	he	did	it
because	he	expected	to	be	shot	either	way.	Instead	of	having	him	killed,	though,
the	 baker	 gave	my	 father	 a	 plum	 job,	 as	 his	 assistant.	 “A	 chance	 event,”	 my
father	said.	“It	had	nothing	to	do	with	you,	but	had	it	happened	differently,	you
would	never	have	been	born.”	 It	 struck	me	 then	 that	 I	have	Hitler	 to	 thank	for
my	 existence,	 for	 the	 Germans	 had	 killed	 my	 father’s	 wife	 and	 two	 young
children,	erasing	his	prior	life.	And	so	were	it	not	for	the	war,	my	father	would
never	have	emigrated	to	New	York,	never	have	met	my	mother,	also	a	refugee,
and	never	have	produced	me	and	my	two	brothers.

My	 father	 rarely	 spoke	 of	 the	war.	 I	 didn’t	 realize	 it	 then,	 but	 years	 later	 it
dawned	on	me	that	whenever	he	shared	his	ordeals,	it	was	not	so	much	because
he	wanted	me	to	know	of	his	experiences	but	rather	because	he	wanted	to	impart
a	larger	lesson	about	life.	War	is	an	extreme	circumstance,	but	the	role	of	chance



in	 our	 lives	 is	 not	 predicated	 on	 extremes.	 The	 outline	 of	 our	 lives,	 like	 the
candle’s	flame,	is	continuously	coaxed	in	new	directions	by	a	variety	of	random
events	that,	along	with	our	responses	to	them,	determine	our	fate.	As	a	result,	life
is	both	hard	to	predict	and	hard	to	interpret.	Just	as,	looking	at	a	Rorschach	blot,
you	might	see	Madonna	and	I,	a	duck-billed	platypus,	the	data	we	encounter	in
business,	law,	medicine,	sports,	the	media,	or	your	child’s	third-grade	report	card
can	be	read	in	many	ways.	Yet	interpreting	the	role	of	chance	in	an	event	is	not
like	intepreting	a	Rorschach	blot;	there	are	right	ways	and	wrong	ways	to	do	it.

We	often	employ	intuitive	processes	when	we	make	assessments	and	choices
in	 uncertain	 situations.	 Those	 processes	 no	 doubt	 carried	 an	 evolutionary
advantage	 when	 we	 had	 to	 decide	 whether	 a	 saber-toothed	 tiger	 was	 smiling
because	it	was	fat	and	happy	or	because	it	was	famished	and	saw	us	as	its	next
meal.	But	 the	modern	world	 has	 a	 different	 balance,	 and	 today	 those	 intuitive
processes	come	with	drawbacks.	When	we	use	our	habitual	ways	of	thinking	to
deal	with	today’s	tigers,	we	can	be	led	to	decisions	that	are	less	than	optimal	or
even	incongruous.	That	conclusion	comes	as	no	surprise	to	those	who	study	how
the	 brain	 processes	 uncertainty:	 many	 studies	 point	 to	 a	 close	 connection
between	 the	parts	of	our	brain	 that	make	assessments	of	 chance	 situations	 and
those	 that	 handle	 the	 human	 characteristic	 that	 is	 often	 considered	 our	 prime
source	of	 irrationality—our	 emotions.	Functional	magnetic	 resonance	 imaging,
for	 example,	 shows	 that	 risk	 and	 reward	 are	 assessed	 by	 parts	 of	 the
dopaminergic	 system,	 a	 brain-reward	 circuit	 important	 for	 motivational	 and
emotional	processes.1	The	 images	 show,	 too,	 that	 the	 amygdala,	which	 is	 also
linked	 to	 our	 emotional	 state,	 especially	 fear,	 is	 activated	 when	 we	 make
decisions	couched	in	uncertainty.2

The	mechanisms	by	which	people	analyze	situations	involving	chance	are	an
intricate	 product	 of	 evolutionary	 factors,	 brain	 structure,	 personal	 experience,
knowledge,	 and	 emotion.	 In	 fact,	 the	 human	 response	 to	 uncertainty	 is	 so
complex	 that	 sometimes	different	 structures	within	 the	brain	 come	 to	different
conclusions	 and	 apparently	 fight	 it	 out	 to	 determine	which	 one	will	 dominate.
For	example,	if	your	face	swells	to	five	times	its	normal	size	three	out	of	every
four	 times	 you	 eat	 shrimp,	 the	 “logical”	 left	 hemisphere	 of	 your	 brain	 will
attempt	to	find	a	pattern.	The	“intuitive”	right	hemisphere	of	your	brain,	on	the
other	 hand,	 will	 simply	 say	 “avoid	 shrimp.”	 At	 least	 that’s	 what	 researchers
found	 in	 less	 painful	 experimental	 setups.	 The	 game	 is	 called	 probability



guessing.	 In	 lieu	 of	 toying	 with	 shrimp	 and	 histamine,	 subjects	 are	 shown	 a
series	of	cards	or	 lights,	which	can	have	two	colors,	say	green	and	red.	Things
are	 arranged	 so	 that	 the	 colors	 will	 appear	 with	 different	 probabilities	 but
otherwise	without	 a	 pattern.	 For	 example,	 red	might	 appear	 twice	 as	 often	 as
green	 in	 a	 sequence	 like	 red-red-green-red-green-red-red-green-green-red-red-
red,	and	so	on.	The	task	of	the	subject,	after	watching	for	a	while,	is	to	predict
whether	each	new	member	of	the	sequence	will	be	red	or	green.

The	game	has	two	basic	strategies.	One	is	to	always	guess	the	color	that	you
notice	 occurs	 more	 frequently.	 That	 is	 the	 route	 favored	 by	 rats	 and	 other
nonhuman	 animals.	 If	 you	 employ	 this	 strategy,	 you	 are	 guaranteed	 a	 certain
degree	 of	 success	 but	 you	 are	 also	 conceding	 that	 you	 will	 do	 no	 better.	 For
instance,	 if	 green	 shows	 up	 75	 percent	 of	 the	 time	 and	 you	 decide	 to	 always
guess	green,	you	will	be	correct	75	percent	of	the	time.	The	other	strategy	is	to
“match”	your	proportion	of	green	and	red	guesses	to	the	proportion	of	green	and
red	you	observed	in	the	past.	If	the	greens	and	reds	appear	in	a	pattern	and	you
can	figure	out	the	pattern,	this	strategy	enables	you	to	guess	right	every	time.	But
if	 the	 colors	 appear	 at	 random,	 you	would	 be	 better	 off	 sticking	with	 the	 first
strategy.	 In	 the	case	where	green	randomly	appears	75	percent	of	 the	 time,	 the
second	strategy	will	lead	to	the	correct	guess	only	about	6	times	in	10.

Humans	usually	try	to	guess	the	pattern,	and	in	the	process	we	allow	ourselves
to	 be	 outperformed	 by	 a	 rat.	 But	 there	 are	 people	 with	 certain	 types	 of	 post-
surgical	brain	impairment—called	a	split	brain—that	precludes	the	right	and	left
hemispheres	of	the	brain	from	communicating	with	each	other.	If	the	probability
experiment	is	performed	on	these	patients	such	that	they	see	the	colored	light	or
card	 with	 only	 their	 left	 eye	 and	 employ	 only	 their	 left	 hand	 to	 signal	 their
predictions,	it	amounts	to	an	experiment	on	the	right	side	of	the	brain.	But	if	the
experiment	is	performed	so	as	to	involve	only	their	right	eye	and	right	hand,	it	is
an	experiment	on	the	left	brain.	When	researchers	performed	those	experiments,
they	 found	 that—in	 the	 same	 patients—the	 right	 hemisphere	 always	 chose	 to
guess	the	more	frequent	color	and	the	left	hemisphere	always	tried	to	guess	the
pattern.3

Making	wise	assessments	and	choices	in	the	face	of	uncertainty	is	a	rare	skill.
But	like	any	skill,	it	can	be	improved	with	experience.	In	the	pages	that	follow,	I
will	examine	the	role	of	chance	in	the	world	around	us,	the	ideas	that	have	been



developed	over	the	centuries	to	help	us	understand	that	role,	and	the	factors	that
often	lead	us	astray.	The	British	philosopher	and	mathematician	Bertrand	Russell
wrote,

We	all	start	from	“naive	realism,”	i.e.,	the	doctrine	that	things	are	what	they
seem.	We	 think	 that	grass	 is	green,	 that	 stones	 are	hard,	 and	 that	 snow	 is
cold.	 But	 physics	 assures	 us	 that	 the	 greenness	 of	 grass,	 the	 hardness	 of
stones,	 and	 the	 coldness	 of	 snow	 are	 not	 the	 greenness	 of	 grass,	 the
hardness	 of	 stones,	 and	 the	 coldness	 of	 snow	 that	 we	 know	 in	 our	 own
experience,	but	something	very	different.4	In	what	follows	we	will	peer	at
life	through	the	eyepiece	of	randomness	and	see	that	many	of	the	events	of
our	 lives,	 too,	 are	 not	 quite	 what	 they	 seem	 but	 rather	 something	 very
different.

IN	2002	THE	NOBEL	COMMITTEE	awarded	the	Nobel	Prize	in	Economics	to
a	scientist	named	Daniel	Kahneman.	Economists	do	all	sorts	of	things	these	days
—they	explain	why	teachers	are	paid	so	little,	why	football	teams	are	worth	so
much,	and	why	bodily	functions	help	set	a	limit	on	the	size	of	hog	farms	(a	hog
excretes	 three	 to	 five	 times	 as	much	 as	 a	 human,	 so	 a	 farm	with	 thousands	of
hogs	on	it	often	produces	more	waste	than	the	neighboring	cities).5	Despite	all
the	great	 research	generated	by	 economists,	 the	2002	Nobel	Prize	was	notable
because	Kahneman	is	not	an	economist.	He	is	a	psychologist,	and	for	decades,
with	 the	 late	 Amos	 Tversky,	 Kahneman	 studied	 and	 clarified	 the	 kinds	 of
misperceptions	of	randomness	that	fuel	many	of	the	common	fallacies	I	will	talk
about	in	this	book.

The	greatest	challenge	in	understanding	the	role	of	randomness	in	life	is	that
although	the	basic	principles	of	randomness	arise	from	everyday	logic,	many	of
the	 consequences	 that	 follow	 from	 those	 principles	 prove	 counterintuitive.
Kahneman	and	Tversky’s	studies	were	themselves	spurred	by	a	random	event.	In
the	 mid-1960s,	 Kahneman,	 then	 a	 junior	 psychology	 professor	 at	 Hebrew
University,	agreed	to	perform	a	rather	unexciting	chore:	lecturing	to	a	group	of
Israeli	 air	 force	 flight	 instructors	 on	 the	 conventional	 wisdom	 of	 behavior



modification	and	its	application	to	the	psychology	of	flight	training.	Kahneman
drove	 home	 the	 point	 that	 rewarding	 positive	 behavior	 works	 but	 punishing
mistakes	does	not.	One	of	his	students	interrupted,	voicing	an	opinion	that	would
lead	Kahneman	to	an	epiphany	and	guide	his	research	for	decades.6

“I’ve	 often	 praised	 people	 warmly	 for	 beautifully	 executed	maneuvers,	 and
the	 next	 time	 they	 always	 do	 worse,”	 the	 flight	 instructor	 said.	 “And	 I’ve
screamed	 at	 people	 for	 badly	 executed	maneuvers,	 and	 by	 and	 large	 the	 next
time	 they	 improve.	 Don’t	 tell	 me	 that	 reward	 works	 and	 punishment	 doesn’t
work.	 My	 experience	 contradicts	 it.”	 The	 other	 flight	 instructors	 agreed.	 To
Kahneman	 the	 flight	 instructors’	 experiences	 rang	 true.	 On	 the	 other	 hand,
Kahneman	 believed	 in	 the	 animal	 experiments	 that	 demonstrated	 that	 reward
works	better	than	punishment.	He	ruminated	on	this	apparent	paradox.	And	then
it	 struck	 him:	 the	 screaming	 preceded	 the	 improvement,	 but	 contrary	 to
appearances	it	did	not	cause	it.

How	can	that	be?	The	answer	lies	in	a	phenomenon	called	regression	toward
the	mean.	That	is,	in	any	series	of	random	events	an	extraordinary	event	is	most
likely	to	be	followed,	due	purely	to	chance,	by	a	more	ordinary	one.	Here	is	how
it	works:	The	student	pilots	all	had	a	certain	personal	ability	to	fly	fighter	planes.
Raising	 their	 skill	 level	 involved	many	factors	and	 required	extensive	practice,
so	although	their	skill	was	slowly	improving	through	flight	training,	the	change
wouldn’t	be	noticeable	from	one	maneuver	to	the	next.	Any	especially	good	or
especially	poor	performance	was	thus	mostly	a	matter	of	luck.	So	if	a	pilot	made
an	exceptionally	good	landing—one	far	above	his	normal	level	of	performance
—then	the	odds	would	be	good	that	he	would	perform	closer	to	his	norm—that
is,	worse—the	next	day.	And	if	his	 instructor	had	praised	him,	it	would	appear
that	 the	 praise	 had	 done	 no	 good.	 But	 if	 a	 pilot	 made	 an	 exceptionally	 bad
landing—running	 the	plane	off	 the	end	of	 the	 runway	and	 into	 the	vat	of	corn
chowder	in	the	base	cafeteria—then	the	odds	would	be	good	that	the	next	day	he
would	 perform	 closer	 to	 his	 norm—that	 is,	 better.	 And	 if	 his	 instructor	 had	 a
habit	of	screaming	“you	clumsy	ape”	when	a	student	performed	poorly,	it	would
appear	that	his	criticism	did	some	good.	In	this	way	an	apparent	pattern	would
emerge:	 student	 performs	well,	 praise	 does	 no	 good;	 student	 performs	 poorly,
instructor	compares	student	to	lower	primate	at	high	volume,	student	improves.
The	instructors	 in	Kahneman’s	class	had	concluded	from	such	experiences	 that
their	screaming	was	a	powerful	educational	tool.	In	reality	it	made	no	difference



at	all.

This	error	 in	 intuition	spurred	Kahneman’s	 thinking.	He	wondered,	are	 such
misconceptions	universal?	Do	we,	 like	 the	 flight	 instructors,	believe	 that	harsh
criticism	improves	our	children’s	behavior	or	our	employees’	performance?	Do
we	 make	 other	 misjudgments	 when	 faced	 with	 uncertainty?	 Kahneman	 knew
that	 human	 beings,	 by	 necessity,	 employ	 certain	 strategies	 to	 reduce	 the
complexity	of	 tasks	of	 judgment	and	 that	 intuition	about	probabilities	plays	an
important	 part	 in	 that	 process.	 Will	 you	 feel	 sick	 after	 eating	 that	 luscious-
looking	seviche	tostada	from	the	street	vendor?	You	don’t	consciously	recall	all
the	comparable	food	stands	you’ve	patronized,	count	the	number	of	times	you’ve
spent	the	following	night	guzzling	Pepto-Bismol,	and	come	up	with	a	numerical
estimate.	You	let	your	intuition	do	the	work.	But	research	in	the	1950s	and	early
’60s	 indicated	 that	 people’s	 intuition	 about	 randomness	 fails	 them	 in	 such
situations.	How	widespread,	Kahneman	wondered,	was	this	misunderstanding	of
uncertainty?	And	what	are	 its	 implications	 for	human	decision	making?	A	 few
years	passed,	and	Kahneman	invited	a	fellow	junior	professor,	Amos	Tversky,	to
give	a	guest	lecture	at	one	of	his	seminars.	Later,	at	lunch,	Kahneman	mentioned
his	 developing	 ideas	 to	 Tversky.	 Over	 the	 next	 thirty	 years,	 Tversky	 and
Kahneman	 found	 that	 even	 among	 sophisticated	 subjects,	 when	 it	 came	 to
random	processes—whether	in	military	or	sports	situations,	business	quandaries,
or	medical	questions—people’s	beliefs	and	intuition	very	often	let	them	down.

Suppose	 four	publishers	have	 rejected	 the	manuscript	 for	your	 thriller	 about
love,	war,	and	global	warming.	Your	 intuition	and	 the	bad	feeling	 in	 the	pit	of
your	stomach	might	say	that	the	rejections	by	all	those	publishing	experts	mean
your	 manuscript	 is	 no	 good.	 But	 is	 your	 intuition	 correct?	 Is	 your	 novel
unsellable?	We	all	know	from	experience	that	if	several	tosses	of	a	coin	come	up
heads,	 it	 doesn’t	 mean	 we	 are	 tossing	 a	 two-headed	 coin.	 Could	 it	 be	 that
publishing	success	is	so	unpredictable	that	even	if	our	novel	is	destined	for	the
bestseller	 list,	numerous	publishers	could	miss	 the	point	 and	 send	 those	 letters
that	say	thanks	but	no	thanks?	One	book	in	the	1950s	was	rejected	by	publishers,
who	responded	with	such	comments	as	“very	dull,”	“a	dreary	record	of	 typical
family	bickering,	petty	annoyances	and	adolescent	emotions,”	and	“even	 if	 the
work	 had	 come	 to	 light	 five	 years	 ago,	when	 the	 subject	 [World	War	 II]	 was
timely,	I	don’t	see	that	there	would	have	been	a	chance	for	it.”	That	book,	The
Diary	of	a	Young	Girl	by	Anne	Frank,	has	sold	30	million	copies,	making	it	one



of	 the	 bestselling	 books	 in	 history.	 Rejection	 letters	 were	 also	 sent	 to	 Sylvia
Plath	because	“there	certainly	isn’t	enough	genuine	talent	for	us	to	take	notice,”
to	 George	 Orwell	 for	 Animal	 Farm	 because	 “it	 is	 impossible	 to	 sell	 animal
stories	 in	 the	U.S.,”	and	 to	 Isaac	Bashevis	Singer	because	“it’s	Poland	and	 the
rich	 Jews	 again.”	 Before	 he	 hit	 it	 big,	 Tony	 Hillerman’s	 agent	 dumped	 him,
advising	that	he	should	“get	rid	of	all	that	Indian	stuff.”7

Those	were	not	isolated	misjudgments.	In	fact,	many	books	destined	for	great
success	 had	 to	 survive	 not	 just	 rejection,	 but	 repeated	 rejection.	 For	 example,
few	 books	 today	 are	 considered	 to	 have	 more	 obvious	 and	 nearly	 universal
appeal	 than	 the	works	of	 John	Grisham,	Theodor	Geisel	 (Dr.	Seuss),	and	J.	K.
Rowling.	 Yet	 the	 manuscripts	 they	 wrote	 before	 they	 became	 famous—all
eventually	 hugely	 successful—were	 all	 repeatedly	 rejected.	 John	 Grisham’s
manuscript	for	A	Time	to	Kill	was	rejected	by	twenty-six	publishers;	his	second
manuscript,	 for	 The	 Firm,	 drew	 interest	 from	 publishers	 only	 after	 a	 bootleg
copy	circulating	 in	Hollywood	drew	a	$600,000	offer	 for	 the	movie	rights.	Dr.
Seuss’s	first	children’s	book,	And	to	Think	That	I	Saw	It	on	Mulberry	Street,	was
rejected	 by	 twenty-seven	 publishers.	 And	 J.	 K.	 Rowling’s	 first	Harry	 Potter
manuscript	was	rejected	by	nine.8	Then	there	is	the	other	side	of	the	coin—the
side	anyone	in	the	business	knows	all	too	well:	the	many	authors	who	had	great
potential	 but	 never	 made	 it,	 John	 Grishams	 who	 quit	 after	 the	 first	 twenty
rejections	 or	 J.	 K.	 Rowlings	 who	 gave	 up	 after	 the	 first	 five.	 After	 his	many
rejections,	 one	 such	writer,	 John	Kennedy	Toole,	 lost	 hope	 of	 ever	 getting	 his
novel	 published	 and	 committed	 suicide.	 His	mother	 persevered,	 however,	 and
eleven	years	 later	A	Confederacy	of	Dunces	was	published;	 it	won	 the	Pulitzer
Prize	for	Fiction	and	has	sold	nearly	2	million	copies.

There	exists	a	vast	gulf	of	randomness	and	uncertainty	between	the	creation	of
a	great	novel—or	piece	of	 jewelry	or	chocolate-chip	cookie—and	 the	presence
of	 huge	 stacks	 of	 that	 novel—or	 jewelry	 or	 bags	 of	 cookies—at	 the	 front	 of
thousands	 of	 retail	 outlets.	 That’s	 why	 successful	 people	 in	 every	 field	 are
almost	universally	members	of	a	certain	set—the	set	of	people	who	don’t	give
up.

A	lot	of	what	happens	to	us—success	in	our	careers,	in	our	investments,	and	in
our	 life	 decisions,	 both	 major	 and	 minor—is	 as	 much	 the	 result	 of	 random
factors	as	the	result	of	skill,	preparedness,	and	hard	work.	So	the	reality	that	we



perceive	is	not	a	direct	reflection	of	the	people	or	circumstances	that	underlie	it
but	 is	 instead	an	 image	blurred	by	 the	 randomizing	effects	of	unforeseeable	or
fluctuating	 external	 forces.	That	 is	 not	 to	 say	 that	 ability	 doesn’t	matter—it	 is
one	 of	 the	 factors	 that	 increase	 the	 chances	 of	 success—but	 the	 connection
between	actions	and	results	is	not	as	direct	as	we	might	like	to	believe.	Thus	our
past	is	not	so	easy	to	understand,	nor	is	our	future	so	easy	to	predict,	and	in	both
enterprises	we	benefit	from	looking	beyond	the	superficial	explanations.

									
WE	HABITUALLY	UNDERESTIMATE	THE	EFFECTS	 of	 randomness.	 Our
stockbroker	recommends	that	we	invest	in	the	Latin	American	mutual	fund	that
“beat	the	pants	off	the	domestic	funds”	five	years	running.	Our	doctor	attributes
that	 increase	 in	 our	 triglycerides	 to	 our	 new	habit	 of	 enjoying	 a	Hostess	Ding
Dong	with	milk	 every	morning	 after	 dutifully	 feeding	 the	 kids	 a	 breakfast	 of
mangoes	 and	 nonfat	 yogurt.	 We	 may	 or	 may	 not	 take	 our	 stockbroker’s	 or
doctor’s	 advice,	 but	 few	 of	 us	 question	whether	 he	 or	 she	 has	 enough	 data	 to
give	 it.	 In	 the	 political	 world,	 the	 economic	world,	 the	 business	 world—even
when	 careers	 and	 millions	 of	 dollars	 are	 at	 stake—chance	 events	 are	 often
conspicuously	misinterpreted	as	accomplishments	or	failures.

Hollywood	provides	a	nice	illustration.	Are	the	rewards	(and	punishments)	of
the	Hollywood	game	deserved,	 or	 does	 luck	play	 a	 far	more	 important	 role	 in
box	 office	 success	 (and	 failure)	 than	 people	 imagine?	We	 all	 understand	 that
genius	doesn’t	guarantee	success,	but	it’s	seductive	to	assume	that	success	must
come	from	genius.	Yet	the	idea	that	no	one	can	know	in	advance	whether	a	film
will	hit	or	miss	has	been	an	uncomfortable	suspicion	in	Hollywood	at	least	since
the	novelist	and	screenwriter	William	Goldman	enunciated	it	in	his	classic	1983
book	Adventures	in	the	Screen	Trade.	In	that	book,	Goldman	quoted	the	former
studio	executive	David	Picker	as	saying,	“If	 I	had	said	yes	 to	all	 the	projects	I
turned	down,	and	no	to	all	the	other	ones	I	took,	it	would	have	worked	out	about
the	same.”9

That’s	not	to	say	that	a	jittery	homemade	horror	video	could	become	a	hit	just
as	easily	as,	say,	Exorcist:	The	Beginning,	which	cost	an	estimated	$80	million.
Well,	 actually,	 that	 is	 what	 happened	 some	 years	 back	 with	 The	 Blair	 Witch
Project:	 it	 cost	 the	 filmmakers	 a	mere	$60,000	but	brought	 in	$140	million	 in



domestic	 box	 office	 revenue—more	 than	 three	 times	 the	 business	 of	Exorcist.
Still,	 that’s	 not	 what	 Goldman	 was	 saying.	 He	 was	 referring	 only	 to
professionally	made	Hollywood	 films	with	 production	 values	 good	 enough	 to
land	the	film	a	respectable	distributor.	And	Goldman	didn’t	deny	that	 there	are
reasons	for	a	film’s	box	office	performance.	But	he	did	say	that	those	reasons	are
so	complex	and	the	path	from	green	light	to	opening	weekend	so	vulnerable	to
unforeseeable	 and	 uncontrollable	 influences	 that	 educated	 guesses	 about	 an
unmade	film’s	potential	aren’t	much	better	than	flips	of	a	coin.

Examples	of	Hollywood’s	unpredictability	are	easy	to	find.	Movie	buffs	will
remember	 the	 great	 expectations	 the	 studios	 had	 for	 the	 megaflops	 Ishtar
(Warren	Beatty	+	Dustin	Hoffman	+	a	$55	million	budget	=	$14	million	in	box
office	revenue)	and	Last	Action	Hero	(Arnold	Schwarzenegger	+	$85	million	=
$50	 million).	 On	 the	 other	 hand,	 you	 might	 recall	 the	 grave	 doubts	 that
executives	 at	 Universal	 Studios	 had	 about	 the	 young	 director	 George	 Lucas’s
film	American	Graffiti,	shot	for	less	than	$1	million.	Despite	their	skepticism,	it
took	 in	 $115	million,	 but	 still	 that	 didn’t	 stop	 them	 from	 having	 even	 graver
doubts	about	Lucas’s	next	idea.	He	called	the	story	Adventures	of	Luke	Starkiller
as	 taken	 from	 “The	 Journal	 of	 the	 Whills.”	 Universal	 called	 it	 unproducible.
Ultimately	20th	Century	Fox	made	the	film,	but	the	studio’s	faith	in	the	project
went	only	so	far:	it	paid	Lucas	just	$200,000	to	write	and	direct	it;	in	exchange,
Lucas	received	the	sequel	and	merchandising	rights.	In	the	end,	Star	Wars	 took
in	$461	million	on	a	budget	of	$13	million,	and	Lucas	had	himself	an	empire.

Given	 the	 fact	 that	 green	 light	 decisions	 are	 made	 years	 before	 a	 film	 is
completed	and	films	are	subject	to	many	unpredictable	factors	that	arise	during
those	years	of	production	and	marketing,	not	to	mention	the	inscrutable	tastes	of
the	 audience,	Goldman’s	 theory	 doesn’t	 seem	at	 all	 far-fetched.	 (It	 is	 also	 one
that	is	supported	by	much	recent	economic	research.)10	Despite	all	 this,	studio
executives	are	not	judged	by	the	bread-and-butter	management	skills	that	are	as
essential	 to	 the	 head	 of	 the	United	 States	 Steel	Corporation	 as	 they	 are	 to	 the
head	of	Paramount	Pictures.	Instead,	they	are	judged	by	their	ability	to	pick	hits.
If	 Goldman	 is	 right,	 that	 ability	 is	 mere	 illusion,	 and	 in	 spite	 of	 his	 or	 her
swagger	no	executive	is	worth	that	$25	million	contract.

Deciding	just	how	much	of	an	outcome	is	due	to	skill	and	how	much	to	luck	is
not	a	no-brainer.	Random	events	often	come	like	the	raisins	in	a	box	of	cereal—



in	groups,	streaks,	and	clusters.	And	although	Fortune	is	fair	in	potentialities,	she
is	 not	 fair	 in	 outcomes.	 That	 means	 that	 if	 each	 of	 10	 Hollywood	 executives
tosses	10	coins,	 although	each	has	an	equal	 chance	of	being	 the	winner	or	 the
loser,	in	the	end	there	will	be	winners	and	losers.	In	this	example,	the	chances	are
2	out	of	3	that	at	least	1	of	the	executives	will	score	8	or	more	heads	or	tails.

Imagine	that	George	Lucas	makes	a	new	Star	Wars	film	and	in	one	test	market
decides	to	perform	a	crazy	experiment.	He	releases	the	identical	film	under	two
titles:	Star	Wars:	Episode	A	 and	Star	Wars:	Episode	B.	 Each	 film	has	 its	 own
marketing	 campaign	 and	 distribution	 schedule,	 with	 the	 corresponding	 details
identical	except	that	the	trailers	and	ads	for	one	film	say	Episode	A	and	those	for
the	other,	Episode	B.	Now	we	make	a	contest	out	of	it.	Which	film	will	be	more
popular?	Say	we	 look	 at	 the	 first	 20,000	moviegoers	 and	 record	 the	 film	 they
choose	to	see	(ignoring	those	die-hard	fans	who	will	go	to	both	and	then	insist
there	were	subtle	but	meaningful	differences	between	the	two).	Since	the	films
and	 their	marketing	campaigns	are	 identical,	we	can	mathematically	model	 the
game	this	way:	Imagine	lining	up	all	the	viewers	in	a	row	and	flipping	a	coin	for
each	viewer	in	turn.	If	the	coin	lands	heads	up,	he	or	she	sees	Episode	A;	if	the
coin	 lands	 tails	 up,	 it’s	Episode	 B.	 Because	 the	 coin	 has	 an	 equal	 chance	 of
coming	up	either	way,	you	might	think	that	in	this	experimental	box	office	war
each	 film	 should	 be	 in	 the	 lead	 about	 half	 the	 time.	 But	 the	 mathematics	 of
randomness	says	otherwise:	the	most	probable	number	of	changes	in	the	lead	is
0,	and	it	is	88	times	more	probable	that	one	of	the	two	films	will	lead	through	all
20,000	 customers	 than	 it	 is	 that,	 say,	 the	 lead	 continuously	 seesaws.11	 The
lesson	is	not	that	there	is	no	difference	between	films	but	that	some	films	will	do
better	than	others	even	if	all	the	films	are	identical.

Such	 issues	 are	 not	 discussed	 in	 corporate	 boardrooms,	 in	 Hollywood,	 or
elsewhere,	 and	 so	 the	 typical	 patterns	 of	 randomness—apparent	 hot	 or	 cold
streaks	or	 the	bunching	of	data	 into	clusters—are	routinely	misinterpreted	and,
worse,	acted	on	as	if	they	represented	a	new	trend.

One	of	the	most	high	profile	examples	of	anointment	and	regicide	in	modern
Hollywood	 was	 the	 case	 of	 Sherry	 Lansing,	 who	 ran	 Paramount	 with	 great
success	for	many	years.12	Under	Lansing,	Paramount	won	Best	Picture	awards
for	Forrest	Gump,	Braveheart,	and	Titanic	 and	posted	 its	 two	highest-grossing
years	 ever.	Then	Lansing’s	 reputation	 suddenly	 plunged,	 and	 she	was	 dumped



after	 Paramount	 experienced,	 as	 Variety	 put	 it,	 “a	 long	 stretch	 of
underperformance	at	the	box	office.”13

In	 mathematical	 terms	 there	 is	 both	 a	 short	 and	 a	 long	 explanation	 for
Lansing’s	fate.	First,	 the	short	answer.	Look	at	 this	series	of	percentages:	11.4,
10.6,	 11.3,	 7.4,	 7.1,	 6.7.	Notice	 something?	Lansing’s	 boss,	Sumner	Redstone,
did	too,	and	for	him	the	trend	was	significant,	for	those	six	numbers	represented
the	market	share	of	Paramount’s	Motion	Picture	Group	for	the	final	six	years	of
Lansing’s	tenure.	The	trend	caused	BusinessWeek	to	speculate	that	Lansing	“may
simply	no	longer	have	Hollywood’s	hot	hand.”14	Soon	Lansing	announced	she
was	 leaving,	 and	 a	 few	months	 later	 a	 talent	manager	 named	 Brad	Grey	was
brought	on	board.

How	can	a	surefire	genius	lead	a	company	through	seven	great	years	and	then
fail	 practically	 overnight?	 There	 were	 plenty	 of	 theories	 explaining	 Lansing’s
early	success.	While	Paramount	was	doing	well,	Lansing	was	praised	for	making
it	 one	 of	 Hollywood’s	 best-run	 studios	 and	 for	 her	 knack	 for	 turning
conventional	 stories	 into	 $100	 million	 hits.	 When	 her	 fortune	 changed,	 the
revisionists	took	over.	Her	penchant	for	making	successful	remakes	and	sequels
became	 a	 drawback.	 Most	 damning	 of	 all,	 perhaps,	 was	 the	 notion	 that	 her
failure	 was	 due	 to	 her	 “middle-of-the-road	 tastes.”	 She	 was	 now	 blamed	 for
green-lighting	 such	 box	 office	 dogs	 as	Timeline	 and	Lara	Croft	 Tomb	Raider:
The	Cradle	 of	 Life.	 Suddenly	 the	 conventional	 wisdom	was	 that	 Lansing	was
risk	averse,	old-fashioned,	and	out	of	touch	with	the	trends.	But	can	she	really	be
blamed	 for	 thinking	 that	 a	 Michael	 Crichton	 bestseller	 would	 be	 promising
movie	 fodder?	And	where	were	 all	 the	Lara	Croft	 critics	when	 the	 first	Tomb
Raider	film	took	in	$131	million	in	box	office	revenue?

Even	if	 the	theories	of	Lansing’s	shortcomings	were	plausible,	consider	how
abruptly	 her	 demise	 occurred.	 Did	 she	 become	 risk	 averse	 and	 out	 of	 touch
overnight?	Because	Paramount’s	market	share	plunged	that	suddenly.	One	year
Lansing	was	flying	high;	the	next	she	was	a	punch	line	for	late-night	comedians.
Her	 change	 of	 fortune	 might	 have	 been	 understandable	 if,	 like	 others	 in
Hollywood,	 she	 had	 become	 depressed	 over	 a	 nasty	 divorce	 proceeding,	 had
been	charged	with	embezzlement,	or	had	joined	a	religious	cult.	That	was	not	the
case.	And	she	certainly	hadn’t	sustained	any	damage	to	her	cerebral	cortex.	The
only	evidence	of	Lansing’s	newly	developed	failings	that	her	critics	could	offer



was,	in	fact,	her	newly	developed	failings.

In	 hindsight	 it	 is	 clear	 that	 Lansing	 was	 fired	 because	 of	 the	 industry’s
misunderstanding	 of	 randomness	 and	 not	 because	 of	 her	 flawed	 decision
making:	Paramount’s	 films	 for	 the	 following	year	were	 already	 in	 the	pipeline
when	Lansing	 left	 the	 company.	So	 if	we	want	 to	know	 roughly	how	Lansing
would	have	done	in	some	parallel	universe	in	which	she	remained	in	her	job,	all
we	need	to	do	is	look	at	the	data	in	the	year	following	her	departure.	With	such
films	 as	 War	 of	 the	 Worlds	 and	 The	 Longest	 Yard,	 Paramount	 had	 its	 best
summer	in	a	decade	and	saw	its	market	share	rebound	to	nearly	10	percent.	That
isn’t	 merely	 ironic—it’s	 again	 that	 aspect	 of	 randomness	 called	 regression
toward	 the	mean.	 A	Variety	 headline	 on	 the	 subject	 read,	 “Parting	 Gifts:	 Old
Regime’s	 Pics	 Fuel	 Paramount	Rebound,”15	 but	 one	 can’t	 help	 but	 think	 that
had	 Viacom	 (Paramount’s	 parent	 company)	 had	 more	 patience,	 the	 headline
might	have	 read,	 “Banner	Year	Puts	Paramount	and	Lansing’s	Career	Back	on
Track.”

Sherry	Lansing	had	good	luck	at	the	beginning	and	bad	luck	at	the	end,	but	it
could	have	been	worse.	She	could	have	had	her	bad	luck	at	the	beginning.	That’s
what	happened	to	a	Columbia	Pictures	chief	named	Mark	Canton.	Described	as
box	office	savvy	and	enthusiastic	shortly	after	he	was	hired,	he	was	fired	after
his	 first	 few	years	produced	disappointing	box	office	 results.	Criticized	by	one
unnamed	colleague	for	being	“incapable	of	distinguishing	the	winners	from	the
losers”	and	by	another	for	being	“too	busy	cheerleading,”	this	disgraced	man	left
in	 the	pipeline	when	he	departed	 such	 films	as	Men	 in	Black	 ($589	million	 in
worldwide	box	office	revenue),	Air	Force	One	($315	million),	The	Fifth	Element
($264	million),	Jerry	Maguire	($274	million),	and	Anaconda	($137	million).	As
Variety	put	it,	Canton’s	legacy	pictures	“hit	and	hit	big.”16

Well,	 that’s	 Hollywood,	 a	 town	 where	 Michael	 Ovitz	 works	 as	 Disney
president	 for	 fifteen	 months	 and	 then	 leaves	 with	 a	 $140	 million	 severance
package	 and	 where	 the	 studio	 head	 David	 Begelman	 is	 fired	 by	 Columbia
Pictures	 for	 forgery	 and	 embezzlement	 and	 then	 is	 hired	 a	 few	 years	 later	 as
CEO	 of	 MGM.	 But	 as	 we’ll	 see	 in	 the	 following	 chapters,	 the	 same	 sort	 of
misjudgments	 that	 plague	 Hollywood	 also	 plague	 people’s	 perceptions	 in	 all
realms	of	life.



									
MY	 OWN	 EPIPHANY	 regarding	 the	 hidden	 effects	 of	 randomness	 came	 in
college,	when	I	took	a	course	in	probability	and	began	applying	its	principles	to
the	 sports	 world.	 That	 is	 easy	 to	 do	 because,	 as	 in	 the	 film	 business,	 most
accomplishments	 in	 sports	 are	 easily	 quantified	 and	 the	 data	 are	 readily
available.	What	I	discovered	was	that	just	as	the	lessons	of	persistence,	practice,
and	teamwork	that	we	learn	from	sports	apply	equally	to	all	endeavors	of	life,	so
do	the	lessons	of	randomness.	And	so	I	set	out	to	examine	a	tale	of	two	baseball
sluggers,	Roger	Maris	and	Mickey	Mantle,	a	tale	that	bears	a	lesson	for	all	of	us,
even	those	who	wouldn’t	know	a	baseball	from	a	Ping-Pong	ball.

The	year	was	1961.	I	was	barely	of	reading	age,	but	I	still	recall	the	faces	of
Maris	and	his	more	popular	New	York	Yankees	teammate,	Mantle,	on	the	cover
of	Life	magazine.	The	two	baseball	players	were	engaged	in	a	historic	race	to	tie
or	break	Babe	Ruth’s	beloved	1927	record	of	60	home	runs	in	one	year.	Those
were	 idealistic	 times	 when	 my	 teacher	 would	 say	 things	 like	 “we	 need	 more
heroes	 like	 Babe	 Ruth,”	 or	 “we	 never	 had	 a	 crooked	 president.”	 Because	 the
legend	of	Babe	Ruth	was	sacred,	anyone	who	might	challenge	 it	had	better	be
worthy.	 Mantle,	 a	 courageous	 perennial	 slugger	 who	 fought	 on	 despite	 bad
knees,	was	the	fans’—and	the	press’s—overwhelming	favorite.	A	good-looking,
good-natured	 fellow,	 Mantle	 came	 across	 as	 the	 kind	 of	 all-American	 boy
everyone	hoped	would	set	records.	Maris,	on	the	other	hand,	was	a	gruff,	private
fellow,	an	underdog	who	had	never	hit	more	than	39	home	runs	in	a	year,	much
less	anywhere	near	60.	He	was	 seen	as	a	nasty	 sort,	 someone	who	didn’t	give
interviews	and	didn’t	like	kids.	They	all	rooted	for	Mantle.	I	liked	Maris.

As	it	turned	out,	Mantle’s	knees	got	the	best	of	him,	and	he	made	it	to	only	54
home	runs.	Maris	broke	Ruth’s	record	with	61.	Over	his	career,	Babe	Ruth	had
hit	50	or	more	home	runs	in	a	season	four	times	and	twelve	times	had	hit	more
than	anyone	else	 in	 the	 league.	Maris	never	again	hit	50	or	even	40	and	never
again	led	the	league.	That	overall	performance	fed	the	resentment.	As	the	years
went	by,	Maris	was	criticized	relentlessly	by	fans,	sportswriters,	and	sometimes
other	 players.	 Their	 verdict:	 he	 had	 crumbled	 under	 the	 pressure	 of	 being	 a
champion.	 Said	 one	 famous	 baseball	 old-timer,	 “Maris	 had	 no	 right	 to	 break
Ruth’s	record.”17	That	may	have	been	true,	but	not	for	the	reason	the	old-timer
thought.



Many	 years	 later,	 influenced	 by	 that	 college	math	 course,	 I	 would	 learn	 to
think	about	Maris’s	achievement	in	a	new	light.	To	analyze	the	Ruth-Mantle	race
I	 reread	 that	 old	 Life	 article	 and	 found	 in	 it	 a	 brief	 discussion	 of	 probability
theory18	and	how	it	could	be	used	to	predict	the	result	of	the	Maris-Mantle	race.
I	decided	to	make	my	own	mathematical	model	of	home	run	hitting.	Here’s	how
it	goes:	The	 result	 of	 any	particular	 at	bat	 (that	 is,	 an	opportunity	 for	 success)
depends	primarily	on	 the	player’s	ability,	of	course.	But	 it	also	depends	on	 the
interplay	 of	 many	 other	 factors:	 his	 health;	 the	 wind,	 the	 sun,	 or	 the	 stadium
lights;	 the	 quality	 of	 the	 pitches	 he	 receives;	 the	 game	 situation;	 whether	 he
correctly	guesses	how	the	pitcher	will	throw;	whether	his	hand-eye	coordination
works	 just	perfectly	as	he	 takes	his	 swing;	whether	 that	brunette	he	met	at	 the
bar	 kept	 him	 up	 too	 late	 or	 the	 chili-cheese	 dog	 with	 garlic	 fries	 he	 had	 for
breakfast	 soured	 his	 stomach.	 If	 not	 for	 all	 the	 unpredictable	 factors,	 a	 player
would	either	hit	a	home	run	on	every	at	bat	or	fail	to	do	so.	Instead,	for	each	at
bat	all	you	can	say	is	that	he	has	a	certain	probability	of	hitting	a	home	run	and	a
certain	probability	of	failing	to	hit	one.	Over	the	hundreds	of	at	bats	he	has	each
year,	those	random	factors	usually	average	out	and	result	in	some	typical	home
run	 production	 that	 increases	 as	 the	 player	 becomes	 more	 skillful	 and	 then
eventually	 decreases	 owing	 to	 the	 same	 process	 that	 etches	 wrinkles	 in	 his
handsome	face.	But	sometimes	the	random	factors	don’t	average	out.	How	often
does	that	happen,	and	how	large	is	the	aberration?

From	the	player’s	yearly	statistics	you	can	estimate	his	probability	of	hitting	a
home	run	at	each	opportunity—that	is,	on	each	trip	to	the	plate.19	In	1960,	the
year	 before	 his	 record	 year,	 Roger	 Maris	 hit	 1	 home	 run	 for	 every	 14.7
opportunities	 (about	 the	 same	 as	 his	 home	 run	 output	 averaged	 over	 his	 four
prime	years).	Let’s	call	this	performance	normal	Maris.	You	can	model	the	home
run	hitting	skill	of	normal	Maris	this	way:	Imagine	a	coin	that	comes	up	heads
on	average	not	1	time	every	2	tosses	but	1	time	every	14.7.	Then	flip	that	coin	1
time	for	every	trip	to	the	plate	and	award	Maris	1	home	run	every	time	the	coin
comes	up	 heads.	 If	 you	want	 to	match,	 say,	Maris’s	 1961	 season,	 you	 flip	 the
coin	once	for	every	home	run	opportunity	he	had	that	year.	By	that	method	you
can	generate	 a	whole	 series	 of	 alternative	1961	 seasons	 in	which	Maris’s	 skill
level	matches	 the	home	 run	 totals	of	normal-Maris.	The	 results	of	 those	mock
seasons	 illustrate	 the	 range	 of	 accomplishment	 that	 normal	 Maris	 could	 have
expected	 in	1961	if	his	 talent	had	not	spiked—that	 is,	given	only	his	“normal”
home	run	ability	plus	the	effects	of	pure	luck.



To	 have	 actually	 performed	 this	 experiment,	 I’d	 have	 needed	 a	 rather	 odd
coin,	a	rather	strong	wrist,	and	a	leave	of	absence	from	college.	In	practice	the
mathematics	of	randomness	allowed	me	to	do	the	analysis	employing	equations
and	a	computer.	 In	most	of	my	 imaginary	1961	seasons,	normal	Maris’s	home
run	output	was,	not	surprisingly,	 in	the	range	that	was	normal	for	Maris.	Some
mock	seasons	he	hit	a	 few	more,	 some	a	 few	 less.	Only	 rarely	did	he	hit	a	 lot
more	 or	 a	 lot	 less.	How	 frequently	 did	 normal	Maris’s	 talent	 produce	Ruthian
results?

I	 had	 expected	 normal	 Maris’s	 chances	 of	 matching	 Ruth’s	 record	 to	 be
roughly	equal	to	Jack	Whittaker’s	when	he	plopped	down	an	extra	dollar	as	he
bought	breakfast	biscuits	at	a	convenience	store	a	few	years	back	and	ended	up
winning	$314	million	 in	his	state	Powerball	 lottery.	That’s	what	a	 less	 talented
player’s	chances	would	have	been.	But	normal	Maris,	 though	not	Ruthian,	was
still	far	above	average	at	hitting	home	runs.	And	so	normal	Maris’s	probability
of	 producing	 a	 record	 output	 by	 chance	 was	 not	 microscopic:	 he	 matched	 or
broke	Ruth’s	 record	about	1	 time	every	32	seasons.	That	might	not	 sound	 like
good	odds,	and	you	probably	wouldn’t	have	wanted	to	bet	on	either	Maris	or	the
year	1961	in	particular.	But	those	odds	lead	to	a	striking	conclusion.	To	see	why,
let’s	 now	 ask	 a	 more	 interesting	 question.	 Let’s	 consider	 all	 players	 with	 the
talent	of	normal	Maris	and	the	entire	seventy-year	period	from	Ruth’s	record	to
the	 start	 of	 the	 “steroid	 era”	 (when,	 because	 of	 players’	 drug	 use,	 home	 runs
became	 far	more	 common).	What	 are	 the	 odds	 that	 some	 player	 at	 some	 time
would	have	matched	or	broken	Ruth’s	record	by	chance	alone?	Is	it	reasonable
to	 believe	 that	 Maris	 just	 happened	 to	 be	 the	 recipient	 of	 the	 lucky	 aberrant
season?

History	shows	that	in	that	period	there	was	about	1	player	every	3	years	with
both	 the	 talent	 and	 the	 opportunities	 comparable	 to	 those	 of	 normal	Maris	 in
1961.	When	you	add	 it	all	up,	 that	makes	 the	probability	 that	by	chance	alone
one	of	those	players	would	have	matched	or	broken	Ruth’s	record	a	little	greater
than	50	percent.	In	other	words,	over	a	period	of	seventy	years	a	random	spike	of
60	or	more	home	runs	for	a	player	whose	production	process	merits	more	like	40
home	runs	is	to	be	expected—a	phenomenon	something	like	that	occasional	loud
crackle	you	hear	amid	 the	static	 in	a	bad	 telephone	connection.	 It	 is	also	 to	be
expected,	of	course,	that	we	will	deify,	or	vilify—and	certainly	endlessly	analyze
—whoever	that	“lucky”	person	turns	out	to	be.



We	can	never	know	for	certain	whether	Maris	was	a	far	better	player	in	1961
than	in	any	of	the	other	years	he	played	professional	baseball	or	whether	he	was
merely	 the	 beneficiary	 of	 good	 fortune.	 But	 detailed	 analyses	 of	 baseball	 and
other	sports	by	scientists	as	eminent	as	the	late	Stephen	Jay	Gould	and	the	Nobel
laureate	E.	M.	Purcell	show	that	coin-tossing	models	like	the	one	I’ve	described
match	very	closely	the	actual	performance	of	both	players	and	teams,	including
their	hot	and	cold	streaks.20

When	we	 look	 at	 extraordinary	 accomplishments	 in	 sports—or	 elsewhere—
we	 should	 keep	 in	 mind	 that	 extraordinary	 events	 can	 happen	 without
extraordinary	causes.	Random	events	often	look	like	nonrandom	events,	and	in
interpreting	human	affairs	we	must	take	care	not	to	confuse	the	two.	Though	it
has	taken	many	centuries,	scientists	have	learned	to	look	beyond	apparent	order
and	 recognize	 the	hidden	 randomness	 in	both	nature	 and	everyday	 life.	 In	 this
chapter	 I’ve	 presented	 a	 few	 glimpses	 of	 those	 workings.	 In	 the	 following
chapters	 I	shall	consider	 the	central	 ideas	of	 randomness	within	 their	historical
context	and	describe	their	relevance	with	the	aim	of	offering	a	new	perspective
on	 our	 everyday	 surroundings	 and	 hence	 a	 better	 understanding	 of	 the
connection	between	this	fundamental	aspect	of	nature	and	our	own	experience.



CHAPTER	2

The	Laws	of	Truths	and	Half-Truths

LOOKING	TO	THE	SKY	on	a	clear,	moonless	night,	the	human	eye	can	detect
thousands	 of	 twinkling	 sources	 of	 light.	 Nestled	 among	 those	 haphazardly
scattered	 stars	 are	 patterns.	 A	 lion	 here,	 a	 dipper	 there.	 The	 ability	 to	 detect
patterns	 can	 be	 both	 a	 strength	 and	 a	 weakness.	 Isaac	 Newton	 pondered	 the
patterns	of	falling	objects	and	created	a	law	of	universal	gravitation.	Others	have
noted	 a	 spike	 in	 their	 athletic	 performance	when	 they	 are	wearing	 dirty	 socks
and	 thenceforth	 have	 refused	 to	 wear	 clean	 ones.	 Among	 all	 the	 patterns	 of
nature,	how	do	we	distinguish	the	meaningful	ones?	Drawing	that	distinction	is
an	inherently	practical	enterprise.	And	so	it	might	not	astonish	you	to	learn	that,
unlike	geometry,	which	arose	as	a	set	of	axioms,	proofs,	and	theorems	created	by
a	 culture	 of	 ponderous	 philosophers,	 the	 theory	 of	 randomness	 sprang	 from
minds	 focused	 on	 spells	 and	 gambling,	 figures	we	might	 sooner	 imagine	with
dice	or	a	potion	in	hand	than	a	book	or	a	scroll.

The	theory	of	randomness	is	fundamentally	a	codification	of	common	sense.
But	 it	 is	 also	 a	 field	 of	 subtlety,	 a	 field	 in	 which	 great	 experts	 have	 been
famously	 wrong	 and	 expert	 gamblers	 infamously	 correct.	 What	 it	 takes	 to
understand	 randomness	 and	 overcome	 our	 misconceptions	 is	 both	 experience
and	a	lot	of	careful	 thinking.	And	so	we	begin	our	tour	with	some	of	the	basic
laws	 of	 probability	 and	 the	 challenges	 involved	 in	 uncovering,	 understanding,
and	 applying	 them.	One	 of	 the	 classic	 explorations	 of	 people’s	 intuition	 about
those	 laws	 was	 an	 experiment	 conducted	 by	 the	 pair	 who	 did	 so	 much	 to
elucidate	our	misconceptions,	Daniel	Kahneman	and	Amos	Tversky.1	Feel	free
to	take	part—and	learn	something	about	your	own	probabilistic	intuition.

Imagine	a	woman	named	Linda,	 thirty-one	years	old,	 single,	outspoken,	and
very	 bright.	 In	 college	 she	 majored	 in	 philosophy.	 While	 a	 student	 she	 was
deeply	 concerned	 with	 discrimination	 and	 social	 justice	 and	 participated	 in



antinuclear	demonstrations.	Tversky	and	Kahneman	presented	this	description	to
a	group	of	eighty-eight	subjects	and	asked	them	to	rank	the	following	statements
on	a	scale	of	1	to	8	according	to	their	probability,	with	1	representing	the	most
probable	 and	 8	 the	 least.	 Here	 are	 the	 results,	 in	 order	 from	 most	 to	 least
probable:

Statement Average	Probability
Rank

Linda	is	active	in	the	feminist	movement. 2.1

Linda	is	a	psychiatric	social	worker. 3.1

Linda	works	in	a	bookstore	and	takes	yoga	classes. 3.3

Linda	 is	 a	 bank	 teller	 and	 is	 active	 in	 the	 feminist
movement. 4.1

Linda	is	a	teacher	in	an	elementary	school. 5.2

Linda	is	a	member	of	the	League	of	Women	Voters. 5.4

Linda	is	a	bank	teller. 6.2



Linda	is	an	insurance	salesperson. 6.4

At	 first	 glance	 there	may	 appear	 to	 be	 nothing	 unusual	 in	 these	 results:	 the
description	was	 in	 fact	 designed	 to	be	 representative	of	 an	 active	 feminist	 and
unrepresentative	of	a	bank	teller	or	an	insurance	salesperson.	But	now	let’s	focus
on	 just	 three	 of	 the	 possibilities	 and	 their	 average	 ranks,	 listed	 below	 in	 order
from	 most	 to	 least	 probable.	 This	 is	 the	 order	 in	 which	 85	 percent	 of	 the
respondents	ranked	the	three	possibilities:

Statement Average	Probability
Rank

Linda	is	active	in	the	feminist	movement. 2.1

Linda	 is	 a	 bank	 teller	 and	 is	 active	 in	 the	 feminist
movement. 4.1

Linda	is	a	bank	teller. 6.2

If	nothing	about	this	looks	strange,	then	Kahneman	and	Tversky	have	fooled
you,	 for	 if	 the	 chance	 that	 Linda	 is	 a	 bank	 teller	 and	 is	 active	 in	 the	 feminist
movement	were	greater	than	the	chance	that	Linda	is	a	bank	teller,	there	would
be	a	violation	of	our	first	 law	of	probability,	which	is	one	of	 the	most	basic	of
all:	The	probability	that	two	events	will	both	occur	can	never	be	greater	than	the
probability	 that	 each	will	 occur	 individually.	Why	 not?	 Simple	 arithmetic:	 the
chances	that	event	A	will	occur	=	the	chances	that	events	A	and	B	will	occur	+
the	chance	that	event	A	will	occur	and	event	B	will	not	occur.



Kahneman	 and	 Tversky	 were	 not	 surprised	 by	 the	 result	 because	 they	 had
given	their	subjects	a	large	number	of	possibilities,	and	the	connections	among
the	 three	 scenarios	 could	 easily	 have	 gotten	 lost	 in	 the	 shuffle.	 And	 so	 they
presented	the	description	of	Linda	to	another	group,	but	this	time	they	presented
only	these	possibilities:

Linda	is	active	in	the	feminist	movement.

Linda	is	a	bank	teller	and	is	active	in	the	feminist	movement.

Linda	is	a	bank	teller.

To	 their	 surprise,	 87	 percent	 of	 the	 subjects	 in	 this	 trial	 also	 ranked	 the
probability	 that	 Linda	 is	 a	 bank	 teller	 and	 is	 active	 in	 the	 feminist	movement
higher	 than	 the	 probability	 that	 Linda	 is	 a	 bank	 teller.	And	 so	 the	 researchers
pushed	 further:	 they	 explicitly	 asked	 a	 group	 of	 thirty-six	 fairly	 sophisticated
graduate	students	to	consider	their	answers	in	light	of	our	first	law	of	probability.
Even	after	the	prompting,	two	of	the	subjects	clung	to	the	illogical	response.

The	interesting	thing	that	Kahneman	and	Tversky	noticed	about	this	stubborn
misperception	is	that	people	will	not	make	the	same	mistake	if	you	ask	questions
that	 are	 unrelated	 to	 what	 they	 know	 about	 Linda.	 For	 example,	 suppose
Kahneman	 and	 Tversky	 had	 asked	 which	 of	 these	 statements	 seems	 most
probable:

Linda	owns	an	International	House	of	Pancakes	franchise.

Linda	had	a	sex-change	operation	and	is	now	known	as	Larry.

Linda	 had	 a	 sex-change	 operation,	 is	 now	 known	 as	 Larry,	 and	 owns	 an
International	House	of	Pancakes	franchise.



In	this	case	few	people	would	choose	the	last	option	as	more	likely	than	either	of
the	other	two.

Kahneman	and	Tversky	concluded	that	because	the	detail	“Linda	is	active	in
the	 feminist	 movement”	 rang	 true	 based	 on	 the	 initial	 description	 of	 her
character,	when	they	added	that	detail	to	the	bank-teller	speculation,	it	increased
the	scenario’s	credibility.	But	a	lot	could	have	happened	between	Linda’s	hippie
days	 and	 her	 fourth	 decade	 on	 the	 planet.	 She	 might	 have	 undergone	 a
conversion	 to	 a	 fundamentalist	 religious	 cult,	 married	 a	 skinhead	 and	 had	 a
swastika	tattooed	on	her	left	buttock,	or	become	too	busy	with	other	aspects	of
her	life	to	remain	politically	active.	In	each	of	these	cases	and	many	others	she
would	 probably	 not	 be	 active	 in	 the	 feminist	movement.	 So	 adding	 that	 detail
lowered	 the	chances	 that	 the	 scenario	was	accurate	even	 though	 it	 appeared	 to
raise	the	chances	of	its	accuracy.

If	the	details	we	are	given	fit	our	mental	picture	of	something,	then	the	more
details	 in	 a	 scenario,	 the	more	 real	 it	 seems	 and	 hence	 the	more	 probable	we
consider	 it	 to	 be—even	 though	 any	 act	 of	 adding	 less-than-certain	 details	 to	 a
conjecture	makes	 the	 conjecture	 less	probable.	This	 inconsistency	between	 the
logic	 of	 probability	 and	 people’s	 assessments	 of	 uncertain	 events	 interested
Kahneman	and	Tversky	because	it	can	lead	to	unfair	or	mistaken	assessments	in
real-life	situations.	Which	is	more	likely:	that	a	defendant,	after	discovering	the
body,	left	the	scene	of	the	crime	or	that	a	defendant,	after	discovering	the	body,
left	the	scene	of	the	crime	because	he	feared	being	accused	of	the	grisly	murder?
Is	 it	more	 probable	 that	 the	 president	will	 increase	 federal	 aid	 to	 education	 or
that	he	or	she	will	increase	federal	aid	to	education	with	funding	freed	by	cutting
other	 aid	 to	 the	 states?	 Is	 it	more	 likely	 that	your	 company	will	 increase	 sales
next	year	or	that	it	will	increase	sales	next	year	because	the	overall	economy	has
had	a	banner	year?	In	each	case,	even	though	the	latter	is	less	probable	than	the
former,	it	may	sound	more	likely.	Or	as	Kahneman	and	Tversky	put	it,	“A	good
story	is	often	less	probable	than	a	less	satisfactory…[explanation].”

Kahneman	 and	 Tversky	 found	 that	 even	 highly	 trained	 doctors	 make	 this
error.2	They	presented	a	group	of	 internists	with	a	 serious	medical	problem:	a
pulmonary	 embolism	 (a	 blood	 clot	 in	 the	 lung).	 If	 you	 have	 that	 ailment,	 you
might	display	one	or	more	of	a	set	of	symptoms.	Some	of	those	symptoms,	such
as	 partial	 paralysis,	 are	 uncommon;	 others,	 such	 as	 shortness	 of	 breath,	 are



probable.	Which	is	more	likely:	that	the	victim	of	an	embolism	will	experience
only	partial	paralysis	or	that	the	victim	will	experience	both	partial	paralysis	and
shortness	of	breath?	Kahneman	and	Tversky	found	that	91	percent	of	the	doctors
believed	a	clot	was	less	likely	to	cause	just	a	rare	symptom	than	it	was	to	cause	a
combination	of	 the	rare	symptom	and	a	common	one.	 (In	 the	doctors’	defense,
patients	don’t	walk	into	their	offices	and	say	things	like	“I	have	a	blood	clot	in
my	lungs.	Guess	my	symptoms.”)

Years	 later	 one	 of	 Kahneman’s	 students	 and	 another	 researcher	 found	 that
attorneys	fall	prey	to	the	same	bias	in	their	judgments.3	Whether	involved	in	a
criminal	case	or	a	civil	case,	clients	typically	depend	on	their	lawyers	to	assess
what	may	occur	if	their	case	goes	to	trial.	What	are	the	chances	of	acquittal	or	of
a	 settlement	 or	 a	monetary	 judgment	 in	 various	 amounts?	 Although	 attorneys
might	 not	 phrase	 their	 opinions	 in	 terms	 of	 numerical	 probabilities,	 they	 offer
advice	based	on	their	personal	forecast	of	the	relative	likelihood	of	the	possible
outcomes.	 Here,	 too,	 the	 researchers	 found	 that	 lawyers	 assign	 higher
probabilities	to	contingencies	that	are	described	in	greater	detail.	For	example,	at
the	 time	of	 the	civil	 lawsuit	brought	by	Paula	Jones	against	 then	president	Bill
Clinton,	 200	 practicing	 lawyers	 were	 asked	 to	 predict	 the	 probability	 that	 the
trial	would	not	run	its	full	course.	For	some	of	the	subjects	that	possibility	was
broken	 down	 into	 specific	 causes	 for	 the	 trial’s	 early	 end,	 such	 as	 settlement,
withdrawal	 of	 the	 charges,	 or	 dismissal	 by	 the	 judge.	 In	 comparing	 the	 two
groups—lawyers	who	had	simply	been	asked	to	predict	whether	the	trial	would
run	its	full	course	and	lawyers	who	had	been	presented	with	ways	in	which	the
trial	might	reach	a	premature	conclusion—the	researchers	found	that	the	lawyers
who	had	been	presented	with	causes	of	a	premature	conclusion	were	much	more
likely	than	the	other	lawyers	to	predict	that	the	trial	would	reach	an	early	end.

The	ability	to	evaluate	meaningful	connections	among	different	phenomena	in
our	environment	may	be	so	important	that	it	is	worth	seeing	a	few	mirages.	If	a
starving	 caveman	 sees	 an	 indistinct	 greenish	 blur	 on	 a	 distant	 rock,	 it	 is	more
costly	to	dismiss	it	as	uninteresting	when	it	is	in	reality	a	plump,	tasty	lizard	than
it	is	to	race	over	and	pounce	on	what	turns	out	to	be	a	few	stray	leaves.	And	so,
that	theory	goes,	we	might	have	evolved	to	avoid	the	former	mistake	at	the	cost
of	sometimes	making	the	latter.

									



IN	THE	STORY	of	mathematics	the	ancient	Greeks	stand	out	as	the	inventors	of
the	manner	in	which	modern	mathematics	is	carried	out:	through	axioms,	proofs,
theorems,	more	 proofs,	more	 theorems,	 and	 so	 on.	 In	 the	 1930s,	 however,	 the
Czech	 American	 mathematician	 Kurt	 Gödel—a	 friend	 of	 Einstein’s—showed
this	approach	to	be	somewhat	deficient:	most	of	mathematics,	he	demonstrated,
must	be	inconsistent	or	else	must	contain	truths	that	cannot	be	proved.	Still,	the
march	 of	mathematics	 has	 continued	 unabated	 in	 the	Greek	 style,	 the	 style	 of
Euclid.	 The	 Greeks,	 geniuses	 in	 geometry,	 created	 a	 small	 set	 of	 axioms,
statements	 to	 be	 accepted	 without	 proof,	 and	 proceeded	 from	 there	 to	 prove
many	beautiful	 theorems	detailing	the	properties	of	 lines,	planes,	 triangles,	and
other	 geometric	 forms.	From	 this	 knowledge	 they	discerned,	 for	 example,	 that
the	 earth	 is	 a	 sphere	 and	 even	 calculated	 its	 radius.	 One	must	 wonder	 why	 a
civilization	 that	 could	 produce	 a	 theorem	 such	 as	 proposition	 29	 of	 book	 1	 of
Euclid’s	Elements—“a	 straight	 line	 falling	on	 two	parallel	 straight	 lines	makes
the	alternate	angles	equal	to	one	another,	the	exterior	angle	equal	to	the	interior
and	opposite	angle,	and	 the	 interior	angles	on	 the	same	side	equal	 to	 two	right
angles”—did	not	create	a	theory	showing	that	if	you	throw	two	dice,	it	would	be
unwise	to	bet	your	Corvette	on	their	both	coming	up	a	6.

Actually,	not	only	didn’t	the	Greeks	have	Corvettes,	but	they	also	didn’t	have
dice.	 They	 did	 have	 gambling	 addictions,	 however.	 They	 also	 had	 plenty	 of
animal	carcasses,	and	so	what	they	tossed	were	astragali,	made	from	heel	bones.
An	astragalus	has	six	sides,	but	only	four	are	stable	enough	to	allow	the	bone	to
come	 to	 rest	 on	 them.	 Modern	 scholars	 note	 that	 because	 of	 the	 bone’s
construction,	the	chances	of	its	landing	on	each	of	the	four	sides	are	not	equal:
they	are	about	10	percent	for	two	of	the	sides	and	40	percent	for	the	other	two.	A
common	game	involved	tossing	four	astragali.	The	outcome	considered	best	was
a	 rare	 one,	 but	 not	 the	 rarest:	 the	 case	 in	 which	 all	 four	 astragali	 came	 up
different.	This	was	called	a	Venus	throw.	The	Venus	throw	has	a	probability	of
about	384	out	of	10,000,	but	the	Greeks,	lacking	a	theory	of	randomness,	didn’t
know	that.

The	Greeks	 also	 employed	 astragali	when	making	 inquiries	 of	 their	 oracles.
From	 their	 oracles,	 questioners	 could	 receive	 answers	 that	were	 said	 to	 be	 the
words	 of	 the	 gods.	Many	 important	 choices	 made	 by	 prominent	 Greeks	 were
based	 on	 the	 advice	 of	 oracles,	 as	 evidenced	 by	 the	 accounts	 of	 the	 historian
Herodotus,	 and	writers	 like	Homer,	Aeschylus,	 and	Sophocles.	But	despite	 the



importance	of	astragali	tosses	in	both	gambling	and	religion,	the	Greeks	made	no
effort	to	understand	the	regularities	of	astragali	throws.

Why	didn’t	 the	Greeks	 develop	 a	 theory	 of	 probability?	One	 answer	 is	 that
many	Greeks	believed	that	the	future	unfolded	according	to	the	will	of	the	gods.
If	 the	 result	 of	 an	 astragalus	 toss	 meant	 “marry	 the	 stocky	 Spartan	 girl	 who
pinned	 you	 in	 that	wrestling	match	 behind	 the	 school	 barracks,”	 a	Greek	 boy
wouldn’t	view	the	toss	as	the	lucky	(or	unlucky)	result	of	a	random	process;	he
would	 view	 it	 as	 the	 gods’	 will.	 Given	 such	 a	 view,	 an	 understanding	 of
randomness	 would	 have	 been	 irrelevant.	 Thus	 a	 mathematical	 prediction	 of
randomness	would	have	seemed	impossible.	Another	answer	may	lie	in	the	very
philosophy	 that	 made	 the	 Greeks	 such	 great	 mathematicians:	 they	 insisted	 on
absolute	 truth,	 proved	 by	 logic	 and	 axioms,	 and	 frowned	 on	 uncertain
pronouncements.	 In	 Plato’s	 Phaedo,	 for	 example,	 Simmias	 tells	 Socrates	 that
“arguments	 from	 probabilities	 are	 impostors”	 and	 anticipates	 the	 work	 of
Kahneman	and	Tversky	by	pointing	out	that	“unless	great	caution	is	observed	in
the	use	of	 them	they	are	apt	 to	be	deceptive—in	geometry,	and	 in	other	 things
too.”4	And	 in	Theaetetus,	 Socrates	 says	 that	 any	mathematician	 “who	 argued
from	probabilities	and	likelihoods	in	geometry	would	not	be	worth	an	ace.”5	But
even	Greeks	who	believed	 that	probabilists	were	worth	an	ace	might	have	had
difficulty	working	out	a	consistent	theory	in	those	days	before	extensive	record
keeping	 because	 people	 have	 notoriously	 poor	 memories	 when	 it	 comes	 to
estimating	the	frequency—and	hence	the	probability—of	past	occurrences.

Which	is	greater:	the	number	of	six-letter	English	words	having	n	as	their	fifth
letter	 or	 the	 number	 of	 six-letter	 English	 words	 ending	 in	 ing?	 Most	 people
choose	the	group	of	words	ending	in	 ing.6	Why?	Because	words	ending	in	 ing
are	easier	 to	think	of	 than	generic	six-letter	words	having	n	as	their	fifth	letter.
But	you	don’t	have	to	survey	the	Oxford	English	Dictionary—or	even	know	how
to	count—to	prove	that	guess	wrong:	 the	group	of	six-letter	words	having	n	as
their	fifth	letter	words	includes	all	six-letter	words	ending	in	ing.	Psychologists
call	that	type	of	mistake	the	availability	bias	because	in	reconstructing	the	past,
we	 give	 unwarranted	 importance	 to	 memories	 that	 are	 most	 vivid	 and	 hence
most	available	for	retrieval.

The	 nasty	 thing	 about	 the	 availability	 bias	 is	 that	 it	 insidiously	 distorts	 our
view	 of	 the	 world	 by	 distorting	 our	 perception	 of	 past	 events	 and	 our



environment.	For	example,	people	tend	to	overestimate	the	fraction	of	homeless
people	who	are	mentally	ill	because	when	they	encounter	a	homeless	person	who
is	not	behaving	oddly,	they	don’t	take	notice	and	tell	all	their	friends	about	that
unremarkable	 homeless	 person	 they	 ran	 into.	 But	 when	 they	 encounter	 a
homeless	person	stomping	down	the	street	and	waving	his	arms	at	an	imaginary
companion	while	 singing	 “When	 the	Saints	Go	Marching	 In,”	 they	do	 tend	 to
remember	the	incident.7	How	probable	is	it	that	of	the	five	lines	at	the	grocery-
store	 checkout	 you	will	 choose	 the	 one	 that	 takes	 the	 longest?	Unless	 you’ve
been	cursed	by	a	practitioner	of	 the	black	arts,	 the	answer	is	around	1	in	5.	So
why,	when	you	look	back,	do	you	get	the	feeling	you	have	a	supernatural	knack
for	choosing	the	longest	line?	Because	you	have	more	important	things	to	focus
on	when	 things	go	 right,	but	 it	makes	an	 impression	when	 the	 lady	 in	 front	of
you	with	 a	 single	 item	 in	 her	 cart	 decides	 to	 argue	 about	why	 her	 chicken	 is
priced	 at	 $1.50	 a	 pound	when	 she	 is	 certain	 the	 sign	 at	 the	meat	 counter	 said
$1.49.

One	 stark	 illustration	 of	 the	 effect	 the	 availability	 bias	 can	 have	 on	 our
judgment	 and	decision	making	came	 from	a	mock	 jury	 trial.8	 In	 the	 study	 the
jury	was	given	equal	doses	of	exonerating	and	incriminating	evidence	regarding
the	charge	that	a	driver	was	drunk	when	he	ran	into	a	garbage	truck.	The	catch	is
that	 one	 group	 of	 jurors	 was	 given	 the	 exonerating	 evidence	 in	 a	 “pallid”
version:	“The	owner	of	the	garbage	truck	stated	under	cross-examination	that	his
garbage	 truck	was	 difficult	 to	 see	 at	 night	 because	 it	 was	 gray	 in	 color.”	 The
other	group	was	given	a	more	“vivid”	form	of	the	same	evidence:	“The	owner	of
the	 garbage	 truck	 stated	 under	 cross-examination	 that	 his	 garbage	 truck	 was
difficult	 to	 see	 at	 night	 because	 it	was	 gray	 in	 color.	 The	 owner	 remarked	 his
trucks	are	gray	‘because	it	hides	the	dirt.	What	do	you	want,	I	should	paint	’em
pink?’”	The	incriminating	evidence	was	also	presented	in	two	ways,	this	time	in
a	vivid	form	to	 the	first	group	and	 in	a	pallid	version	 to	 the	second.	When	 the
jurors	 were	 asked	 to	 produce	 guilt/innocence	 ratings,	 the	 side	 with	 the	 more
vivid	presentation	of	the	evidence	always	prevailed,	and	the	effect	was	enhanced
when	 there	 was	 a	 forty-eight-hour	 delay	 before	 rendering	 the	 verdict
(presumably	because	the	recall	gap	was	even	greater).

By	 distorting	 our	 view	 of	 the	 past,	 the	 availability	 bias	 complicates	 any
attempt	to	make	sense	of	it.	That	was	true	for	the	ancient	Greeks	just	as	it	is	true
for	us.	But	there	was	one	other	major	obstacle	to	an	early	theory	of	randomness,



a	 very	 practical	 one:	 although	 basic	 probability	 requires	 only	 knowledge	 of
arithmetic,	the	Greeks	did	not	know	arithmetic,	at	least	not	in	a	form	that	is	easy
to	work	with.	 In	Athens	 in	 the	fifth	century	B.C.,	 for	 instance,	at	 the	height	of
Greek	civilization,	a	person	who	wanted	to	write	down	a	number	used	a	kind	of
alphabetic	code.9	The	first	nine	of	the	twenty-four	letters	in	the	Greek	alphabet
stood	 for	 the	numbers	we	call	1	 through	9.	The	next	nine	 letters	 stood	 for	 the
numbers	 we	 call	 10,	 20,	 30,	 and	 so	 on.	 And	 the	 last	 six	 letters	 plus	 three
additional	 symbols	 stood	 for	 the	 first	 nine	 hundreds	 (100,	 200,	 and	 so	 on,	 to
900).	 If	 you	 think	 you	 have	 trouble	 with	 arithmetic	 now,	 imagine	 trying	 to
subtract	 	 	 	 	 	 	 	 	 	 	 from	 !	To	make	matters	worse,	 the	order	 in	which	 the
ones,	 tens,	 and	 hundreds	 were	 written	 didn’t	 really	 matter:	 sometimes	 the
hundreds	 were	 written	 first,	 sometimes	 last,	 and	 sometimes	 all	 order	 was
ignored.	Finally,	the	Greeks	had	no	zero.

The	concept	of	zero	came	to	Greece	when	Alexander	invaded	the	Babylonian
Empire	in	331	B.C.	Even	then,	although	the	Alexandrians	began	to	use	the	zero
to	denote	 the	absence	of	a	number,	 it	wasn’t	employed	as	a	number	 in	 its	own
right.	In	modern	mathematics	the	number	0	has	two	key	properties:	in	addition	it
is	 the	number	 that,	when	 added	 to	 any	other	 number,	 leaves	 the	other	 number
unchanged,	and	in	multiplication	it	 is	 the	number	that,	when	multiplied	by	any
other	number,	is	itself	unchanged.	This	concept	wasn’t	introduced	until	the	ninth
century,	by	the	Indian	mathematician	Mahāvīra.

Even	after	the	development	of	a	usable	number	system	it	would	be	many	more
centuries	before	people	came	 to	 recognize	addition,	subtraction,	multiplication,
and	division	as	the	fundamental	arithmetic	operations—and	slowly	realized	that
convenient	symbols	would	make	their	manipulation	far	easier.	And	so	it	wasn’t
until	the	sixteenth	century	that	the	Western	world	was	truly	poised	to	develop	a
theory	 of	 probability.	 Still,	 despite	 the	 handicap	 of	 an	 awkward	 system	 of
calculation,	 it	 was	 the	 civilization	 that	 conquered	 the	 Greeks—the	 Romans—
who	made	the	first	progress	in	understanding	randomness.

THE	ROMANS	generally	scorned	mathematics,	at	least	the	mathematics	of	the
Greeks.	In	the	words	of	the	Roman	statesman	Cicero,	who	lived	from	106	to	43



B.C.,	“The	Greeks	held	the	geometer	in	the	highest	honor;	accordingly,	nothing
made	 more	 brilliant	 progress	 among	 them	 than	 mathematics.	 But	 we	 have
established	as	 the	 limit	of	 this	art	 its	usefulness	 in	measuring	and	counting.”10
Indeed,	whereas	 one	might	 imagine	 a	Greek	 textbook	 focused	on	 the	proof	 of
congruences	 among	 abstract	 triangles,	 a	 typical	 Roman	 text	 focused	 on	 such
issues	as	how	to	determine	the	width	of	a	river	when	the	enemy	is	occupying	the
other	bank.11	With	 such	mathematical	priorities,	 it	 is	not	 surprising	 that	while
the	 Greeks	 produced	 mathematical	 luminaries	 like	 Archimedes,	 Diophantus,
Euclid,	Eudoxus,	Pythagoras,	and	Thales;	the	Romans	did	not	produce	even	one
mathematician.12	 In	 Roman	 culture	 it	 was	 comfort	 and	 war,	 not	 truth	 and
beauty,	that	occupied	center	stage.	And	yet	precisely	because	they	focused	on	the
practical,	 the	Romans	saw	value	in	understanding	probability.	So	while	finding
little	value	in	abstract	geometry,	Cicero	wrote	that	“probability	is	the	very	guide
of	life.”13

Cicero	was	perhaps	the	greatest	ancient	champion	of	probability.	He	employed
it	 to	 argue	 against	 the	 common	 interpretation	 of	 gambling	 success	 as	 due	 to
divine	intervention,	writing	that	the	“man	who	plays	often	will	at	some	time	or
other	make	a	Venus	cast:	now	and	 then	 indeed	he	will	make	 it	 twice	and	even
thrice	in	succession.	Are	we	going	to	be	so	feeble-minded	then	as	to	affirm	that
such	a	thing	happened	by	the	personal	intervention	of	Venus	rather	than	by	pure
luck?”14	Cicero	believed	that	an	event	could	be	anticipated	and	predicted	even
though	 its	 occurrence	 would	 be	 a	 result	 of	 blind	 chance.	 He	 even	 used	 a
statistical	 argument	 to	 ridicule	 the	 belief	 in	 astrology.	 Annoyed	 that	 although
outlawed	in	Rome,	astrology	was	nevertheless	alive	and	well,	Cicero	noted	that
at	Cannae	in	216	B.C.,	Hannibal,	 leading	about	50,000	Carthaginian	and	allied
troops,	crushed	the	much	larger	Roman	army,	slaughtering	more	than	60,000	of
its	 80,000	 soldiers.	 “Did	 all	 the	 Romans	 who	 fell	 at	 Cannae	 have	 the	 same
horoscope?”	Cicero	asked.	“Yet	all	had	one	and	the	same	end.”15	Cicero	might
have	 been	 encouraged	 to	 know	 that	 a	 couple	 of	 thousand	 years	 later	 in	 the
journal	Nature	a	scientific	study	of	the	validity	of	astrological	predictions	agreed
with	his	conclusion.16	The	New	York	Post,	on	the	other	hand,	advises	today	that
as	a	Sagittarius,	I	must	look	at	criticisms	objectively	and	make	whatever	changes
seem	necessary.

In	the	end,	Cicero’s	principal	legacy	in	the	field	of	randomness	is	the	term	he



used,	probabilis,	which	is	the	origin	of	the	term	we	employ	today.	But	it	is	one
part	of	the	Roman	code	of	law,	the	Digest,	compiled	by	Emperor	Justinian	in	the
sixth	 century,	 that	 is	 the	 first	 document	 in	 which	 probability	 appears	 as	 an
everyday	 term	of	art.17	To	appreciate	 the	Roman	applications	of	mathematical
thinking	 to	 legal	 theory,	 one	 must	 understand	 the	 context:	 Roman	 law	 in	 the
Dark	Ages	was	 based	 on	 the	 practice	 of	 the	Germanic	 tribes.	 It	wasn’t	 pretty.
Take,	 for	 example,	 the	 rules	 of	 testimony.	 The	 veracity	 of,	 say,	 a	 husband
denying	 an	 affair	 with	 his	 wife’s	 toga	 maker	 would	 be	 determined	 not	 by
hubby’s	 ability	 to	 withstand	 a	 grilling	 by	 prickly	 opposing	 counsel	 but	 by
whether	 he’d	 stick	 to	 his	 story	 even	 after	 being	 pricked—by	 a	 red-hot	 iron.
(Bring	back	 that	 custom	and	you’ll	 see	a	 lot	more	divorce	cases	 settled	out	of
court.)	And	 if	 the	defendant	 says	 the	 chariot	never	 tried	 to	 stop	but	 the	 expert
witness	 says	 the	 hoof	 prints	 show	 that	 the	 brakes	 were	 applied,	 Germanic
doctrine	offered	a	simple	prescription:	“Let	one	man	be	chosen	from	each	group
to	fight	it	out	with	shields	and	spears.	Whoever	loses	is	a	perjurer	and	must	lose
his	right	hand.”18

In	 replacing,	 or	 at	 least	 supplementing,	 the	 practice	 of	 trial	 by	 battle,	 the
Romans	sought	in	mathematical	precision	a	cure	for	the	deficiencies	of	their	old,
arbitrary	 system.	 Seen	 in	 this	 context,	 the	 Roman	 idea	 of	 justice	 employed
advanced	 intellectual	 concepts.	Recognizing	 that	 evidence	and	 testimony	often
conflicted	 and	 that	 the	 best	way	 to	 resolve	 such	 conflicts	was	 to	 quantify	 the
inevitable	 uncertainty,	 the	 Romans	 created	 the	 concept	 of	 half	 proof,	 which
applied	 in	 cases	 in	 which	 there	 was	 no	 compelling	 reason	 to	 believe	 or
disbelieve	evidence	or	testimony.	In	some	cases	the	Roman	doctrine	of	evidence
included	 even	 finer	 degrees	 of	 proof,	 as	 in	 the	 church	 decree	 that	 “a	 bishop
should	not	be	condemned	except	with	seventy-two	witnesses…a	cardinal	priest
should	not	be	condemned	except	with	forty-four	witnesses,	a	cardinal	deacon	of
the	 city	 of	 Rome	 without	 thirty-six	 witnesses,	 a	 subdeacon,	 acolyte,	 exorcist,
lector,	 or	 doorkeeper	 except	 with	 seven	 witnesses.”19	 To	 be	 convicted	 under
those	 rules,	 you’d	 have	 to	 have	 not	 only	 committed	 the	 crime	 but	 also	 sold
tickets.	Still,	 the	 recognition	 that	 the	probability	of	 truth	 in	 testimony	can	vary
and	that	rules	for	combining	such	probabilities	are	necessary	was	a	start.	And	so
it	was	in	the	unlikely	venue	of	ancient	Rome	that	a	systematic	set	of	rules	based
on	probability	first	arose.

Unfortunately	it	is	hard	to	achieve	quantitative	dexterity	when	you’re	juggling



VIIIs	and	XIVs.	In	the	end,	though	Roman	law	had	a	certain	legal	rationality	and
coherence,	it	fell	short	of	mathematical	validity.	In	Roman	law,	for	example,	two
half	proofs	constituted	a	complete	proof.	That	might	sound	reasonable	to	a	mind
unaccustomed	to	quantitative	thought,	but	with	today’s	familiarity	with	fractions
it	 invites	 the	 question,	 if	 two	 half	 proofs	 equal	 a	 complete	 certainty,	 what	 do
three	 half	 proofs	 make?	 According	 to	 the	 correct	 manner	 of	 compounding
probabilities,	not	only	do	two	half	proofs	yield	less	than	a	whole	certainty,	but	no
finite	 number	 of	 partial	 proofs	 will	 ever	 add	 up	 to	 a	 certainty	 because	 to
compound	probabilities,	you	don’t	add	them;	you	multiply.

That	brings	us	to	our	next	law,	the	rule	for	compounding	probabilities:	If	 two
possible	events,	A	and	B,	are	independent,	then	the	probability	that	both	A	and	B
will	 occur	 is	 equal	 to	 the	 product	 of	 their	 individual	 probabilities.	 Suppose	 a
married	person	has	on	average	roughly	a	1	in	50	chance	of	getting	divorced	each
year.	On	the	other	hand,	a	police	officer	has	about	a	1	in	5,000	chance	each	year
of	being	killed	on	the	job.	What	are	the	chances	that	a	married	police	officer	will
be	 divorced	 and	 killed	 in	 the	 same	 year?	According	 to	 the	 above	 principle,	 if
those	 events	were	 independent,	 the	 chances	would	 be	 roughly	 1/50	 ×	 1/5,000,
which	 equals	 1/250,000.	 Of	 course	 the	 events	 are	 not	 independent;	 they	 are
linked:	once	you	die,	darn	it,	you	can	no	longer	get	divorced.	And	so	the	chance
of	that	much	bad	luck	is	actually	a	little	less	than	1	in	250,000.

Why	multiply	rather	than	add?	Suppose	you	make	a	pack	of	trading	cards	out
of	the	pictures	of	those	100	guys	you’ve	met	so	far	through	your	Internet	dating
service,	those	men	who	in	their	Web	site	photos	often	look	like	Tom	Cruise	but
in	person	more	often	resemble	Danny	DeVito.	Suppose	also	that	on	the	back	of
each	 card	 you	 list	 certain	 data	 about	 the	men,	 such	 as	 honest	 (yes	 or	 no)	 and
attractive	(yes	or	no).	Finally,	suppose	that	1	in	10	of	the	prospective	soul	mates
rates	a	yes	in	each	case.	How	many	in	your	pack	of	100	will	pass	the	test	on	both
counts?	 Let’s	 take	 honest	 as	 the	 first	 trait	 (we	 could	 equally	 well	 have	 taken
attractive).	Since	1	in	10	cards	lists	a	yes	under	honest,	10	of	the	100	cards	will
qualify.	Of	 those	10,	how	many	are	attractive?	Again,	1	 in	10,	so	now	you	are
left	with	1	card.	The	first	1	in	10	cuts	the	possibilities	down	by	1/10,	and	so	does
the	next	1	in	10,	making	the	result	1	in	100.	That’s	why	you	multiply.	And	if	you
have	 more	 requirements	 than	 just	 honest	 and	 attractive,	 you	 have	 to	 keep
multiplying,	so…well,	good	luck.



Before	we	move	 on,	 it	 is	worth	 paying	 attention	 to	 an	 important	 detail:	 the
clause	 that	 reads	 if	 two	possible	events,	A	and	B,	are	 independent.	 Suppose	 an
airline	has	1	seat	left	on	a	flight	and	2	passengers	have	yet	to	show	up.	Suppose
that	from	experience	the	airline	knows	there	is	a	2	in	3	chance	a	passenger	who
books	a	seat	will	arrive	to	claim	it.	Employing	the	multiplication	rule,	 the	gate
attendant	can	conclude	there	is	a	2/3	×	2/3	or	about	a	44	percent	chance	she	will
have	 to	deal	with	an	unhappy	customer.	The	chance	 that	neither	customer	will
show	and	the	plane	will	have	to	fly	with	an	empty	seat,	on	the	other	hand,	is	1/3
×	 1/3,	 or	 only	 about	 11	 percent.	 But	 that	 assumes	 the	 passengers	 are
independent.	 If,	 say,	 they	 are	 traveling	 together,	 then	 the	 above	 analysis	 is
wrong.	The	chances	that	both	will	show	up	are	2	in	3,	the	same	as	the	chances
that	one	will	 show	up.	 It	 is	 important	 to	 remember	 that	you	get	 the	compound
probability	from	the	simple	ones	by	multiplying	only	if	the	events	are	in	no	way
contingent	on	each	other.

The	rule	we	just	applied	could	be	applied	to	the	Roman	rule	of	half	proofs:	the
chances	 of	 two	 independent	 half	 proofs’	 being	wrong	 are	 1	 in	 4,	 so	 two	 half
proofs	constitute	three-fourths	of	a	proof,	not	a	whole	proof.	The	Romans	added
where	they	should	have	multiplied.

There	 are	 situations	 in	which	 probabilities	 should	 be	 added,	 and	 that	 is	 our
next	 law.	 It	 arises	when	we	want	 to	 know	 the	 chances	 of	 either	 one	 event	 or
another	 occurring,	 as	 opposed	 to	 the	 earlier	 situation,	 in	 which	 we	wanted	 to
know	the	chance	of	one	event	and	another	event	both	happening.	The	law	is	this:
If	an	event	can	have	a	number	of	different	and	distinct	possible	outcomes,	A,	B,
C,	and	so	on,	 then	 the	probability	 that	either	A	or	B	will	occur	 is	equal	 to	 the
sum	of	the	individual	probabilities	of	A	and	B,	and	the	sum	of	the	probabilities	of
all	the	possible	outcomes	(A,	B,	C,	and	so	on)	is	1	(that	is,	100	percent).	When
you	want	to	know	the	chances	that	two	independent	events,	A	and	B,	will	both
occur,	you	multiply;	if	you	want	to	know	the	chances	that	either	of	two	mutually
exclusive	events,	A	or	B,	will	occur,	you	add.	Back	to	our	airline:	when	should
the	gate	attendant	add	the	probabilities	instead	of	multiplying	them?	Suppose	she
wants	to	know	the	chances	that	either	both	passengers	or	neither	passenger	will
show	 up.	 In	 this	 case	 she	 should	 add	 the	 individual	 probabilities,	 which
according	to	what	we	calculated	above,	would	come	to	55	percent.



These	 three	 laws,	 simple	 as	 they	 are,	 form	much	of	 the	 basis	 of	 probability
theory.	 Properly	 applied,	 they	 can	 give	 us	 much	 insight	 into	 the	 workings	 of
nature	 and	 the	 everyday	 world.	 We	 employ	 them	 in	 our	 everyday	 decision
making	all	the	time.	But	like	the	Roman	lawmakers,	we	don’t	always	use	them
correctly.

									
IT	IS	EASY	TO	LOOK	BACK,	shake	our	heads,	and	write	books	with	titles	like
The	Rotten	Romans	 (Scholastic,	 1994).	 But	 lest	we	 become	 unjustifiably	 self-
congratulatory,	 I	 shall	 end	 this	 chapter	with	a	 look	at	 some	ways	 in	which	 the
basic	 laws	 I’ve	discussed	may	be	applied	 to	our	own	 legal	 system.	As	 it	 turns
out,	that’s	enough	to	sober	up	anyone	drunk	on	feelings	of	cultural	superiority.

The	good	news	is	that	we	don’t	have	half	proofs	today.	But	we	do	have	a	kind
of	 999,000/1,000,000	 proof.	 For	 instance,	 it	 is	 not	 uncommon	 for	 experts	 in
DNA	analysis	to	testify	at	a	criminal	trial	that	a	DNA	sample	taken	from	a	crime
scene	matches	that	taken	from	a	suspect.	How	certain	are	such	matches?	When
DNA	 evidence	 was	 first	 introduced,	 a	 number	 of	 experts	 testified	 that	 false
positives	 are	 impossible	 in	DNA	 testing.	 Today	DNA	 experts	 regularly	 testify
that	the	odds	of	a	random	person’s	matching	the	crime	sample	are	less	than	1	in
1	million	or	1	in	1	billion.	With	those	odds	one	could	hardly	blame	a	juror	for
thinking,	 throw	 away	 the	 key.	 But	 there	 is	 another	 statistic	 that	 is	 often	 not
presented	 to	 the	 jury,	one	having	 to	do	with	 the	 fact	 that	 labs	make	errors,	 for
instance,	in	collecting	or	handling	a	sample,	by	accidentally	mixing	or	swapping
samples,	 or	 by	 misinterpreting	 or	 incorrectly	 reporting	 results.	 Each	 of	 these
errors	 is	 rare	but	not	 nearly	 as	 rare	 as	 a	 random	match.	The	Philadelphia	City
Crime	 Laboratory,	 for	 instance,	 admitted	 that	 it	 had	 swapped	 the	 reference
sample	of	the	defendant	and	the	victim	in	a	rape	case,	and	a	testing	firm	called
Cellmark	 Diagnostics	 admitted	 a	 similar	 error.20	 Unfortunately,	 the	 power	 of
statistics	 relating	 to	DNA	presented	 in	 court	 is	 such	 that	 in	Oklahoma	 a	 court
sentenced	 a	man	 named	 Timothy	Durham	 to	more	 than	 3,100	 years	 in	 prison
even	though	eleven	witnesses	had	placed	him	in	another	state	at	the	time	of	the
crime.	 It	 turned	out	 that	 in	 the	 initial	 analysis	 the	 lab	had	 failed	 to	completely
separate	the	DNA	of	the	rapist	and	that	of	the	victim	in	the	fluid	they	tested,	and
the	combination	of	the	victim’s	and	the	rapist’s	DNA	produced	a	positive	result



when	compared	with	Durham’s.	A	later	retest	 turned	up	 the	error,	and	Durham
was	released	after	spending	nearly	four	years	in	prison.21

Estimates	of	the	error	rate	due	to	human	causes	vary,	but	many	experts	put	it
at	around	1	percent.	However,	since	the	error	rate	of	many	labs	has	never	been
measured,	courts	often	do	not	allow	 testimony	on	 this	overall	 statistic.	Even	 if
courts	did	allow	testimony	regarding	false	positives,	how	would	jurors	assess	it?
Most	 jurors	 assume	 that	 given	 the	 two	 types	 of	 error—the	 1	 in	 1	 billion
accidental	match	and	the	1	in	100	lab-error	match—the	overall	error	rate	must	be
somewhere	 in	 between,	 say	 1	 in	 500	 million,	 which	 is	 still	 for	 most	 jurors
beyond	 a	 reasonable	 doubt.	 But	 employing	 the	 laws	 of	 probability,	 we	 find	 a
much	different	answer.

The	 way	 to	 think	 of	 it	 is	 this:	 Since	 both	 errors	 are	 very	 unlikely,	 we	 can
ignore	 the	 possibility	 that	 there	 is	 both	 an	 accidental	 match	 and	 a	 lab	 error.
Therefore,	we	seek	the	probability	that	one	error	or	 the	other	occurred.	That	 is
given	 by	 our	 sum	 rule:	 it	 is	 the	 probability	 of	 a	 lab	 error	 (1	 in	 100)	 +	 the
probability	of	an	accidental	match	(1	in	1	billion).	Since	the	latter	is	10	million
times	smaller	than	the	former,	to	a	very	good	approximation	the	chance	of	both
errors	is	the	same	as	the	chance	of	the	more	probable	error—that	is,	the	chances
are	1	in	100.	Given	both	possible	causes,	therefore,	we	should	ignore	the	fancy
expert	testimony	about	the	odds	of	accidental	matches	and	focus	instead	on	the
much	 higher	 laboratory	 error	 rate—the	 very	 data	 courts	 often	 do	 not	 allow
attorneys	 to	 present!	 And	 so	 the	 oft-repeated	 claims	 of	 DNA	 infallibility	 are
exaggerated.

This	 is	 not	 an	 isolated	 issue.	 The	 use	 of	 mathematics	 in	 the	 modern	 legal
system	suffers	from	problems	no	 less	serious	 than	 those	 that	arose	 in	Rome	so
many	 centuries	 ago.	 One	 of	 the	 most	 famous	 cases	 illustrating	 the	 use	 and
misuse	of	probability	in	law	is	People	v.	Collins,	heard	in	1968	by	the	California
Supreme	 Court.22	 Here	 are	 the	 facts	 of	 the	 case	 as	 presented	 in	 the	 court
decision:

On	 June	 18,	 1964,	 about	 11:30	 a.m.	Mrs.	 Juanita	 Brooks,	 who	 had	 been
shopping,	was	walking	home	 along	 an	 alley	 in	 the	San	Pedro	 area	 of	 the



city	of	Los	Angeles.	She	was	pulling	behind	her	 a	wicker	basket	 carryall
containing	 groceries	 and	 had	 her	 purse	 on	 top	 of	 the	 packages.	 She	 was
using	 a	 cane.	As	 she	 stooped	 down	 to	 pick	 up	 an	 empty	 carton,	 she	was
suddenly	pushed	to	the	ground	by	a	person	whom	she	neither	saw	nor	heard
approach.	She	was	stunned	by	the	fall	and	felt	some	pain.	She	managed	to
look	 up	 and	 saw	 a	 young	 woman	 running	 from	 the	 scene.	 According	 to
Mrs.	Brooks	 the	 latter	 appeared	 to	weigh	about	145	pounds,	was	wearing
“something	dark,”	and	had	hair	“between	a	dark	blond	and	a	light	blond,”
but	lighter	than	the	color	of	defendant	Janet	Collins’	hair	as	it	appeared	at
the	 trial.	 Immediately	 after	 the	 incident,	Mrs.	 Brooks	 discovered	 that	 her
purse,	containing	between	$35	and	$40,	was	missing.

About	the	same	time	as	the	robbery,	John	Bass,	who	lived	on	the	street	at
the	 end	 of	 the	 alley,	 was	 in	 front	 of	 his	 house	 watering	 his	 lawn.	 His
attention	was	attracted	by	“a	lot	of	crying	and	screaming”	coming	from	the
alley.	As	he	looked	in	that	direction,	he	saw	a	woman	run	out	of	the	alley
and	enter	a	yellow	automobile	parked	across	 the	street	 from	him.	He	was
unable	 to	 give	 the	 make	 of	 the	 car.	 The	 car	 started	 off	 immediately	 and
pulled	wide	 around	 another	 parked	 vehicle	 so	 that	 in	 the	 narrow	 street	 it
passed	within	six	feet	of	Bass.	The	latter	then	saw	that	it	was	being	driven
by	 a	 male	 Negro,	 wearing	 a	 mustache	 and	 beard….	 Other	 witnesses
variously	described	the	car	as	yellow,	as	yellow	with	an	off-white	top,	and
yellow	with	 an	 egg-shell	white	 top.	 The	 car	was	 also	 described	 as	 being
medium	to	large	in	size.

A	 few	days	 after	 the	 incident	 a	Los	Angeles	police	officer	 spotted	 a	 yellow
Lincoln	with	an	off-white	 top	 in	 front	of	 the	defendants’	home	and	spoke	with
them,	explaining	that	he	was	investigating	a	robbery.	He	noted	that	the	suspects
fit	the	description	of	the	man	and	woman	who	had	committed	the	crime,	except
that	 the	man	did	not	have	a	beard,	 though	he	admitted	that	he	sometimes	wore
one.	Later	 that	day	 the	Los	Angeles	police	arrested	 the	 two	suspects,	Malcolm
Ricardo	Collins,	and	his	wife,	Janet.

The	evidence	against	the	couple	was	scant,	and	the	case	rested	heavily	on	the
identification	 by	 the	 victim	 and	 the	witness,	 John	Bass.	 Unfortunately	 for	 the
prosecution,	neither	proved	to	be	a	star	on	 the	witness	stand.	The	victim	could



not	identify	Janet	as	the	perpetrator	and	hadn’t	seen	the	driver	at	all.	John	Bass
had	 not	 seen	 the	 perpetrator	 and	 said	 at	 the	 police	 lineup	 that	 he	 could	 not
positively	 identify	Malcolm	Collins	 as	 the	 driver.	And	 so,	 it	 seemed,	 the	 case
was	falling	apart.

Enter	the	star	witness,	described	in	the	California	Supreme	Court	opinion	only
as	“an	instructor	of	mathematics	at	a	state	college.”	This	witness	testified	that	the
fact	that	the	defendants	were	“a	Caucasian	woman	with	a	blond	ponytail…[and]
a	Negro	with	a	beard	and	mustache”	who	drove	a	partly	yellow	automobile	was
enough	 to	 convict	 the	 couple.	To	 illustrate	 its	 point,	 the	 prosecution	 presented
this	table,	quoted	here	verbatim	from	the	supreme	court	decision:

Characteristic Individual	Probability

Partly	yellow	automobile 1/10

Man	with	mustache 1/4

Negro	man	with	beard 1/10

Girl	with	ponytail 1/10

Girl	with	blond	hair 1/3

Interracial	couple	in	car 1/1,000

The	math	instructor	called	by	the	prosecution	said	that	the	product	rule	applies
to	this	data.	By	multiplying	all	the	probabilities,	one	concludes	that	the	chances



of	 a	 couple	 fitting	 all	 these	 distinctive	 characteristics	 are	 1	 in	 12	 million.
Accordingly,	 he	 said,	 one	 could	 infer	 that	 the	 chances	 that	 the	 couple	 was
innocent	 were	 1	 in	 12	 million.	 The	 prosecutor	 then	 pointed	 out	 that	 these
individual	probabilities	were	estimates	and	invited	the	jurors	to	supply	their	own
guesses	 and	 then	 do	 the	 math.	 He	 himself,	 he	 said,	 believed	 they	 were
conservative	 estimates,	 and	 the	 probability	 he	 came	 up	 with	 employing	 the
factors	he	assigned	was	more	like	1	in	1	billion.	The	jury	bought	it	and	convicted
the	couple.

What	is	wrong	with	this	picture?	For	one	thing,	as	we’ve	seen,	in	order	to	find
a	 compound	 probability	 by	 multiplying	 the	 component	 probabilities,	 the
categories	 have	 to	 be	 independent,	 and	 in	 this	 case	 they	 clearly	 aren’t.	 For
example,	the	table	quotes	the	chance	of	observing	a	“Negro	man	with	beard”	as
1	in	10	and	a	“man	with	mustache”	as	1	 in	4.	But	most	men	with	a	beard	also
have	a	mustache,	so	if	you	observe	a	“Negro	man	with	beard,”	the	chances	are
no	 longer	 1	 in	 4	 that	 the	 man	 you	 observe	 has	 a	 mustache—they	 are	 much
higher.	 That	 issue	 can	 be	 remedied	 if	 you	 eliminate	 the	 category	 “Negro	man
with	beard.”	Then	the	product	of	the	probabilities	falls	to	about	1	in	1	million.

There	 is	another	error	 in	 the	analysis:	 the	 relevant	probability	 is	not	 the	one
stated	 above—the	 probability	 that	 a	 couple	 selected	 at	 random	will	match	 the
suspects’	description.	Rather,	the	relevant	probability	is	the	chance	that	a	couple
matching	all	these	characteristics	is	the	guilty	couple.	The	former	might	be	1	in	1
million.	But	as	for	the	latter,	the	population	of	the	area	adjoining	the	one	where
the	crime	was	committed	was	several	million,	 so	you	might	 reasonably	expect
there	to	be	2	or	3	couples	in	the	area	who	matched	the	description.	In	that	case
the	probability	 that	a	couple	who	matched	the	description	was	guilty,	based	on
this	evidence	alone	(which	is	pretty	much	all	the	prosecution	had),	is	only	1	in	2
or	 3.	 Hardly	 beyond	 a	 reasonable	 doubt.	 For	 these	 reasons	 the	 supreme	 court
overturned	Collins’s	conviction.

The	 use	 of	 probability	 and	 statistics	 in	 modern	 courtrooms	 is	 still	 a
controversial	subject.	In	the	Collins	case	the	California	Supreme	Court	derided
what	it	called	“trial	by	mathematics,”	but	 it	 left	 the	door	open	to	more	“proper
applications	 of	 mathematical	 techniques.”	 In	 the	 ensuing	 years,	 courts	 rarely
considered	mathematical	arguments,	but	even	when	attorneys	and	 judges	don’t
quote	explicit	probabilities	or	mathematical	theorems,	they	do	often	employ	this
sort	 of	 reasoning,	 as	 do	 jurors	 when	 they	 weigh	 the	 evidence.	 Moreover,



statistical	 arguments	 are	 becoming	 increasingly	 important	 because	 of	 the
necessity	 of	 assessing	 DNA	 evidence.	 Unfortunately,	 with	 this	 increased
importance	 has	 not	 come	 increased	 understanding	 on	 the	 part	 of	 attorneys,
judges,	or	juries.	As	explained	by	Thomas	Lyon,	who	teaches	probability	and	the
law	at	the	University	of	Southern	California,	“Few	students	take	a	probability	in
law	course,	and	few	attorneys	feel	 it	has	a	place.”23	In	law	as	 in	other	realms,
the	understanding	of	 randomness	can	 reveal	hidden	 layers	of	 truth,	but	only	 to
those	 who	 possess	 the	 tools	 to	 uncover	 them.	 In	 the	 next	 chapter	 we	 shall
consider	the	story	of	the	first	man	to	study	those	tools	systematically.



CHAPTER	3

Finding	Your	Way	through	a	Space	of	Possibilities

IN	THE	YEARS	leading	up	to	1576,	an	oddly	attired	old	man	could	be	found
roving	with	a	strange,	irregular	gait	up	and	down	the	streets	of	Rome,	shouting
occasionally	to	no	one	in	particular	and	being	listened	to	by	no	one	at	all.	He	had
once	 been	 celebrated	 throughout	 Europe,	 a	 famous	 astrologer,	 physician	 to
nobles	of	the	court,	chair	of	medicine	at	the	University	of	Pavia.	He	had	created
enduring	 inventions,	 including	 a	 forerunner	 of	 the	 combination	 lock	 and	 the
universal	joint,	which	is	used	in	automobiles	today.	He	had	published	131	books
on	a	wide	range	of	topics	in	philosophy,	medicine,	mathematics,	and	science.	In
1576,	however,	he	was	a	man	with	a	past	but	no	future,	living	in	obscurity	and
abject	poverty.	In	the	late	summer	of	that	year	he	sat	at	his	desk	and	wrote	his
final	words,	an	ode	to	his	favorite	son,	his	oldest,	who	had	been	executed	sixteen
years	earlier,	at	age	twenty-six.	The	old	man	died	on	September	20,	a	few	days
shy	of	his	seventy-fifth	birthday.	He	had	outlived	two	of	his	three	children;	at	his
death	 his	 surviving	 son	 was	 employed	 by	 the	 Inquisition	 as	 a	 professional
torturer.	 That	 plum	 job	 was	 a	 reward	 for	 having	 given	 evidence	 against	 his
father.

Before	 his	 death,	Gerolamo	Cardano	 burned	 170	 unpublished	manuscripts.1
Those	 sifting	 through	 his	 possessions	 found	 111	 that	 survived.	 One,	 written
decades	earlier	and,	from	the	looks	of	it,	often	revised,	was	a	treatise	of	thirty-
two	short	chapters.	Titled	The	Book	on	Games	of	Chance,	 it	was	the	first	book
ever	written	on	the	theory	of	randomness.	People	had	been	gambling	and	coping
with	other	uncertainties	for	thousands	of	years.	Can	I	make	it	across	the	desert
before	I	die	of	thirst?	Is	it	dangerous	to	remain	under	the	cliff	while	the	earth	is
shaking	like	this?	Does	that	grin	from	the	cave	girl	who	likes	to	paint	buffaloes
on	the	sides	of	rocks	mean	she	likes	me?	Yet	until	Cardano	came	along,	no	one
had	accomplished	a	reasoned	analysis	of	the	course	that	games	or	other	uncertain
processes	 take.	Cardano’s	 insight	 into	 how	 chance	works	 came	 embodied	 in	 a



principle	we	shall	call	the	law	of	the	sample	space.	The	law	of	the	sample	space
represented	a	new	idea	and	a	new	methodology	and	has	formed	the	basis	of	the
mathematical	description	of	uncertainty	in	all	the	centuries	that	followed.	It	is	a
simple	 methodology,	 a	 laws-of-chance	 analog	 of	 the	 idea	 of	 balancing	 a
checkbook.	Yet	with	 this	 simple	method	we	gain	 the	ability	 to	approach	many
problems	 systematically	 that	 would	 otherwise	 prove	 almost	 hopelessly
confusing.	To	illustrate	both	the	use	and	the	power	of	the	law,	we	shall	consider
a	problem	that	although	easily	stated	and	requiring	no	advanced	mathematics	to
solve,	 has	 probably	 stumped	 more	 people	 than	 any	 other	 in	 the	 history	 of
randomness.

									
AS	NEWSPAPER	COLUMNS	GO,	Parade	magazine’s	“Ask	Marilyn”	has	to	be
considered	 a	 smashing	 success.	Distributed	 in	 350	 newspapers	 and	 boasting	 a
combined	 circulation	 of	 nearly	 36	 million,	 the	 question-and-answer	 column
originated	in	1986	and	is	still	going	strong.	The	questions	can	be	as	enlightening
as	the	answers,	an	(unscientific)	Gallup	Poll	of	what	is	on	Americans’	minds.	For
instance:

When	 the	 stock	market	 closes	 at	 the	 end	 of	 the	 day,	 why	 does	 everyone
stand	around	smiling	and	clapping	regardless	of	whether	the	stocks	are	up
or	down?

A	friend	is	pregnant	with	twins	that	she	knows	are	fraternal.	What	are	the
chances	that	at	least	one	of	the	babies	is	a	girl?

When	you	drive	by	a	dead	skunk	in	the	road,	why	does	it	take	about	10
seconds	before	you	smell	 it?	Assume	 that	you	did	not	actually	drive	over
the	skunk.

Apparently	Americans	are	a	very	practical	people.	The	thing	to	note	here	is	that
each	of	 the	queries	 has	 a	 certain	 scientific	 or	mathematical	 component	 to	 it,	 a



characteristic	of	many	of	the	questions	answered	in	the	column.

One	might	ask,	especially	if	one	knows	a	little	something	about	mathematics
and	science,	“Who	is	this	guru	Marilyn?”	Well,	Marilyn	is	Marilyn	vos	Savant,
famous	for	being	listed	for	years	in	the	Guinness	World	Records	Hall	of	Fame	as
the	person	with	 the	world’s	 highest	 recorded	 IQ	 (228).	She	 is	 also	 famous	 for
being	 married	 to	 Robert	 Jarvik,	 inventor	 of	 the	 Jarvik	 artificial	 heart.	 But
sometimes	famous	people,	despite	their	other	accomplishments,	are	remembered
for	something	they	wished	had	never	happened	(“I	did	not	have	sexual	relations
with	that	woman”).	That	may	be	the	case	for	Marilyn,	who	is	most	famous	for
her	 response	 to	 the	 following	 question,	 which	 appeared	 in	 her	 column	 one
Sunday	in	September	1990	(I	have	altered	the	wording	slightly):

Suppose	 the	 contestants	 on	 a	 game	 show	 are	 given	 the	 choice	 of	 three
doors:	Behind	one	door	is	a	car;	behind	the	others,	goats.	After	a	contestant
picks	a	door,	the	host,	who	knows	what’s	behind	all	the	doors,	opens	one	of
the	unchosen	doors,	which	 reveals	 a	goat.	He	 then	 says	 to	 the	 contestant,
“Do	 you	 want	 to	 switch	 to	 the	 other	 unopened	 door?”	 Is	 it	 to	 the
contestant’s	advantage	to	make	the	switch?2

The	 question	was	 inspired	 by	 the	workings	 of	 the	 television	 game	 show	Let’s
Make	 a	Deal,	 which	 ran	 from	 1963	 to	 1976	 and	 in	 several	 incarnations	 from
1980	 to	 1991.	The	 show’s	main	 draw	was	 its	 handsome,	 amiable	 host,	Monty
Hall,	and	his	provocatively	clad	assistant,	Carol	Merrill,	Miss	Azusa	(California)
of	1957.

It	 had	 to	 come	 as	 a	 surprise	 to	 the	 show’s	 creators	 that	 after	 airing	 4,500
episodes	 in	 nearly	 twenty-seven	 years,	 it	 was	 this	 question	 of	 mathematical
probability	that	would	be	their	principal	legacy.	This	issue	has	immortalized	both
Marilyn	and	Let’s	Make	a	Deal	because	of	 the	vehemence	with	which	Marilyn
vos	Savant’s	readers	responded	to	the	column.	After	all,	it	appears	to	be	a	pretty
silly	question.	Two	doors	are	available—open	one	and	you	win;	open	the	other
and	you	lose—so	it	seems	self-evident	that	whether	you	change	your	choice	or
not,	 your	 chances	of	winning	are	50/50.	What	 could	be	 simpler?	The	 thing	 is,



Marilyn	said	in	her	column	that	it	is	better	to	switch.

Despite	 the	public’s	much-heralded	 lethargy	when	 it	 comes	 to	mathematical
issues,	Marilyn’s	readers	reacted	as	if	she’d	advocated	ceding	California	back	to
Mexico.	 Her	 denial	 of	 the	 obvious	 brought	 her	 an	 avalanche	 of	 mail,	 10,000
letters	by	her	estimate.3	If	you	ask	the	American	people	whether	they	agree	that
plants	create	the	oxygen	in	the	air,	light	travels	faster	than	sound,	or	you	cannot
make	radioactive	milk	safe	by	boiling	it,	you	will	get	double-digit	disagreement
in	each	case	(13	percent,	24	percent,	and	35	percent,	respectively).4	But	on	this
issue,	Americans	were	united:	92	percent	agreed	Marilyn	was	wrong.

Many	 readers	 seemed	 to	 feel	 let	 down.	How	could	 a	person	 they	 trusted	on
such	a	broad	 range	of	 issues	be	 confused	by	 such	 a	 simple	question?	Was	her
mistake	 a	 symbol	 of	 the	 woeful	 ignorance	 of	 the	 American	 people?	 Almost
1,000	 PhDs	 wrote	 in,	 many	 of	 them	 math	 professors,	 who	 seemed	 to	 be
especially	 irate.5	 “You	 blew	 it,”	 wrote	 a	 mathematician	 from	 George	 Mason
University:

Let	me	explain:	If	one	door	is	shown	to	be	a	loser,	that	information	changes
the	probability	of	either	remaining	choice—neither	of	which	has	any	reason
to	 be	 more	 likely—to	 1/2.	 As	 a	 professional	 mathematician,	 I’m	 very
concerned	with	the	general	public’s	lack	of	mathematical	skills.	Please	help
by	confessing	your	error	and,	in	the	future,	being	more	careful.

From	 Dickinson	 State	 University	 came	 this:	 “I	 am	 in	 shock	 that	 after	 being
corrected	by	 at	 least	 three	mathematicians,	 you	 still	 do	not	 see	your	mistake.”
From	Georgetown:	“How	many	irate	mathematicians	are	needed	to	change	your
mind?”	And	someone	 from	the	U.S.	Army	Research	 Institute	 remarked,	“If	all
those	 PhDs	 are	 wrong	 the	 country	 would	 be	 in	 serious	 trouble.”	 Responses
continued	 in	 such	 great	 numbers	 and	 for	 such	 a	 long	 time	 that	 after	 devoting
quite	a	bit	of	column	space	 to	 the	 issue,	Marilyn	decided	she	would	no	 longer
address	it.



The	 army	 PhD	who	wrote	 in	may	 have	 been	 correct	 that	 if	 all	 those	 PhDs
were	wrong,	it	would	be	a	sign	of	trouble.	But	Marilyn	was	correct.	When	told
of	this,	Paul	Erdös,	one	of	the	leading	mathematicians	of	the	twentieth	century,
said,	 “That’s	 impossible.”	 Then,	 when	 presented	 with	 a	 formal	 mathematical
proof	of	the	correct	answer,	he	still	didn’t	believe	it	and	grew	angry.	Only	after	a
colleague	arranged	for	a	computer	simulation	in	which	Erdös	watched	hundreds
of	 trials	 that	 came	out	 2	 to	 1	 in	 favor	 of	 switching	did	Erdös	 concede	he	was
wrong.6

How	 can	 something	 that	 seems	 so	 obvious	 be	 wrong?	 In	 the	 words	 of	 a
Harvard	professor	who	specializes	 in	probability	and	statistics,	“Our	brains	are
just	 not	 wired	 to	 do	 probability	 problems	 very	 well.”7	 The	 great	 American
physicist	Richard	Feynman	once	told	me	never	to	think	I	understood	a	work	in
physics	 if	all	 I	had	done	was	 read	someone	else’s	derivation.	The	only	way	 to
really	 understand	 a	 theory,	 he	 said,	 is	 to	 derive	 it	 yourself	 (or	 perhaps	 end	 up
disproving	 it!).	For	 those	of	us	who	aren’t	Feynman,	 re-proving	other	people’s
work	is	a	good	way	to	end	up	untenured	and	plying	our	math	skills	as	a	checker
at	Home	Depot.	But	the	Monty	Hall	problem	is	one	of	those	that	can	be	solved
without	 any	 specialized	 mathematical	 knowledge.	 You	 don’t	 need	 calculus,
geometry,	algebra,	or	even	amphetamines,	which	Erdös	was	reportedly	fond	of
taking.8	(As	legend	has	it,	once	after	quitting	for	a	month,	he	remarked,	“Before,
when	I	looked	at	a	piece	of	blank	paper	my	mind	was	filled	with	ideas.	Now	all	I
see	 is	 a	 blank	 piece	 of	 paper.”)	All	 you	 need	 is	 a	 basic	 understanding	 of	 how
probability	works	and	the	law	of	the	sample	space,	that	framework	for	analyzing
chance	 situations	 that	 was	 first	 put	 on	 paper	 in	 the	 sixteenth	 century	 by
Gerolamo	Cardano.

GEROLAMO	 CARDANO	 was	 no	 rebel	 breaking	 forth	 from	 the	 intellectual
milieu	 of	 sixteenth-century	 Europe.	 To	 Cardano	 a	 dog’s	 howl	 portended	 the
death	of	a	loved	one,	and	a	few	ravens	croaking	on	the	roof	meant	a	grave	illness
was	 on	 its	 way.	 He	 believed	 as	 much	 as	 anyone	 else	 in	 fate,	 in	 luck,	 and	 in
seeing	 your	 future	 in	 the	 alignment	 of	 planets	 and	 stars.	 Still,	 had	 he	 played
poker,	he	wouldn’t	have	been	found	drawing	to	an	inside	straight.	For	Cardano,
gambling	was	second	nature.	His	feeling	for	it	was	seated	in	his	gut,	not	in	his



head,	 and	 so	 his	 understanding	 of	 the	 mathematical	 relationships	 among	 a
game’s	possible	random	outcomes	transcended	his	belief	that	owing	to	fate,	any
such	 insight	 is	 futile.	 Cardano’s	 work	 also	 transcended	 the	 primitive	 state	 of
mathematics	 in	his	day,	 for	algebra	and	even	arithmetic	were	yet	 in	 their	stone
age	in	the	early	sixteenth	century,	preceding	even	the	invention	of	the	equal	sign.

History	has	much	to	say	about	Cardano,	based	on	both	his	autobiography	and
the	 writings	 of	 some	 of	 his	 contemporaries.	 Some	 of	 the	 writings	 are
contradictory,	but	one	thing	is	certain:	born	in	1501,	Gerolamo	Cardano	was	not
a	 child	you’d	have	put	your	money	on.	His	mother,	Chiara,	despised	children,
though—or	 perhaps	 because—she	 already	 had	 three	 boys.	 Short,	 stout,	 hot
tempered,	and	promiscuous,	she	prepared	a	kind	of	sixteenth-century	morning-
after	 pill	 when	 she	 became	 pregnant	 with	 Gerolamo—a	 brew	 of	 wormwood,
burned	barleycorn,	and	tamarisk	root.	She	drank	it	down	in	an	attempt	to	abort
the	 fetus.	 The	 brew	 sickened	 her,	 but	 the	 unborn	 Gerolamo	 was	 unfazed,
perfectly	content	with	whatever	metabolites	 the	concoction	 left	 in	his	mother’s
bloodstream.	Her	other	attempts	met	with	similar	failure.

Chiara	 and	 Gerolamo’s	 father,	 Fazio	 Cardano,	 were	 not	 married,	 but	 they
often	acted	as	 if	 they	were—they	were	known	for	 their	many	 loud	quarrels.	A
month	before	Gerolamo’s	birth,	Chiara	left	their	home	in	Milan	to	live	with	her
sister	in	Pavia,	twenty	miles	to	the	south.	Gerolamo	emerged	after	three	days	of
painful	labor.	One	look	at	the	infant	and	Chiara	must	have	thought	she	would	be
rid	 of	 him	 after	 all.	 He	 was	 frail,	 and	 worse,	 lay	 silent.	 Chiara’s	 midwife
predicted	 he’d	 be	 dead	 within	 the	 hour.	 But	 if	 Chiara	 was	 thinking,	 good
riddance,	she	was	let	down	again,	for	the	baby’s	wet	nurse	soaked	him	in	a	bath
of	warm	wine,	and	Gerolamo	revived.	The	infant’s	good	health	lasted	only	a	few
months,	however.	Then	he,	his	nurse,	and	his	three	half	brothers	all	came	down
with	 the	plague.	The	Black	Death,	 as	 the	plague	 is	 sometimes	 called,	 is	 really
three	 distinct	 diseases:	 bubonic,	 pneumonic,	 and	 septicemic	 plague.	 Cardano
contracted	bubonic,	 the	most	common,	named	 for	 the	buboes,	 the	painful	egg-
size	 swellings	 of	 the	 lymph	 nodes	 that	 are	 one	 of	 the	 disease’s	 prominent
symptoms.	Life	expectancy,	once	buboes	appeared,	was	about	a	week.

The	 Black	 Death	 had	 first	 entered	 Europe	 through	 a	 harbor	 in	 Messina	 in
northeastern	 Sicily	 in	 1347,	 carried	 by	 a	 Genoese	 fleet	 returning	 from	 the
Orient.9	The	fleet	was	quickly	quarantined,	and	the	entire	crew	died	aboard	the



ship—but	 the	 rats	 survived	and	scurried	ashore,	carrying	both	 the	bacteria	and
the	fleas	that	would	spread	them.	The	ensuing	outbreak	killed	half	the	city	within
two	months	and,	eventually,	between	25	percent	and	50	percent	of	the	population
of	Europe.	Successive	epidemics	kept	coming,	tamping	down	the	population	of
Europe	 for	 centuries.	 The	 year	 1501	 was	 a	 bad	 one	 for	 the	 plague	 in	 Italy.
Gerolamo’s	nurse	and	brothers	died.	The	lucky	baby	got	away	with	nothing	but
disfigurement:	warts	on	his	nose,	forehead,	cheeks,	and	chin.	He	was	destined	to
live	 nearly	 seventy-five	 years.	Along	 the	way	 there	was	 plenty	 of	 disharmony
and,	in	his	early	years,	a	good	many	beatings.

Gerolamo’s	 father	was	a	bit	of	 an	operator.	A	 sometime	pal	of	Leonardo	da
Vinci’s,	 he	 was	 by	 profession	 a	 geometer,	 never	 a	 profession	 that	 brought	 in
much	cash.	Fazio	often	had	 trouble	making	 the	rent,	so	he	started	a	consulting
business,	 providing	 the	 highborn	 with	 advice	 on	 law	 and	 medicine.	 That
enterprise	eventually	thrived,	aided	by	Fazio’s	claim	that	he	was	descended	from
a	brother	of	a	fellow	named	Goffredo	Castiglioni	of	Milan,	better	known	as	Pope
Celestine	 IV.	When	Gerolamo	 reached	 the	 age	 of	 five,	 his	 father	 brought	 him
into	the	business—in	a	manner	of	speaking.	That	is,	he	strapped	a	pannier	to	his
son’s	back,	stuffed	 it	with	heavy	 legal	and	medical	books,	and	began	dragging
the	young	boy	to	meetings	with	his	patrons	all	over	town.	Gerolamo	would	later
write	that	“from	time	to	time	as	we	walked	the	streets	my	father	would	command
me	 to	 stop	while	 he	opened	 a	 book	 and,	 using	my	head	 as	 a	 table,	 read	 some
long	passage,	prodding	me	the	while	with	his	foot	to	keep	still	if	I	wearied	of	the
great	weight.”10

In	1516,	Gerolamo	decided	his	best	opportunity	 lay	 in	 the	 field	of	medicine
and	 announced	 that	 he	wanted	 to	 leave	 his	 family’s	 home	 in	Milan	 and	 travel
back	to	Pavia	to	study	there.	Fazio	wanted	him	to	study	law,	however,	because
then	he	would	become	eligible	for	an	annual	stipend	of	100	crowns.	After	a	huge
family	 brawl,	 Fazio	 relented,	 but	 the	 question	 remained:	 without	 the	 stipend,
how	would	Gerolamo	support	himself	in	Pavia?	He	began	to	save	the	money	he
earned	 reading	 horoscopes	 and	 tutoring	 pupils	 in	 geometry,	 alchemy,	 and
astronomy.	Somewhere	along	the	way	he	noticed	he	had	a	talent	for	gambling,	a
talent	that	would	bring	him	cash	much	faster	than	any	of	those	other	means.

For	 anyone	 interested	 in	 gambling	 in	 Cardano’s	 day,	 every	 city	 was	 Las
Vegas.	On	cards,	dice,	backgammon,	even	chess,	wagers	were	made	everywhere.



Cardano	classified	these	games	according	to	two	types:	those	that	involved	some
strategy,	 or	 skill,	 and	 those	 that	were	 governed	by	pure	 chance.	 In	 games	 like
chess,	 Cardano	 risked	 being	 outplayed	 by	 some	 sixteenth-century	 Bobby
Fischer.	But	when	he	bet	on	the	fall	of	a	couple	of	small	cubes,	his	chances	were
as	 good	 as	 anyone	 else’s.	 And	 yet	 in	 those	 games	 he	 did	 have	 an	 advantage,
because	 he	 had	 developed	 a	 better	 understanding	 of	 the	 odds	 of	 winning	 in
various	 situations	 than	 any	 of	 his	 opponents.	 And	 so	 for	 his	 entrée	 into	 the
betting	world,	Cardano	played	the	games	of	pure	chance.	Before	long	he	had	set
aside	over	1,000	crowns	 for	his	education—more	 than	a	decade’s	worth	of	 the
stipend	his	 father	wanted	 for	him.	 In	1520	he	 registered	as	 a	 student	 in	Pavia.
Soon	after,	he	began	to	write	down	his	theory	of	gambling.

LIVING	WHEN	HE	DID,	Cardano	 had	 the	 advantage	 of	 understanding	many
things	that	had	been	Greek	to	the	Greeks,	and	to	the	Romans,	for	the	Hindus	had
taken	the	first	large	steps	toward	employing	arithmetic	as	a	powerful	tool.	It	was
in	 that	 milieu	 that	 positional	 notation	 in	 base	 ten	 developed,	 and	 became
standard,	 around	 A.D.	 700.11	 The	 Hindus	 also	 made	 great	 progress	 in	 the
arithmetic	of	fractions—something	crucial	to	the	analysis	of	probabilities,	since
the	 chances	 of	 something	 occurring	 are	 always	 less	 than	 one.	 This	 Hindu
knowledge	was	picked	up	by	the	Arabs	and	eventually	brought	to	Europe.	There
the	first	abbreviations,	p	for	“plus”	and	m	for	“minus,”	were	used	in	the	fifteenth
century.	 The	 symbols	 +	 and	 -	 were	 introduced	 around	 the	 same	 time	 by	 the
Germans,	but	only	to	indicate	excess	and	deficient	weights	of	chests.	It	gives	one
a	feeling	for	some	of	the	challenges	Cardano	faced	to	note	that	the	equal	sign	did
not	 yet	 exist,	 to	 be	 invented	 in	 1557	 by	 Robert	 Recorde	 of	 Oxford	 and
Cambridge,	who,	inspired	by	geometry,	remarked	that	no	things	could	be	more
nearly	alike	than	parallel	lines	and	hence	decided	that	such	lines	should	denote
equality.	 And	 the	 symbol	 ×,	 for	 multiplication,	 attributable	 to	 an	 Anglican
minister,	didn’t	arrive	on	the	scene	until	the	seventeenth	century.

Cardano’s	Book	on	Games	of	Chance	covers	card	games,	dice,	backgammon,
and	astragali.	It	is	not	perfect.	In	its	pages	are	reflected	Cardano’s	character,	his
crazy	 ideas,	 his	 wild	 temper,	 the	 passion	 with	 which	 he	 approached	 every
undertaking—and	 the	 turbulence	 of	 his	 life	 and	 times.	 It	 considers	 only



processes—such	as	the	toss	of	a	die	or	the	dealing	of	a	playing	card—in	which
one	outcome	is	as	likely	as	another.	And	some	points	Cardano	gets	wrong.	Still,
The	Book	on	Games	of	Chance	 represents	a	beachhead,	 the	first	success	 in	 the
human	quest	to	understand	the	nature	of	uncertainty.	And	Cardano’s	method	of
attacking	questions	of	chance	is	startling	both	in	its	power	and	in	its	simplicity.

Not	 all	 the	 chapters	 of	 Cardano’s	 book	 treat	 technical	 issues.	 For	 instance,
chapter	26	is	titled	“Do	Those	Who	Teach	Well	Also	Play	Well?”	(he	concludes,
“It	seems	to	be	a	different	thing	to	know	and	to	execute”).	Chapter	29	is	called
“On	 the	 Character	 of	 Players”	 (“There	 are	 some	who	with	many	words	 drive
both	themselves	and	others	from	their	proper	senses”).	These	seem	more	“Dear
Abby”	than	“Ask	Marilyn.”	But	then	there	is	chapter	14,	“On	Combined	Points”
(on	possibilities).	There	Cardano	states	what	he	calls	“a	general	rule”—our	law
of	the	sample	space.

The	 term	 sample	 space	 refers	 to	 the	 idea	 that	 the	 possible	 outcomes	 of	 a
random	process	can	be	 thought	of	as	 the	points	 in	a	space.	 In	simple	cases	 the
space	might	consist	of	just	a	few	points,	but	in	more	complex	situations	it	can	be
a	 continuum,	 just	 like	 the	 space	 we	 live	 in.	 Cardano	 didn’t	 call	 it	 a	 space,
however:	the	notion	that	a	set	of	numbers	could	form	a	space	was	a	century	off,
awaiting	 the	 genius	 of	 Descartes,	 his	 invention	 of	 coordinates,	 and	 his
unification	of	algebra	and	geometry.

In	modern	language,	Cardano’s	rule	reads	like	this:	Suppose	a	random	process
has	 many	 equally	 likely	 outcomes,	 some	 favorable	 (that	 is,	 winning),	 some
unfavorable	 (losing).	Then	 the	probability	of	obtaining	a	 favorable	outcome	 is
equal	 to	 the	proportion	of	outcomes	 that	are	 favorable.	The	 set	of	all	possible
outcomes	is	called	the	sample	space.	In	other	words,	if	a	die	can	land	on	any	of
six	sides,	those	six	outcomes	form	the	sample	space,	and	if	you	place	a	bet	on,
say,	two	of	them,	your	chances	of	winning	are	2	in	6.

A	word	on	the	assumption	that	all	the	outcomes	are	equally	likely.	Obviously
that’s	 not	 always	 true.	 The	 sample	 space	 for	 observing	Oprah	Winfrey’s	 adult
weight	runs	(historically)	from	145	pounds	to	237	pounds,	and	over	time	not	all
weight	 intervals	 have	 proved	 equally	 likely.12	 The	 complication	 that	 different
possibilities	have	different	probabilities	can	be	accounted	for	by	associating	the
proper	odds	with	each	possible	outcome—that	is,	by	careful	accounting.	But	for
now	we’ll	 look	 at	 examples	 in	 which	 all	 outcomes	 are	 equally	 probable,	 like



those	Cardano	analyzed.

The	potency	of	Cardano’s	rule	goes	hand	in	hand	with	certain	subtleties.	One
lies	in	the	meaning	of	the	term	outcomes.	As	late	as	 the	eighteenth	century	the
famous	 French	 mathematician	 Jean	 Le	 Rond	 d’Alembert,	 author	 of	 several
works	 on	 probability,	 misused	 the	 concept	 when	 he	 analyzed	 the	 toss	 of	 two
coins.13	The	number	of	heads	that	turns	up	in	those	two	tosses	can	be	0,	1,	or	2.
Since	there	are	three	outcomes,	Alembert	reasoned,	the	chances	of	each	must	be
1	in	3.	But	Alembert	was	mistaken.

One	 of	 the	 greatest	 deficiencies	 of	 Cardano’s	 work	 was	 that	 he	 made	 no
systematic	analysis	of	the	different	ways	in	which	a	series	of	events,	such	as	coin
tosses,	can	turn	out.	As	we	shall	see	in	the	next	chapter,	no	one	did	that	until	the
following	 century.	 Still,	 a	 series	 of	 two	 coin	 tosses	 is	 simple	 enough	 that
Cardano’s	 methods	 are	 easily	 applied.	 The	 key	 is	 to	 realize	 that	 the	 possible
outcomes	of	coin	flipping	are	the	data	describing	how	the	two	coins	land,	not	the
total	 number	 of	 heads	 calculated	 from	 that	 data,	 as	 in	 Alembert’s	 analysis.	 In
other	words,	we	should	not	consider	0,	1,	or	2	heads	as	 the	possible	outcomes
but	 rather	 the	sequences	 (heads,	heads),	 (heads,	 tails),	 (tails,	heads),	 and	 (tails,
tails).	These	are	the	4	possibilities	that	make	up	the	sample	space.

The	 next	 step,	 according	 to	 Cardano,	 is	 to	 sort	 through	 the	 outcomes,
cataloguing	 the	 number	 of	 heads	 we	 can	 harvest	 from	 each.	 Only	 1	 of	 the	 4
outcomes—(heads,	heads)—yields	2	heads.	Similarly,	only	(tails,	tails)	yields	0
heads.	But	 if	we	 desire	 1	 head,	 then	2	 of	 the	 outcomes	 are	 favorable:	 (heads,
tails)	 and	 (tails,	 heads).	 And	 so	 Cardano’s	 method	 shows	 that	 Alembert	 was
wrong:	 the	chances	are	25	percent	 for	0	or	2	heads	but	50	percent	 for	1	head.
Had	Cardano	laid	his	cash	on	1	head	at	3	to	1,	he	would	have	lost	only	half	the
time	 but	 tripled	 his	money	 the	 other	 half,	 a	 great	 opportunity	 for	 a	 sixteenth-
century	kid	 trying	 to	 save	up	money	 for	 college—and	 still	 a	 great	 opportunity
today	if	you	can	find	anyone	offering	it.

A	related	problem	often	 taught	 in	elementary	probability	courses	 is	 the	 two-
daughter	 problem,	which	 is	 similar	 to	 one	 of	 the	 questions	 I	 quoted	 from	 the
“Ask	Marilyn”	column.	Suppose	a	mother	is	carrying	fraternal	twins	and	wants
to	 know	 the	 odds	 of	 having	 two	 girls,	 a	 boy	 and	 a	 girl,	 and	 so	 on.	 Then	 the
sample	space	consists	of	all	the	possible	lists	of	the	sexes	of	the	children	in	their
birth	order:	(girl,	girl),	(girl,	boy),	(boy,	girl),	and	(boy,	boy).	It	is	the	same	as	the



space	 for	 the	coin-toss	problem	except	 for	 the	way	we	name	 the	points:	heads
becomes	girl,	and	tails	becomes	boy.	Mathematicians	have	a	fancy	name	for	the
situation	 in	 which	 one	 problem	 is	 another	 in	 disguise:	 they	 call	 it	 an
isomorphism.	 When	 you	 find	 an	 isomorphism,	 it	 often	 means	 you’ve	 saved
yourself	a	lot	of	work.	In	this	case	it	means	we	can	figure	the	chances	that	both
children	will	 be	girls	 in	 exactly	 the	 same	way	we	 figured	 the	 chances	of	 both
tosses	coming	up	heads	in	the	coin-toss	problem.	And	so	without	even	doing	the
analysis,	we	know	that	the	answer	is	the	same:	25	percent.	We	can	now	answer
the	question	asked	in	Marilyn’s	column:	the	chance	that	at	least	one	of	the	babies
will	be	a	girl	 is	 the	chance	 that	both	will	be	girls	plus	 the	chance	 that	 just	one
will	be	a	girl—that	is,	25	percent	plus	50	percent,	which	is	75	percent.

In	 the	 two-daughter	 problem,	 an	 additional	 question	 is	 usually	 asked:	What
are	the	chances,	given	that	one	of	the	children	is	a	girl,	that	both	children	will	be
girls?	One	might	reason	this	way:	since	it	 is	given	that	one	of	the	children	is	a
girl,	there	is	only	one	child	left	to	look	at.	The	chance	of	that	child’s	being	a	girl
is	50	percent,	so	the	probability	that	both	children	are	girls	is	50	percent.

That	is	not	correct.	Why?	Although	the	statement	of	the	problem	says	that	one
child	is	a	girl,	 it	doesn’t	say	which	one,	and	that	changes	things.	If	 that	sounds
confusing,	 that’s	 okay,	 because	 it	 provides	 a	 good	 illustration	 of	 the	 power	 of
Cardano’s	method,	which	makes	the	reasoning	clear.

The	 new	 information—one	 of	 the	 children	 is	 a	 girl—means	 that	 we	 are
eliminating	 from	consideration	 the	possibility	 that	both	children	are	boys.	And
so,	 employing	 Cardano’s	 approach,	 we	 eliminate	 the	 possible	 outcome	 (boy,
boy)	from	the	sample	space.	That	 leaves	only	3	outcomes	in	the	sample	space:
(girl,	boy),	(boy,	girl),	and	(girl,	girl).	Of	these,	only	(girl,	girl)	is	the	favorable
outcome—that	is,	both	children	are	daughters—so	the	chances	that	both	children
are	 girls	 is	 1	 in	 3,	 or	 33	 percent.	 Now	 we	 can	 see	 why	 it	 matters	 that	 the
statement	 of	 the	 problem	 didn’t	 specify	 which	 child	 was	 a	 daughter.	 For
instance,	 if	 the	problem	had	asked	 for	 the	chances	of	both	children	being	girls
given	that	the	first	child	is	a	girl,	then	we	would	have	eliminated	both	(boy,	boy)
and	(boy,	girl)	from	the	sample	space	and	the	odds	would	have	been	1	in	2,	or	50
percent.

One	has	to	give	credit	to	Marilyn	vos	Savant,	not	only	for	attempting	to	raise
public	understanding	of	elementary	probability	but	also	for	having	 the	courage



to	 continue	 to	 publish	 such	 questions	 even	 after	 her	 frustrating	 Monty	 Hall
experience.	We	will	 end	 this	 discussion	with	 another	 question	 taken	 from	 her
column,	this	one	from	March	1996:

My	dad	heard	this	story	on	the	radio.	At	Duke	University,	two	students	had
received	 A’s	 in	 chemistry	 all	 semester.	 But	 on	 the	 night	 before	 the	 final
exam,	they	were	partying	in	another	state	and	didn’t	get	back	to	Duke	until
it	was	over.	Their	excuse	to	the	professor	was	that	they	had	a	flat	tire,	and
they	asked	 if	 they	could	 take	a	make-up	 test.	The	professor	agreed,	wrote
out	a	test,	and	sent	the	two	to	separate	rooms	to	take	it.	The	first	question
(on	 one	 side	 of	 the	 paper)	 was	 worth	 five	 points.	 Then	 they	 flipped	 the
paper	over	and	found	the	second	question,	worth	95	points:	“which	tire	was
it?”	What	was	the	probability	that	both	students	would	say	the	same	thing?
My	dad	and	I	think	it’s	1	in	16.	Is	that	right?14

No,	 it	 is	 not:	 If	 the	 students	 were	 lying,	 the	 correct	 probability	 of	 their
choosing	the	same	answer	is	1	in	4	(if	you	need	help	to	see	why,	you	can	look	at
the	 notes	 at	 the	 back	 of	 this	 book).15	 And	 now	 that	 we’re	 accustomed	 to
decomposing	a	problem	into	lists	of	possibilities,	we	are	ready	to	employ	the	law
of	the	sample	space	to	tackle	the	Monty	Hall	problem.

									
AS	 I	 SAID	 EARLIER,	 understanding	 the	 Monty	 Hall	 problem	 requires	 no
mathematical	training.	But	it	does	require	some	careful	logical	thought,	so	if	you
are	 reading	 this	while	watching	Simpsons	 reruns,	 you	might	want	 to	 postpone
one	activity	or	the	other.	The	good	news	is	it	goes	on	for	only	a	few	pages.

In	 the	Monty	Hall	 problem	 you	 are	 facing	 three	 doors:	 behind	 one	 door	 is
something	valuable,	say	a	shiny	red	Maserati;	behind	the	other	two,	an	item	of
far	 less	 interest,	 say	 the	 complete	works	 of	 Shakespeare	 in	 Serbian.	You	 have
chosen	 door	 1.	 The	 sample	 space	 in	 this	 case	 is	 this	 list	 of	 three	 possible
outcomes:



Maserati	is	behind	door	1.
Maserati	is	behind	door	2.
Maserati	is	behind	door	3.

Each	of	 these	has	a	probability	of	1	 in	3.	Since	 the	assumption	 is	 that	most
people	would	 prefer	 the	Maserati,	 the	 first	 case	 is	 the	winning	 case,	 and	 your
chances	of	having	guessed	right	are	1	in	3.

Now	according	 to	 the	 problem,	 the	 next	 thing	 that	 happens	 is	 that	 the	 host,
who	knows	what’s	behind	all	the	doors,	opens	one	you	did	not	choose,	revealing
one	of	the	sets	of	Shakespeare.	In	opening	this	door,	the	host	has	used	what	he
knows	 to	 avoid	 revealing	 the	 Maserati,	 so	 this	 is	 not	 a	 completely	 random
process.	There	are	two	cases	to	consider.

One	 is	 the	 case	 in	which	 your	 initial	 choice	was	 correct.	 Let’s	 call	 that	 the
Lucky	Guess	scenario.	The	host	will	now	randomly	open	door	2	or	door	3,	and,
if	you	choose	to	switch,	instead	of	enjoying	a	fast,	sexy	ride,	you’ll	be	the	owner
of	Troilus	 and	Cressida	 in	 the	 Torlakian	 dialect.	 In	 the	 Lucky	Guess	 scenario
you	 are	 better	 off	 not	 switching—but	 the	 probability	 of	 landing	 in	 the	 Lucky
Guess	scenario	is	only	1	in	3.

The	 other	 case	 we	 must	 consider	 is	 that	 in	 which	 your	 initial	 choice	 was
wrong.	 We’ll	 call	 that	 the	 Wrong	 Guess	 scenario.	 The	 chances	 you	 guessed
wrong	are	2	out	of	3,	so	the	Wrong	Guess	scenario	is	twice	as	likely	to	occur	as
the	Lucky	Guess	scenario.	How	does	the	Wrong	Guess	scenario	differ	from	the
Lucky	Guess	scenario?	In	the	Wrong	Guess	scenario	the	Maserati	is	behind	one
of	the	doors	you	did	not	choose,	and	a	copy	of	the	Serbian	Shakespeare	is	behind
the	other	unchosen	door.	Unlike	the	Lucky	Guess	scenario,	 in	 this	scenario	 the
host	does	not	randomly	open	an	unchosen	door.	Since	he	does	not	want	to	reveal
the	 Maserati,	 he	 chooses	 to	 open	 precisely	 the	 door	 that	 does	 not	 have	 the
Maserati	 behind	 it.	 In	 other	 words,	 in	 the	 Wrong	 Guess	 scenario	 the	 host
intervenes	 in	what	until	 now	has	been	 a	 random	process.	So	 the	process	 is	 no
longer	 random:	 the	 host	 uses	 his	 knowledge	 to	 bias	 the	 result,	 violating
randomness	 by	 guaranteeing	 that	 if	 you	 switch	 your	 choice,	 you	 will	 get	 the
fancy	 red	 car.	 Because	 of	 this	 intervention,	 if	 you	 find	 yourself	 in	 the	Wrong



Guess	scenario,	you	will	win	if	you	switch	and	lose	if	you	don’t.

To	 summarize:	 if	 you	 are	 in	 the	Lucky	Guess	 scenario	 (probability	 1	 in	 3),
you’ll	win	if	you	stick	with	your	choice.	If	you	are	in	the	Wrong	Guess	scenario
(probability	2	in	3),	owing	to	the	actions	of	the	host,	you	will	win	if	you	switch
your	choice.	And	so	your	decision	comes	down	to	a	guess:	in	which	scenario	do
you	 find	 yourself?	 If	 you	 feel	 that	ESP	 or	 fate	 has	 guided	 your	 initial	 choice,
maybe	you	shouldn’t	switch.	But	unless	you	can	bend	silver	spoons	into	pretzels
with	 your	 brain	 waves,	 the	 odds	 are	 2	 to	 1	 that	 you	 are	 in	 the	Wrong	Guess
scenario,	and	so	it	is	better	to	switch.	Statistics	from	the	television	program	bear
this	out:	 those	who	found	 themselves	 in	 the	situation	described	 in	 the	problem
and	switched	their	choice	won	about	twice	as	often	as	those	who	did	not.

The	Monty	Hall	 problem	 is	hard	 to	grasp	because	unless	you	 think	about	 it
carefully,	the	role	of	the	host,	like	that	of	your	mother,	goes	unappreciated.	But
the	host	is	fixing	the	game.	The	host’s	role	can	be	made	obvious	if	we	suppose
that	 instead	of	 3	 doors,	 there	were	 100.	You	 still	 choose	door	 1,	 but	 now	you
have	 a	 probability	 of	 1	 in	 100	 of	 being	 right.	 Meanwhile	 the	 chance	 of	 the
Maserati’s	being	behind	one	of	the	other	doors	is	99	in	100.	As	before,	the	host
opens	all	but	one	of	the	doors	that	you	did	not	pick,	being	sure	not	to	open	the
door	hiding	the	Maserati	 if	 it	 is	one	of	 them.	After	he	 is	done,	 the	chances	are
still	1	in	100	that	the	Maserati	was	behind	the	door	you	chose	and	still	99	in	100
that	it	was	behind	one	of	the	other	doors.	But	now,	thanks	to	the	intervention	of
the	host,	there	is	only	one	door	left	representing	all	99	of	those	other	doors,	and
so	 the	probability	 that	 the	Maserati	 is	 behind	 that	 remaining	door	 is	 99	out	 of
100!

Had	 the	Monty	Hall	problem	been	around	 in	Cardano’s	day,	would	he	have
been	a	Marilyn	vos	Savant	or	a	Paul	Erdös?	The	law	of	the	sample	space	handles
the	 problem	 nicely,	 but	we	 have	 no	way	 of	 knowing	 for	 sure,	 for	 the	 earliest
known	 statement	 of	 the	 problem	 (under	 a	 different	 name)	 didn’t	 occur	 until
1959,	in	an	article	by	Martin	Gardner	in	Scientific	American.16	Gardner	called	it
“a	wonderfully	confusing	 little	problem”	and	noted	 that	“in	no	other	branch	of
mathematics	 is	 it	 so	 easy	 for	 experts	 to	 blunder	 as	 in	 probability	 theory.”	 Of
course,	 to	 a	 mathematician	 a	 blunder	 is	 an	 issue	 of	 embarrassment,	 but	 to	 a
gambler	it	is	an	issue	of	livelihood.	And	so	it	is	fitting	that	when	it	came	to	the
first	 systematic	 theory	 of	 probability,	 it	 took	 Cardano,	 the	 gambler,	 to	 figure



things	out.

									
ONE	DAY	while	 Cardano	was	 in	 his	 teens,	 one	 of	 his	 friends	 died	 suddenly.
After	 a	 few	 months,	 Cardano	 noticed,	 his	 friend’s	 name	 was	 no	 longer
mentioned	by	anyone.	This	saddened	him	and	left	a	deep	impression.	How	does
one	overcome	the	fact	that	life	is	transitory?	He	decided	that	the	only	way	was	to
leave	 something	 behind—heirs	 or	 lasting	 works	 of	 some	 kind	 or	 both.	 In	 his
autobiography,	Cardano	describes	developing	“an	unshakable	ambition”	to	leave
his	mark	on	the	world.17

After	 obtaining	 his	 medical	 degree,	 Cardano	 returned	 to	 Milan,	 seeking
employment.	 While	 in	 college	 he	 had	 written	 a	 paper,	 “On	 the	 Differing
Opinions	 of	 Physicians,”	 that	 essentially	 called	 the	 medical	 establishment	 a
bunch	 of	 quacks.	 The	 Milan	 College	 of	 Physicians	 now	 returned	 the	 favor,
refusing	to	admit	him.	That	meant	he	could	not	practice	in	Milan.	And	so,	using
money	 he	 had	 saved	 from	 his	 tutoring	 and	 gambling,	 Cardano	 bought	 a	 tiny
house	 to	 the	 east,	 in	 the	 town	 of	 Piove	 di	 Sacco.	 He	 expected	 to	 do	 good
business	there	because	disease	was	rife	in	the	town	and	it	had	no	physician.	But
his	 market	 research	 had	 a	 fatal	 flaw:	 the	 town	 had	 no	 doctor	 because	 the
populace	preferred	to	be	treated	by	sorcerers	and	priests.	After	years	of	intense
work	and	study,	Cardano	found	himself	with	little	income	but	a	lot	of	spare	time
on	his	hands.	It	proved	a	lucky	break,	for	he	seized	the	opportunity	and	began	to
write	books.	One	of	them	was	The	Book	on	Games	of	Chance.

In	1532,	after	 five	years	 in	Sacco,	Cardano	moved	back	 to	Milan,	hoping	 to
have	his	work	published	and	once	again	applying	for	membership	in	the	College
of	Physicians.	On	both	fronts	he	was	roundly	rejected.	“In	those	days,”	he	wrote,
“I	was	 sickened	 so	 to	 the	heart	 that	 I	would	visit	 diviners	 and	wizards	 so	 that
some	 solution	 might	 be	 found	 to	 my	 manifold	 troubles.”18	 One	 wizard
suggested	he	shield	himself	from	moon	rays.	Another	that,	on	waking,	he	sneeze
three	 times	 and	 knock	 on	wood.	 Cardano	 followed	 all	 their	 prescriptions,	 but
none	 changed	 his	 bad	 fortune.	 And	 so,	 hooded,	 he	 took	 to	 sneaking	 from
building	to	building	at	night,	surreptitiously	treating	patients	who	either	couldn’t
afford	 the	 fees	 of	 sanctioned	 doctors	 or	 else	 didn’t	 improve	 in	 their	 care.	 To
supplement	 the	 income	 he	 earned	 from	 that	 endeavor,	 he	 wrote	 in	 his



autobiography,	he	was	“forced	to	the	dice	again	so	that	I	could	support	my	wife;
and	here	my	knowledge	defeated	fortune,	and	we	were	able	to	buy	food	and	live,
though	our	 lodgings	were	desolate.”19	As	 for	The	Book	on	Games	of	Chance,
though	he	would	 revise	 and	 improve	 the	manuscript	 repeatedly	 in	 the	years	 to
come,	he	never	again	sought	to	have	it	published,	perhaps	because	he	realized	it
wasn’t	a	good	idea	to	teach	anyone	to	gamble	as	well	as	he	could.

Cardano	eventually	achieved	his	goals	in	life,	obtaining	both	heirs	and	fame—
and	 a	 good	 deal	 of	 fortune	 to	 boot.	 The	 fortune	 began	 to	 accrue	 when	 he
published	 a	 book	 based	 on	 his	 old	 college	 paper,	 altering	 the	 title	 from	 the
somewhat	academic	“On	the	Differing	Opinions	of	Physicians”	to	the	zinger	On
the	Bad	Practice	of	Medicine	 in	Common	Use.	The	book	was	a	hit.	And	 then,
when	one	of	his	secret	patients,	a	well-known	prior	of	the	Augustinian	order	of
friars,	 suddenly	 (and	 in	 all	 likelihood	 by	 chance)	 improved	 and	 attributed	 his
recovery	 to	 Cardano’s	 care,	 Cardano’s	 fame	 as	 a	 physician	 took	 off	 on	 an
upward	spiral	that	reached	such	heights	the	College	of	Physicians	felt	compelled
not	only	to	grant	him	membership	but	also	to	make	him	its	rector.	Meanwhile	he
was	 publishing	more	 books,	 and	 they	 did	well,	 especially	 one	 for	 the	 general
public	called	The	Practice	of	Arithmetic.	A	few	years	later	he	published	a	more
technical	book,	called	the	Ars	magna,	or	The	Great	Art,	a	treatise	on	algebra	in
which	he	gave	the	first	clear	picture	of	negative	numbers	and	a	famous	analysis
of	 certain	 algebraic	 equations.	When	 he	 reached	 his	 early	 fifties,	 in	 the	 mid-
1550s,	Cardano	was	at	his	peak,	chairman	of	medicine	at	the	University	of	Pavia
and	a	wealthy	man.

His	 good	 fortune	 didn’t	 last.	 To	 a	 large	 extent	what	 brought	Cardano	 down
was	 the	 other	 part	 of	 his	 legacy—his	 children.	 When	 she	 was	 sixteen,	 his
daughter	Chiara	(named	after	his	mother)	seduced	his	older	son,	Giovanni,	and
become	 pregnant.	 She	 had	 a	 successful	 abortion,	 but	 it	 left	 her	 infertile.	 That
suited	her	just	fine,	for	she	was	boldly	promiscuous,	even	after	her	marriage,	and
contracted	 syphilis.	Giovanni	went	 on	 to	 become	 a	 doctor	 but	was	 soon	more
famous	 as	 a	 petty	 criminal,	 so	 famous	he	was	 blackmailed	 into	marriage	by	 a
family	of	gold	diggers	who	had	proof	that	he	had	murdered,	by	poison,	a	minor
city	 official.	 Meanwhile	 Aldo,	 Cardano’s	 younger	 son	 who	 as	 a	 child	 had
engaged	 in	 the	 torture	of	animals,	 turned	 that	passion	 into	work	as	a	 freelance
torturer	for	the	Inquisition.	And	like	Giovanni,	he	moonlighted	as	a	crook.



A	few	years	after	his	marriage	Giovanni	gave	one	of	his	servants	a	mysterious
mixture	 to	 incorporate	 into	 a	 cake	 for	Giovanni’s	wife.	When	 she	keeled	over
after	 enjoying	 her	 dessert,	 the	 authorities	 put	 two	 and	 two	 together.	 Despite
Gerolamo’s	spending	a	fortune	on	lawyers,	his	attempts	 to	pull	strings,	and	his
testimony	on	his	 son’s	 behalf,	 young	Giovanni	was	 executed	 in	 prison	 a	 short
while	later.	The	drain	on	Cardano’s	funds	and	reputation	made	him	vulnerable	to
his	old	enemies.	The	senate	in	Milan	expunged	his	name	from	the	list	of	 those
allowed	to	lecture,	and	accusing	him	of	sodomy	and	incest,	had	him	exiled	from
the	 province.	 When	 Cardano	 left	 Milan	 at	 the	 end	 of	 1563,	 he	 wrote	 in	 his
autobiography,	he	was	“reduced	once	more	to	rags,	my	fortune	gone,	my	income
ceased,	my	rents	withheld,	my	books	impounded.”20	By	that	time	his	mind	was
going	too,	and	he	was	given	to	periods	of	incoherence.	As	the	final	blow,	a	self-
taught	 mathematician	 named	 Niccolò	 Tartaglia,	 angry	 because	 in	 Ars	 magna
Cardano	 had	 revealed	 Tartaglia’s	 secret	 method	 of	 solving	 certain	 equations,
coaxed	Aldo	into	giving	evidence	against	his	father	 in	exchange	for	an	official
appointment	as	public	torturer	and	executioner	for	the	city	of	Bologna.	Cardano
was	jailed	briefly,	then	quietly	lived	out	his	last	few	years	in	Rome.	The	Book	on
Games	 of	 Chance	 was	 finally	 published	 in	 1663,	 over	 100	 years	 after	 young
Cardano	had	first	put	 the	words	 to	paper.	By	 then	his	methods	of	analysis	had
been	reproduced	and	surpassed.



CHAPTER	4



Tracking	the	Pathways	to	Success

IF	 A	 GAMBLER	 of	 Cardano’s	 day	 had	 understood	 Cardano’s	 mathematical
work	 on	 chance,	 he	 could	 have	 made	 a	 tidy	 profit	 betting	 against	 less
sophisticated	 players.	 Today,	 with	 what	 he	 had	 to	 offer,	 Cardano	 could	 have
achieved	both	fame	and	fortune	writing	books	like	The	Idiot’s	Guide	to	Casting
Dice	with	Suckers.	But	in	his	own	time,	Cardano’s	work	made	no	big	splash,	and
his	Book	on	Games	of	Chance	remained	unpublished	until	 long	after	his	death.
Why	did	Cardano’s	work	have	so	little	impact?	As	we’ve	said,	one	hindrance	to
those	who	preceded	 him	was	 the	 lack	 of	 a	 good	 system	of	 algebraic	 notation.
That	system	in	Cardano’s	day	was	improving	but	was	still	in	its	infancy.	Another
roadblock,	 however,	 had	 yet	 to	 be	 removed:	 Cardano	worked	 at	 a	 time	when
mystical	 incantation	was	more	valued	 than	mathematical	 calculation.	 If	people
did	not	look	for	the	order	in	nature	and	did	not	develop	numerical	descriptions	of
events,	then	a	theory	of	the	effect	of	randomness	on	those	events	was	bound	to
go	unappreciated.	As	 it	 turned	out,	had	Cardano	lived	 just	a	few	decades	 later,
both	 his	work	 and	 its	 reception	might	 have	 been	 far	 different,	 for	 the	 decades
after	 his	 death	 saw	 the	unfolding	of	 historic	 changes	 in	European	 thought	 and
belief,	 a	 transformation	 that	 has	 traditionally	 been	 dubbed	 the	 scientific
revolution.

The	 scientific	 revolution	 was	 a	 revolt	 against	 a	 way	 of	 thinking	 that	 was
prevalent	 as	Europe	 emerged	 from	 the	Middle	Ages,	 an	 era	 in	which	 people’s
beliefs	about	 the	way	the	world	worked	were	not	scrutinized	in	any	systematic
manner.	Merchants	in	one	town	stole	the	clothes	off	a	hanged	man	because	they
believed	it	would	help	their	sales	of	beer.	Parishioners	in	another	believed	illness
could	be	cured	by	chanting	sacrilegious	prayers	as	 they	marched	naked	around
their	 church	 altar.1	 One	 trader	 even	 believed	 that	 relieving	 himself	 in	 the
“wrong”	 toilet	 would	 bring	 bad	 fortune.	 Actually	 he	 was	 a	 bond	 trader	 who
confessed	his	secret	to	a	CNN	reporter	in	2003.2	Yes,	some	people	still	adhere	to
superstitions	today,	but	at	least	today,	for	those	who	are	interested,	we	have	the
intellectual	 tools	 to	 prove	 or	 disprove	 the	 efficacy	 of	 such	 actions.	 But	 if
Cardano’s	 contemporaries,	 say,	 won	 at	 dice,	 rather	 than	 analyzing	 their
experience	mathematically,	they	would	say	a	prayer	of	thanks	or	refuse	to	wash



their	lucky	socks.	Cardano	himself	believed	that	streaks	of	losses	occur	because
“fortune	is	averse”	and	that	one	way	to	improve	your	results	is	to	give	the	dice	a
good	hard	throw.	If	a	lucky	7	is	all	in	the	wrist,	why	stoop	to	mathematics?

The	 moment	 that	 is	 often	 considered	 the	 turning	 point	 for	 the	 scientific
revolution	came	in	1583,	just	seven	years	after	Cardano’s	death.	That	is	when	a
young	 student	 at	 the	 University	 of	 Pisa	 sat	 in	 a	 cathedral	 and,	 according	 to
legend,	 rather	 than	 listening	 to	 the	 services,	 stared	 at	 something	 he	 found	 far
more	 intriguing:	 the	 swinging	 of	 a	 large	 hanging	 lamp.	 Using	 his	 pulse	 as	 a
timer,	Galileo	Galilei	noticed	that	the	lamp	seemed	to	take	the	same	amount	of
time	to	swing	through	a	wide	arc	as	it	did	to	swing	through	a	narrow	one.	That
observation	suggested	to	him	a	law:	the	time	required	by	a	pendulum	to	perform
a	 swing	 is	 independent	 of	 the	 amplitude	of	 the	 swing.	Galileo’s	was	 a	 precise
and	practical	observation,	and	although	simple,	it	signified	a	new	approach	to	the
description	 of	 physical	 phenomena:	 the	 idea	 that	 science	 must	 focus	 on
experience	 and	 experimentation—how	 nature	 operates—rather	 than	 on	 what
intuition	dictates	or	our	minds	find	appealing.	And	most	of	all,	it	must	be	done
with	mathematics.

Galileo	 employed	 his	 scientific	 skills	 to	 write	 a	 short	 piece	 on	 gambling,
“Thoughts	 about	 Dice	 Games.”	 The	 work	 was	 produced	 at	 the	 behest	 of	 his
patron,	 the	 grand	duke	 of	Tuscany.	The	 problem	 that	 bothered	 the	 grand	duke
was	 this:	 when	 you	 throw	 three	 dice,	 why	 does	 the	 number	 10	 appear	 more
frequently	 than	 the	number	9?	The	 excess	 of	 10s	 is	 only	 about	 8	 percent,	 and
neither	 10	 nor	 9	 comes	 up	 very	 often,	 so	 the	 fact	 that	 the	 grand	 duke	 played
enough	to	notice	the	small	difference	means	he	probably	needed	a	good	twelve-
step	program	more	than	he	needed	Galileo.	For	whatever	reason,	Galileo	was	not
keen	to	work	on	the	problem	and	grumbled	about	it.	But	like	any	consultant	who
wants	to	stay	employed,	he	kept	his	grumbling	low-key	and	did	his	job.

If	you	throw	a	single	die,	the	chances	of	any	number	in	particular	coming	up
are	1	in	6.	But	if	you	throw	two	dice,	the	chances	of	different	totals	are	no	longer
equal.	For	example,	there	is	a	1	in	36	chance	of	the	dice	totaling	2	but	twice	that
chance	of	their	totaling	3.	The	reason	is	that	a	total	of	2	can	be	obtained	in	only	1
way,	by	tossing	two	1s,	but	a	total	of	3	can	be	obtained	in	2	ways,	by	tossing	a	1
and	 then	 a	 2	 or	 a	 2	 and	 then	 a	 1.	 That	 brings	 us	 to	 the	 next	 big	 step	 in
understanding	 random	 processes,	 which	 is	 the	 subject	 of	 this	 chapter:	 the
development	of	systematic	methods	for	analyzing	the	number	of	ways	in	which



events	can	happen.

									
THE	KEY	TO	UNDERSTANDING	the	grand	duke’s	confusion	 is	 to	approach
the	problem	as	if	you	were	a	Talmudic	scholar:	rather	than	attempting	to	explain
why	 10	 comes	 up	more	 frequently	 than	 9,	we	 ask,	why	 shouldn’t	 10	 come	 up
more	frequently	than	9?	It	turns	out	there	is	a	tempting	reason	to	believe	that	the
dice	 should	 sum	 to	 10	 and	 9	 with	 equal	 frequency:	 both	 10	 and	 9	 can	 be
constructed	 in	 6	ways	 from	 the	 throw	of	 three	 dice.	 For	 9	we	 can	write	 those
ways	as	(621),	(531),	(522),	(441),	(432),	and	(333).	For	10	they	are	(631),	(622),
(541),	(532),	(442),	and	(433).	According	to	Cardano’s	law	of	the	sample	space,
the	 probability	 of	 obtaining	 a	 favorable	 outcome	 is	 equal	 to	 the	 proportion	 of
outcomes	that	are	favorable.	A	sum	of	9	and	10	can	be	constructed	in	the	same
number	of	ways.	So	why	is	one	more	probable	than	the	other?

The	reason	is	that,	as	I’ve	said,	the	law	of	the	sample	space	in	its	original	form
applies	only	to	outcomes	that	are	equally	probable,	and	the	combinations	listed
above	are	not.	For	instance,	the	outcome	(631)—that	is,	throwing	a	6,	a	3,	and	a
1—is	6	times	more	likely	than	the	outcome	(333)	because	although	there	is	only
1	way	you	can	throw	three	3s,	there	are	6	ways	you	can	throw	a	6,	a	3,	and	a	1:
you	can	throw	a	6	first,	then	a	3,	and	then	a	1,	or	you	can	throw	a	1	first,	then	a
3,	then	a	6,	and	so	on.	Let’s	represent	an	outcome	in	which	we	are	keeping	track
of	 the	order	of	 throws	by	a	 triplet	of	numbers	separated	by	commas.	Then	 the
short	way	of	saying	what	we	just	said	is	that	the	outcome	(631)	consists	of	the
possibilities	 (1,3,6),	 (1,6,3),	 (3,1,6),	 (3,6,1),	 (6,1,3),	 and	 (6,3,1),	 whereas	 the
outcome	 (333)	 consists	 only	 of	 (3,3,3).	Once	we’ve	made	 this	 decomposition,
we	 can	 see	 that	 the	 outcomes	 are	 equally	 probable	 and	we	 can	 apply	 the	 law.
Since	there	are	27	ways	of	rolling	a	10	with	three	dice	but	only	25	ways	to	get	a
total	 of	 9,	 Galileo	 concluded	 that	 with	 three	 dice,	 rolling	 a	 10	 was	 27/25,	 or
about	1.08,	times	more	likely.

In	 solving	 the	 problem,	 Galileo	 implicitly	 employed	 our	 next	 important
principle:	The	chances	of	an	event	depend	on	the	number	of	ways	in	which	it	can
occur.	That	is	not	a	surprising	statement.	The	surprise	is	just	how	large	that	effect
is—and	how	difficult	it	can	be	to	calculate.	For	example,	suppose	you	give	a	10-
question	 true-or-false	 quiz	 to	 your	 class	 of	 25	 sixth-graders.	 Let’s	 do	 an



accounting	of	the	results	a	particular	student	might	achieve:	she	could	answer	all
questions	 correctly;	 she	 could	 miss	 1	 question—that	 can	 happen	 in	 10	 ways
because	there	are	10	questions	she	could	miss;	she	could	miss	a	pair	of	questions
—that	can	happen	 in	45	ways	because	 there	are	45	distinct	pairs	of	questions;
and	so	on.	As	a	result,	on	average	in	a	collection	of	students	who	are	randomly
guessing,	for	every	student	scoring	100	percent,	you’ll	find	about	10	scoring	90
percent	 and	 45	 scoring	 80	 percent.	 The	 chances	 of	 getting	 a	 grade	 near	 50
percent	are	of	course	higher	still,	but	in	a	class	of	25	the	probability	that	at	least
one	student	will	get	a	B	(80	percent)	or	better	if	all	the	students	are	guessing	is
about	75	percent.	So	if	you	are	a	veteran	teacher,	it	is	likely	that	among	all	the
students	over	the	years	who	have	shown	up	unprepared	and	more	or	less	guessed
at	your	quizzes,	some	were	rewarded	with	an	A	or	a	B.

A	few	years	ago	Canadian	 lottery	officials	 learned	 the	 importance	of	careful
counting	 the	 hard	way	when	 they	 decided	 to	 give	 back	 some	 unclaimed	 prize
money	that	had	accumulated.3	They	purchased	500	automobiles	as	bonus	prizes
and	 programmed	 a	 computer	 to	 determine	 the	 winners	 by	 randomly	 selecting
500	 numbers	 from	 their	 list	 of	 2.4	 million	 subscriber	 numbers.	 The	 officials
published	the	unsorted	list	of	500	winning	numbers,	promising	an	automobile	for
each	number	listed.	To	their	embarrassment,	one	individual	claimed	(rightly)	that
he	 had	 won	 two	 cars.	 The	 officials	 were	 flabbergasted—with	 over	 2	 million
numbers	 to	 choose	 from,	 how	 could	 the	 computer	 have	 randomly	 chosen	 the
same	number	twice?	Was	there	a	fault	in	their	program?

The	counting	problem	the	lottery	officials	ran	into	is	equivalent	to	a	problem
called	the	birthday	problem:	how	many	people	must	a	group	contain	in	order	for
there	to	be	a	better	than	even	chance	that	two	members	of	the	group	will	share
the	same	birthday	(assuming	all	birth	dates	are	equally	probable)?	Most	people
think	the	answer	is	half	the	number	of	days	in	a	year,	or	about	183.	But	that	is
the	correct	answer	to	a	different	question:	how	many	people	do	you	need	to	have
at	a	party	for	 there	 to	be	a	better	 than	even	chance	that	one	of	 them	will	share
your	 birthday?	 If	 there	 is	 no	 restriction	 on	 which	 two	 people	 will	 share	 a
birthday,	 the	 fact	 that	 there	 are	many	 possible	 pairs	 of	 individuals	who	might
have	 shared	 birthdays	 changes	 the	 answer	 drastically.	 In	 fact,	 the	 answer	 is
astonishingly	 low:	 just	 23.	When	pulling	 from	a	pool	 of	 2.4	million,	 as	 in	 the
case	of	 the	Canadian	 lottery,	 it	 takes	many	more	 than	500	numbers	 to	have	an
even	chance	of	a	repeat.	But	still	that	possibility	should	not	have	been	ignored.



The	chances	of	a	match	come	out,	 in	 fact,	 to	about	5	percent.	Not	huge,	but	 it
could	have	been	accounted	for	by	having	the	computer	cross	each	number	off	the
list	 as	 it	was	 chosen.	 For	 the	 record,	 the	Canadian	 lottery	 requested	 the	 lucky
fellow	to	forgo	the	second	car,	but	he	refused.

Another	 lottery	mystery	 that	 raised	many	eyebrows	occurred	 in	Germany	on
June	21,	1995.4	The	freak	event	happened	in	a	lottery	called	Lotto	6/49,	which
means	that	the	winning	six	numbers	are	drawn	from	the	numbers	1	to	49.	On	the
day	 in	question	 the	winning	numbers	were	15-25-27-30-42-48.	The	very	 same
sequence	 had	 been	 drawn	 previously,	 on	 December	 20,	 1986.	 It	 was	 the	 first
time	in	3,016	drawings	that	a	winning	sequence	had	been	repeated.	What	were
the	 chances	 of	 that?	 Not	 as	 bad	 as	 you’d	 think.	When	 you	 do	 the	 math,	 the
chance	of	a	repeat	at	some	point	over	the	years	comes	out	to	around	28	percent.

Since	in	a	random	process	the	number	of	ways	in	which	an	outcome	can	occur
is	 a	 key	 to	 determining	 how	 probable	 it	 is,	 the	 key	 question	 is,	 how	 do	 you
calculate	 the	number	of	ways	 in	which	something	can	occur?	Galileo	seems	to
have	 missed	 the	 significance	 of	 that	 question.	 He	 did	 not	 carry	 his	 work	 on
randomness	beyond	 that	problem	of	dice	and	 said	 in	 the	 first	paragraph	of	his
work	that	he	was	writing	about	dice	only	because	he	had	been	“ordered”	to	do
so.5	 In	 1633,	 as	 his	 reward	 for	 promoting	 a	 new	 approach	 to	 science,	Galileo
was	condemned	by	the	Inquisition.	But	science	and	theology	had	parted	ways	for
good;	scientists	now	analyzing	how?	were	unburdened	by	the	theologians’	issue
of	 why?	 Soon	 a	 scholar	 from	 a	 new	 generation,	 schooled	 since	 his	 youth	 on
Galileo’s	philosophy	of	science,	would	take	the	analysis	of	contingency	counting
to	new	heights,	reaching	a	level	of	understanding	without	which	most	of	today’s
science	could	not	be	conducted.

									
WITH	 THE	 BLOSSOMING	 of	 the	 scientific	 revolution	 the	 frontiers	 of
randomness	 moved	 from	 Italy	 to	 France,	 where	 a	 new	 breed	 of	 scientist,
rebelling	against	Aristotle	and	following	Galileo,	developed	it	further	and	deeper
than	had	either	Cardano	or	Galileo.	This	 time	 the	 importance	of	 the	new	work
would	be	recognized,	and	it	would	make	waves	all	over	Europe.	Though	the	new
ideas	would	again	be	developed	in	the	context	of	gambling,	the	first	of	this	new
breed	was	more	a	mathematician	turned	gambler	than,	like	Cardano,	a	gambler



turned	mathematician.	His	name	was	Blaise	Pascal.

Pascal	 was	 born	 in	 June	 1623	 in	 Clermont-Ferrand,	 a	 little	 more	 than	 250
miles	south	of	Paris.	Realizing	his	son’s	brilliance,	and	having	moved	to	Paris,
Blaise’s	 father	 introduced	 him	 at	 age	 thirteen	 to	 a	 newly	 founded	 discussion
group	 there	 that	 insiders	 called	 the	 Académie	Mersenne	 after	 the	 black-robed
friar	who	 had	 founded	 it.	Mersenne’s	 society	 included	 the	 famed	 philosopher-
mathematician	 René	 Descartes	 and	 the	 amateur	 mathematics	 genius	 Pierre	 de
Fermat.	 The	 strange	 mix	 of	 brilliant	 thinkers	 and	 large	 egos,	 with	 Mersenne
present	 to	 stir	 the	 pot,	must	 have	 had	 a	 great	 influence	 on	 the	 teenage	Blaise,
who	developed	personal	ties	to	both	Fermat	and	Descartes	and	picked	up	a	deep
grounding	in	the	new	scientific	method.	“Let	all	the	disciples	of	Aristotle…,”	he
would	write,	“recognize	that	experiment	is	the	true	master	who	must	be	followed
in	Physics.”6

But	 how	did	 a	 bookish	 and	 stodgy	 fellow	of	 pious	beliefs	 become	 involved
with	issues	of	the	urban	gambling	scene?	On	and	off	Pascal	experienced	stomach
pains,	 had	 difficulty	 swallowing	 and	 keeping	 food	 down,	 and	 suffered	 from
debilitating	weakness,	severe	headaches,	bouts	of	sweating,	and	partial	paralysis
of	 the	 legs.	He	stoically	 followed	 the	advice	of	his	physicians,	which	 involved
bleedings,	purgings,	and	the	consumption	of	asses’	milk	and	other	“disgusting”
potions	 that	 he	 could	 barely	 keep	 from	 vomiting—a	 “veritable	 torture,”
according	to	his	sister	Gilberte.7	Pascal	had	by	then	left	Paris,	but	in	the	summer
of	1647,	aged	twenty-four	and	growing	desperate,	he	moved	back	with	his	sister
Jacqueline	 in	 search	 of	 better	 medical	 care.	 There	 his	 new	 bevy	 of	 doctors
offered	 the	 state-of-the-art	 advice	 that	 Pascal	 “ought	 to	 give	 up	 all	 continued
mental	 labor,	 and	 should	 seek	 as	 much	 as	 possible	 all	 opportunities	 to	 divert
himself.”8	And	 so	 Pascal	 taught	 himself	 to	 kick	 back	 and	 relax	 and	 began	 to
spend	 time	 in	 the	 company	 of	 other	 young	 men	 of	 leisure.	 Then,	 in	 1651,
Blaise’s	 father	 died,	 and	 suddenly	 Pascal	 was	 a	 twenty-something	 with	 an
inheritance.	He	 put	 the	 cash	 to	 good	 use,	 at	 least	 in	 the	 sense	 of	 his	 doctors’
orders.	Biographers	call	the	years	from	1651	to	1654	Pascal’s	“worldly	period.”
His	 sister	 Gilberte	 called	 it	 “the	 time	 of	 his	 life	 that	 was	 worst	 employed.”9
Though	 he	 put	 some	 effort	 into	 self-promotion,	 his	 scientific	 research	 went
almost	nowhere,	but	for	the	record,	his	health	was	the	best	it	had	ever	been.

Often	in	history	the	study	of	the	random	has	been	aided	by	an	event	that	was



itself	 random.	 Pascal’s	 work	 represents	 such	 an	 occasion,	 for	 it	 was	 his
abandonment	of	study	that	led	him	to	the	study	of	chance.	It	all	began	when	one
of	his	partying	pals	introduced	him	to	a	forty-five-year-old	snob	named	Antoine
Gombaud.	Gombaud,	a	nobleman	whose	 title	was	chevalier	de	Méré,	 regarded
himself	 as	 a	 master	 of	 flirtation,	 and	 judging	 by	 his	 catalog	 of	 romantic
entanglements,	he	was.	But	de	Méré	was	also	an	expert	gambler	who	liked	the
stakes	 high	 and	won	 often	 enough	 that	 some	 suspected	 him	 of	 cheating.	 And
when	he	 stumbled	on	a	 little	gambling	quandary,	he	 turned	 to	Pascal	 for	help.
With	that,	de	Méré	initiated	an	investigation	that	would	bring	to	an	end	Pascal’s
scientific	 dry	 spell,	 cement	 de	Méré’s	 own	 place	 in	 the	 history	 of	 ideas,	 and
solve	the	problem	left	open	by	Galileo’s	work	on	the	grand	duke’s	dice-tossing
question.

The	year	was	1654.	The	question	de	Méré	brought	 to	Pascal	was	 called	 the
problem	of	points:	Suppose	you	and	another	player	are	playing	a	game	in	which
you	 both	 have	 equal	 chances	 and	 the	 first	 player	 to	 earn	 a	 certain	 number	 of
points	wins.	 The	 game	 is	 interrupted	with	 one	 player	 in	 the	 lead.	What	 is	 the
fairest	way	to	divide	 the	pot?	The	solution,	de	Méré	noted,	should	reflect	each
player’s	 chance	 of	 victory	 given	 the	 score	 that	 prevails	 when	 the	 game	 is
interrupted.	But	how	do	you	calculate	that?

Pascal	 realized	 that	whatever	 the	answer,	 the	methods	needed	 to	calculate	 it
were	 yet	 unknown,	 and	 those	 methods,	 whatever	 they	 were,	 could	 have
important	 implications	 in	 any	 type	 of	 competitive	 situation.	And	 yet,	 as	 often
happens	 in	 theoretical	 research,	 Pascal	 found	 himself	 unsure	 of,	 and	 even
confused	 about,	 his	 plan	 of	 attack.	He	 decided	 he	 needed	 a	 collaborator,	 or	 at
least	 another	 mathematician	 with	 whom	 he	 could	 discuss	 his	 ideas.	 Marin
Mersenne,	the	great	communicator,	had	died	a	few	years	earlier,	but	Pascal	was
still	wired	into	the	Académie	Mersenne	network.	And	so	in	1654	began	one	of
the	 great	 correspondences	 in	 the	 history	 of	 mathematics,	 between	 Pascal	 and
Pierre	de	Fermat.

In	 1654,	 Fermat	 held	 a	 high	 position	 in	 the	 Tournelle,	 or	 criminal	 court,	 in
Toulouse.	When	the	court	was	in	session,	a	finely	robed	Fermat	might	be	found
condemning	errant	 functionaries	 to	be	burned	at	 the	 stake.	But	when	 the	court
was	 not	 in	 session,	 he	 would	 turn	 his	 analytic	 skills	 to	 the	 gentler	 pursuit	 of
mathematics.	 He	 may	 have	 been	 an	 amateur,	 but	 Pierre	 de	 Fermat	 is	 usually
considered	the	greatest	amateur	mathematician	of	all	times.



Fermat	 had	 not	 gained	 his	 high	 position	 through	 any	 particular	 ambition	 or
accomplishment.	He	achieved	it	the	old-fashioned	way,	by	moving	up	steadily	as
his	 superiors	dropped	dead	of	 the	plague.	 In	 fact,	when	Pascal’s	 letter	 arrived,
Fermat	 himself	was	 recovering	 from	 a	 bout	 of	 the	 disease.	He	 had	 even	 been
reported	 dead,	 by	 his	 friend	 Bernard	 Medon.	 When	 Fermat	 didn’t	 die,	 an
embarrassed	but	presumably	happy	Medon	retracted	his	announcement,	but	there
is	no	doubt	that	Fermat	had	been	on	the	brink.	As	it	turned	out,	though	twenty-
two	years	Pascal’s	senior,	Fermat	would	outlive	his	newfound	correspondent	by
several	years.

As	we’ll	see,	the	problem	of	points	comes	up	in	any	area	of	life	in	which	two
entities	 compete.	 In	 their	 letters,	 Pascal	 and	 Fermat	 each	 developed	 his	 own
approach	and	solved	several	versions	of	the	problem.	But	it	was	Pascal’s	method
that	proved	simpler—even	beautiful—and	yet	is	general	enough	to	be	applied	to
many	problems	we	encounter	in	our	everyday	experience.	Because	the	problem
of	 points	 first	 arose	 in	 a	 betting	 situation,	 I’ll	 illustrate	 the	 problem	 with	 an
example	from	the	world	of	sports.	In	1996	the	Atlanta	Braves	beat	the	New	York
Yankees	in	the	first	2	games	of	the	baseball	World	Series,	in	which	the	first	team
to	win	4	games	 is	crowned	champion.	The	fact	 that	 the	Braves	won	 the	first	2
games	 didn’t	 necessarily	mean	 they	 were	 the	 superior	 team.	 Still,	 it	 could	 be
taken	 as	 a	 sign	 that	 they	 were	 indeed	 better.	 Nevertheless,	 for	 our	 current
purposes	we	will	stick	 to	 the	assumption	 that	either	 team	was	equally	 likely	 to
win	each	game	and	that	the	first	2	games	just	happened	to	go	to	the	Braves.

Given	 that	 assumption,	 what	 would	 have	 been	 fair	 odds	 for	 a	 bet	 on	 the
Yankees—that	 is,	what	was	the	chance	of	a	Yankee	comeback?	To	calculate	 it,
we	count	all	the	ways	in	which	the	Yankees	could	have	won	and	compare	that	to
the	number	of	ways	in	which	they	could	have	lost.	Two	games	of	the	series	had
been	played,	so	there	were	5	possible	games	yet	to	play.	And	since	each	of	those
games	had	2	possible	outcomes—a	Yankee	win	(Y)	or	a	Braves	win	(B)—there
were	25,	or	32,	possible	outcomes.	For	instance,	the	Yankees	could	have	won	3,
then	 lost	 2:	YYYBB;	or	 they	 could	have	 alternated	victories:	YBYBY.	 (In	 the
latter	case,	since	the	Braves	would	have	won	4	games	with	the	6th	game,	the	last
game	 would	 never	 have	 been	 played,	 but	 we’ll	 get	 to	 that	 in	 a	 minute.)	 The
probability	that	the	Yankees	would	come	back	to	win	the	series	was	equal	to	the
number	of	sequences	in	which	they	would	win	at	 least	4	games	divided	by	the



total	number	of	sequences,	32;	the	chance	that	the	Braves	would	win	was	equal
to	the	number	of	sequences	in	which	they	would	win	at	least	2	more	games	also
divided	by	32.

This	calculation	may	seem	odd,	because	as	I	mentioned,	it	includes	scenarios
(such	as	YBYBY)	in	which	the	teams	keep	playing	even	after	 the	Braves	have
won	the	required	4	games.	The	teams	would	certainly	not	play	a	7th	game	once
the	 Braves	 had	 won	 4.	 But	 mathematics	 is	 independent	 of	 human	 whim,	 and
whether	 or	 not	 the	 players	 play	 the	 games	 does	 not	 affect	 the	 fact	 that	 such
sequences	exist.	For	example,	suppose	you’re	playing	a	coin-toss	game	in	which
you	win	 if	 at	 any	 time	 heads	 come	 up.	 There	 are	 22,	 or	 4,	 possible	 two-toss
sequences:	HT,	HH,	TH,	and	TT.	In	the	first	two	of	these,	you	would	not	bother
tossing	the	coin	again	because	you	would	already	have	won.	Still,	your	chances
of	winning	are	3	in	4	because	3	of	the	4	complete	sequences	include	an	H.

So	in	order	 to	calculate	 the	Yankees’	and	 the	Braves’	chances	of	victory,	we
simply	make	an	accounting	of	the	possible	5-game	sequences	for	the	remainder
of	the	series.	First,	the	Yankees	would	have	been	victorious	if	they	had	won	4	of
the	 5	 possible	 remaining	 games.	 That	 could	 have	 happened	 in	 1	 of	 5	 ways:
BYYYY,	YBYYY,	YYBYY,	YYYBY,	 or	YYYYB.	Alternatively,	 the	Yankees
would	 have	 triumphed	 if	 they	 had	 won	 all	 5	 of	 the	 remaining	 games,	 which
could	have	happened	in	only	1	way:	YYYYY.	Now	for	the	Braves:	they	would
have	 become	 champions	 if	 the	 Yankees	 had	 won	 only	 3	 games,	 which	 could
have	happened	in	10	ways	(BBYYY,	BYBYY,	and	so	on),	or	if	the	Yankees	had
won	 only	 2	 games	 (which	 again	 could	 have	 happened	 in	 10	 ways),	 or	 if	 the
Yankees	had	won	only	1	game	(which	could	have	happened	in	5	ways),	or	if	they
had	 won	 none	 (which	 could	 have	 happened	 in	 only	 1	 way).	 Adding	 these
possible	outcomes	together,	we	find	that	the	chance	of	a	Yankees	victory	was	6
in	32,	or	about	19	percent,	versus	26	in	32,	or	about	81	percent	for	the	Braves.
According	 to	 Pascal	 and	 Fermat,	 if	 the	 series	 had	 abruptly	 been	 terminated,
that’s	 how	 they	 should	 have	 split	 the	 bonus	 pot,	 and	 those	 are	 the	 odds	 that
should	 have	 been	 set	 if	 a	 bet	was	 to	 be	made	 after	 the	 first	 2	 games.	 For	 the
record,	 the	 Yankees	 did	 come	 back	 to	 win	 the	 next	 4	 games,	 and	 they	 were
crowned	champion.

The	 same	 reasoning	could	 also	be	 applied	 to	 the	 start	 of	 the	 series—that	 is,
before	 any	 game	 has	 been	 played.	 If	 the	 two	 teams	 have	 equal	 chances	 of



winning	each	game,	you	will	find,	of	course,	that	they	have	an	equal	chance	of
winning	 the	 series.	 But	 similar	 reasoning	 works	 if	 they	 don’t	 have	 an	 equal
chance,	 except	 that	 the	 simple	 accounting	 I	 just	 employed	 would	 have	 to	 be
altered	slightly:	each	outcome	would	have	to	be	weighted	by	a	factor	describing
its	relative	probability.	If	you	do	that	and	analyze	the	situation	at	the	start	of	the
series,	you	will	discover	that	in	a	7-game	series	there	is	a	sizable	chance	that	the
inferior	 team	 will	 be	 crowned	 champion.	 For	 instance,	 if	 one	 team	 is	 good
enough	to	warrant	beating	another	in	55	percent	of	 its	games,	 the	weaker	team
will	 nevertheless	 win	 a	 7-game	 series	 about	 4	 times	 out	 of	 10.	 And	 if	 the
superior	team	could	be	expected	to	beat	its	opponent,	on	average,	2	out	of	each	3
times	they	meet,	the	inferior	team	will	still	win	a	7-game	series	about	once	every
5	 matchups.	 There	 is	 really	 no	 way	 for	 sports	 leagues	 to	 change	 this.	 In	 the
lopsided	2/3-probability	case,	for	example,	you’d	have	to	play	a	series	consisting
of	at	minimum	the	best	of	23	games	to	determine	the	winner	with	what	is	called
statistical	significance,	meaning	the	weaker	team	would	be	crowned	champion	5
percent	or	less	of	the	time	(see	chapter	5).	And	in	the	case	of	one	team’s	having
only	a	55–45	edge,	the	shortest	statistically	significant	“world	series”	would	be
the	best	of	269	games,	a	tedious	endeavor	indeed!	So	sports	playoff	series	can	be
fun	 and	 exciting,	 but	 being	 crowned	 “world	 champion”	 is	 not	 a	 very	 reliable
indication	that	a	team	is	actually	the	best	one.

As	 I	 said,	 the	 same	 reasoning	 applies	 to	 more	 than	 games,	 gambling,	 and
sports.	 For	 example,	 it	 shows	 that	 if	 two	 companies	 compete	 head-to-head	 or
two	employees	within	a	company	compete,	though	there	may	be	a	winner	and	a
loser	 each	 quarter	 or	 each	 year,	 to	 get	 a	 reliable	 answer	 regarding	 which
company	 or	which	 employee	 is	 superior	 by	 simply	 tallying	who	 beats	whom,
you’d	have	 to	make	 the	comparison	over	decades	or	centuries.	 If,	 for	 instance,
employee	 A	 is	 truly	 superior	 and	 would	 in	 the	 long	 run	 win	 a	 performance
comparison	with	employee	B	on	60	out	of	100	occasions,	in	a	simple	best-of-5
series	of	comparisons	the	weaker	employee	will	still	win	almost	one-third	of	the
time.	It	is	dangerous	to	judge	ability	by	short-term	results.

The	 counting	 in	 all	 these	 problems	 has	 been	 simple	 enough	 to	 carry	 out
without	much	 effort.	But	when	 the	 numbers	 are	 higher,	 the	 counting	 becomes
difficult.	 Consider,	 for	 example,	 this	 problem:	 You	 are	 arranging	 a	 wedding
reception	for	100	guests,	and	each	table	seats	10.	You	can’t	sit	your	cousin	Rod
with	your	friend	Amy	because	eight	years	ago	they	had	an	affair	and	she	dumped



him.	 On	 the	 other	 hand,	 both	 Amy	 and	 Leticia	 want	 to	 sit	 next	 to	 your	 buff
cousin	Bobby,	and	your	aunt	Ruth	had	better	be	at	a	table	out	of	earshot	or	the
dueling	 flirtations	 will	 be	 gossip	 fodder	 for	 holiday	 dinners	 for	 the	 next	 five
years.	 You	 carefully	 consider	 the	 possibilities.	 Take	 just	 the	 first	 table.	 How
many	ways	are	there	to	choose	10	people	from	a	group	of	100?	That’s	the	same
question	 as,	 in	 how	many	ways	 can	you	 apportion	10	 investments	 among	100
mutual	funds	or	10	germanium	atoms	among	100	locations	in	a	silicon	crystal?
It’s	 the	 type	of	problem	that	comes	up	repeatedly	in	 the	 theory	of	randomness,
and	not	only	 in	 the	problem	of	points.	But	with	 larger	numbers	 it	 is	 tedious	or
impossible	to	count	the	possibilities	by	listing	them	explicitly.	That	was	Pascal’s
real	accomplishment:	a	generally	applicable	and	systematic	approach	to	counting
that	allows	you	to	calculate	the	answer	from	a	formula	or	read	it	off	a	chart.	It	is
based	on	a	curious	arrangement	of	numbers	in	the	shape	of	a	triangle.

									
THE	COMPUTATIONAL	METHOD	at	the	heart	of	Pascal’s	work	was	actually
discovered	by	a	Chinese	mathematician	named	Jia	Xian	around	1050,	published
by	another	Chinese	mathematician,	Zhu	Shijie,	in	1303,	discussed	in	a	work	by
Cardano	 in	 1570,	 and	 plugged	 into	 the	 greater	whole	 of	 probability	 theory	 by
Pascal,	 who	 ended	 up	 getting	most	 of	 the	 credit.10	 But	 the	 prior	 work	 didn’t
bother	Pascal.	 “Let	 no	one	 say	 I	 have	 said	nothing	new,”	Pascal	 argued	 in	his
autobiography.	“The	arrangement	of	the	subject	is	new.	When	we	play	tennis,	we
both	 play	 with	 the	 same	 ball,	 but	 one	 of	 us	 places	 it	 better.”11	 The	 graphic
invention	employed	by	Pascal,	 given	below,	 is	 thus	 called	Pascal’s	 triangle.	 In
the	 figure,	 I	 have	 truncated	 Pascal’s	 triangle	 at	 the	 tenth	 row,	 but	 it	 can	 be
continued	downward	indefinitely.	In	fact,	 it	 is	easy	to	continue	the	triangle,	for
with	the	exception	of	the	1	at	the	apex,	each	number	is	the	sum	of	the	number	in
the	line	above	it	to	the	left	and	the	number	in	the	line	above	it	to	the	right	(add	a
0	if	there	is	no	number	in	the	line	above	it	to	the	left	or	to	the	right).



Pascal’s	triangle

Pascal’s	triangle	is	useful	any	time	you	need	to	know	the	number	of	ways	in
which	 you	 can	 choose	 some	 number	 of	 objects	 from	 a	 collection	 that	 has	 an
equal	or	greater	number.	Here	is	how	it	works	in	the	case	of	the	wedding	guests:
To	find	the	number	of	distinct	seatings	of	10	you	can	form	from	a	group	of	100
guests,	you	would	start	by	looking	down	the	numbers	to	the	left	of	the	triangle
until	you	found	the	row	labeled	100.	The	triangle	I	supplied	does	not	go	down
that	far,	but	for	now	let’s	pretend	it	does.	The	first	number	in	row	100	tells	you
the	number	of	ways	you	can	choose	0	guests	from	a	group	of	100.	There	is	just	1
way,	 of	 course:	 you	 simply	 don’t	 choose	 anyone.	 That	 is	 true	 no	matter	 how
many	total	guests	you	are	choosing	from,	which	is	why	the	first	number	in	every
row	is	a	1.	The	second	number	in	row	100	tells	you	the	number	of	ways	you	can
choose	1	guest	from	the	group	of	100.	There	are	100	ways	to	do	that:	you	can
choose	 just	guest	number	1,	or	 just	guest	number	2,	and	so	on.	That	 reasoning
applies	 to	 every	 row,	 and	 so	 the	 second	 number	 in	 each	 row	 is	 simply	 the
number	 of	 that	 row.	 The	 third	 number	 in	 each	 row	 represents	 the	 number	 of
distinct	groups	of	2	you	can	form,	and	so	on.	The	number	we	seek—the	number
of	distinct	arrangements	of	10	you	can	form—is	therefore	the	eleventh	number
in	the	row.	Even	if	I	had	extended	the	triangle	to	include	100	rows,	that	number
would	 be	 far	 too	 large	 to	 put	 on	 the	 page.	 In	 fact,	when	 some	wedding	 guest
inevitably	complains	about	 the	 seating	arrangements,	you	might	point	out	how
long	it	would	have	taken	you	to	consider	every	possibility:	assuming	you	spent
one	second	considering	each	one,	it	would	come	to	roughly	10,000	billion	years.
The	unhappy	guest	will	assume,	of	course,	that	you	are	being	histrionic.

In	order	 for	us	 to	use	Pascal’s	 triangle,	 let’s	say	 for	now	that	your	guest	 list
consists	of	just	10	guests.	Then	the	relevant	row	is	the	one	at	the	bottom	of	the
triangle	I	provided,	labeled	10.	The	numbers	in	that	row	represent	the	number	of
distinct	tables	of	0,	1,	2,	and	so	on,	that	can	be	formed	from	a	collection	of	10



people.	You	may	recognize	these	numbers	from	the	sixth-grade	quiz	example—
the	 number	 of	 ways	 in	 which	 a	 student	 can	 get	 a	 given	 number	 of	 problems
wrong	on	a	10-question	true-or-false	test	 is	 the	same	as	the	number	of	ways	in
which	you	can	choose	guests	from	a	group	of	10.	That	is	one	of	the	reasons	for
the	 power	 of	 Pascal’s	 triangle:	 the	 same	mathematics	 can	 be	 applied	 to	many
different	situations.	For	the	Yankees-Braves	World	Series	example,	in	which	we
tediously	 counted	 all	 the	 possibilities	 for	 the	 remaining	 5	 games,	we	 can	 now
read	the	number	of	ways	in	which	the	Yankees	can	win	0,	1,	2,	3,	4,	or	5	games
directly	from	row	5	of	the	triangle:

									
1																			5																			10																			10																			5																			1

									
We	can	see	at	a	glance	that	the	Yankees’	chance	of	winning	2	games	(10	ways)

was	twice	as	high	as	their	chance	of	winning	1	game	(5	ways).

Once	 you	 learn	 the	 method,	 applications	 of	 Pascal’s	 triangle	 crop	 up
everywhere.	 A	 friend	 of	 mine	 once	 worked	 for	 a	 start-up	 computer-games
company.	She	would	often	relate	how,	although	the	marketing	director	conceded
that	 small	 focus	 groups	 were	 suited	 for	 “qualitative	 conclusions	 only,”	 she
nevertheless	sometimes	reported	an	“overwhelming”	4-to-2	or	5-to-1	agreement
among	the	members	of	the	group	as	if	it	were	meaningful.	But	suppose	you	hold
a	focus	group	 in	which	6	people	will	examine	and	comment	on	a	new	product
you	 are	 developing.	 Suppose	 that	 in	 actuality	 the	 product	 appeals	 to	 half	 the
population.	 How	 accurately	 will	 this	 preference	 be	 reflected	 in	 your	 focus
group?	Now	the	relevant	line	of	the	triangle	is	the	one	labeled	6,	representing	the
number	of	possible	subgroups	of	0,	1,	2,	3,	4,	5,	or	6	whose	members	might	like
(or	dislike)	your	product:

									
1																			6																			15																			20																			15																		

6																			1

									



From	 these	 numbers	 we	 see	 that	 there	 are	 20	 ways	 in	 which	 the	 group
members	 could	 split	 50/50,	 accurately	 reflecting	 the	 views	 of	 the	 populace	 at
large.	But	there	are	also	1	+	6	+	15	+	15	+	6	+	1	=	44	ways	in	which	you	might
find	 an	 unrepresentative	 consensus,	 either	 for	 or	 against.	 So	 if	 you	 are	 not
careful,	the	chances	of	being	misled	are	44	out	of	64,	or	about	two-thirds.	This
example	does	not	prove	that	if	agreement	is	achieved,	it	is	random.	But	neither
should	you	assume	that	it	is	significant.

Pascal	 and	 Fermat’s	 analysis	 proved	 to	 be	 a	 big	 first	 step	 in	 a	 coherent
mathematical	theory	of	randomness.	The	final	letter	of	their	famous	exchange	is
dated	October	27,	1654.	A	few	weeks	later	Pascal	sat	in	a	trance	for	two	hours.
Some	 call	 that	 trance	 a	mystical	 experience.	Others	 lament	 that	 he	 had	 finally
blasted	off	 from	planet	Sanity.	However	 you	describe	 it,	 Pascal	 emerged	 from
the	 event	 a	 transformed	man.	 It	 was	 a	 transformation	 that	 would	 lead	 him	 to
make	one	more	fundamental	contribution	to	the	concept	of	randomness.

									
IN	1662,	a	few	days	after	Pascal	died,	a	servant	noticed	a	curious	bulge	in	one	of
Pascal’s	 jackets.	 The	 servant	 pulled	 open	 the	 lining	 to	 find	 hidden	 within	 it
folded	sheets	of	parchment	and	paper.	Pascal	had	apparently	carried	 them	with
him	every	day	for	the	last	eight	years	of	his	life.	Scribbled	on	the	sheets,	in	his
handwriting,	 was	 a	 series	 of	 isolated	 words	 and	 phrases	 dated	 November	 23,
1654.	 The	 writings	 were	 an	 emotional	 account	 of	 the	 trance,	 in	 which	 he
described	how	God	had	come	to	him	and	in	the	space	of	two	hours	delivered	him
from	his	corrupt	ways.

Following	 that	 revelation,	 Pascal	 had	 dropped	 most	 of	 his	 friends,	 calling
them	“horrible	attachments.”12	He	sold	his	carriage,	his	horses,	his	furniture,	his
library—everything	 except	 his	 Bible.	He	 gave	 his	money	 to	 the	 poor,	 leaving
himself	with	so	little	that	he	often	had	to	beg	or	borrow	to	obtain	food.	He	wore
an	iron	belt	with	points	on	the	inside	so	that	he	was	in	constant	discomfort	and
pushed	 the	belt’s	 spikes	 into	his	 flesh	whenever	he	 found	himself	 in	danger	of
feeling	 happy.	 He	 denounced	 his	 studies	 of	 mathematics	 and	 science.	 Of	 his
childhood	 fascination	with	 geometry,	 he	wrote,	 “I	 can	 scarcely	 remember	 that
there	 is	 such	a	 thing	as	geometry.	 I	 recognize	geometry	 to	be	 so	useless…it	 is
quite	possible	I	shall	never	think	of	it	again.”13



Yet	 Pascal	 remained	 productive.	 In	 the	 years	 that	 followed	 the	 trance,	 he
recorded	 his	 thoughts	 about	God,	 religion,	 and	 life.	Those	 thoughts	were	 later
published	 in	 a	 book	 titled	 Pensées,	 a	 work	 that	 is	 still	 in	 print	 today.	 And
although	Pascal	 had	denounced	mathematics,	 amid	his	 vision	of	 the	 futility	 of
the	worldly	life	is	a	mathematical	exposition	in	which	he	trained	his	weapon	of
mathematical	 probability	 squarely	 on	 a	 question	 of	 theology	 and	 created	 a
contribution	just	as	important	as	his	earlier	work	on	the	problem	of	points.

The	mathematics	in	Pensées	is	contained	in	two	manuscript	pages	covered	on
both	 sides	 by	 writing	 going	 in	 every	 direction	 and	 full	 of	 erasures	 and
corrections.	 In	 those	pages,	Pascal	detailed	an	analysis	of	 the	pros	and	cons	of
one’s	 duty	 to	 God	 as	 if	 he	 were	 calculating	 mathematically	 the	 wisdom	 of	 a
wager.	His	great	innovation	was	his	method	of	balancing	those	pros	and	cons,	a
concept	that	is	today	called	mathematical	expectation.

Pascal’s	argument	went	 like	 this:	Suppose	you	concede	 that	you	don’t	know
whether	 or	 not	 God	 exists	 and	 therefore	 assign	 a	 50	 percent	 chance	 to	 either
proposition.	How	should	you	weigh	these	odds	when	deciding	whether	to	lead	a
pious	life?	If	you	act	piously	and	God	exists,	Pascal	argued,	your	gain—eternal
happiness—is	 infinite.	 If,	 on	 the	 other	 hand,	God	does	 not	 exist,	 your	 loss,	 or
negative	return,	 is	small—the	sacrifices	of	piety.	To	weigh	these	possible	gains
and	 losses,	 Pascal	 proposed,	 you	 multiply	 the	 probability	 of	 each	 possible
outcome	 by	 its	 payoff	 and	 add	 them	 all	 up,	 forming	 a	 kind	 of	 average	 or
expected	payoff.	In	other	words,	the	mathematical	expectation	of	your	return	on
piety	is	one-half	infinity	(your	gain	if	God	exists)	minus	one-half	a	small	number
(your	loss	if	he	does	not	exist).	Pascal	knew	enough	about	infinity	to	know	that
the	answer	to	this	calculation	is	infinite,	and	thus	the	expected	return	on	piety	is
infinitely	positive.	Every	reasonable	person,	Pascal	concluded,	should	therefore
follow	the	laws	of	God.	Today	this	argument	is	known	as	Pascal’s	wager.

Expectation	 is	 an	 important	 concept	not	 just	 in	gambling	but	 in	 all	 decision
making.	 In	 fact,	 Pascal’s	 wager	 is	 often	 considered	 the	 founding	 of	 the
mathematical	 discipline	 of	 game	 theory,	 the	 quantitative	 study	 of	 optimal
decision	strategies	in	games.	I	must	admit	I	find	such	thinking	addictive,	and	so	I
sometimes	carry	it	a	bit	too	far.	“How	much	does	that	parking	meter	cost?”	I	ask
my	son.	The	sign	says	25¢.	Yes,	but	1	time	in	every	20	or	so	visits,	I	come	back
late	and	find	a	ticket,	which	runs	$40,	so	the	25¢	cost	of	the	meter	is	really	just	a
cruel	lure,	I	explain,	because	my	real	cost	is	$2.25.	(The	extra	$2	comes	from	my



1	 in	20	chance	of	getting	a	 ticket	multiplied	by	 its	$40	cost.)	 “How	about	our
driveway,”	I	ask	my	other	son,	“is	it	a	toll	road?”	Well,	we’ve	lived	at	the	house
about	5	years,	or	roughly	2,400	times	of	backing	down	the	driveway,	and	3	times
I’ve	clipped	my	mirror	on	the	protruding	fence	post	at	$400	a	shot.	You	may	as
well	put	a	toll	box	out	there	and	toss	in	50¢	each	time	you	back	up,	he	tells	me.
He	 understands	 expectation.	 (He	 also	 recommends	 that	 I	 refrain	 from	 driving
them	to	school	before	I’ve	had	my	morning	coffee.)

Looking	at	the	world	through	the	lens	of	mathematical	expectation,	one	often
comes	upon	surprising	results.	For	example,	a	 recent	sweepstakes	sent	 through
the	mail	offered	a	grand	prize	of	$5	million.14	All	you	had	to	do	to	win	was	mail
in	your	entry.	There	was	no	limit	on	how	many	times	you	could	enter,	but	each
entry	 had	 to	 be	mailed	 in	 separately.	 The	 sponsors	were	 apparently	 expecting
about	200	million	entries,	because	the	fine	print	said	that	the	chances	of	winning
were	1	in	200	million.	Does	it	pay	to	enter	this	kind	of	“free	sweepstakes	offer”?
Multiplying	the	probability	of	winning	times	the	payoff,	we	find	that	each	entry
was	worth	1/40	of	$1,	or	2.5¢—far	less	than	the	cost	of	mailing	it	in.	In	fact,	the
big	 winner	 in	 this	 contest	 was	 the	 post	 office,	 which,	 if	 the	 projections	 were
correct,	made	nearly	$80	million	in	postage	revenue	on	all	the	submissions.

Here’s	another	crazy	game.	Suppose	 the	state	of	California	made	its	citizens
the	 following	offer:	Of	all	 those	who	pay	 the	dollar	or	 two	 to	enter,	most	will
receive	nothing,	one	person	will	receive	a	fortune,	and	one	person	will	be	put	to
death	 in	 a	 violent	manner.	Would	 anyone	 enroll	 in	 that	 game?	People	 do,	 and
with	 enthusiasm.	 It	 is	 called	 the	 state	 lottery.	And	 although	 the	 state	 does	 not
advertise	it	in	the	manner	in	which	I	have	described	it,	that	is	the	way	it	works	in
practice.	For	while	one	 lucky	person	wins	 the	grand	prize	 in	each	game,	many
millions	 of	 other	 contestants	 drive	 to	 and	 from	 their	 local	 ticket	 vendors	 to
purchase	 their	 tickets,	 and	 some	 die	 in	 accidents	 along	 the	 way.	 Applying
statistics	 from	 the	 National	 Highway	 Traffic	 Safety	 Administration	 and
depending	 on	 such	 assumptions	 as	 how	 far	 each	 individual	 drives,	 how	many
tickets	he	or	she	buys,	and	how	many	people	are	involved	in	a	typical	accident,
you	 find	 that	 a	 reasonable	 estimate	 of	 those	 fatalities	 is	 about	 one	 death	 per
game.

State	governments	tend	to	ignore	arguments	about	the	possible	bad	effects	of
lotteries.	 That’s	 because,	 for	 the	 most	 part,	 they	 know	 enough	 about



mathematical	expectation	to	arrange	that	for	each	ticket	purchased,	the	expected
winnings—the	total	prize	money	divided	by	the	number	of	tickets	sold—is	less
than	 the	 cost	 of	 the	 ticket.	 This	 generally	 leaves	 a	 tidy	 difference	 that	 can	 be
diverted	 to	 state	 coffers.	 In	 1992,	 however,	 some	 investors	 in	 Melbourne,
Australia,	noticed	that	the	Virginia	Lottery	violated	this	principle.15	The	lottery
involved	picking	6	numbers	from	1	to	44.	Pascal’s	triangle,	should	we	find	one
that	 goes	 that	 far,	 would	 show	 that	 there	 are	 7,059,052	 ways	 of	 choosing	 6
numbers	 from	 a	 group	 of	 44.	 The	 lottery	 jackpot	 was	 $27	 million,	 and	 with
second,	 third,	 and	 fourth	 prizes	 included,	 the	 pot	 grew	 to	 $27,918,561.	 The
clever	 investors	 reasoned,	 if	 they	 bought	 one	 ticket	 with	 each	 of	 the	 possible
7,059,052	number	combinations,	the	value	of	those	tickets	would	equal	the	value
of	 the	 pot.	 That	 made	 each	 ticket	 worth	 about	 $27.9	 million	 divided	 by
7,059,052,	 or	 about	 $3.95.	 For	 what	 price	was	 the	 state	 of	 Virginia,	 in	 all	 its
wisdom,	selling	the	tickets?	The	usual	$1.

The	 Australian	 investors	 quickly	 found	 2,500	 small	 investors	 in	 Australia,
New	 Zealand,	 Europe,	 and	 the	 United	 States	 willing	 to	 put	 up	 an	 average	 of
$3,000	each.	If	the	scheme	worked,	the	yield	on	that	investment	would	be	about
$10,800.	There	were	 some	 risks	 in	 their	 plan.	 For	 one,	 since	 they	weren’t	 the
only	ones	buying	tickets,	 it	was	possible	that	another	player	or	even	more	than
one	other	player	would	also	choose	the	winning	ticket,	meaning	they	would	have
to	split	the	pot.	In	the	170	times	the	lottery	had	been	held,	there	was	no	winner
120	times,	a	single	winner	only	40	times,	and	two	winners	just	10	times.	If	those
frequencies	reflected	accurately	their	odds,	 then	the	data	suggested	there	was	a
120	in	170	chance	they	would	get	the	pot	all	to	themselves,	a	40	in	170	chance
they	would	end	up	with	half	the	pot,	and	a	10	in	170	chance	they	would	win	just
a	third	of	it.	Recalculating	their	expected	winnings	employing	Pascal’s	principle
of	mathematical	expectation,	they	found	them	to	be	(120/170	×	$27.9	million)	+
(40/170	×	$13.95	million)	+	(10/170	×	$6.975	million)	=	$23.4	million.	That	is
$3.31	per	ticket,	a	great	return	on	a	$1	expenditure	even	after	expenses.

But	 there	 was	 another	 danger:	 the	 logistic	 nightmare	 of	 completing	 the
purchase	 of	 all	 the	 tickets	 by	 the	 lottery	 deadline.	 That	 could	 lead	 to	 the
expenditure	 of	 a	 significant	 portion	 of	 their	 funds	with	 no	 significant	 prize	 to
show	for	it.

The	members	of	the	investment	group	made	careful	preparations.	They	filled



out	1.4	million	 slips	by	hand,	 as	 required	by	 the	 rules,	 each	 slip	good	 for	 five
games.	 They	 placed	 groups	 of	 buyers	 at	 125	 retail	 outlets	 and	 obtained
cooperation	from	grocery	stores,	which	profited	from	each	ticket	they	sold.	The
scheme	 got	 going	 just	 seventy-two	 hours	 before	 the	 deadline.	 Grocery-store
employees	worked	 in	 shifts	 to	 sell	 as	many	 tickets	 as	possible.	One	 store	 sold
75,000	in	the	last	forty-eight	hours.	A	chain	store	accepted	bank	checks	for	2.4
million	 tickets,	 assigned	 the	work	of	 printing	 the	 tickets	 among	 its	 stores,	 and
hired	couriers	 to	gather	 them.	Still,	 in	 the	end,	 the	group	 ran	out	of	 time:	 they
had	purchased	just	5	million	of	the	7,059,052	tickets.

Several	days	passed	after	the	winning	ticket	was	announced,	and	no	one	came
forward	to	present	it.	The	consortium	had	won,	but	it	took	its	members	that	long
to	find	the	winning	ticket.	Then,	when	state	lottery	officials	discovered	what	the
consortium	had	done,	they	balked	at	paying.	A	month	of	legal	wrangling	ensued
before	 the	 officials	 concluded	 they	 had	 no	 valid	 reason	 to	 deny	 the	 group.
Finally,	they	paid	out	the	prize.

To	the	study	of	randomness,	Pascal	contributed	both	his	ideas	about	counting
and	 the	 concept	 of	mathematical	 expectation.	Who	 knows	what	 else	 he	might
have	discovered,	despite	his	renouncing	mathematics,	if	his	health	had	held	up.
But	 it	 did	 not.	 In	 July	 1662,	 Pascal	 became	 seriously	 ill.	 His	 physicians
prescribed	 the	 usual	 remedies:	 they	 bled	 him	 and	 administered	 violent	 purges,
enemas,	 and	 emetics.	 He	 improved	 for	 a	 while,	 and	 then	 the	 illness	 returned,
along	with	severe	headaches,	dizziness,	and	convulsions.	Pascal	vowed	that	if	he
survived,	he	would	devote	his	life	to	helping	the	poor	and	asked	to	be	moved	to
a	 hospital	 for	 the	 incurable,	 in	 order	 that,	 if	 he	 died,	 he	 would	 be	 in	 their
company.	He	did	die,	a	few	days	later,	in	August	1662.	He	was	thirty-nine.	An
autopsy	found	the	cause	of	death	to	be	a	brain	hemorrhage,	but	it	also	revealed
lesions	in	his	 liver,	stomach,	and	intestines	 that	accounted	for	 the	illnesses	 that
had	plagued	him	throughout	his	life.



CHAPTER	5

The	Dueling	Laws	of	Large	and	Small	Numbers

IN	THEIR	WORK,	Cardano,	Galileo,	and	Pascal	assumed	that	the	probabilities
relevant	 to	 the	 problems	 they	 tackled	 were	 known.	 Galileo,	 for	 example,
assumed	 that	a	die	has	an	equal	chance	of	 landing	on	any	of	 its	 six	 faces.	But
how	solid	is	such	“knowledge”?	The	grand	duke’s	dice	were	probably	designed
not	 to	 favor	 any	 face,	 but	 that	 doesn’t	 mean	 fairness	 was	 actually	 achieved.
Galileo	could	have	 tested	his	assumption	by	observing	a	number	of	 tosses	and
recording	how	often	each	face	came	up.	If	he	had	repeated	the	test	several	times,
however,	 he	 would	 probably	 have	 found	 a	 slightly	 different	 distribution	 each
time,	and	even	small	deviations	might	have	mattered,	given	the	tiny	differential
he	 was	 asked	 to	 explain.	 In	 order	 to	 make	 the	 early	 work	 on	 randomness
applicable	 to	 the	 real	 world,	 that	 issue	 had	 to	 be	 addressed:	 What	 is	 the
connection	between	underlying	probabilities	and	observed	results?	What	does	it
mean,	from	a	practical	point	of	view,	when	we	say	the	chances	are	1	in	6	a	die
will	land	on	2?	If	it	doesn’t	mean	that	in	any	series	of	tosses	the	die	will	land	on
the	2	exactly	1	time	in	6,	then	on	what	do	we	base	our	belief	that	the	chances	of
throwing	a	2	really	are	1	in	6?	And	what	does	it	mean	when	a	doctor	says	that	a
drug	is	70	percent	effective	or	has	serious	side	effects	in	1	percent	of	the	cases	or
when	a	poll	finds	that	a	candidate	has	support	of	36	percent	of	voters?	These	are
deep	 questions,	 related	 to	 the	 very	 meaning	 of	 the	 concept	 of	 randomness,	 a
concept	mathematicians	still	like	to	debate.

I	 recently	 engaged	 in	 such	 a	 discussion	 one	 warm	 spring	 day	 with	 a
statistician	 visiting	 from	Hebrew	University,	Moshe,	who	 sat	 across	 the	 lunch
table	from	me	at	Caltech.	Between	spoonfuls	of	nonfat	yogurt,	Moshe	espoused
the	opinion	that	truly	random	numbers	do	not	exist.	“There	is	no	such	thing,”	he
said.	 “Oh,	 they	 publish	 charts	 and	write	 computer	 programs,	 but	 they	 are	 just
fooling	themselves.	No	one	has	ever	found	a	method	of	producing	randomness
that’s	any	better	than	throwing	a	die,	and	throwing	a	die	just	won’t	do	it.”



Moshe	waved	 his	white	 plastic	 spoon	 at	me.	He	was	 agitated	 now.	 I	 felt	 a
connection	between	his	feelings	about	randomness	and	his	religious	convictions.
Moshe	 is	 an	 Orthodox	 Jew,	 and	 I	 know	 that	 many	 religious	 people	 have
problems	 thinking	 God	 can	 allow	 randomness	 to	 exist.	 “Suppose	 you	 want	 a
string	of	N	random	numbers	between	1	and	6,”	he	told	me.	“You	throw	a	die	N
times	 and	 record	 the	 string	 of	 N	 numbers	 that	 comes	 up.	 Is	 that	 a	 random
string?”

No,	he	claimed,	because	no	one	can	make	a	perfect	die.	There	will	always	be
some	 faces	 that	 are	 favored	 and	 some	 that	 are	 disfavored.	 It	might	 take	 1,000
throws	 to	 notice	 the	 difference,	 or	 1	 billion,	 but	 eventually	 you	will	 notice	 it.
You’ll	 see	more	 4s	 than	 6s	 or	maybe	 fewer.	Any	 artificial	 device	 is	 bound	 to
suffer	 from	 that	 flaw,	 he	 said,	 because	 human	 beings	 do	 not	 have	 access	 to
perfection.	That	may	be,	but	Nature	does,	and	truly	random	events	do	occur	on
the	 atomic	 level.	 In	 fact,	 that	 is	 the	 very	 basis	 of	 quantum	 theory,	 and	 so	we
spent	the	rest	of	our	lunch	in	a	discussion	of	quantum	optics.

Today	cutting-edge	quantum	generators	produce	 truly	random	numbers	 from
the	toss	of	Nature’s	perfect	quantum	dice.	In	the	past	the	perfection	necessary	for
randomness	was	 indeed	 an	 elusive	 goal.	One	 of	 the	most	 creative	 approaches
came	from	New	York	City’s	Harlem	crime	syndicates	around	1920.1	Needing	a
daily	 supply	of	 five-digit	 random	numbers	 for	 an	 illegal	 lottery,	 the	 racketeers
thumbed	 their	 noses	 at	 the	 authorities	 by	 employing	 the	 last	 five	 digits	 of	 the
U.S.	 Treasury	 balance.	 (At	 this	 writing	 the	 U.S.	 government	 is	 in	 debt	 by
$8,995,800,515,946.50,	or	$29,679.02	per	person,	so	today	the	racketeers	could
have	obtained	their	five	digits	from	the	per	capita	debt!)	Their	so-called	Treasury
lottery	 ran	afoul	of	not	only	criminal	 law,	however,	but	also	 scientific	 law,	 for
according	 to	 a	 rule	 called	 Benford’s	 law,	 numbers	 arising	 in	 this	 cumulative
fashion	are	not	random	but	rather	are	biased	in	favor	of	the	lower	digits.

Benford’s	 law	 was	 discovered	 not	 by	 a	 fellow	 named	 Benford	 but	 by	 the
American	 astronomer	 Simon	Newcomb.	Around	 1881,	Newcomb	 noticed	 that
the	 pages	 of	 books	 of	 logarithms	 that	 dealt	 with	 numbers	 beginning	 with	 the
numeral	1	were	dirtier	and	more	frayed	than	the	pages	corresponding	to	numbers
beginning	with	the	numeral	2,	and	so	on,	down	to	the	numeral	9,	whose	pages,	in
comparison,	 looked	 clean	 and	 new.	 Assuming	 that	 in	 the	 long	 run,	 wear	 was
proportional	 to	amount	of	use,	Newcomb	concluded	from	his	observations	 that



the	 scientists	 with	 whom	 he	 shared	 the	 book	 were	 working	 with	 data	 that
reflected	 that	 distribution	 of	 digits.	 The	 law’s	 current	 name	 arose	 after	 Frank
Benford	noticed	the	same	thing,	in	1938,	when	scrutinizing	the	log	tables	at	the
General	 Electric	 Research	 Laboratory	 in	 Schenectady,	 New	 York.	 But	 neither
man	 proved	 the	 law.	 That	 didn’t	 happen	 until	 1995,	 in	 work	 by	 Ted	 Hill,	 a
mathematician	at	the	Georgia	Institute	of	Technology.

According	to	Benford’s	 law,	rather	 than	all	nine	digits’	appearing	with	equal
frequency,	the	number	1	should	appear	as	the	first	digit	in	data	about	30	percent
of	the	time;	the	digit	2,	about	18	percent	of	the	time;	and	so	on,	down	to	the	digit
9,	which	should	appear	as	 the	first	digit	about	5	percent	of	 the	 time.	A	similar
law,	 though	 less	 pronounced,	 applies	 to	 later	 digits.	Many	 types	 of	 data	 obey
Benford’s	law,	in	particular,	financial	data.	In	fact,	the	law	seems	tailor-made	for
mining	large	amounts	of	financial	data	in	search	of	fraud.

One	 famous	 application	 involved	 a	 young	 entrepreneur	 named	 Kevin
Lawrence,	who	raised	$91	million	to	create	a	chain	of	high-tech	health	clubs.2
Engorged	with	cash,	Lawrence	raced	into	action,	hiring	a	bevy	of	executives	and
spending	his	 investors’	money	as	quickly	as	he	had	 raised	 it.	That	would	have
been	 fine	 except	 for	 one	detail:	 he	 and	his	 cohorts	were	 spending	most	 of	 the
money	 not	 on	 the	 business	 but	 on	 personal	 items.	 And	 since	 several	 homes,
twenty	 personal	 watercraft,	 forty-seven	 cars	 (including	 five	 Hummers,	 four
Ferraris,	 three	 Dodge	 Vipers,	 two	 DeTomaso	 Panteras,	 and	 a	 Lamborghini
Diablo),	 two	Rolex	watches,	 a	 twenty-one-carat	 diamond	 bracelet,	 a	 $200,000
samurai	sword,	and	a	commercial-grade	cotton	candy	machine	would	have	been
difficult	 to	 explain	 as	 necessary	 business	 expenditures,	 Lawrence	 and	 his	 pals
tried	to	cover	their	tracks	by	moving	investors’	money	through	a	complex	web	of
bank	 accounts	 and	 shell	 companies	 to	 give	 the	 appearance	 of	 a	 bustling	 and
growing	 business.	 Unfortunately	 for	 them,	 a	 suspicious	 forensic	 accountant
named	Darrell	Dorrell	compiled	a	list	of	over	70,000	numbers	representing	their
various	 checks	 and	wire	 transfers	 and	 compared	 the	distribution	of	 digits	with
Benford’s	 law.	 The	 numbers	 failed	 the	 test.3	 That,	 of	 course,	 was	 only	 the
beginning	 of	 the	 investigation,	 but	 from	 there	 the	 saga	 unfolded	 predictably,
ending	 the	day	before	Thanksgiving	2003,	when,	 flanked	by	his	 attorneys	 and
clad	 in	 light	 blue	prison	garb,	Kevin	Lawrence	was	 sentenced	 to	 twenty	years
without	possibility	of	parole.	The	IRS	has	also	studied	Benford’s	law	as	a	way	to
identify	tax	cheats.	One	researcher	even	applied	the	law	to	thirteen	years	of	Bill



Clinton’s	tax	returns.	They	passed	the	test.4

Presumably	 neither	 the	 Harlem	 syndicate	 nor	 its	 customers	 noticed	 these
regularities	in	their	lottery	numbers.	But	had	people	like	Newcomb,	Benford,	or
Hill	played	their	lottery,	in	principle	they	could	have	used	Benford’s	law	to	make
favorable	bets,	earning	a	nice	supplement	to	their	scholar’s	salary.

In	 1947,	 scientists	 at	 the	Rand	Corporation	 needed	 a	 large	 table	 of	 random
digits	 for	 a	 more	 admirable	 purpose:	 to	 help	 find	 approximate	 solutions	 to
certain	mathematical	 equations	 employing	 a	 technique	 aptly	 named	 the	Monte
Carlo	 method.	 To	 generate	 the	 digits,	 they	 employed	 electronically	 generated
noise,	a	kind	of	electronic	roulette	wheel.	Is	electronic	noise	random?	That	is	a
question	as	subtle	as	the	definition	of	randomness	itself.

In	1896	the	American	philosopher	Charles	Sanders	Peirce	wrote	that	a	random
sample	is	one	“taken	according	to	a	precept	or	method	which,	being	applied	over
and	over	again	 indefinitely,	would	 in	 the	 long	run	result	 in	 the	drawing	of	any
one	of	a	set	of	instances	as	often	as	any	other	set	of	the	same	number.”5	That	is
called	 the	frequency	 interpretation	of	 randomness.	The	main	alternative	 to	 it	 is
called	the	subjective	interpretation.	Whereas	in	the	frequency	interpretation	you
judge	 a	 sample	 by	 the	 way	 it	 turned	 out,	 in	 the	 subjective	 interpretation	 you
judge	 a	 sample	 by	 the	 way	 it	 is	 produced.	 According	 to	 the	 subjective
interpretation,	 a	 number	 or	 set	 of	 numbers	 is	 considered	 random	 if	 we	 either
don’t	know	or	cannot	predict	how	the	process	that	produces	it	will	turn	out.

The	difference	between	 the	 two	 interpretations	 is	more	nuanced	 than	 it	may
seem.	For	example,	in	a	perfect	world	a	throw	of	a	die	would	be	random	by	the
first	definition	but	not	by	the	second,	since	all	faces	would	be	equally	probable
but	we	could	 (in	a	perfect	world)	employ	our	exact	knowledge	of	 the	physical
conditions	and	the	laws	of	physics	to	determine	before	each	throw	exactly	how
the	 die	 will	 land.	 In	 the	 imperfect	 real	 world,	 however,	 a	 throw	 of	 a	 die	 is
random	according	 to	 the	 second	definition	but	not	 the	 first.	That’s	because,	 as
Moshe	pointed	out,	owing	to	its	imperfections,	a	die	will	not	land	on	each	face
with	equal	frequency;	nevertheless,	because	of	our	limitations	we	have	no	prior
knowledge	about	any	face	being	favored	over	any	other.

In	 order	 to	 decide	 whether	 their	 table	 was	 random,	 the	 Rand	 scientists
subjected	it	to	various	tests.	Upon	closer	inspection,	their	system	was	shown	to



have	biases,	just	like	Moshe’s	archetypally	imperfect	dice.6	The	Rand	scientists
made	some	refinements	to	their	system	but	never	managed	to	completely	banish
the	regularities.	As	Moshe	said,	complete	chaos	is	ironically	a	kind	of	perfection.
Still,	 the	Rand	numbers	proved	random	enough	 to	be	useful,	and	 the	company
published	them	in	1955	under	the	catchy	title	A	Million	Random	Digits.

In	their	research	the	Rand	scientists	ran	into	a	roulette-wheel	problem	that	had
been	 discovered,	 in	 some	 abstract	 way,	 almost	 a	 century	 earlier	 by	 an
Englishman	named	Joseph	Jagger.7	Jagger	was	an	engineer	and	a	mechanic	in	a
cotton	factory	in	Yorkshire,	and	so	he	had	an	intuitive	feel	for	the	capabilities—
and	 the	 shortcomings—of	machinery	 and	one	day	 in	 1873	 turned	his	 intuition
and	 fertile	 mind	 from	 cotton	 to	 cash.	 How	 perfectly,	 he	 wondered,	 can	 the
roulette	wheels	in	Monte	Carlo	really	work?

The	roulette	wheel—invented,	at	 least	according	 to	 legend,	by	Blaise	Pascal
as	he	was	tinkering	with	an	idea	for	a	perpetual-motion	machine—is	basically	a
large	 bowl	with	 partitions	 (called	 frets)	 that	 are	 shaped	 like	 thin	 slices	 of	 pie.
When	 the	wheel	 is	 spun,	a	marble	 first	bounces	along	 the	 rim	of	 the	bowl	but
eventually	 comes	 to	 rest	 in	 one	 of	 the	 compartments,	 which	 are	 numbered	 1
through	 36,	 plus	 0	 (and	 00	 on	American	 roulette	 wheels).	 The	 bettor’s	 job	 is
simple:	 to	guess	 in	which	compartment	 the	marble	will	 land.	The	existence	of
roulette	wheels	is	pretty	good	evidence	that	legitimate	psychics	don’t	exist,	for	in
Monte	Carlo	 if	 you	 bet	 $1	 on	 a	 compartment	 and	 the	marble	 lands	 there,	 the
house	pays	you	$35	 (plus	your	 initial	 dollar).	 If	 psychics	 really	 existed,	 you’d
see	them	in	places	like	that,	hooting	and	dancing	and	pushing	wheelbarrows	of
cash	down	the	street,	and	not	on	Web	sites	calling	themselves	Zelda	Who	Knows
All	 and	 Sees	 All	 and	 offering	 twenty-four-hour	 free	 online	 love	 advice	 in
competition	with	 about	1.2	million	other	Web	psychics	 (according	 to	Google).
For	me	both	the	future	and,	increasingly,	the	past	unfortunately	appear	obscured
by	 a	 thick	 fog.	 But	 I	 do	 know	 one	 thing:	 my	 chances	 of	 losing	 at	 European
roulette	are	36	out	of	37;	my	chances	of	winning,	1	out	of	37.	That	means	that
for	every	$1	 I	bet,	 the	casino	stands	 to	win	 (36/37	×	$1)	–	 (1/37	×	$35).	That

comes	 to	 1/37	of	 a	 dollar,	 or	 about	 2.7¢.	Depending	on	my	 state	 of	mind,	 it’s
either	 the	 price	 I	 pay	 for	 the	 enjoyment	 of	 watching	 a	 little	 marble	 bounce
around	a	big	 shiny	wheel	or	 else	 the	price	 I	pay	 for	 the	opportunity	of	having
lightning	strike	me	(in	a	good	way).	At	least	that	is	how	it	is	supposed	to	work.



But	does	it?	Only	if	the	roulette	wheels	are	perfectly	balanced,	thought	Jagger,
and	he	had	worked	with	enough	machines	 to	 share	Moshe’s	point	of	view.	He
was	willing	 to	bet	 they	weren’t.	So	he	gathered	his	savings,	 traveled	 to	Monte
Carlo,	and	hired	six	assistants,	one	for	each	of	the	casino’s	six	roulette	wheels.
Every	day	his	assistants	observed	 the	wheels,	writing	down	every	number	 that
came	up	in	the	twelve	hours	the	casino	was	open.	Every	night,	back	in	his	hotel
room,	Jagger	analyzed	the	numbers.	After	six	days,	he	had	not	detected	any	bias
in	five	of	 the	wheels,	but	on	the	sixth	wheel	nine	numbers	came	up	noticeably
more	often	than	the	others.	And	so	on	the	seventh	day	he	headed	to	the	casino
and	started	to	bet	heavily	on	the	nine	favored	numbers:	7,	8,	9,	17,	18,	19,	22,
28,	and	29.

When	the	casino	shut	that	night,	Jagger	was	up	$70,000.	His	winnings	did	not
go	without	notice.	Other	patrons	swarmed	his	table,	tossing	down	their	own	cash
to	 get	 in	 on	 a	 good	 thing.	And	 casino	 inspectors	were	 all	 over	 him,	 trying	 to
decipher	his	system	or,	better,	catch	him	cheating.	By	the	fourth	day	of	betting,
Jagger	had	amassed	$300,000,	and	the	casino’s	managers	were	desperate	to	get
rid	of	 the	mystery	guy,	or	 at	 least	 thwart	his	 scheme.	One	 imagines	 this	being
accomplished	by	a	burly	fellow	from	Brooklyn.	Actually	the	casino	employees
did	something	far	more	clever.

On	 the	 fifth	day,	 Jagger	began	 to	 lose.	His	 losing,	 like	his	winning,	was	not
something	you	could	spot	immediately.	Both	before	and	after	the	casino’s	trick,
he	would	win	 some	 and	 lose	 some,	 only	 now	he	 lost	more	 often	 than	he	won
instead	of	 the	other	way	around.	With	 the	casino’s	small	margin,	 it	would	 take
some	 pretty	 diligent	 betting	 to	 drain	 Jagger’s	 funds,	 but	 after	 four	 days	 of
sucking	in	casino	money,	he	wasn’t	about	to	let	up	on	the	straw.	By	the	time	his
change	of	luck	deterred	him,	Jagger	had	lost	half	his	fortune.	One	may	imagine
that	by	then	his	mood—not	to	mention	the	mood	of	his	hangers-on—was	sour.
How	could	his	scheme	have	suddenly	failed?

Jagger	at	last	made	an	astute	observation.	In	the	dozens	of	hours	he	had	spent
winning,	he	had	come	to	notice	a	tiny	scratch	on	the	roulette	wheel.	This	scratch
was	now	absent.	Had	the	casino	kindly	touched	it	up	so	that	he	could	drive	them
to	 bankruptcy	 in	 style?	 Jagger	 guessed	 not	 and	 checked	 the	 other	 roulette
wheels.	One	of	them	had	a	scratch.	The	casino	managers	had	correctly	guessed
that	Jagger’s	days	of	success	were	somehow	related	to	the	wheel	he	was	playing,
and	so	overnight	they	had	switched	wheels.	Jagger	relocated	and	again	began	to



win.	Soon	he	had	pumped	his	winnings	past	where	they	had	been,	to	almost	half
a	million.

Unfortunately	 for	 Jagger,	 the	 casino’s	 managers,	 finally	 zeroing	 in	 on	 his
scheme,	 found	a	new	way	 to	 thwart	him.	They	decided	 to	move	 the	 frets	each
night	 after	 closing,	 turning	 them	along	 the	wheel	 so	 that	 each	day	 the	wheel’s
imbalance	would	 favor	different	numbers,	numbers	unknown	 to	 Jagger.	 Jagger
started	 losing	 again	 and	 finally	 quit.	 His	 gambling	 career	 over,	 he	 left	Monte
Carlo	with	$325,000	in	hand,	about	$5	million	in	today’s	dollars.	Back	home,	he
left	his	job	at	the	mill	and	invested	his	money	in	real	estate.

It	may	appear	 that	Jagger’s	scheme	had	been	a	sure	 thing,	but	 it	wasn’t.	For
even	a	perfectly	balanced	wheel	will	not	come	up	on	0,	1,	2,	3,	and	so	on,	with
exactly	equal	frequencies,	as	if	 the	numbers	in	the	lead	would	politely	wait	for
the	 laggards	 to	 catch	 up.	 Instead,	 some	 numbers	 are	 bound	 to	 come	 up	more
often	 than	 average	 and	 others	 less	 often.	 And	 so	 even	 after	 six	 days	 of
observations,	 there	 remained	 a	 chance	 that	 Jagger	 was	 wrong.	 The	 higher
frequencies	he	observed	for	certain	numbers	may	have	arisen	by	chance	and	may
not	have	reflected	higher	probabilities.	That	means	that	Jagger,	too,	had	to	face
the	 question	 we	 raised	 at	 the	 start	 of	 this	 chapter:	 given	 a	 set	 of	 underlying
probabilities,	 how	 closely	 can	 you	 expect	 your	 observations	 of	 a	 system	 to
conform	 to	 those	 probabilities?	 Just	 as	 Pascal’s	 work	 was	 done	 in	 the	 new
climate	of	(the	scientific)	revolution,	so	this	question	would	be	answered	in	the
midst	of	a	revolution,	this	one	in	mathematics—the	invention	of	calculus.

									
IN	 1680	 a	 great	 comet	 sailed	 through	 our	 neighborhood	 of	 the	 solar	 system,
close	enough	that	the	tiny	fraction	of	sunlight	it	reflected	was	sufficient	to	make
it	prominent	in	the	night	sky	of	our	own	planet.	It	was	in	that	part	of	earth’s	orbit
called	November	 that	 the	 comet	was	 first	 spotted,	 and	 for	months	 afterward	 it
remained	an	object	of	intense	scrutiny,	its	path	recorded	in	great	detail.	In	1687,
Isaac	Newton	would	use	these	data	as	an	example	of	his	 inverse	square	law	of
gravity	 at	 work.	 And	 on	 one	 clear	 night	 in	 that	 parcel	 of	 land	 called	 Basel,
Switzerland,	 another	man	destined	 for	greatness	was	 also	paying	attention.	He
was	 a	 young	 theologian	 who,	 gazing	 at	 the	 bright,	 hazy	 light	 of	 the	 comet,
realized	 that	 it	 was	 mathematics,	 not	 the	 church,	 with	 which	 he	 wanted	 to



occupy	his	 life.8	With	 that	 realization	 sprouted	not	 just	 Jakob	Bernoulli’s	own
career	change	but	also	what	would	become	the	greatest	family	tree	in	the	history
of	mathematics:	 in	 the	 century	 and	 a	 half	 between	 Jakob’s	 birth	 and	 1800	 the
Bernoulli	 family	 produced	 a	 great	 many	 offspring,	 about	 half	 of	 whom	 were
gifted,	 including	 eight	 noted	 mathematicians,	 and	 three	 (Jakob,	 his	 younger
brother	Johann,	and	Johann’s	son	Daniel)	who	are	today	counted	as	among	the
greatest	mathematicians	of	all	times.

Comets	 at	 the	 time	 were	 considered	 by	 theologians	 and	 the	 general	 public
alike	as	a	sign	of	divine	anger,	and	God	must	have	seemed	pretty	pissed	off	 to
create	this	one—it	occupied	more	than	half	the	visible	sky.	One	preacher	called
it	 a	 “heavenly	 warning	 of	 the	 Allpowerful	 and	 Holy	 God	 written	 and	 placed
before	 the	 powerless	 and	 unholy	 children	 of	men.”	 It	 portended,	 he	wrote,	 “a
noteworthy	 change	 in	 spirit	 or	 in	worldly	matters”	 for	 their	 country	or	 town.9
Jakob	 Bernoulli	 had	 another	 point	 of	 view.	 In	 1681	 he	 published	 a	 pamphlet
titled	Newly	Discovered	Method	of	How	the	Path	of	a	Comet	or	Tailed	Star	Can
Be	Reduced	to	Certain	Fundamental	Laws,	and	Its	Appearance	Predicted.

Bernoulli	had	scooped	Newton	on	the	comet	by	six	years.	At	least	he	would
have	scooped	him	had	his	 theory	been	correct.	 It	wasn’t,	but	claiming	publicly
that	 comets	 follow	 natural	 law	 and	 not	 God’s	 whim	was	 a	 gutsy	 thing	 to	 do,
especially	 given	 that	 the	 prior	 year—almost	 fifty	 years	 after	 Galileo’s
condemnation—the	 professor	 of	mathematics	 at	 the	University	 of	Basel,	 Peter
Megerlin,	 had	 been	 roundly	 attacked	 by	 theologians	 for	 accepting	 the
Copernican	 system	 and	 had	 been	 banned	 from	 teaching	 it	 at	 the	 university.	A
forbidding	schism	lay	between	the	mathematician-scientists	and	the	theologians
in	 Basel,	 and	 Bernoulli	 was	 parking	 himself	 squarely	 on	 the	 side	 of	 the
scientists.

Bernoulli’s	 talent	 soon	brought	 the	 embrace	of	 the	mathematics	 community,
and	when	Megerlin	died,	in	late	1686,	Bernoulli	succeeded	him	as	professor	of
mathematics.	By	then	Bernoulli	was	working	on	problems	connected	with	games
of	chance.	One	of	his	major	influences	was	a	Dutch	mathematician	and	scientist,
Christiaan	Huygens,	who	in	addition	to	improving	the	telescope,	being	the	first
to	 understand	 Saturn’s	 rings,	 creating	 the	 first	 pendulum	 clock	 (based	 on
Galileo’s	ideas),	and	helping	to	develop	the	wave	theory	of	light,	had	written	a
mathematical	primer	on	probability	inspired	by	the	ideas	of	Pascal	and	Fermat.



For	 Bernoulli,	 Huygens’s	 book	 was	 an	 inspiration.	 And	 yet	 he	 saw	 in	 the
theory	Huygens	presented	severe	limitations.	It	might	be	sufficient	for	games	of
chance,	 but	what	 about	 aspects	 of	 life	 that	 are	more	 subjective?	How	can	you
assign	a	definite	probability	to	the	credibility	of	legal	testimony?	Or	to	who	was
the	better	golfer,	Charles	I	of	England	or	Mary,	Queen	of	Scots?	(Both	were	keen
golfers.)	 Bernoulli	 believed	 that	 for	 rational	 decision	 making	 to	 be	 possible,
there	must	 be	 a	 reliable	 and	mathematical	way	 to	 determine	 probabilities.	His
view	 reflected	 the	 culture	 of	 the	 times,	 in	which	 to	 conduct	 one’s	 affairs	 in	 a
manner	 that	 was	 consistent	 with	 probabilistic	 expectation	 was	 considered	 the
mark	of	a	reasonable	person.	But	it	was	not	just	subjectivity	that,	in	Bernoulli’s
opinion,	limited	the	old	theory	of	randomness.	He	also	recognized	that	the	theory
was	 not	 designed	 for	 situations	 of	 ignorance,	 in	 which	 the	 probabilities	 of
various	outcomes	could	be	defined	in	principle	but	in	practice	were	not	known.
It	is	the	issue	I	discussed	with	Moshe	and	that	Jagger	had	to	address:	What	are
the	odds	that	an	imperfect	die	will	come	up	with	a	6?	What	are	your	chances	of
contracting	 the	 plague?	 What	 is	 the	 probability	 that	 your	 breastplate	 can
withstand	 a	 thrust	 from	 your	 opponent’s	 long	 sword?	 In	 both	 subjective	 and
uncertain	situations,	Bernoulli	believed	it	would	be	“insanity”	to	expect	to	have
the	sort	of	prior,	or	a	priori,	knowledge	of	probabilities	envisioned	in	Huygens’s
book.10

Bernoulli	saw	the	answer	in	the	same	terms	that	Jagger	later	would:	instead	of
depending	on	probabilities	being	handed	to	us,	we	should	discern	them	through
observation.	Being	a	mathematician,	he	sought	to	make	the	idea	precise.	Given
that	you	view	a	certain	number	of	roulette	spins,	how	closely	can	you	nail	down
the	underlying	probabilities,	and	with	what	level	of	confidence?	We’ll	return	to
those	questions	in	the	next	chapter,	but	they	are	not	quite	the	questions	Bernoulli
was	able	to	answer.	Instead,	he	answered	a	closely	related	question:	how	well	are
underlying	 probabilities	 reflected	 in	 actual	 results?	 Bernoulli	 considered	 it
obvious	 that	 we	 are	 justified	 in	 expecting	 that	 as	 we	 increase	 the	 number	 of
trials,	 the	 observed	 frequencies	will	 reflect—more	 and	more	 accurately—their
underlying	probabilities.	He	certainly	wasn’t	the	first	to	believe	that.	But	he	was
the	first	to	give	the	issue	a	formal	treatment,	to	turn	the	idea	into	a	proof,	and	to
quantify	it,	asking	how	many	trials	are	necessary,	and	how	sure	can	we	be.	He
was	 also	 among	 the	 first	 to	 appreciate	 the	 importance	 of	 the	 new	 subject	 of
calculus	in	addressing	these	issues.



									
THE	YEAR	Bernoulli	was	named	professor	 in	Basel	proved	 to	be	a	milestone
year	 in	 the	history	of	mathematics:	 it	was	 the	year	 in	which	Gottfried	Leibniz
published	his	revolutionary	paper	 laying	out	 the	principles	of	 integral	calculus,
the	 complement	 to	 his	 1684	 paper	 on	 differential	 calculus.	 Newton	 would
publish	 his	 own	 version	 of	 the	 subject	 in	 1687,	 in	 his	Philosophiae	Naturalis
Principia	Mathematica,	or	Mathematical	Principles	of	Natural	Philosophy,	often
referred	 to	 simply	 as	 Principia.	 These	 advances	 would	 hold	 the	 key	 to
Bernoulli’s	work	on	randomness.

By	 the	 time	 they	 published,	 both	 Leibniz	 and	 Newton	 had	 worked	 on	 the
subject	 for	 years,	 but	 their	 almost	 simultaneous	 publications	 begged	 for
controversy	over	who	should	be	credited	for	the	idea.	The	great	mathematician
Karl	 Pearson	 (whom	 we	 shall	 encounter	 again	 in	 chapter	 8)	 said	 that	 the
reputation	of	mathematicians	“stands	for	posterity	largely	not	on	what	they	did,
but	 on	 what	 their	 contemporaries	 attributed	 to	 them.”11	 Perhaps	 Newton	 and
Leibniz	would	have	agreed	with	that.	In	any	case	neither	was	above	a	good	fight,
and	the	one	that	ensued	was	famously	bitter.	At	the	time	the	outcome	was	mixed.
The	 Germans	 and	 Swiss	 learned	 their	 calculus	 from	 Leibniz’s	 work,	 and	 the
English	 and	many	 of	 the	 French	 from	Newton’s.	 From	 the	modern	 standpoint
there	 is	 very	 little	 difference	 between	 the	 two,	 but	 in	 the	 long	 run	 Newton’s
contribution	is	often	emphasized	because	he	appears	 to	have	truly	had	the	idea
earlier	 and	 because	 in	Principia	 he	 employed	 his	 invention	 in	 the	 creation	 of
modern	 physics,	 making	 Principia	 probably	 the	 greatest	 scientific	 book	 ever
written.	Leibniz,	 though,	had	developed	a	better	notation,	and	it	 is	his	symbols
that	are	often	used	in	calculus	today.

Neither	 man’s	 publications	 were	 easy	 to	 follow.	 In	 addition	 to	 being	 the
greatest	book	on	science,	Newton’s	Principia	 has	 also	been	 called	 “one	of	 the
most	inaccessible	books	ever	written.”12	And	Leibniz’s	work,	according	to	one
of	 Jakob	Bernoulli’s	biographers,	was	“understood	by	no	one”	 it	was	not	only
unclear	but	 also	 full	 of	misprints.	 Jakob’s	brother	 Johann	called	 it	 “an	 enigma
rather	than	an	explanation.”13	In	fact,	so	incomprehensible	were	both	works	that
scholars	have	speculated	 that	both	authors	might	have	 intentionally	made	 their
works	 difficult	 to	 understand	 to	 keep	 amateurs	 from	 dabbling.	 This	 enigmatic



quality	 was	 an	 advantage	 for	 Jakob	 Bernoulli,	 though,	 for	 it	 did	 separate	 the
wheat	from	the	chaff,	and	his	intellect	fell	into	the	former	category.	Hence	once
he	 had	 deciphered	 Leibniz’s	 ideas,	 he	 possessed	 a	 weapon	 shared	 by	 only	 a
handful	of	others	in	the	entire	world,	and	with	it	he	could	easily	solve	problems
that	were	exceedingly	difficult	for	others	to	attempt.

The	 set	 of	 concepts	 central	 to	 both	 calculus	 and	Bernoulli’s	work	 is	 that	 of
sequence,	series,	and	limit.	The	term	sequence	means	much	the	same	thing	to	a
mathematician	 as	 it	 does	 to	 anybody	 else:	 an	 ordered	 succession	 of	 elements,
such	as	points	or	numbers.	A	series	is	simply	the	sum	of	a	sequence	of	numbers.
And	 loosely	 speaking,	 if	 the	 elements	 of	 a	 sequence	 seem	 to	 be	 heading
somewhere—toward	 a	particular	 endpoint	 or	 a	particular	 number—then	 that	 is
called	the	limit	of	the	sequence.

Though	 calculus	 represents	 a	 new	 sophistication	 in	 the	 understanding	 of
sequences,	 that	 idea,	 like	 so	 many	 others,	 had	 already	 been	 familiar	 to	 the
Greeks.	In	the	fifth	century	B.C.,	in	fact,	the	Greek	philosopher	Zeno	employed
a	 curious	 sequence	 to	 formulate	 a	 paradox	 that	 is	 still	 debated	 among	 college
philosophy	students	today,	especially	after	a	few	beers.	Zeno’s	paradox	goes	like
this:	Suppose	a	student	wishes	to	step	to	the	door,	which	is	1	meter	away.	(We
choose	a	meter	here	for	convenience,	but	the	same	argument	holds	for	a	mile	or
any	other	measure.)	Before	she	arrives	there,	she	first	must	arrive	at	the	halfway
point.	But	 in	order	 to	 reach	 the	halfway	point,	 she	must	 first	arrive	halfway	 to
the	 halfway	 point—that	 is,	 at	 the	 one-quarter-way	 point.	 And	 so	 on,	 ad
infinitum.	In	other	words,	in	order	to	reach	her	destination,	she	must	travel	this
sequence	of	distances:	1/2	meter,	 1/4	meter,	 1/8	meter,	 1/16	meter,	 and	 so	 on.
Zeno	argued	 that	because	 the	 sequence	goes	on	 forever,	 she	has	 to	 traverse	an
infinite	number	of	finite	distances.	That,	Zeno	said,	must	take	an	infinite	amount
of	time.	Zeno’s	conclusion:	you	can	never	get	anywhere.

Over	 the	 centuries,	 philosophers	 from	 Aristotle	 to	 Kant	 have	 debated	 this
quandary.	Diogenes	the	Cynic	took	the	empirical	approach:	he	simply	walked	a
few	steps,	then	pointed	out	that	things	in	fact	do	move.	To	those	of	us	who	aren’t
students	 of	 philosophy,	 that	 probably	 sounds	 like	 a	 pretty	 good	 answer.	But	 it
wouldn’t	have	impressed	Zeno.	Zeno	was	aware	of	the	clash	between	his	logical
proof	and	the	evidence	of	his	senses;	it’s	just	that,	unlike	Diogenes,	what	Zeno
trusted	 was	 logic.	 And	 Zeno	 wasn’t	 just	 spinning	 his	 wheels.	 Even	 Diogenes



would	have	had	 to	admit	 that	his	 response	 leaves	us	 facing	a	puzzling	 (and,	 it
turns	out,	deep)	question:	if	our	sensory	evidence	is	correct,	then	what	is	wrong
with	Zeno’s	logic?

Consider	 the	 sequence	of	distances	 in	Zeno’s	paradox:	1/2	meter,	1/4	meter,
1/8	meter,	 1/16	meter,	 and	 so	 on	 (the	 increments	 growing	 ever	 smaller).	 This
sequence	 has	 an	 infinite	 number	 of	 terms,	 so	 we	 cannot	 compute	 its	 sum	 by
simply	adding	them	all	up.	But	we	can	notice	that	although	the	number	of	terms
is	infinite,	those	terms	get	successively	smaller.	Might	there	be	a	finite	balance
between	the	endless	stream	of	terms	and	their	endlessly	diminishing	size?	That	is
precisely	 the	 kind	 of	 question	 we	 can	 address	 by	 employing	 the	 concepts	 of
sequence,	 series,	 and	 limit.	To	 see	how	 it	works,	 instead	of	 trying	 to	 calculate
how	 far	 the	 student	went	 after	 the	entire	 infinity	of	Zeno’s	 intervals,	 let’s	 take
one	 interval	 at	 a	 time.	 Here	 are	 the	 student’s	 distances	 after	 the	 first	 few
intervals:

After	the	first	interval:	1/2	meter

After	the	second	interval:	1/2	meter	+	1/4	meter	=	3/4	meter

After	the	third	interval:	1/2	meter	+	1/4	meter	+	1/8	meter	=	7/8	meter

After	the	fourth	interval:	1/2	meter	+	1/4	meter	+	1/8	meter	+	1/16	meter	=
15/16	meter

There	 is	 a	 pattern	 in	 these	 numbers:	 1/2	meter,	 3/4	meter,	 7/8	meter,	 15/16
meter…The	denominator	is	a	power	of	two,	and	the	numerator	is	one	less	than
the	 denominator.	We	might	 guess	 from	 this	 pattern	 that	 after	 10	 intervals	 the
student	 would	 have	 traveled	 1,023/1,024	 meter;	 after	 20	 intervals,
1,048,575/1,048,576	meter;	 and	 so	on.	The	pattern	makes	 it	 clear	 that	Zeno	 is



correct	 that	 the	more	 intervals	we	 include,	 the	greater	 the	sum	of	distances	we
obtain.	But	Zeno	is	not	correct	when	he	says	that	the	sum	is	headed	for	infinity.
Instead,	 the	 numbers	 seem	 to	 be	 approaching	 1;	 or	 as	 a	mathematician	would
say,	1	meter	is	the	limit	of	this	sequence	of	distances.	That	makes	sense,	because
although	 Zeno	 chopped	 her	 trip	 into	 an	 infinite	 number	 of	 intervals,	 she	 had,
after	all,	set	out	to	travel	just	1	meter.

Zeno’s	paradox	concerns	the	amount	of	time	it	takes	to	make	the	journey,	not
the	distance	covered.	If	the	student	were	forced	to	take	individual	steps	to	cover
each	 of	 Zeno’s	 intervals,	 she	 would	 indeed	 be	 in	 some	 time	 trouble	 (not	 to
mention	 her	 having	 to	 overcome	 the	 difficulty	 of	 taking	 submillimeter	 steps)!
But	 if	 she	 is	 allowed	 to	 move	 at	 constant	 speed	 without	 pausing	 at	 Zeno’s
imaginary	checkpoints—and	why	not?—then	the	time	it	 takes	to	travel	each	of
Zeno’s	 intervals	 is	proportional	 to	 the	distance	covered	 in	 that	 interval,	 and	 so
since	the	total	distance	is	finite,	as	is	the	total	time—and	fortunately	for	all	of	us
—motion	is	possible	after	all.

Though	 the	 modern	 concept	 of	 limits	 wasn’t	 worked	 out	 until	 long	 after
Zeno’s	life,	and	even	Bernoulli’s—it	came	in	the	nineteenth	century14—it	is	this
concept	 that	 informs	 the	 spirit	 of	 calculus,	 and	 it	 is	 in	 this	 spirit	 that	 Jakob
Bernoulli	 attacked	 the	 relationship	 between	 probabilities	 and	 observation.	 In
particular,	Bernoulli	investigated	what	happens	in	the	limit	of	an	arbitrarily	large
number	of	repeated	observations.	Toss	a	(balanced)	coin	10	times	and	you	might
observe	7	heads,	but	toss	it	1	zillion	times	and	you’ll	most	likely	get	very	near
50	 percent.	 In	 the	 1940s	 a	 South	African	mathematician	 named	 John	Kerrich
decided	to	test	this	out	in	a	practical	experiment,	tossing	a	coin	what	must	have
seemed	like	1	zillion	times—actually	it	was	10,000—and	recording	the	results	of
each	toss.15	You	might	think	Kerrich	would	have	had	better	things	to	do,	but	he
was	 a	war	 prisoner	 at	 the	 time,	 having	 had	 the	 bad	 luck	 of	 being	 a	 visitor	 in
Copenhagen	when	the	Germans	 invaded	Denmark	in	April	1940.	According	to
Kerrich’s	data,	after	100	throws	he	had	only	44	percent	heads,	but	by	the	time	he
reached	10,000,	the	number	was	much	closer	to	half:	50.67	percent.	How	do	you
quantify	 this	 phenomenon?	 The	 answer	 to	 that	 question	 was	 Bernoulli’s
accomplishment.

According	 to	 the	 historian	 and	 philosopher	 of	 science	 Ian	 Hacking,
Bernoulli’s	work	“came	before	the	public	with	a	brilliant	portent	of	all	the	things



we	 know	 about	 it	 now;	 its	 mathematical	 profundity,	 its	 unbounded	 practical
applications,	its	squirming	duality	and	its	constant	invitation	for	philosophizing.
Probability	 had	 fully	 emerged.”	 In	 Bernoulli’s	 more	 modest	 words,	 his	 study
proved	 to	 be	 one	 of	 “novelty,	 as	 well	 as…high	 utility.”	 It	 was	 also	 an	 effort,
Bernoulli	wrote,	of	“grave	difficulty.”16	He	worked	on	it	for	twenty	years.

									
JAKOB	BERNOULLI	called	the	high	point	of	his	twenty-year	effort	his	“golden
theorem.”	 Modern	 versions	 of	 it	 that	 differ	 in	 their	 technical	 nuance	 go	 by
various	names:	Bernoulli’s	theorem,	the	law	of	large	numbers,	and	the	weak	law
of	 large	 numbers.	 The	 phrase	 law	 of	 large	 numbers	 is	 employed	 because,	 as
we’ve	 said,	 Bernoulli’s	 theorem	 concerns	 the	 way	 results	 reflect	 underlying
probabilities	when	we	make	a	large	number	of	observations.	But	we’ll	stick	with
Bernoulli’s	 terminology	 and	 call	 his	 theorem	 the	 golden	 theorem	 because	 we
will	be	discussing	it	in	its	original	form.17

Although	 Bernoulli’s	 interest	 lay	 in	 real-world	 applications,	 some	 of	 his
favorite	examples	involved	an	item	not	found	in	most	households:	an	urn	filled
with	colored	pebbles.	In	one	scenario,	he	envisioned	the	urn	holding	3,000	white
pebbles	and	2,000	black	ones,	a	ratio	of	60	percent	white	to	40	percent	black.	In
this	 example	 you	 conduct	 a	 series	 of	 blind	 drawings	 from	 the	 urn	 “with
replacement”—that	 is,	 replacing	 each	 pebble	 before	 drawing	 the	 next	 in	 order
not	to	alter	the	3:2	ratio.	The	a	priori	chances	of	drawing	a	white	pebble	are	then
3	 out	 of	 5,	 or	 60	 percent,	 and	 so	 in	 this	 example	Bernoulli’s	 central	 question
becomes,	how	strictly	should	you	expect	the	proportion	of	white	pebbles	drawn
to	hew	to	the	60	percent	ratio,	and	with	what	probability?

The	urn	example	is	a	good	one	because	the	same	mathematics	that	describes
drawing	pebbles	from	an	urn	can	be	employed	to	describe	any	series	of	trials	in
which	 each	 trial	 has	 two	 possible	 outcomes,	 as	 long	 as	 those	 outcomes	 are
random	and	the	trials	are	independent	of	each	other.	Today	such	trials	are	called
Bernoulli	 trials,	 and	a	 series	of	Bernoulli	 trials	 is	 a	Bernoulli	process.	When	a
random	 trial	 has	 two	 possible	 outcomes,	 one	 is	 often	 arbitrarily	 labeled
“success”	 and	 the	 other	 “failure.”	 The	 labeling	 is	 not	 meant	 to	 be	 literal	 and
sometimes	has	nothing	 to	do	with	 the	everyday	meaning	of	 the	words—say,	 in
the	sense	that	if	you	can’t	wait	to	read	on,	this	book	is	a	success,	and	if	you	are



using	this	book	to	keep	yourself	and	your	sweetheart	warm	after	the	logs	burned
down,	 it	 is	 a	 failure.	 Flipping	 a	 coin,	 deciding	 to	 vote	 for	 candidate	 A	 or
candidate	B,	giving	birth	to	a	boy	or	girl,	buying	or	not	buying	a	product,	being
cured	or	not	being	cured,	even	dying	or	living	are	examples	of	Bernoulli	trials.
Actions	 that	have	multiple	outcomes	can	also	be	modeled	as	Bernoulli	 trials	 if
the	question	you	are	asking	can	be	phrased	in	a	way	that	has	a	yes	or	no	answer,
such	as	“Did	the	die	land	on	the	number	4?”	or	“Is	there	any	ice	left	on	the	North
Pole?”	 And	 so,	 although	 Bernoulli	 wrote	 about	 pebbles	 and	 urns,	 all	 his
examples	apply	equally	to	these	and	many	other	analogous	situations.

With	that	understanding	we	return	to	the	urn,	60	percent	of	whose	pebbles	are
white.	If	you	draw	100	pebbles	from	the	urn	(with	replacement),	you	might	find
that	exactly	60	of	them	are	white,	but	you	might	also	draw	just	50	white	pebbles
or	 59.	 What	 are	 the	 chances	 that	 you	 will	 draw	 between	 58	 percent	 and	 62
percent	white	 pebbles?	What	 are	 the	 chances	 you’ll	 draw	 between	 59	 percent
and	61	 percent?	How	much	more	 confident	 can	 you	be	 if	 instead	 of	 100,	 you
draw	1,000	pebbles	or	1	million?	You	can	never	be	100	percent	certain,	but	can
you	draw	enough	pebbles	to	make	the	chances	99.9999	percent	certain	that	you
will	draw,	say,	between	59.9	percent	and	60.1	percent	white	pebbles?	Bernoulli’s
golden	theorem	addresses	questions	such	as	these.

In	order	to	apply	the	golden	theorem,	you	must	make	two	choices.	First,	you
must	specify	your	 tolerance	of	error.	How	near	 to	 the	underlying	proportion	of
60	percent	are	you	demanding	that	your	series	of	trials	come?	You	must	choose
an	 interval,	 such	 as	 plus	 or	minus	 1	 percent	 or	 2	 percent	 or	 0.00001	 percent.
Second,	you	must	specify	your	 tolerance	of	uncertainty.	You	can	never	be	100
percent	sure	a	 trial	will	yield	 the	result	you	are	aiming	for,	but	you	can	ensure
that	you	will	get	a	satisfactory	result	99	times	out	of	100	or	999	out	of	1,000.

The	 golden	 theorem	 tells	 you	 that	 it	 is	 always	 possible	 to	 draw	 enough
pebbles	to	be	almost	certain	that	the	percentage	of	white	pebbles	you	draw	will
be	near	60	percent	no	matter	how	demanding	you	want	 to	be	 in	your	personal
definition	 of	 almost	 certain	 and	 near.	 It	 also	 gives	 a	 numerical	 formula	 for
calculating	the	number	of	trials	that	are	“enough,”	given	those	definitions.

The	first	part	of	the	law	was	a	conceptual	triumph,	and	it	is	the	only	part	that
survives	 in	 modern	 versions	 of	 the	 theorem.	 Concerning	 the	 second	 part—
Bernoulli’s	 formula—it	 is	 important	 to	 understand	 that	 although	 the	 golden



theorem	 specifies	 a	 number	 of	 trials	 that	 is	 sufficient	 to	 meet	 your	 goals	 of
confidence	and	accuracy,	it	does	not	say	you	can’t	accomplish	those	goals	with
fewer	 trials.	 That	 doesn’t	 affect	 the	 first	 part	 of	 the	 theorem,	 for	 which	 it	 is
enough	to	know	simply	that	the	number	of	trials	specified	is	finite.	But	Bernoulli
also	 intended	 the	 number	 given	 by	 his	 formula	 to	 be	 of	 practical	 use.
Unfortunately,	 in	 most	 practical	 applications	 it	 isn’t.	 For	 instance,	 here	 is	 a
numerical	example	Bernoulli	worked	out	himself,	although	I	have	changed	 the
context:	Suppose	60	percent	of	the	voters	in	Basel	support	the	mayor.	How	many
people	must	you	poll	 for	 the	chances	 to	be	99.9	percent	 that	you	will	 find	 the
mayor’s	support	to	be	between	58	percent	and	62	percent—that	is,	for	the	result
to	be	accurate	within	plus	or	minus	2	percent?	(Assume,	in	order	to	be	consistent
with	 Bernoulli,	 that	 the	 people	 polled	 are	 chosen	 at	 random,	 but	 with
replacement.	 In	 other	 words,	 it	 is	 possible	 that	 you	 poll	 a	 person	 more	 than
once.)	The	answer	 is	25,550,	which	 in	Bernoulli’s	 time	was	 roughly	 the	entire
population	of	Basel.	That	this	number	was	impractical	wasn’t	lost	on	Bernoulli.
He	also	knew	that	accomplished	gamblers	can	intuitively	guess	their	chances	of
success	 at	 a	new	game	based	on	 a	 sample	of	 far	 fewer	 than	 thousands	of	 trial
games.

One	reason	Bernoulli’s	numerical	estimate	was	so	far	 from	optimal	was	 that
his	proof	was	based	on	many	approximations.	Another	reason	was	that	he	chose
99.9	 percent	 as	 his	 standard	 of	 certainty—that	 is,	 he	 required	 that	 he	 get	 the
wrong	answer	 (an	answer	 that	differed	more	 than	2	percent	 from	 the	 true	one)
less	than	1	time	in	1,000.	That	is	a	very	demanding	standard.	Bernoulli	called	it
moral	certainty,	meaning	the	degree	of	certainty	he	thought	a	reasonable	person
would	 require	 in	 order	 to	make	 a	 rational	 decision.	 It	 is	 perhaps	 a	measure	of
how	much	 the	 times	 have	 changed	 that	 today	we’ve	 abandoned	 the	 notion	 of
moral	certainty	in	favor	of	the	one	we	encountered	in	the	last	chapter,	statistical
significance,	meaning	that	your	answer	will	be	wrong	less	than	1	time	in	20.

With	 today’s	mathematical	 methods,	 statisticians	 have	 shown	 that	 in	 a	 poll
like	the	one	I	described,	you	can	achieve	a	statistically	significant	result	with	an
accuracy	of	plus	or	minus	5	percent	by	polling	only	370	subjects.	And	if	you	poll
1,000,	you	can	achieve	a	90	percent	chance	of	coming	within	2	percent	of	 the
true	 result	 (60	 percent	 approval	 of	Basel’s	mayor).	 But	 despite	 its	 limitations,
Bernoulli’s	 golden	 theorem	 was	 a	 milestone	 because	 it	 showed,	 at	 least	 in
principle,	that	a	large	enough	sample	will	almost	certainly	reflect	the	underlying



makeup	of	the	population	being	sampled.

IN	 REAL	 LIFE	 we	 don’t	 often	 get	 to	 observe	 anyone’s	 or	 anything’s
performance	 over	 thousands	 of	 trials.	 And	 so	 if	 Bernoulli	 required	 an	 overly
strict	 standard	 of	 certainty,	 in	 real-life	 situations	 we	 often	 make	 the	 opposite
error:	 we	 assume	 that	 a	 sample	 or	 a	 series	 of	 trials	 is	 representative	 of	 the
underlying	situation	when	it	is	actually	far	too	small	to	be	reliable.	For	instance,
if	you	polled	exactly	5	residents	of	Basel	in	Bernoulli’s	day,	a	calculation	like	the
ones	we	discussed	in	chapter	4	shows	that	the	chances	are	only	about	1	in	3	that
you	will	find	that	60	percent	of	the	sample	(3	people)	supported	the	mayor.

Only	1	 in	3?	Shouldn’t	 the	 true	percentage	of	 the	mayor’s	supporters	be	 the
most	probable	outcome	when	you	poll	a	sample	of	voters?	In	fact,	1	in	3	is	the
most	probable	outcome:	the	odds	of	finding	0,	1,	2,	4,	or	5	supporters	are	lower
than	 the	 odds	 of	 finding	 3.	 Nevertheless,	 finding	 3	 supporters	 is	 not	 likely:
because	 there	 are	 so	 many	 of	 those	 nonrepresentative	 possibilities,	 their
combined	 odds	 add	 up	 to	 twice	 the	 odds	 that	 your	 poll	 accurately	 reflects	 the
population.	And	so	 in	a	poll	of	5	voters,	2	 times	out	of	3	you	will	observe	 the
“wrong”	percentage.	 In	 fact,	 about	1	 in	10	 times	you’ll	 find	 that	all	 the	voters
you	polled	agree	on	whether	they	like	or	dislike	the	mayor.	And	so	if	you	paid
any	 attention	 to	 a	 sample	 of	 5,	 you’d	probably	 severely	 over-or	 underestimate
the	mayor’s	true	popularity.

The	misconception—or	the	mistaken	intuition—that	a	small	sample	accurately
reflects	 underlying	 probabilities	 is	 so	widespread	 that	Kahneman	 and	Tversky
gave	 it	a	name:	 the	 law	of	small	numbers.18	The	 law	of	 small	numbers	 is	not
really	a	law.	It	is	a	sarcastic	name	describing	the	misguided	attempt	to	apply	the
law	of	large	numbers	when	the	numbers	aren’t	large.

If	 people	 applied	 the	 (untrue)	 law	 of	 small	 numbers	 only	 to	 urns,	 there
wouldn’t	be	much	impact,	but	as	we’ve	said,	many	events	 in	 life	are	Bernoulli
processes,	and	so	our	 intuition	often	 leads	us	 to	misinterpret	what	we	observe.
That	 is	why,	 as	 I	 described	 in	 chapter	 1,	when	 people	 observe	 the	 handful	 of
more	 successful	 or	 less	 successful	 years	 achieved	 by	 the	 Sherry	Lansings	 and



Mark	Cantons	of	the	world,	they	assume	that	their	past	performance	accurately
predicts	their	future	performance.

Let’s	 apply	 these	 ideas	 to	 an	 example	 I	mentioned	 briefly	 in	 chapter	 4:	 the
situation	 in	 which	 two	 companies	 compete	 head-to-head	 or	 two	 employees
within	 a	 company	 compete.	 Think	 now	 of	 the	 CEOs	 of	 the	 Fortune	 500
companies.	Let’s	assume	that,	based	on	their	knowledge	and	abilities,	each	CEO
has	a	certain	probability	of	success	each	year	(however	his	or	her	company	may
define	 that).	 And	 to	 make	 things	 simple,	 let’s	 assume	 that	 for	 these	 CEOs
successful	 years	 occur	 with	 the	 same	 frequency	 as	 the	 white	 pebbles	 or	 the
mayor’s	supporters:	60	percent.	(Whether	the	true	number	is	a	little	higher	or	a
little	lower	doesn’t	affect	the	thrust	of	this	argument.)	Does	that	mean	we	should
expect,	 in	 a	given	 five-year	period,	 that	 a	CEO	will	 have	precisely	 three	good
years?

No.	As	the	earlier	analysis	showed,	even	if	the	CEOs	all	have	a	nice	cut-and-
dried	 60	 percent	 success	 rate,	 the	 chances	 that	 in	 a	 given	 five-year	 period	 a
particular	CEO’s	performance	will	 reflect	 that	underlying	 rate	 are	only	1	 in	3!
Translated	to	the	Fortune	500,	that	means	that	over	the	past	five	years	about	333
of	 the	 CEOs	would	 have	 exhibited	 performance	 that	 did	 not	 reflect	 their	 true
ability.	Moreover,	we	should	expect,	by	chance	alone,	about	1	in	10	of	the	CEOs
to	have	five	winning	or	losing	years	in	a	row.	What	does	this	tell	us?	It	is	more
reliable	 to	 judge	 people	 by	 analyzing	 their	 abilities	 than	 by	 glancing	 at	 the
scoreboard.	Or	as	Bernoulli	put	it,	“One	should	not	appraise	human	action	on	the
basis	of	its	results.”19

Going	against	the	law	of	small	numbers	requires	character.	For	while	anyone
can	 sit	 back	 and	 point	 to	 the	 bottom	 line	 as	 justification,	 assessing	 instead	 a
person’s	 actual	 knowledge	 and	 actual	 ability	 takes	 confidence,	 thought,	 good
judgment,	 and,	 well,	 guts.	 You	 can’t	 just	 stand	 up	 in	 a	 meeting	 with	 your
colleagues	 and	 yell,	 “Don’t	 fire	 her.	 She	 was	 just	 on	 the	 wrong	 end	 of	 a
Bernoulli	series.”	Nor	is	it	likely	to	win	you	friends	if	you	stand	up	and	say	of
the	gloating	fellow	who	just	sold	more	Toyota	Camrys	 than	anyone	else	 in	 the
history	 of	 the	 dealership,	 “It	was	 just	 a	 random	 fluctuation.”	And	 so	 it	 rarely
happens.	Executives’	winning	years	 are	 attributed	 to	 their	 brilliance,	 explained
retroactively	 through	 incisive	 hindsight.	 And	 when	 people	 don’t	 succeed,	 we
often	 assume	 the	 failure	 accurately	 reflects	 the	 proportion	 with	 which	 their



talents	and	their	abilities	fill	the	urn.

Another	mistaken	notion	connected	with	the	law	of	large	numbers	is	the	idea
that	an	event	is	more	or	less	likely	to	occur	because	it	has	or	has	not	happened
recently.	The	idea	that	the	odds	of	an	event	with	a	fixed	probability	increase	or
decrease	 depending	 on	 recent	 occurrences	 of	 the	 event	 is	 called	 the	 gambler’s
fallacy.	For	example,	if	Kerrich	landed,	say,	44	heads	in	the	first	100	tosses,	the
coin	would	not	develop	a	bias	toward	tails	in	order	to	catch	up!	That’s	what	is	at
the	root	of	such	ideas	as	“her	luck	has	run	out”	and	“He	is	due.”	That	does	not
happen.	 For	 what	 it’s	 worth,	 a	 good	 streak	 doesn’t	 jinx	 you,	 and	 a	 bad	 one,
unfortunately,	does	not	mean	better	 luck	 is	 in	store.	Still,	 the	gambler’s	fallacy
affects	more	people	than	you	might	think,	if	not	on	a	conscious	level	then	on	an
unconscious	one.	People	expect	good	luck	to	follow	bad	luck,	or	they	worry	that
bad	will	follow	good.

I	 remember,	 on	 a	 cruise	 a	 few	 years	 back,	watching	 an	 intense	 pudgy	man
sweating	as	he	frantically	fed	dollars	into	a	slot	machine	as	fast	as	it	would	take
them.	 His	 companion,	 seeing	 me	 eye	 them,	 remarked	 simply,	 “He	 is	 due.”
Although	tempted	to	point	out	that,	no,	he	isn’t	due,	I	instead	walked	on.	After
several	steps	I	halted	my	progress	owing	to	a	sudden	flashing	of	lights,	ringing
of	 bells,	 not	 a	 little	 hooting	 on	 the	 couple’s	 part,	 and	 the	 sound	 of,	 for	 what
seemed	 like	minutes,	 a	 fast	 stream	of	 dollar	 coins	 flying	 out	 of	 the	machine’s
chute.	 Now	 I	 know	 that	 a	 modern	 slot	 machine	 is	 computerized,	 its	 payoffs
driven	by	a	 random-number	generator,	which	by	both	 law	and	 regulation	must
truly	generate,	as	advertised,	 random	numbers,	making	each	pull	of	 the	handle
completely	 independent	 of	 the	 history	 of	 previous	 pulls.	 And	 yet…Well,	 let’s
just	say	the	gambler’s	fallacy	is	a	powerful	illusion.

									
THE	MANUSCRIPT	 in	 which	 Bernoulli	 presented	 his	 golden	 theorem	 ends
abruptly	 even	 though	 he	 promises	 earlier	 in	 the	 work	 that	 he	 will	 provide
applications	to	various	issues	in	civic	affairs	and	economics.	It	is	as	if	“Bernoulli
literally	quit	when	he	saw	the	number	25,550,”	wrote	 the	historian	of	statistics
Stephen	 Stigler.20	 In	 fact,	 Bernoulli	 was	 in	 the	 process	 of	 publishing	 his
manuscript	when	he	died	“of	a	slow	fever”	in	August	1705,	at	 the	age	of	fifty.
His	publishers	asked	Johann	Bernoulli	to	complete	it,	but	Johann	refused,	saying



he	was	too	busy.	That	may	appear	odd,	but	the	Bernoullis	were	an	odd	family.	If
you	were	 asked	 to	 choose	 the	most	 unpleasant	mathematician	who	 ever	 lived,
you	 wouldn’t	 be	 too	 far	 off	 if	 you	 fingered	 Johann	 Bernoulli.	 He	 has	 been
variously	 described	 in	 historical	 texts	 as	 jealous,	 vain,	 thin-skinned,	 stubborn,
bilious,	 boastful,	 dishonest,	 and	 a	 consummate	 liar.	He	 accomplished	much	 in
mathematics,	but	he	 is	also	known	for	having	his	 son	Daniel	 tossed	out	of	 the
Académie	des	Sciences	after	Daniel	won	a	prize	for	which	Johann	himself	had
competed,	for	attempting	to	steal	both	his	brother’s	and	Leibniz’s	ideas,	and	for
plagiarizing	 Daniel’s	 book	 on	 hydrodynamics	 and	 then	 faking	 the	 publication
date	so	that	his	book	would	appear	to	have	been	published	first.

When	he	was	asked	to	complete	his	late	brother’s	manuscript,	he	had	recently
relocated	 to	 Basel	 from	 the	 University	 of	 Groningen,	 in	 the	 Netherlands,
obtaining	a	post	not	in	mathematics	but	as	a	professor	of	Greek.	Jakob	had	found
this	career	change	suspicious,	especially	since	 in	his	estimation	Johann	did	not
know	 Greek.	 What	 Jakob	 suspected,	 he	 wrote	 Leibniz,	 was	 that	 Johann	 had
come	 to	 Basel	 to	 usurp	 Jakob’s	 position.	 And,	 indeed,	 upon	 Jakob’s	 death,
Johann	did	obtain	it.

Johann	 and	 Jakob	 had	 not	 gotten	 along	 for	 most	 of	 their	 adult	 lives.	 They
would	regularly	trade	insults	in	mathematics	publications	and	in	letters	that,	one
mathematician	wrote,	 “bristle	with	 strong	 language	 that	 is	usually	 reserved	 for
horse	 thieves.”21	 And	 so	 when	 the	 need	 arose	 to	 edit	 Jakob’s	 posthumous
manuscript,	 the	 task	 fell	 further	 down	 the	 food	 chain,	 to	 Jakob’s	 nephew
Nikolaus,	 the	 son	 of	 one	 of	 Jakob’s	 other	 brothers,	 also	 named	Nikolaus.	 The
younger	Nikolaus	was	only	eighteen	at	the	time,	but	he	had	been	one	of	Jakob’s
pupils.	Unfortunately	he	didn’t	 feel	up	 to	 the	 task,	possibly	 in	part	because	he
was	aware	of	Leibniz’s	opposition	to	his	uncle’s	ideas	about	applications	of	the
theory.	And	so	the	manuscript	lay	dormant	for	eight	years.	The	book	was	finally
published	in	1713	under	the	title	Ars	conjectandi,	or	The	Art	of	Conjecture.	Like
Pascal’s	Pensées,	it	is	still	in	print.

Jakob	 Bernoulli	 had	 shown	 that	 through	 mathematical	 analysis	 one	 could
learn	 how	 the	 inner	 hidden	 probabilities	 that	 underlie	 natural	 systems	 are
reflected	 in	 the	data	 those	 systems	produce.	As	 for	 the	question	 that	Bernoulli
did	 not	 answer—the	 question	 of	 how	 to	 infer,	 from	 the	 data	 produced,	 the
underlying	 probability	 of	 events—the	 answer	 would	 not	 come	 for	 several



decades	more.



CHAPTER	6



False	Positives	and	Positive	Fallacies

IN	THE	1970S	a	psychology	professor	at	Harvard	had	an	odd-looking	middle-
aged	 student	 in	 his	 class.	 After	 the	 first	 few	 class	 meetings	 the	 student
approached	 the	 professor	 to	 explain	why	 he	 had	 enrolled	 in	 the	 class.1	 In	my
experience	teaching,	 though	I	have	had	some	polite	students	come	up	to	me	to
explain	why	they	were	dropping	my	course,	I	have	never	had	a	student	feel	the
need	to	explain	why	he	was	taking	it.	That’s	probably	why	I	can	get	away	with
happily	 assuming	 that	 if	 asked,	 such	 a	 student	would	 respond,	 “Because	 I	 am
fascinated	by	the	subject,	and	you	are	a	fine	lecturer.”	But	this	student	had	other
reasons.	He	said	he	needed	help	because	strange	things	were	happening	to	him:
his	wife	spoke	the	words	he	was	thinking	before	he	could	say	them,	and	now	she
was	divorcing	him;	a	co-worker	casually	mentioned	layoffs	over	drinks,	and	two
days	 later	 the	 student	 lost	 his	 job.	Over	 time,	 he	 reported,	 he	had	 experienced
dozens	of	misfortunes	and	what	he	considered	to	be	disturbing	coincidences.

At	first	the	happenings	confused	him.	Then,	as	most	of	us	would,	he	formed	a
mental	 model	 to	 reconcile	 the	 events	 with	 the	 way	 he	 believed	 the	 world
behaves.	The	theory	he	came	up	with,	however,	was	unlike	anything	most	of	us
would	devise:	he	was	the	subject	of	an	elaborate	secret	scientific	experiment.	He
believed	the	experiment	was	staged	by	a	large	group	of	conspirators	led	by	the
famous	psychologist	B.	F.	Skinner.	He	also	believed	 that	when	 it	was	over,	he
would	become	famous	and	perhaps	be	elected	 to	a	high	public	office.	That,	he
said,	 was	 why	 he	 was	 taking	 the	 course.	 He	 wanted	 to	 learn	 how	 to	 test	 his
hypothesis	in	light	of	the	many	instances	of	evidence	he	had	accumulated.

A	few	months	after	the	course	had	run	its	course,	the	student	again	called	on
the	professor.	The	experiment	was	still	in	progress,	he	reported,	and	now	he	was
suing	 his	 former	 employer,	who	 had	 produced	 a	 psychiatrist	willing	 to	 testify
that	he	suffered	from	paranoia.

One	of	 the	paranoid	delusions	 the	 former	 employer’s	psychiatrist	 pointed	 to
was	the	student’s	alleged	invention	of	a	fictitious	eighteenth-century	minister.	In
particular,	the	psychiatrist	scoffed	at	the	student’s	claim	that	this	minister	was	an



amateur	mathematician	who	had	created	in	his	spare	moments	a	bizarre	theory	of
probability.	The	minister’s	name,	according	to	the	student,	was	Thomas	Bayes.
His	theory,	the	student	asserted,	described	how	to	assess	the	chances	that	some
event	would	occur	if	some	other	event	also	occurred.	What	are	the	chances	that	a
particular	 student	 would	 be	 the	 subject	 of	 a	 vast	 secret	 conspiracy	 of
experimental	psychologists?	Admittedly	not	huge.	But	what	if	one’s	wife	speaks
one’s	 thoughts	 before	 one	 can	 utter	 them	 and	 co-workers	 foretell	 your
professional	 fate	 over	 drinks	 in	 casual	 conversation?	The	 student	 claimed	 that
Bayes’s	 theory	 showed	how	you	should	alter	your	 initial	 estimation	 in	 light	of
that	new	evidence.	And	he	presented	the	court	with	a	mumbo	jumbo	of	formulas
and	 calculations	 regarding	 his	 hypothesis,	 concluding	 that	 the	 additional
evidence	meant	 that	 the	probability	was	999,999	in	1	million	 that	he	was	right
about	 the	 conspiracy.	The	 enemy	psychiatrist	 claimed	 that	 this	mathematician-
minister	 and	 his	 theory	 were	 figments	 of	 the	 student’s	 schizophrenic
imagination.

The	student	asked	 the	professor	 to	help	him	refute	 that	claim.	The	professor
agreed.	He	had	good	reason,	for	Thomas	Bayes,	born	in	London	in	1701,	really
was	a	minister,	with	a	parish	at	Tunbridge	Wells.	He	died	in	1761	and	was	buried
in	a	park	in	London	called	Bunhill	Fields,	in	the	same	grave	as	his	father,	Joshua,
also	a	minister.	And	he	indeed	did	invent	a	theory	of	“conditional	probability”	to
show	how	the	theory	of	probability	can	be	extended	from	independent	events	to
events	 whose	 outcomes	 are	 connected.	 For	 example,	 the	 probability	 that	 a
randomly	 chosen	 person	 is	 mentally	 ill	 and	 the	 probability	 that	 a	 randomly
chosen	person	believes	his	spouse	can	read	his	mind	are	both	very	low,	but	the
probability	 that	 a	 person	 is	mentally	 ill	 if	 he	 believes	 his	 spouse	 can	 read	 his
mind	is	much	higher,	as	is	the	probability	that	a	person	believes	his	spouse	can
read	his	mind	if	he	is	mentally	ill.	How	are	all	these	probabilities	related?	That
question	is	the	subject	of	conditional	probability.

The	 professor	 supplied	 a	 deposition	 explaining	 Bayes’s	 existence	 and	 his
theory,	 though	 not	 supporting	 the	 specific	 and	 dubious	 calculations	 that	 his
former	student	claimed	proved	his	sanity.	The	sad	part	of	this	story	is	not	just	the
middle-aged	schizophrenic	himself,	but	the	medical	and	legal	team	on	the	other
side.	 It	 is	 unfortunate	 that	 some	 people	 suffer	 from	 schizophrenia,	 but	 even
though	drugs	can	help	to	mediate	the	illness,	they	cannot	battle	ignorance.	And
ignorance	of	the	ideas	of	Thomas	Bayes,	as	we	shall	see,	resides	at	the	heart	of



many	 serious	mistakes	 in	 both	medical	 diagnosis	 and	 legal	 judgment.	 It	 is	 an
ignorance	 that	 is	 rarely	 addressed	 during	 a	 doctor’s	 or	 a	 lawyer’s	 professional
training.

We	also	make	Bayesian	judgments	in	our	daily	lives.	A	film	tells	the	story	of
an	attorney	who	has	a	great	 job,	a	charming	wife,	 and	a	wonderful	 family.	He
loves	 his	wife	 and	daughter,	 but	 still	 he	 feels	 that	 something	 is	missing	 in	 his
life.	One	night	as	he	returns	home	on	the	train	he	spots	a	beautiful	woman	gazing
with	a	pensive	expression	out	 the	window	of	 a	dance	 studio.	He	 looks	 for	her
again	the	next	night,	and	the	night	after	that.	Each	night	as	his	train	passes	her
studio,	he	falls	further	under	her	spell.	Finally	one	evening	he	impulsively	rushes
off	the	train	and	signs	up	for	dance	lessons,	hoping	to	meet	the	woman.	He	finds
that	her	haunting	attraction	withers	once	his	gaze	from	afar	gives	way	to	face-to-
face	encounters.	He	does	fall	in	love,	however,	not	with	her	but	with	dancing.

He	keeps	his	new	obsession	from	his	family	and	colleagues,	making	excuses
for	 spending	 more	 and	 more	 evenings	 away	 from	 home.	 His	 wife	 eventually
discovers	 that	he	 is	not	working	 late	as	often	as	he	 says	he	 is.	She	 figures	 the
chances	of	his	lying	about	his	after-work	activities	are	far	greater	if	he	is	having
an	 affair	 than	 if	 he	 isn’t,	 and	 so	 she	 concludes	 that	 he	 is.	 But	 the	 wife	 was
mistaken	 not	 just	 in	 her	 conclusion	 but	 in	 her	 reasoning:	 she	 confused	 the
probability	that	her	husband	would	sneak	around	if	he	were	having	an	affair	with
the	probability	that	he	was	having	an	affair	if	he	was	sneaking	around.

It’s	 a	 common	mistake.	Say	your	 boss	 has	 been	 taking	 longer	 than	usual	 to
respond	to	your	e-mails.	Many	people	would	take	that	as	a	sign	that	their	star	is
falling	because	 if	 your	 star	 is	 falling,	 the	 chances	 are	 high	 that	 your	 boss	will
respond	to	your	e-mails	more	slowly	than	before.	But	your	boss	might	be	slower
in	 responding	 because	 she	 is	 unusually	 busy	 or	 her	 mother	 is	 ill.	 And	 so	 the
chances	that	your	star	is	falling	if	she	is	taking	longer	to	respond	are	much	lower
than	the	chances	that	your	boss	will	respond	more	slowly	if	your	star	is	falling.
The	appeal	of	many	conspiracy	theories	depends	on	the	misunderstanding	of	this
logic.	 That	 is,	 it	 depends	 on	 confusing	 the	 probability	 that	 a	 series	 of	 events
would	happen	 if	 it	were	 the	 product	 of	 a	 huge	 conspiracy	with	 the	 probability
that	a	huge	conspiracy	exists	if	a	series	of	events	occurs.

The	 effect	 on	 the	 probability	 that	 an	 event	will	 occur	 if	 or	given	 that	 other
events	occur	is	what	Bayes’s	theory	is	all	about.	To	see	in	detail	how	it	works,



we’ll	turn	to	another	problem,	one	that	is	related	to	the	two-daughter	problem	we
encountered	 in	 chapter	 3.	 Let	 us	 now	 suppose	 that	 a	 distant	 cousin	 has	 two
children.	Recall	that	in	the	two-daughter	problem	you	know	that	one	or	both	are
girls,	and	you	are	trying	to	remember	which	it	is—one	or	both?	In	a	family	with
two	 children,	 what	 are	 the	 chances,	 if	 one	 of	 the	 children	 is	 a	 girl,	 that	 both
children	are	girls?	We	didn’t	discuss	the	question	in	those	terms	in	chapter	3,	but
the	if	makes	this	a	problem	in	conditional	probability.	If	 that	 if	clause	were	not
present,	the	chances	that	both	children	were	girls	would	be	1	in	4,	the	4	possible
birth	orders	being	 (boy,	boy),	 (boy,	girl),	 (girl,	boy),	 and	 (girl,	girl).	But	given
the	additional	information	that	the	family	has	a	girl,	the	chances	are	1	in	3.	That
is	because	if	one	of	the	children	is	a	girl,	there	are	just	3	possible	scenarios	for
this	 family—(boy,	 girl),	 (girl,	 boy),	 and	 (girl,	 girl)—and	 exactly	 1	 of	 the	 3
corresponds	 to	 the	 outcome	 that	 both	 children	 are	 girls.	 That’s	 probably	 the
simplest	way	to	look	at	Bayes’s	ideas—they	are	just	a	matter	of	accounting.	First
write	down	the	sample	space—that	is,	the	list	of	all	the	possibilities—along	with
their	 probabilities	 if	 they	 are	 not	 all	 equal	 (that	 is	 actually	 a	 good	 idea	 in
analyzing	any	confusing	probability	issue).	Next,	cross	off	the	possibilities	that
the	 condition	 (in	 this	 case,	 “at	 least	 one	 girl”)	 eliminates.	What	 is	 left	 are	 the
remaining	possibilities	and	their	relative	probabilities.

That	might	 all	 seem	obvious.	Feeling	cocky,	you	may	 think	you	could	have
figured	 it	 out	 without	 the	 help	 of	 dear	 Reverend	 Bayes	 and	 vow	 to	 grab	 a
different	 book	 to	 read	 the	 next	 time	 you	 step	 into	 the	 bathtub.	 So	 before	 we
proceed,	 let’s	 try	 a	 slight	 variant	 on	 the	 two-daughter	 problem,	 one	 whose
resolution	may	be	a	bit	more	shocking.2

The	variant	is	this:	in	a	family	with	two	children,	what	are	the	chances,	if	one
of	the	children	is	a	girl	named	Florida,	that	both	children	are	girls?	Yes,	I	said	a
girl	named	Florida.	The	name	might	sound	random,	but	it	is	not,	for	in	addition
to	 being	 the	 name	 of	 a	 state	 known	 for	 Cuban	 immigrants,	 oranges,	 and	 old
people	 who	 traded	 their	 large	 homes	 up	 north	 for	 the	 joys	 of	 palm	 trees	 and
organized	 bingo,	 it	 is	 a	 real	 name.	 In	 fact,	 it	 was	 in	 the	 top	 1,000	 female
American	 names	 for	 the	 first	 thirty	 or	 so	 years	 of	 the	 last	 century.	 I	 picked	 it
rather	 carefully,	 because	 part	 of	 the	 riddle	 is	 the	 question,	 what,	 if	 anything,
about	 the	 name	 Florida	 affects	 the	 odds?	 But	 I	 am	 getting	 ahead	 of	 myself.
Before	 we	 move	 on,	 please	 consider	 this	 question:	 in	 the	 girl-named-Florida
problem,	are	the	chances	of	two	girls	still	1	in	3	(as	they	are	in	the	two-daughter



problem)?

I	 will	 shortly	 show	 that	 the	 answer	 is	 no.	 The	 fact	 that	 one	 of	 the	 girls	 is
named	Florida	changes	the	chances	to	1	in	2:	Don’t	worry	if	 that	 is	difficult	 to
imagine.	 The	 key	 to	 understanding	 randomness	 and	 all	 of	mathematics	 is	 not
being	able	to	intuit	the	answer	to	every	problem	immediately	but	merely	having
the	tools	to	figure	out	the	answer.

THOSE	WHO	 DOUBTED	 Bayes’s	 existence	 were	 right	 about	 one	 thing:	 he
never	 published	 a	 single	 scientific	 paper.	 We	 know	 little	 of	 his	 life,	 but	 he
probably	pursued	his	work	for	his	own	pleasure	and	did	not	feel	much	need	to
communicate	 it.	 In	 that	 and	 other	 respects	 he	 and	 Jakob	 Bernoulli	 were
opposites.	For	Bernoulli	resisted	the	study	of	theology,	whereas	Bayes	embraced
it.	And	Bernoulli	sought	fame,	whereas	Bayes	showed	no	interest	in	it.	Finally,
Bernoulli’s	 theorem	 concerns	 how	 many	 heads	 to	 expect	 if,	 say,	 you	 plan	 to
conduct	many	tosses	of	a	balanced	coin,	whereas	Bayes	investigated	Bernoulli’s
original	goal,	the	issue	of	how	certain	you	can	be	that	a	coin	is	balanced	if	you
observe	a	certain	number	of	heads.

The	 theory	 for	which	Bayes	 is	known	 today	came	 to	 light	on	December	23,
1763,	when	another	chaplain	and	mathematician,	Richard	Price,	read	a	paper	to
the	Royal	Society,	Britain’s	national	academy	of	science.	The	paper,	by	Bayes,
was	titled	“An	Essay	toward	Solving	a	Problem	in	the	Doctrine	of	Chances”	and
was	published	in	the	Royal	Society’s	Philosophical	Transactions	in	1764.	Bayes
had	 left	 Price	 the	 article	 in	 his	will,	 along	with	 £100.	Referring	 to	Price	 as	 “I
suppose	a	preacher	at	Newington	Green,”	Bayes	died	four	months	after	writing
his	will.3

Despite	Bayes’s	casual	reference,	Richard	Price	was	not	just	another	obscure
preacher.	 He	 was	 a	 well-known	 advocate	 of	 freedom	 of	 religion,	 a	 friend	 of
Benjamin	Franklin’s,	a	man	entrusted	by	Adam	Smith	to	critique	parts	of	a	draft
of	The	Wealth	of	Nations,	and	a	well-known	mathematician.	He	is	also	credited
with	 founding	 actuary	 science,	 a	 field	he	developed	when,	 in	1765,	 three	men
from	an	insurance	company,	the	Equitable	Society,	requested	his	assistance.	Six



years	after	that	encounter	he	published	his	work	in	a	book	titled	Observations	on
Reversionary	Payments.	 Though	 the	 book	 served	 as	 a	 bible	 for	 actuaries	well
into	the	nineteenth	century,	because	of	some	poor	data	and	estimation	methods,
he	appears	 to	have	underestimated	 life	expectancies.	The	 resulting	 inflated	 life
insurance	 premiums	 enriched	 his	 pals	 at	 the	 Equitable	 Society.	 The	 hapless
British	government,	on	the	other	hand,	based	annuity	payments	on	Price’s	tables
and	took	a	bath	when	the	pensioners	did	not	proceed	to	keel	over	at	the	predicted
rate.

As	 I	 mentioned,	 Bayes	 developed	 conditional	 probability	 in	 an	 attempt	 to
answer	the	same	question	that	inspired	Bernoulli:	how	can	we	infer	underlying
probability	 from	 observation?	 If	 a	 drug	 just	 cured	 45	 out	 of	 60	 patients	 in	 a
clinical	trial,	what	does	that	tell	you	about	the	chances	the	drug	will	work	on	the
next	 patient?	 If	 it	 worked	 for	 600,000	 out	 of	 1	 million	 patients,	 the	 odds	 are
obviously	good	that	its	chances	of	working	are	close	to	60	percent.	But	what	can
you	conclude	from	a	smaller	trial?	Bayes	also	asked	another	question:	if,	before
the	trial,	you	had	reason	to	believe	that	the	drug	was	only	50	percent	effective,
how	much	weight	should	the	new	data	carry	in	your	future	assessments?	Most	of
our	 life	 experiences	 are	 like	 that:	 we	 observe	 a	 relatively	 small	 sample	 of
outcomes,	 from	 which	 we	 infer	 information	 and	 make	 judgments	 about	 the
qualities	that	produced	those	outcomes.	How	should	we	make	those	inferences?

Bayes	approached	the	problem	via	a	metaphor.4	Imagine	we	are	supplied	with
a	square	table	and	two	balls.	We	roll	the	first	ball	onto	the	table	in	a	manner	that
makes	it	equally	probable	that	the	ball	will	come	to	rest	at	any	point.	Our	job	is
to	determine,	without	 looking,	where	along	 the	 left-right	axis	 the	ball	 stopped.
Our	tool	in	this	is	the	second	ball,	which	we	may	repeatedly	roll	onto	the	table	in
the	same	manner	as	the	first.	With	each	roll	a	collaborator	notes	whether	that	ball
comes	to	rest	to	the	right	or	the	left	of	the	place	where	the	first	ball	landed.	At
the	end	he	informs	us	of	the	total	number	of	times	the	second	ball	landed	in	each
of	the	two	general	locations.	The	first	ball	represents	the	unknown	that	we	wish
to	 gain	 information	 about,	 and	 the	 second	 ball	 represents	 the	 evidence	 we
manage	to	obtain.	If	the	second	ball	lands	consistently	to	the	right	of	the	first,	we
can	be	pretty	confident	that	the	first	ball	rests	toward	the	far	left	side	of	the	table.
If	 it	 lands	 less	 consistently	 to	 the	 right,	 we	 might	 be	 less	 confident	 of	 that
conclusion,	or	we	might	guess	 that	 the	 first	ball	 is	 situated	 farther	 to	 the	 right.
Bayes	 showed	 how	 to	 determine,	 based	 on	 the	 data	 of	 the	 second	 ball,	 the



precise	probability	that	the	first	ball	 is	at	any	given	point	on	the	left-right	axis.
And	 he	 showed	 how,	 given	 additional	 data,	 one	 should	 revise	 one’s	 initial
estimate.	 In	 Bayesian	 terminology	 the	 initial	 estimates	 are	 called	 prior
probabilities	and	the	new	guesses,	posterior	probabilities.

Bayes	concocted	this	game	because	it	models	many	of	the	decisions	we	make
in	life.	In	the	drug-trial	example	the	position	of	the	first	ball	represents	the	drug’s
true	effectiveness,	and	the	reports	regarding	the	second	ball	represent	the	patient
data.	The	position	of	 the	first	ball	could	also	represent	a	film’s	appeal,	product
quality,	 driving	 skill,	 hard	work,	 stubbornness,	 talent,	 ability,	 or	whatever	 it	 is
that	determines	 the	success	or	 failure	of	a	certain	endeavor.	The	reports	on	 the
second	ball	would	then	represent	our	observations	or	the	data	we	collect.	Bayes’s
theory	shows	how	to	make	assessments	and	then	adjust	them	in	the	face	of	new
data.

Today	Bayesian	analysis	is	widely	employed	throughout	science	and	industry.
For	 instance,	 models	 employed	 to	 determine	 car	 insurance	 rates	 include	 a
mathematical	 function	 describing,	 per	 unit	 of	 driving	 time,	 your	 personal
probability	of	having	zero,	one,	or	more	accidents.	Consider,	for	our	purposes,	a
simplified	model	that	places	everyone	in	one	of	two	categories:	high	risk,	which
includes	drivers	who	average	at	least	one	accident	each	year,	and	low	risk,	which
includes	 drivers	who	 average	 less	 than	 one.	 If,	when	 you	 apply	 for	 insurance,
you	have	a	driving	record	that	stretches	back	twenty	years	without	an	accident	or
one	 that	 goes	 back	 twenty	 years	 with	 thirty-seven	 accidents,	 the	 insurance
company	can	be	pretty	sure	which	category	to	place	you	in.	But	if	you	are	a	new
driver,	should	you	be	classified	as	low	risk	(a	kid	who	obeys	the	speed	limit	and
volunteers	to	be	the	designated	driver)	or	high	risk	(a	kid	who	races	down	Main
Street	swigging	from	a	half-empty	$2	bottle	of	Boone’s	Farm	apple	wine)?	Since
the	company	has	no	data	on	you—no	idea	of	the	“position	of	the	first	ball”—it
might	assign	you	an	equal	prior	probability	of	being	in	either	group,	or	it	might
use	what	it	knows	about	the	general	population	of	new	drivers	and	start	you	off
by	guessing	that	the	chances	you	are	a	high	risk	are,	say,	1	in	3.	In	that	case	the
company	would	model	you	as	a	hybrid—one-third	high	risk	and	two-thirds	low
risk—and	charge	you	one-third	 the	price	 it	 charges	high-risk	drivers	plus	 two-
thirds	 the	price	 it	charges	 low-risk	drivers.	Then,	after	a	year	of	observation—
that	 is,	 after	 one	 of	 Bayes’s	 second	 balls	 has	 been	 thrown—the	 company	 can
employ	the	new	datum	to	reevaluate	its	model,	adjust	the	one-third	and	two-third



proportions	it	previously	assigned,	and	recalculate	what	it	ought	to	charge.	If	you
have	had	no	accidents,	 the	proportion	of	 low	risk	and	 low	price	 it	assigns	you
will	increase;	if	you	have	had	two	accidents,	it	will	decrease.	The	precise	size	of
the	 adjustment	 is	 given	 by	 Bayes’s	 theory.	 In	 the	 same	manner	 the	 insurance
company	can	periodically	adjust	its	assessments	in	later	years	to	reflect	the	fact
that	you	were	accident-free	or	that	you	twice	had	an	accident	while	driving	the
wrong	way	down	a	one-way	street,	holding	a	cell	phone	with	your	left	hand	and
a	doughnut	with	your	right.	That	is	why	insurance	companies	can	give	out	“good
driver”	discounts:	the	absence	of	accidents	elevates	the	posterior	probability	that
a	driver	belongs	in	a	low-risk	group.

Obviously	many	of	the	details	of	Bayes’s	theory	are	rather	complex.	But	as	I
mentioned	when	I	analyzed	the	two-daughter	problem,	the	key	to	his	approach	is
to	 use	 new	 information	 to	 prune	 the	 sample	 space	 and	 adjust	 probabilities
accordingly.	 In	 the	 two-daughter	 problem	 the	 sample	 space	was	 initially	 (boy,
boy),	(boy,	girl),	(girl,	boy),	and	(girl,	girl)	but	reduces	to	(boy,	girl),	(girl,	boy),
and	(girl,	girl)	if	you	learn	that	one	of	the	children	is	a	girl,	making	the	chances
of	 a	 two-girl	 family	 1	 in	 3.	Let’s	 apply	 that	 same	 simple	 strategy	 to	 see	what
happens	if	you	learn	that	one	of	the	children	is	a	girl	named	Florida.

In	 the	 girl-named-Florida	 problem	 our	 information	 concerns	 not	 just	 the
gender	of	the	children,	but	also,	for	the	girls,	the	name.	Since	our	original	sample
space	should	be	a	list	of	all	the	possibilities,	in	this	case	it	is	a	list	of	both	gender
and	 name.	 Denoting	 “girl-named-Florida”	 by	 girl-F	 and	 “girl-not-named-
Florida”	by	girl-NF,	we	write	the	sample	space	this	way:	(boy,	boy),	(boy,	girl-
F),	(boy,	girl-NF),	(girl-F,	boy),	(girl-NF,	boy),	(girl-NF,	girl-F),	(girl-F,	girl-NF),
(girl-NF,	girl-NF),	and	(girl-F,	girl-F).

Now,	 the	 pruning.	 Since	we	 know	 that	 one	 of	 the	 children	 is	 a	 girl	 named
Florida,	we	can	reduce	the	sample	space	to	(boy,	girl-F),	(girl-F,	boy),	(girl-NF,
girl-F),	 (girl-F,	 girl-NF),	 and	 (girl-F,	 girl-F).	 That	 brings	 us	 to	 another	way	 in
which	 this	problem	differs	 from	 the	 two-daughter	problem.	Here,	because	 it	 is
not	equally	probable	that	a	girl’s	name	is	or	is	not	Florida,	not	all	the	elements	of
the	sample	space	are	equally	probable.

In	1935,	 the	 last	year	for	which	 the	Social	Security	Administration	provided
statistics	on	the	name,	about	1	in	30,000	girls	were	christened	Florida.5	Since	the
name	 has	 been	 dying	 out,	 for	 the	 sake	 of	 argument	 let’s	 say	 that	 today	 the



probability	of	a	girl’s	being	named	Florida	is	1	in	1	million.	That	means	that	if
we	 learn	 that	 a	particular	girl’s	name	 is	not	Florida,	 it’s	no	big	deal,	but	 if	we
learn	that	a	particular	girl’s	name	is	Florida,	in	a	sense	we’ve	hit	the	jackpot.	The
chances	 of	 both	 girls’	 being	 named	 Florida	 (even	 if	 we	 ignore	 the	 fact	 that
parents	 tend	 to	 shy	 away	 from	 giving	 their	 children	 identical	 names)	 are
therefore	 so	 small	 we	 are	 justified	 in	 ignoring	 that	 possibility.	 That	 leaves	 us
with	just	(boy,	girl-F),	(girl-F,	boy),	(girl-NF,	girl-F),	and	(girl-F,	girl-NF),	which
are,	to	a	very	good	approximation,	equally	likely.

Since	2	of	the	4,	or	half,	of	the	elements	in	the	sample	space	are	families	with
two	girls,	the	answer	is	not	1	in	3—as	it	was	in	the	two-daughter	problem—but	1
in	 2.	 The	 added	 information—your	 knowledge	 of	 the	 girl’s	 name—makes	 a
difference.

One	way	 to	understand	 this,	 if	 it	 still	 seems	puzzling,	 is	 to	 imagine	 that	we
gather	into	a	very	large	room	75	million	families	that	have	two	children,	at	least
one	 of	 whom	 is	 a	 girl.	 As	 the	 two-daughter	 problem	 taught	 us,	 there	 will	 be
about	25	million	two-girl	families	in	that	room	and	50	million	one-girl	families
(25	million	in	which	the	girl	is	the	older	child	and	an	equal	number	in	which	she
is	 the	 younger).	 Next	 comes	 the	 pruning:	 we	 ask	 that	 only	 the	 families	 that
include	 a	 girl	 named	 Florida	 remain.	 Since	 Florida	 is	 a	 1	 in	 1	 million	 name,
about	50	of	the	50	million	one-girl	families	will	remain.	And	of	the	25	million
two-girl	 families,	50	of	 them	will	also	get	 to	stay,	25	because	 their	 firstborn	 is
named	Florida	and	another	25	because	their	younger	girl	has	that	name.	It’s	as	if
the	girls	are	 lottery	tickets	and	the	girls	named	Florida	are	 the	winning	tickets.
Although	there	are	twice	as	many	one-girl	families	as	two-girl	families,	the	two-
girl	 families	 each	 have	 two	 tickets,	 so	 the	 one-girl	 families	 and	 the	 two-girl
families	will	be	about	equally	represented	among	the	winners.

I	 have	 described	 the	 girl-named-Florida	 problem	 in	 potentially	 annoying
detail,	the	kind	of	detail	that	sometimes	lands	me	on	the	do-not-invite	list	for	my
neighbors’	parties.	I	did	this	not	because	I	expect	you	to	run	into	this	situation.	I
did	 it	because	 the	context	 is	simple,	and	 the	same	kind	of	reasoning	will	bring
clarity	to	many	situations	that	really	are	encountered	in	life.	Now	let’s	talk	about
a	few	of	those.

									



MY	MOST	MEMORABLE	ENCOUNTER	with	the	Reverend	Bayes	came	one
Friday	afternoon	in	1989,	when	my	doctor	told	me	by	telephone	that	the	chances
were	999	out	of	1,000	that	I’d	be	dead	within	a	decade.	He	added,	“I’m	really
sorry,”	as	if	he	had	some	patients	to	whom	he	would	say	he	is	sorry	but	not	mean
it.	Then	he	answered	a	few	questions	about	the	course	of	 the	disease	and	hung
up,	presumably	to	offer	another	patient	his	or	her	Friday-afternoon	news	flash.	It
is	hard	to	describe	or	even	remember	exactly	how	the	weekend	went	for	me,	but
let’s	just	say	I	did	not	go	to	Disneyland.	Given	my	death	sentence,	why	am	I	still
here,	able	to	write	about	it?

The	 adventure	 started	 when	 my	 wife	 and	 I	 applied	 for	 life	 insurance.	 The
application	procedure	involved	a	blood	test.	A	week	or	two	later	we	were	turned
down.	The	ever	economical	insurance	company	sent	the	news	in	two	brief	letters
that	were	identical,	except	for	a	single	additional	word	in	the	letter	to	my	wife.
My	 letter	 stated	 that	 the	 company	 was	 denying	 me	 insurance	 because	 of	 the
“results	of	your	blood	test.”	My	wife’s	letter	stated	that	the	company	was	turning
her	down	because	of	the	“results	of	your	husband’s	blood	test.”	When	the	added
word	husband’s	 proved	 to	be	 the	 extent	of	 the	 clues	 the	kindhearted	 insurance
company	was	willing	to	provide	about	our	uninsurability,	I	went	to	my	doctor	on
a	hunch	and	took	an	HIV	test.	It	came	back	positive.	Though	I	was	too	shocked
initially	to	quiz	him	about	the	odds	he	quoted,	I	later	learned	that	he	had	derived
my	1-in-1,000	chance	of	being	healthy	from	the	following	statistic:	the	HIV	test
produced	a	positive	result	when	the	blood	was	not	infected	with	the	AIDS	virus
in	only	1	 in	1,000	blood	samples.	That	might	 sound	 like	 the	same	message	he
passed	on,	but	 it	wasn’t.	My	doctor	had	confused	the	chances	that	I	would	test
positive	 if	 I	 was	 not	 HIV-positive	with	 the	 chances	 that	 I	 would	 not	 be	HIV-
positive	if	I	tested	positive.

To	understand	my	doctor’s	error,	let’s	employ	Bayes’s	method.	The	first	step
is	to	define	the	sample	space.	We	could	include	everyone	who	has	ever	taken	an
HIV	 test,	but	we’ll	get	a	more	accurate	 result	 if	we	employ	a	bit	of	additional
relevant	 information	 about	 me	 and	 consider	 only	 heterosexual	 non-IV-drug-
abusing	white	male	Americans	who	 have	 taken	 the	 test.	 (We’ll	 see	 later	what
kind	of	difference	this	makes.)

Now	 that	we	 know	whom	 to	 include	 in	 the	 sample	 space,	 let’s	 classify	 the
members	of	the	space.	Instead	of	boy	and	girl,	here	the	relevant	classes	are	those
who	 tested	 positive	 and	 are	 HIV-positive	 (true	 positives),	 those	 who	 tested



positive	but	are	not	positive	(false	positives),	those	who	tested	negative	and	are
HIV-negative	 (true	 negatives),	 and	 those	 who	 tested	 negative	 but	 are	 HIV-
positive	(false	negatives).

Finally,	we	ask,	how	many	people	are	there	in	each	of	these	classes?	Suppose
we	 consider	 an	 initial	 population	 of	 10,000.	 We	 can	 estimate,	 employing
statistics	 from	 the	 Centers	 for	 Disease	 Control	 and	 Prevention,	 that	 in	 1989
about	 1	 in	 those	 10,000	 heterosexual	 non-IV-drug-abusing	 white	 male
Americans	who	 got	 tested	were	 infected	with	HIV.6	 Assuming	 that	 the	 false-
negative	rate	is	near	0,	that	means	that	about	1	person	out	of	every	10,000	will
test	positive	due	 to	 the	presence	of	 the	 infection.	 In	 addition,	 since	 the	 rate	of
false	positives	 is,	 as	my	doctor	had	quoted,	1	 in	1,000,	 there	will	 be	 about	10
others	who	are	not	 infected	with	HIV	but	will	 test	positive	anyway.	The	other
9,989	of	the	10,000	men	in	the	sample	space	will	test	negative.

Now	let’s	prune	 the	sample	space	 to	 include	only	 those	who	 tested	positive.
We	end	up	with	10	people	who	are	false	positives	and	1	true	positive.	In	other
words,	only	1	 in	11	people	who	 test	positive	are	 really	 infected	with	HIV.	My
doctor	 told	me	 that	 the	probability	 that	 the	 test	was	wrong—and	 I	was	 in	 fact
healthy—was	 1	 in	 1,000.	He	 should	 have	 said,	 “Don’t	worry,	 the	 chances	 are
better	than	10	out	of	11	that	you	are	not	infected.”	In	my	case	the	screening	test
was	 apparently	 fooled	 by	 certain	markers	 that	were	 present	 in	my	 blood	 even
though	the	virus	this	test	was	screening	for	was	not	present.

It	 is	 important	 to	know	the	false	positive	rate	when	assessing	any	diagnostic
test.	For	example,	a	test	that	identifies	99	percent	of	all	malignant	tumors	sounds
very	 impressive,	but	 I	can	easily	devise	a	 test	 that	 identifies	100	percent	of	all
tumors.	All	I	have	to	do	is	report	that	everyone	I	examine	has	a	tumor.	The	key
statistic	 that	 differentiates	 my	 test	 from	 a	 useful	 one	 is	 that	 my	 test	 would
produce	 a	 high	 rate	 of	 false	 positives.	 But	 the	 above	 incident	 illustrates	 that
knowledge	of	the	false	positive	rate	is	not	sufficient	to	determine	the	usefulness
of	a	test—you	must	also	know	how	the	false-positive	rate	compares	with	the	true
prevalence	 of	 the	 disease.	 If	 the	 disease	 is	 rare,	 even	 a	 low	 false-positive	 rate
does	not	mean	 that	a	positive	 test	 implies	you	have	 the	disease.	 If	a	disease	 is
common,	a	positive	result	is	much	more	likely	to	be	meaningful.	To	see	how	the
true	prevalence	affects	the	implications	of	a	positive	test,	let’s	suppose	now	that	I
had	 been	 homosexual	 and	 tested	 positive.	 Assume	 that	 in	 the	 male	 gay



community	the	chance	of	infection	among	those	being	tested	in	1989	was	about
1	percent.	That	means	that	in	the	results	of	10,000	tests,	we	would	find	not	1	(as
before),	but	100	true	positives	to	go	with	the	10	false	positives.	So	in	this	case
the	chances	that	a	positive	test	meant	I	was	infected	would	have	been	10	out	of
11.	That’s	why,	when	assessing	test	results,	it	is	good	to	know	whether	you	are	in
a	high-risk	group.

BAYES’S	THEORY	shows	that	the	probability	that	A	will	occur	if	B	occurs	will
generally	 differ	 from	 the	 probability	 that	 B	 will	 occur	 if	 A	 occurs.7	 To	 not
account	for	this	is	a	common	mistake	in	the	medical	profession.	For	instance,	in
studies	 in	 Germany	 and	 the	 United	 States,	 researchers	 asked	 physicians	 to
estimate	 the	 probability	 that	 an	 asymptomatic	woman	 between	 the	 ages	 of	 40
and	50	who	has	a	positive	mammogram	actually	has	breast	cancer	if	7	percent	of
mammograms	 show	cancer	when	 there	 is	none.8	 In	 addition,	 the	doctors	were
told	 that	 the	actual	 incidence	was	about	0.8	percent	and	 that	 the	 false-negative
rate	about	10	percent.	Putting	that	all	together,	one	can	use	Bayes’s	methods	to
determine	that	a	positive	mammogram	is	due	to	cancer	in	only	about	9	percent	of
the	cases.	In	the	German	group,	however,	one-third	of	the	physicians	concluded
that	 the	 probability	 was	 about	 90	 percent,	 and	 the	 median	 estimate	 was	 70
percent.	 In	 the	 American	 group,	 95	 out	 of	 100	 physicians	 estimated	 the
probability	to	be	around	75	percent.

Similar	issues	arise	in	drug	testing	in	athletes.	Here	again,	the	oft-quoted	but
not	directly	relevant	number	is	the	false	positive	rate.	This	gives	a	distorted	view
of	the	probability	that	an	athlete	is	guilty.	For	example,	Mary	Decker	Slaney,	a
world-class	runner	and	1983	world	champion	in	the	1,500	and	3,000	meter	race,
was	trying	to	make	a	comeback	when,	at	the	U.S.	Olympic	Trials	in	Atlanta	in
1996,	 she	 was	 accused	 of	 doping	 violations	 consistent	 with	 testosterone	 use.
After	 various	 deliberations,	 the	 IAAF	 (known	 officially	 since	 2001	 as	 the
International	Association	of	Athletics	Federations)	ruled	that	Slaney	“was	guilty
of	 a	 doping	 offense,”	 effectively	 ending	 her	 career.	According	 to	 some	 of	 the
testimony	in	the	Slaney	case	the	false-positive	rate	for	the	test	to	which	her	urine
was	subjected	could	have	been	as	high	as	1	percent.	This	probably	made	many
people	comfortable	that	her	chance	of	guilt	was	99	percent,	but	as	we	have	seen



that	 is	not	 true.	Suppose,	 for	 example,	1,000	athletes	were	 tested,	1	 in	10	was
guilty,	and	 the	 test,	when	given	 to	a	guilty	athlete,	had	a	50	percent	chance	of
revealing	 the	 doping	 violation.	 Then	 for	 every	 thousand	 athletes	 tested,	 100
would	 have	 been	 guilty	 and	 the	 test	 would	 have	 fingered	 50	 of	 those.
Meanwhile,	of	the	900	athletes	who	are	innocent,	the	test	would	have	fingered	9.
So	what	a	positive-doping	test	really	meant	was	not	that	the	probability	she	was
guilty	 was	 99	 percent,	 but	 rather	 50/59	 =	 84.7	 percent.	 Put	 another	 way,	 you
should	 have	 about	 as	 much	 confidence	 that	 Slaney	 was	 guilty	 based	 on	 that
evidence	as	you	would	that	the	number	1	won’t	turn	up	when	she	tossed	a	die.
That	certainly	leaves	room	for	reasonable	doubt,	and,	more	important,	indicates
that	 to	 perform	mass	 testing	 (90,000	 athletes	 have	 their	 urine	 tested	 annually)
and	 make	 judgments	 based	 on	 such	 a	 procedure	 means	 to	 condemn	 a	 large
number	of	innocent	people.9

In	legal	circles	 the	mistake	of	 inversion	is	sometimes	called	the	prosecutor’s
fallacy	because	prosecutors	often	employ	that	type	of	fallacious	argument	to	lead
juries	to	convicting	suspects	on	thin	evidence.	Consider,	for	example,	the	case	in
Britain	 of	 Sally	 Clark.10	 Clark’s	 first	 child	 died	 at	 11	 weeks.	 The	 death	 was
reported	 as	 due	 to	 sudden	 infant	 death	 syndrome,	 or	 SIDS,	 a	 diagnosis	 that	 is
made	when	the	death	of	a	baby	is	unexpected	and	a	postmortem	does	not	reveal
a	cause	of	death.	Clark	conceived	again,	and	this	time	her	baby	died	at	8	weeks,
again	reportedly	of	SIDS.	When	that	happened,	she	was	arrested	and	accused	of
smothering	 both	 children.	 At	 the	 trial	 the	 prosecution	 called	 in	 an	 expert
pediatrician,	 Sir	Roy	Meadow,	 to	 testify	 that	 based	 on	 the	 rarity	 of	 SIDS,	 the
odds	 of	 both	 children’s	 dying	 from	 it	 was	 73	 million	 to	 1.	 The	 prosecution
offered	no	other	substantive	evidence	against	her.	Should	that	have	been	enough
to	convict?	The	jury	thought	so,	and	in	November	1999,	Mrs.	Clark	was	sent	to
prison.

Sir	Meadow	had	estimated	that	the	odds	that	a	child	will	die	of	SIDS	are	1	in
8,543.	He	 calculated	 his	 estimate	 of	 73	million	 to	 1	 by	multiplying	 two	 such
factors,	 one	 for	 each	 child.	 But	 this	 calculation	 assumes	 that	 the	 deaths	 are
independent—that	 is,	 that	 no	 environmental	 or	 genetic	 effects	 play	 a	 role	 that
might	 increase	a	second	child’s	risk	once	an	older	sibling	has	died	of	SIDS.	In
fact,	in	an	editorial	in	the	British	Medical	Journal	a	few	weeks	after	the	trial,	the
chances	of	 two	siblings’	dying	of	SIDS	were	estimated	at	2.75	million	 to	1.11
Those	are	still	very	long	odds.



The	key	to	understanding	why	Sally	Clark	was	wrongly	imprisoned	is	again	to
consider	the	inversion	error:	it	is	not	the	probability	that	two	children	will	die	of
SIDS	 that	we	 seek	but	 the	probability	 that	 the	 two	 children	who	died,	 died	of
SIDS.	 Two	 years	 after	 Clark	 was	 imprisoned,	 the	 Royal	 Statistical	 Society
weighed	in	on	this	subject	with	a	press	release,	declaring	that	the	jury’s	decision
was	based	on	“a	 serious	error	of	 logic	known	as	 the	Prosecutor’s	Fallacy.	The
jury	needs	to	weigh	up	two	competing	explanations	for	the	babies’	deaths:	SIDS
or	murder.	Two	deaths	by	SIDS	or	two	murders	are	each	quite	unlikely,	but	one
has	apparently	happened	in	this	case.	What	matters	is	 the	relative	likelihood	of
the	 deaths…,	 not	 just	 how	 unlikely…[the	 SIDS	 explanation	 is].”12	 A
mathematician	 later	 estimated	 the	 relative	 likelihood	 of	 a	 family’s	 losing	 two
babies	by	SIDS	or	by	murder.	He	concluded,	based	on	 the	 available	data,	 that
two	infants	are	9	times	more	likely	to	be	SIDS	victims	than	murder	victims.13

The	Clarks	appealed	the	case	and,	for	the	appeal,	hired	their	own	statisticians
as	 expert	 witnesses.	 They	 lost	 the	 appeal,	 but	 they	 continued	 to	 seek	medical
explanations	 for	 the	 deaths	 and	 in	 the	 process	 uncovered	 the	 fact	 that	 the
pathologist	 working	 for	 the	 prosecution	 had	withheld	 the	 fact	 that	 the	 second
child	 had	 been	 suffering	 from	 a	 bacterial	 infection	 at	 the	 time	 of	 death,	 an
infection	 that	might	have	caused	 the	 infant’s	death.	Based	on	 that	discovery,	 a
judge	quashed	the	conviction,	and	after	nearly	three	and	a	half	years,	Sally	Clark
was	released	from	prison.

The	renowned	attorney	and	Harvard	Law	School	professor	Alan	Dershowitz
also	 successfully	 employed	 the	 prosecutor’s	 fallacy—to	 help	 defend	 O.	 J.
Simpson	 in	 his	 trial	 for	 the	 murder	 of	 Simpson’s	 ex-wife,	 Nicole	 Brown
Simpson,	 and	 a	male	 companion.	The	 trial	 of	Simpson,	 a	 former	 football	 star,
was	 one	 of	 the	 biggest	 media	 events	 of	 1994–95.	 The	 police	 had	 plenty	 of
evidence	 against	 him.	They	 found	 a	 bloody	 glove	 at	 his	 estate	 that	 seemed	 to
match	one	found	at	the	murder	scene.	Bloodstains	matching	Nicole’s	blood	were
found	on	the	gloves,	in	his	white	Ford	Bronco,	on	a	pair	of	socks	in	his	bedroom,
and	in	his	driveway	and	house.	Moreover,	DNA	samples	taken	from	blood	at	the
crime	 scene	matched	O.	 J.’s.	The	defense	could	do	 little	more	 than	accuse	 the
Los	 Angeles	 Police	 Department	 of	 racism—O.	 J.	 is	 African	 American—and
criticize	the	integrity	of	the	police	and	the	authenticity	of	their	evidence.

The	prosecution	made	a	decision	 to	 focus	 the	opening	of	 its	 case	on	O.	 J.’s



propensity	toward	violence	against	Nicole.	Prosecutors	spent	the	first	ten	days	of
the	 trial	 entering	 evidence	 of	 his	 history	 of	 abusing	 her	 and	 claimed	 that	 this
alone	was	a	good	reason	to	suspect	him	of	her	murder.	As	they	put	it,	“a	slap	is	a
prelude	to	homicide.”14	The	defense	attorneys	used	this	strategy	as	a	launchpad
for	 their	 accusations	 of	 duplicity,	 arguing	 that	 the	 prosecution	 had	 spent	 two
weeks	 trying	 to	mislead	 the	 jury	 and	 that	 the	 evidence	 that	O.	 J.	 had	 battered
Nicole	on	previous	occasions	meant	nothing.	Here	is	Dershowitz’s	reasoning:	4
million	women	are	battered	annually	by	husbands	and	boyfriends	in	the	United
States,	 yet	 in	 1992,	 according	 to	 the	 FBI	 Uniform	 Crime	 Reports,	 a	 total	 of
1,432,	or	1	in	2,500,	were	killed	by	their	husbands	or	boyfriends.15	Therefore,
the	defense	retorted,	few	men	who	slap	or	beat	their	domestic	partners	go	on	to
murder	them.	True?	Yes.	Convincing?	Yes.	Relevant?	No.	The	relevant	number
is	not	the	probability	that	a	man	who	batters	his	wife	will	go	on	to	kill	her	(1	in
2,500)	 but	 rather	 the	 probability	 that	 a	 battered	 wife	 who	 was	 murdered	 was
murdered	by	her	abuser.	According	to	the	Uniform	Crime	Reports	for	the	United
States	 and	 Its	 Possessions	 in	 1993,	 the	 probability	 Dershowitz	 (or	 the
prosecution)	 should	 have	 reported	 was	 this	 one:	 of	 all	 the	 battered	 women
murdered	 in	 the	 United	 States	 in	 1993,	 some	 90	 percent	 were	 killed	 by	 their
abuser.	That	statistic	was	not	mentioned	at	the	trial.

As	 the	 hour	 of	 the	 verdict’s	 announcement	 approached,	 long-distance	 call
volume	dropped	by	half,	trading	volume	on	the	New	York	Stock	Exchange	fell
by	 40	 percent,	 and	 an	 estimated	 100	million	 people	 turned	 to	 their	 televisions
and	radios	to	hear	the	verdict:	not	guilty.	Dershowitz	may	have	felt	 justified	in
misleading	 the	 jury	 because,	 in	 his	 words,	 “the	 courtroom	 oath—‘to	 tell	 the
truth,	the	whole	truth	and	nothing	but	the	truth’—is	applicable	only	to	witnesses.
Defense	attorneys,	prosecutors,	and	judges	don’t	take	this	oath…indeed,	it	is	fair
to	 say	 the	American	 justice	 system	 is	 built	 on	 a	 foundation	 of	 not	 telling	 the
whole	truth.”16

									
THOUGH	CONDITIONAL	PROBABILITY	 represented	 a	 revolution	 in	 ideas
about	 randomness,	 Thomas	 Bayes	 was	 no	 revolutionary,	 and	 his	 work
languished	 unattended	 despite	 its	 publication	 in	 the	 prestigious	 Philosophical
Transactions	 in	 1764.	 And	 so	 it	 fell	 to	 another	man,	 the	 French	 scientist	 and



mathematician	 Pierre-Simon	 de	 Laplace,	 to	 bring	 Bayes’s	 ideas	 to	 scientists’
attention	and	fulfill	the	goal	of	revealing	to	the	world	how	the	probabilities	that
underlie	real-world	situations	could	be	inferred	from	the	outcomes	we	observe.

You	may	remember	 that	Bernoulli’s	golden	theorem	will	 tell	you	before	you
conduct	a	series	of	coin	tosses	how	certain	you	can	be,	if	the	coin	is	fair,	that	you
will	observe	some	given	outcome.	You	may	also	 remember	 that	 it	will	not	 tell
you	after	you’ve	made	a	given	series	of	 tosses	 the	chances	 that	 the	coin	was	a
fair	one.	Along	the	same	lines,	if	you	know	that	the	chances	that	an	eighty-five-
year-old	 will	 survive	 to	 ninety	 are	 50/50,	 the	 golden	 theorem	 tells	 you	 the
probability	that	half	the	eighty-five-year-olds	in	a	group	of	1,000	will	die	in	the
next	five	years,	but	if	half	the	people	in	some	group	died	in	the	five	years	after
their	eighty-fifth	birthday,	it	cannot	tell	you	how	likely	it	is	that	the	underlying
chances	of	survival	 for	 the	people	 in	 that	group	were	50/50.	Or	 if	Ford	knows
that	1	in	100	of	its	automobiles	has	a	defective	transmission,	the	golden	theorem
can	 tell	 Ford	 the	 chances	 that,	 in	 a	 batch	 of	 1,000	 autos,	 10	 or	 more	 of	 the
transmissions	will	be	defective,	but	if	Ford	finds	10	defective	transmissions	in	a
sample	 of	 1,000	 autos,	 it	 does	 not	 tell	 the	 automaker	 the	 likelihood	 that	 the
average	number	of	 defective	 transmissions	 is	 1	 in	 100.	 In	 these	 cases	 it	 is	 the
latter	 scenario	 that	 is	 more	 often	 useful	 in	 life:	 outside	 situations	 involving
gambling,	we	are	not	normally	provided	with	theoretical	knowledge	of	the	odds
but	 rather	must	estimate	 them	after	making	a	series	of	observations.	Scientists,
too,	find	themselves	in	this	position:	they	do	not	generally	seek	to	know,	given
the	value	of	 a	physical	quantity,	 the	probability	 that	 a	measurement	will	 come
out	one	way	or	another	but	 instead	seek	to	discern	the	 true	value	of	a	physical
quantity,	given	a	set	of	measurements.

I	 have	 stressed	 this	distinction	because	 it	 is	 an	 important	one.	 It	 defines	 the
fundamental	 difference	 between	 probability	 and	 statistics:	 the	 former	 concerns
predictions	 based	 on	 fixed	 probabilities;	 the	 latter	 concerns	 the	 inference	 of
those	probabilities	based	on	observed	data.

It	is	the	latter	set	of	issues	that	was	addressed	by	Laplace.	He	was	not	aware
of	Bayes’s	theory	and	therefore	had	to	reinvent	it.	As	he	framed	it,	the	issue	was
this:	given	a	series	of	measurements,	what	is	the	best	guess	you	can	make	of	the
true	value	of	the	measured	quantity,	and	what	are	the	chances	that	this	guess	will
be	“near”	the	true	value,	however	demanding	you	are	in	your	definition	of	near?



Laplace’s	analysis	began	with	a	paper	in	1774	but	spread	over	four	decades.	A
brilliant	 and	 sometimes	 generous	man,	 he	 also	 occasionally	 borrowed	without
acknowledgment	from	the	works	of	others	and	was	a	tireless	self-promoter.	Most
important,	 though,	 Laplace	 was	 a	 flexible	 reed	 that	 bent	 with	 the	 breeze,	 a
characteristic	 that	 allowed	 him	 to	 continue	 his	 groundbreaking	 work	 virtually
undisturbed	by	the	turbulent	events	transpiring	around	him.	Prior	to	the	French
Revolution,	Laplace	obtained	the	lucrative	post	of	examiner	to	the	royal	artillery,
in	 which	 he	 had	 the	 luck	 to	 examine	 a	 promising	 sixteen-year-old	 candidate
named	Napoléon	Bonaparte.	When	the	revolution	came,	in	1789,	he	fell	briefly
under	 suspicion	 but	 unlike	 many	 others	 emerged	 unscathed,	 declaring	 his
“inextinguishable	 hatred	 to	 royalty”	 and	 eventually	winning	 new	 honors	 from
the	 republic.	Then,	when	his	acquaintance	Napoléon	crowned	himself	emperor
in	1804,	he	immediately	shed	his	republicanism	and	in	1806	was	given	the	title
count.	 After	 the	 Bourbons	 returned,	 Laplace	 slammed	 Napoléon	 in	 the	 1814
edition	of	his	treatise	Théorie	analytique	des	probabilités,	writing	 that	“the	fall
of	 empires	which	 aspired	 to	 universal	 dominion	 could	 be	 predicted	with	 very
high	probability	by	one	versed	in	the	calculus	of	chance.”17	The	previous,	1812,
edition	had	been	dedicated	to	“Napoleon	the	Great.”

Laplace’s	political	dexterity	was	fortunate	for	mathematics,	for	in	the	end	his
analysis	 was	 richer	 and	 more	 complete	 than	 Bayes’s.	 With	 the	 foundation
provided	 by	 Laplace’s	 work,	 in	 the	 next	 chapter	 we	 shall	 leave	 the	 realm	 of
probability	 and	 enter	 that	 of	 statistics.	 Their	 joining	 point	 is	 one	 of	 the	 most
important	 curves	 in	 all	 of	 mathematics	 and	 science,	 the	 bell	 curve,	 otherwise
known	as	the	normal	distribution.	That,	and	the	new	theory	of	measurement	that
came	with	it,	are	the	subjects	of	the	following	chapter.



CHAPTER	7

Measurement	and	the	Law	of	Errors

ONE	DAY	not	 long	ago	my	son	Alexei	came	home	and	announced	the	grade
on	 his	 most	 recent	 English	 essay.	 He	 had	 received	 a	 93.	 Under	 normal
circumstances	I	would	have	congratulated	him	on	earning	an	A.	And	since	it	was
a	 low	A	and	 I	know	him	 to	be	capable	of	better,	 I	would	have	added	 that	 this
grade	was	 evidence	 that	 if	 he	put	 in	 a	 little	 effort,	 he	 could	 score	 even	higher
next	 time.	 But	 these	 were	 not	 normal	 circumstances,	 and	 in	 this	 case	 I
considered	the	grade	of	93	to	be	a	shocking	underestimation	of	the	quality	of	the
essay.	 At	 this	 point	 you	might	 think	 that	 the	 previous	 few	 sentences	 tell	 you
more	about	me	than	about	Alexei.	If	so,	you’re	right	on	target.	In	fact,	the	above
episode	is	entirely	about	me,	for	it	was	I	who	wrote	Alexei’s	essay.

Okay,	shame	on	me.	In	my	defense	I	should	point	out	that	I	would	normally
no	sooner	write	Alexei’s	essays	than	take	a	foot	to	the	chin	for	him	in	his	kung
fu	 class.	 But	 Alexei	 had	 come	 to	me	 for	 a	 critique	 of	 his	 work	 and	 as	 usual
presented	his	request	late	on	the	night	before	the	paper	was	due.	I	told	him	I’d
get	back	to	him.	Proceeding	to	read	it	on	the	computer,	I	first	made	a	couple	of
minor	 changes,	 nothing	 worth	 bothering	 to	 note.	 Then,	 being	 a	 relentless
rewriter,	I	gradually	found	myself	sucked	in,	rearranging	this	and	rewriting	that,
and	before	I	finished,	not	only	had	he	fallen	asleep,	but	I	had	made	the	essay	my
own.	The	next	morning,	sheepishly	admitting	that	I	had	neglected	to	perform	a
“save	as”	on	the	original,	I	told	him	to	just	go	ahead	and	turn	in	my	version.

He	 handed	me	 the	 graded	 paper	with	 a	 few	words	 of	 encouragement.	 “Not
bad,”	he	told	me.	“A	93	is	really	more	of	an	A-than	an	A,	but	it	was	late	and	I’m
sure	 if	 you	were	more	 awake,	 you	would	 have	 done	 better.”	 I	was	 not	 happy.
First	of	all,	 it	 is	unpleasant	when	a	fifteen-year-old	says	the	very	words	to	you
that	you	have	previously	said	to	him,	and	nevertheless	you	find	his	words	inane.
But	 beyond	 that,	 how	 could	 my	 material—the	 work	 of	 a	 person	 whom	 my



mother,	at	least,	thinks	of	as	a	professional	writer—not	make	the	grade	in	a	high
school	English	class?	Apparently	I	am	not	alone.	Since	then	I	have	been	told	of
another	writer	who	had	a	similar	experience,	except	his	daughter	received	a	B.
Apparently	 the	writer,	 with	 a	 PhD	 in	 English,	 writes	well	 enough	 for	Rolling
Stone,	Esquire,	and	The	New	York	Times	but	not	for	English	101.	Alexei	tried	to
comfort	 me	 with	 another	 story:	 two	 of	 his	 friends,	 he	 said,	 once	 turned	 in
identical	essays.	He	thought	 that	was	stupid	and	they’d	both	be	suspended,	but
not	only	did	the	overworked	teacher	not	notice,	she	gave	one	of	the	essays	a	90
(an	A)	 and	 the	other	 a	 79	 (a	C).	 (Sounds	odd	unless,	 like	me,	 you’ve	had	 the
experience	of	staying	up	all	night	grading	a	 tall	 stack	of	papers	with	Star	Trek
reruns	playing	in	the	background	to	break	the	monotony.)

Numbers	always	seem	to	carry	the	weight	of	authority.	The	thinking,	at	least
subliminally,	 goes	 like	 this:	 if	 a	 teacher	 awards	 grades	 on	 a	 100-point	 scale,
those	 tiny	distinctions	must	really	mean	something.	But	 if	 ten	publishers	could
deem	 the	manuscript	 for	 the	 first	Harry	Potter	 book	 unworthy	 of	 publication,
how	could	poor	Mrs.	Finnegan	(not	her	real	name)	distinguish	so	finely	between
essays	as	to	award	one	a	92	and	another	a	93?	If	we	accept	that	the	quality	of	an
essay	 is	 somehow	 definable,	 we	 must	 still	 recognize	 that	 a	 grade	 is	 not	 a
description	of	 an	essay’s	degree	of	quality	but	 rather	 a	measurement	 of	 it,	 and
one	of	the	most	important	ways	randomness	affects	us	is	through	its	influence	on
measurement.	 In	 the	 case	 of	 the	 essay	 the	 measurement	 apparatus	 was	 the
teacher,	 and	 a	 teacher’s	 assessment,	 like	 any	 measurement,	 is	 susceptible	 to
random	variance	and	error.

Voting	 is	 also	 a	 kind	 of	 measurement.	 In	 that	 case	 we	 are	 measuring	 not
simply	how	many	people	support	each	candidate	on	election	day	but	how	many
care	enough	to	take	the	trouble	to	vote.	There	are	many	sources	of	random	error
in	this	measurement.	Some	legitimate	voters	might	find	that	their	name	is	not	on
the	rolls	of	registered	voters.	Others	mistakenly	vote	for	a	candidate	other	than
the	 one	 intended.	And	 of	 course	 there	 are	 errors	 in	 counting	 the	 votes.	 Some
ballots	 are	 improperly	 accepted	 or	 rejected;	 others	 are	 simply	 lost.	 In	 most
elections	 the	 sum	 of	 all	 these	 factors	 doesn’t	 add	 up	 to	 enough	 to	 affect	 the
outcome.	But	 in	 close	 elections	 it	 can,	 and	 then	we	usually	go	 through	one	or
more	 recounts,	 as	 if	 our	 second	 or	 third	 counting	 of	 the	 votes	 will	 be	 less
affected	by	random	errors	than	our	first.

In	 the	 2004	 governor’s	 race	 in	 the	 state	 of	 Washington,	 for	 example,	 the



Democratic	candidate	was	eventually	declared	the	winner	although	the	original
tally	had	the	Republican	winning	by	261	votes	out	of	about	3	million.1	Since	the
original	vote	count	was	so	close,	state	law	required	a	recount.	In	that	count	the
Republican	won	 again,	 but	 by	 only	 42	 votes.	 It	 is	 not	 known	whether	 anyone
thought	 it	 was	 a	 bad	 sign	 that	 the	 219-vote	 difference	 between	 the	 first	 and
second	vote	counts	was	several	times	larger	than	the	new	margin	of	victory,	but
the	 upshot	 was	 a	 third	 vote	 count,	 this	 one	 entirely	 “by	 hand.”	 The	 42-vote
victory	amounted	to	an	edge	of	just	1	vote	out	of	each	70,000	cast,	so	the	hand-
counting	effort	could	be	compared	to	asking	42	people	to	count	from	1	to	70,000
and	 then	 hoping	 they	 averaged	 less	 than	 1	mistake	 each.	Not	 surprisingly,	 the
result	 changed	 again.	 This	 time	 it	 favored	 the	 Democrat	 by	 10	 votes.	 That
number	was	later	changed	to	129	when	700	newly	discovered	“lost	votes”	were
included.

Neither	 the	 vote-counting	 process	 nor	 the	 voting	 process	 is	 perfect.	 If,	 for
instance,	owing	to	post	office	mistakes,	1	in	100	prospective	voters	didn’t	get	the
mailer	with	the	location	of	the	polling	place	and	1	in	100	of	those	people	did	not
vote	because	of	it,	in	the	Washington	election	that	would	have	amounted	to	300
voters	who	would	have	voted	but	didn’t	because	of	government	error.	Elections,
like	all	measurements,	are	imprecise,	and	so	are	the	recounts,	so	when	elections
come	out	extremely	close,	perhaps	we	ought	to	accept	them	as	is,	or	flip	a	coin,
rather	than	conducting	recount	after	recount.

The	imprecision	of	measurement	became	a	major	issue	in	the	mid-eighteenth
century,	 when	 one	 of	 the	 primary	 occupations	 of	 those	 working	 in	 celestial
physics	and	mathematics	was	the	problem	of	reconciling	Newton’s	laws	with	the
observed	motions	of	the	moon	and	planets.	One	way	to	produce	a	single	number
from	a	set	of	discordant	measurements	is	to	take	the	average,	or	mean.	It	seems
to	 have	 been	 young	 Isaac	 Newton	 who,	 in	 his	 optical	 investigations,	 first
employed	it	for	that	purpose.2	But	as	in	many	things,	Newton	was	an	anomaly.
Most	 scientists	 in	Newton’s	 day,	 and	 in	 the	 following	 century,	 didn’t	 take	 the
mean.	 Instead,	 they	 chose	 the	 single	 “golden	 number”	 from	 among	 their
measurements—the	 number	 they	 deemed	 mainly	 by	 hunch	 to	 be	 the	 most
reliable	result	they	had.	That’s	because	they	regarded	variation	in	measurement
not	 as	 the	 inevitable	 by-product	 of	 the	 measuring	 process	 but	 as	 evidence	 of
failure—with,	at	times,	even	moral	consequences.	In	fact,	they	rarely	published
multiple	 measurements	 of	 the	 same	 quantity,	 feeling	 it	 would	 amount	 to	 the



admission	 of	 a	 botched	 process	 and	 raise	 the	 issue	 of	 trust.	 But	 in	 the	 mid-
eighteenth	 century	 the	 tide	 began	 to	 change.	 Calculating	 the	 gross	 motion	 of
heavenly	bodies,	a	series	of	nearly	circular	ellipses,	 is	a	simple	task	performed
today	 by	 precocious	 high	 school	 students	 as	 music	 blares	 through	 their
headphones.	 But	 to	 describe	 planetary	 motion	 in	 its	 finer	 points,	 taking	 into
account	 not	 only	 the	 gravitational	 pull	 of	 the	 sun	 but	 also	 that	 of	 the	 other
planets	and	the	deviation	of	the	planets	and	the	moon	from	a	perfectly	spherical
shape,	is	even	today	a	difficult	problem.	To	accomplish	that	goal,	complex	and
approximate	mathematics	 had	 to	 be	 reconciled	with	 imperfect	 observation	 and
measurement.

There	 was	 another	 reason	 why	 the	 late	 eighteenth	 century	 demanded	 a
mathematical	 theory	of	measurement:	 beginning	 in	 the	1780s	 in	France	 a	new
mode	of	rigorous	experimental	physics	had	arisen.3	Before	that	period,	physics
consisted	 of	 two	 separate	 traditions.	On	 the	 one	 hand,	mathematical	 scientists
investigated	 the	 precise	 consequences	 of	 Newton’s	 theories	 of	 motion	 and
gravity.	On	the	other,	a	group	sometimes	described	as	experimental	philosophers
performed	empirical	investigations	of	electricity,	magnetism,	light,	and	heat.	The
experimental	philosophers—often	amateurs—were	less	focused	on	the	rigorous
methodology	of	science	than	were	the	mathematics-oriented	researchers,	and	so
a	movement	arose	to	reform	and	mathematize	experimental	physics.	In	it	Pierre-
Simon	de	Laplace	again	played	a	major	role.

Laplace	 had	 become	 interested	 in	 physical	 science	 through	 the	work	 of	 his
fellow	Frenchman	Antoine-Laurent	Lavoisier,	 considered	 the	 father	 of	modern
chemistry.4	Laplace	and	Lavoisier	worked	together	for	years,	but	Lavoisier	did
not	prove	as	adept	as	Laplace	at	navigating	the	troubled	times.	To	earn	money	to
finance	 his	 many	 scientific	 experiments,	 he	 had	 become	 a	 member	 of	 a
privileged	private	association	of	state-protected	tax	collectors.	There	is	probably
no	 time	 in	 history	 when	 having	 such	 a	 position	 would	 inspire	 your	 fellow
citizens	 to	 invite	 you	 into	 their	 homes	 for	 a	 nice	 hot	 cup	 of	 gingerbread
cappuccino,	 but	 when	 the	 French	 Revolution	 came,	 it	 proved	 an	 especially
onerous	 credential.	 In	 1794,	 Lavoisier	 was	 arrested	 with	 the	 rest	 of	 the
association	 and	 quickly	 sentenced	 to	 death.	 Ever	 the	 dedicated	 scientist,	 he
requested	time	to	complete	some	of	his	research	so	that	it	would	be	available	to
posterity.	 To	 that	 the	 presiding	 judge	 famously	 replied,	 “The	 republic	 has	 no
need	of	scientists.”	The	father	of	modern	chemistry	was	promptly	beheaded,	his



body	tossed	into	a	mass	grave.	He	had	reportedly	instructed	his	assistant	to	count
the	number	of	words	his	severed	head	would	attempt	to	mouth.

Laplace’s	and	Lavoisier’s	work,	along	with	that	of	a	few	others,	especially	the
French	physicist	Charles-Augustin	de	Coulomb,	who	experimented	on	electricity
and	magnetism,	transformed	experimental	physics.	Their	work	also	contributed
to	 the	development,	 in	 the	1790s,	of	a	new	rational	system	of	units,	 the	metric
system,	 to	 replace	 the	 disparate	 systems	 that	 had	 impeded	 science	 and	were	 a
frequent	cause	of	dispute	among	merchants.	Developed	by	a	group	appointed	by
Louis	 XVI,	 the	 metric	 system	 was	 adopted	 by	 the	 revolutionary	 government
after	 Louis’s	 downfall.	 Lavoisier,	 ironically,	 had	 been	 one	 of	 the	 group’s
members.

The	demands	of	both	astronomy	and	experimental	physics	meant	that	a	great
part	 of	 the	 mathematician’s	 task	 in	 the	 late	 eighteenth	 and	 early	 nineteenth
centuries	was	understanding	and	quantifying	random	error.	Those	efforts	led	to	a
new	 field,	 mathematical	 statistics,	 which	 provides	 a	 set	 of	 tools	 for	 the
interpretation	 of	 the	 data	 that	 arise	 from	 observation	 and	 experimentation.
Statisticians	sometimes	view	the	growth	of	modern	science	as	revolving	around
that	 development,	 the	 creation	 of	 a	 theory	 of	measurement.	 But	 statistics	 also
provides	tools	to	address	real-world	issues,	such	as	the	effectiveness	of	drugs	or
the	popularity	of	politicians,	so	a	proper	understanding	of	statistical	reasoning	is
as	useful	in	everyday	life	as	it	is	in	science.

									
IT	IS	ONE	OF	THOSE	CONTRADICTIONS	of	life	that	although	measurement
always	 carries	 uncertainty,	 the	 uncertainty	 in	measurement	 is	 rarely	 discussed
when	 measurements	 are	 quoted.	 If	 a	 fastidious	 traffic	 cop	 tells	 the	 judge	 her
radar	gun	clocked	you	going	thirty-nine	in	a	thirty-five-mile-per-hour	zone,	the
ticket	will	usually	stick	despite	the	fact	that	readings	from	radar	guns	often	vary
by	several	miles	per	hour.5	And	though	many	students	(along	with	their	parents)
would	jump	off	the	roof	if	doing	so	would	raise	their	598	on	the	math	SAT	to	a
625,	 few	educators	 talk	about	 the	studies	 showing	 that,	 if	you	want	 to	gain	30
points,	 there’s	 a	good	chance	you	can	do	 it	 simply	by	 taking	 the	 test	 a	 couple
more	 times.6	 Sometimes	 meaningless	 distinctions	 even	 make	 the	 news.	 One
recent	 August	 the	 Bureau	 of	 Labor	 Statistics	 reported	 that	 the	 unemployment



rate	stood	at	4.7	percent.	In	July	the	bureau	had	reported	the	rate	at	4.8	percent.
The	change	prompted	headlines	like	this	one	in	The	New	York	Times:	“Jobs	and
Wages	Increased	Modestly	Last	Month.”7	But	as	Gene	Epstein,	 the	economics
editor	 of	Barron’s,	 put	 it,	 “Merely	 because	 the	 number	 has	 changed	 it	 doesn’t
necessarily	 mean	 that	 a	 thing	 itself	 has	 changed.	 For	 example,	 any	 time	 the
unemployment	rate	moves	by	a	tenth	of	a	percentage	point…that	is	a	change	that
is	so	small,	there	is	no	way	to	tell	whether	there	really	was	a	change.”8	In	other
words,	 if	 the	 Bureau	 of	 Labor	 Statistics	 measures	 the	 unemployment	 rate	 in
August	 and	 then	 repeats	 its	measurement	 an	hour	 later,	 by	 random	error	 alone
there	is	a	good	chance	that	the	second	measurement	will	differ	from	the	first	by
at	 least	a	 tenth	of	a	percentage	point.	Would	The	New	York	Times	 then	run	 the
headline	“Jobs	and	Wages	Increased	Modestly	at	2	P.M.”?

The	uncertainty	in	measurement	is	even	more	problematic	when	the	quantity
being	measured	 is	 subjective,	 like	Alexei’s	English-class	essay.	For	 instance,	a
group	of	 researchers	 at	Clarion	University	 of	Pennsylvania	 collected	120	 term
papers	and	treated	them	with	a	degree	of	scrutiny	you	can	be	certain	your	own
child’s	work	will	 never	 receive:	 each	 term	paper	was	 scored	 independently	by
eight	faculty	members.	The	resulting	grades,	on	a	scale	from	A	to	F,	sometimes
varied	by	 two	or	more	grades.	On	average	 they	differed	by	nearly	one	grade.9
Since	 a	 student’s	 future	 often	 depends	 on	 such	 judgments,	 the	 imprecision	 is
unfortunate.	 Yet	 it	 is	 understandable	 given	 that,	 in	 their	 approach	 and
philosophy,	the	professors	in	any	given	college	department	often	run	the	gamut
from	Karl	Marx	to	Groucho	Marx.	But	what	if	we	control	for	that—that	is,	if	the
graders	 are	 given,	 and	 instructed	 to	 follow,	 certain	 fixed	 grading	 criteria?	 A
researcher	 at	 Iowa	 State	 University	 presented	 about	 100	 students’	 essays	 to	 a
group	of	doctoral	students	in	rhetoric	and	professional	communication	whom	he
had	trained	extensively	according	to	such	criteria.10	Two	independent	assessors
graded	 each	 essay	 on	 a	 scale	 of	 1	 to	 4.	When	 the	 scores	were	 compared,	 the
assessors	agreed	in	only	about	half	the	cases.	Similar	results	were	found	by	the
University	 of	 Texas	 in	 an	 analysis	 of	 its	 scores	 on	 college-entrance	 essays.11
Even	 the	 venerable	 College	 Board	 expects	 only	 that,	 when	 assessed	 by	 two
raters,	 “92%	of	 all	 scored	 essays	will	 receive	 ratings	within	±	1	point	 of	 each
other	on	the	6-point	SAT	essay	scale.”12

Another	subjective	measurement	that	is	given	more	credence	than	it	warrants



is	 the	 rating	 of	 wines.	 Back	 in	 the	 1970s	 the	 wine	 business	 was	 a	 sleepy
enterprise,	 growing,	 but	mainly	 in	 the	 sales	 of	 low-grade	 jug	wines.	 Then,	 in
1978,	an	event	often	credited	with	the	rapid	growth	of	that	industry	occurred:	a
lawyer	turned	self-proclaimed	wine	critic,	Robert	M.	Parker	Jr.,	decided	that,	in
addition	 to	his	 reviews,	he	would	 rate	wines	numerically	on	a	100-point	 scale.
Over	 the	years	most	other	wine	publications	 followed	suit.	Today	annual	wine
sales	 in	 the	United	States	exceed	$20	billion,	and	millions	of	wine	aficionados
won’t	lay	their	money	on	the	counter	without	first	looking	to	a	wine’s	rating	to
support	 their	choice.	So	when	Wine	Spectator	 awarded,	 say,	 the	 2004	Valentín
Bianchi	Argentine	cabernet	 sauvignon	a	90	 rather	 than	an	89,	 that	 single	extra
point	 translated	 into	a	huge	difference	 in	Valentín	Bianchi’s	 sales.13	 In	 fact,	 if
you	 look	 in	 your	 local	wine	 shop,	 you’ll	 find	 that	 the	 sale	 and	bargain	wines,
owing	to	their	lesser	appeal,	are	often	the	wines	rated	in	the	high	80s.	But	what
are	the	chances	that	the	2004	Valentín	Bianchi	Argentine	cabernet	that	received	a
90	would	have	 received	an	89	 if	 the	 rating	process	had	been	 repeated,	 say,	 an
hour	later?

In	his	1890	book	The	Principles	of	Psychology,	William	James	suggested	that
wine	expertise	could	extend	to	the	ability	to	judge	whether	a	sample	of	Madeira
came	 from	 the	 top	 or	 the	 bottom	 of	 a	 bottle.14	 In	 the	wine	 tastings	 that	 I’ve
attended	over	the	years,	I’ve	noticed	that	if	the	bearded	fellow	to	my	left	mutters
“a	 great	 nose”	 (the	 wine	 smells	 good),	 others	 certainly	 might	 chime	 in	 their
agreement.	But	 if	 you	make	 your	 notes	 independently	 and	without	 discussion,
you	 often	 find	 that	 the	 bearded	 fellow	 wrote,	 “Great	 nose”	 the	 guy	 with	 the
shaved	head	 scribbled,	 “No	nose”	 and	 the	blond	woman	with	 the	perm	wrote,
“Interesting	nose	with	hints	of	parsley	and	freshly	tanned	leather.”

From	 the	 theoretical	 viewpoint,	 there	 are	 many	 reasons	 to	 question	 the
significance	 of	 wine	 ratings.	 For	 one	 thing,	 taste	 perception	 depends	 on	 a
complex	 interaction	 between	 taste	 and	 olfactory	 stimulation.	 Strictly	 speaking,
the	 sense	of	 taste	comes	 from	five	 types	of	 receptor	cells	on	 the	 tongue:	 salty,
sweet,	 sour,	 bitter,	 and	 umami.	 The	 last	 responds	 to	 certain	 amino	 acid
compounds	(prevalent,	for	example,	in	soy	sauce).	But	if	that	were	all	there	was
to	 taste	 perception,	 you	 could	 mimic	 everything—your	 favorite	 steak,	 baked
potato,	and	apple	pie	feast	or	a	nice	spaghetti	Bolognese—employing	only	table
salt,	 sugar,	 vinegar,	 quinine,	 and	 monosodium	 glutamate.	 Fortunately	 there	 is
more	 to	gluttony	 than	 that,	and	 that	 is	where	 the	sense	of	smell	comes	 in.	The



sense	of	smell	explains	why,	 if	you	 take	 two	 identical	solutions	of	sugar	water
and	add	to	one	a	(sugar-free)	essence	of	strawberry,	it	will	taste	sweeter	than	the
other.15	The	perceived	taste	of	wine	arises	from	the	effects	of	a	stew	of	between
600	 and	 800	 volatile	 organic	 compounds	 on	 both	 the	 tongue	 and	 the	 nose.16
That’s	 a	 problem,	 given	 that	 studies	 have	 shown	 that	 even	 flavor-trained
professionals	can	rarely	reliably	identify	more	than	three	or	four	components	in	a
mixture.17

Expectations	 also	 affect	 your	 perception	 of	 taste.	 In	 1963	 three	 researchers
secretly	added	a	bit	of	red	food	color	to	white	wine	to	give	it	the	blush	of	a	rosé.
They	then	asked	a	group	of	experts	to	rate	its	sweetness	in	comparison	with	the
untinted	wine.	 The	 experts	 perceived	 the	 fake	 rosé	 as	 sweeter	 than	 the	white,
according	 to	 their	 expectation.	 Another	 group	 of	 researchers	 gave	 a	 group	 of
oenology	 students	 two	wine	 samples.	 Both	 samples	 contained	 the	 same	white
wine,	but	to	one	was	added	a	tasteless	grape	anthocyanin	dye	that	made	it	appear
to	be	red	wine.	The	students	also	perceived	differences	between	the	red	and	the
white	 corresponding	 to	 their	 expectations.18	 And	 in	 a	 2008	 study	 a	 group	 of
volunteers	asked	to	rate	five	wines	rated	a	bottle	labeled	$90	higher	than	another
bottle	 labeled	 $10,	 even	 though	 the	 sneaky	 researchers	 had	 filled	 both	 bottles
with	 the	 same	wine.	What’s	more,	 this	 test	 was	 conducted	 while	 the	 subjects
were	 having	 their	 brains	 imaged	 in	 a	 magnetic	 resonance	 scanner.	 The	 scans
showed	that	 the	area	of	 the	brain	 thought	 to	encode	our	experience	of	pleasure
was	truly	more	active	when	the	subjects	drank	the	wine	they	believed	was	more
expensive.19	 But	 before	 you	 judge	 the	 oenophiles,	 consider	 this:	 when	 a
researcher	asked	30	cola	drinkers	whether	they	preferred	Coke	or	Pepsi	and	then
asked	them	to	test	their	preference	by	tasting	both	brands	side	by	side,	21	of	the
30	 reported	 that	 the	 taste	 test	 confirmed	 their	 choice	 even	 though	 this	 sneaky
researcher	had	put	Coke	in	the	Pepsi	bottle	and	vice	versa.20	When	we	perform
an	 assessment	 or	 measurement,	 our	 brains	 do	 not	 rely	 solely	 on	 direct
perceptional	 input.	 They	 also	 integrate	 other	 sources	 of	 information—such	 as
our	expectation.

Wine	 tasters	 are	 also	often	 fooled	by	 the	 flip	 side	of	 the	 expectancy	bias:	 a
lack	 of	 context.	 Holding	 a	 chunk	 of	 horseradish	 under	 your	 nostril,	 you’d
probably	not	mistake	it	for	a	clove	of	garlic,	nor	would	you	mistake	a	clove	of
garlic	for,	say,	the	inside	of	your	sneaker.	But	if	you	sniff	clear	liquid	scents,	all



bets	 are	 off.	 In	 the	 absence	 of	 context,	 there’s	 a	 good	 chance	 you’d	 mix	 the
scents	up.	At	least	that’s	what	happened	when	two	researchers	presented	experts
with	a	series	of	sixteen	random	odors:	 the	experts	misidentified	about	1	out	of
every	4	scents.21

Given	 all	 these	 reasons	 for	 skepticism,	 scientists	 designed	ways	 to	measure
wine	experts’	taste	discrimination	directly.	One	method	is	to	use	a	wine	triangle.
It	is	not	a	physical	triangle	but	a	metaphor:	each	expert	is	given	three	wines,	two
of	which	are	identical.	The	mission:	to	choose	the	odd	sample.	In	a	1990	study,
the	experts	identified	the	odd	sample	only	two-thirds	of	the	time,	which	means
that	in	1	out	of	3	taste	challenges	these	wine	gurus	couldn’t	distinguish	a	pinot
noir	with,	 say,	“an	exuberant	nose	of	wild	strawberry,	 luscious	blackberry,	and
raspberry,”	from	one	with	“the	scent	of	distinctive	dried	plums,	yellow	cherries,
and	silky	cassis.”22	In	the	same	study	an	ensemble	of	experts	was	asked	to	rank
a	series	of	wines	based	on	12	components,	such	as	alcohol	content,	the	presence
of	tannins,	sweetness,	and	fruitiness.	The	experts	disagreed	significantly	on	9	of
the	 12	 components.	 Finally,	when	 asked	 to	match	wines	with	 the	 descriptions
provided	by	other	experts,	the	subjects	were	correct	only	70	percent	of	the	time.

Wine	 critics	 are	 conscious	 of	 all	 these	 difficulties.	 “On	 many	 levels…[the
ratings	system]	is	nonsensical,”	says	the	editor	of	Wine	and	Spirits	Magazine.23
And	according	to	a	former	editor	of	Wine	Enthusiast,	“The	deeper	you	get	 into
this	 the	more	you	realize	how	misguided	and	misleading	this	all	 is.”24	Yet	 the
rating	 system	 thrives.	 Why?	 The	 critics	 found	 that	 when	 they	 attempted	 to
encapsulate	wine	quality	with	a	system	of	stars	or	simple	verbal	descriptors	such
as	good,	bad,	and	maybe	ugly,	their	opinions	were	unconvincing.	But	when	they
used	 numbers,	 shoppers	 worshipped	 their	 pronouncements.	 Numerical	 ratings,
though	dubious,	make	buyers	confident	that	they	can	pick	the	golden	needle	(or
the	silver	one,	depending	on	 their	budget)	 from	the	haystack	of	wine	varieties,
makers,	and	vintages.

If	 a	 wine—or	 an	 essay—truly	 admits	 some	measure	 of	 quality	 that	 can	 be
summarized	by	a	number,	a	theory	of	measurement	must	address	two	key	issues:
How	do	we	determine	that	number	from	a	series	of	varying	measurements?	And
given	a	limited	set	of	measurements,	how	can	we	assess	the	probability	that	our
determination	is	correct?	We	now	turn	to	these	questions,	for	whether	the	source
of	 data	 is	 objective	 or	 subjective,	 their	 answers	 are	 the	 goal	 of	 the	 theory	 of



measurement.

									
THE	 KEY	 to	 understanding	 measurement	 is	 understanding	 the	 nature	 of	 the
variation	in	data	caused	by	random	error.	Suppose	we	offer	a	number	of	wines	to
fifteen	critics	or	we	offer	the	wines	to	one	critic	repeatedly	on	different	days	or
we	do	both.	We	can	neatly	 summarize	 the	opinions	employing	 the	average,	or
mean,	of	the	ratings.	But	it	is	not	just	the	mean	that	matters:	if	all	fifteen	critics
agree	 that	 the	wine	 is	 a	 90,	 that	 sends	 one	message;	 if	 the	 critics	 produce	 the
ratings	80,	81,	82,	87,	89,	89,	90,	90,	90,	91,	91,	94,	97,	99,	and	100,	that	sends
another.	Both	sets	of	data	have	the	same	mean,	but	they	differ	in	the	amount	they
vary	 from	 that	mean.	Since	 the	manner	 in	which	data	 points	 are	 distributed	 is
such	 an	 important	 piece	 of	 information,	 mathematicians	 created	 a	 numerical
measure	of	variation	 to	describe	 it.	That	number	 is	 called	 the	 sample	 standard
deviation.	 Mathematicians	 also	 measure	 the	 variation	 by	 its	 square,	 which	 is
called	the	sample	variance.

The	 sample	 standard	deviation	 characterizes	how	close	 to	 the	mean	a	 set	 of
data	clusters	or,	in	practical	terms,	the	uncertainty	of	the	data.	When	it	is	low,	the
data	fall	near	the	mean.	For	the	data	in	which	all	wine	critics	rated	the	wine	90,
for	example,	the	sample	standard	deviation	is	0,	telling	you	that	all	the	data	are
identical	to	the	mean.	When	the	sample	standard	deviation	is	high,	however,	the
data	 are	not	 clustered	 around	 the	mean.	For	 the	 set	 of	wine	 ratings	 above	 that
ranges	from	80	to	100,	the	sample	standard	deviation	is	6,	meaning	that	as	a	rule
of	thumb	most	of	the	ratings	fall	within	6	points	of	the	mean.	In	that	case	all	you
can	really	say	about	the	wine	is	that	it	is	probably	somewhere	between	an	84	and
a	96.

In	judging	the	meaning	of	their	measurements,	scientists	in	the	eighteenth	and
nineteenth	 centuries	 faced	 the	 same	 issues	 as	 the	 skeptical	 oenophile.	 For	 if	 a
group	 of	 researchers	 makes	 a	 series	 of	 observations,	 the	 results	 will	 almost
always	 differ.	 One	 astronomer	 might	 suffer	 adverse	 atmospheric	 conditions;
another	might	 be	 jostled	 by	 a	 breeze;	 a	 third	might	 have	 just	 returned	 from	 a
Madeira	tasting	with	William	James.	In	1838	the	mathematician	and	astronomer
F.	W.	 Bessel	 categorized	 eleven	 classes	 of	 random	 errors	 that	 occur	 in	 every
telescopic	 observation.	 Even	 if	 a	 single	 astronomer	 makes	 repeated



measurements,	variables	such	as	unreliable	eyesight	or	the	effect	of	temperature
on	 the	apparatus	will	cause	 the	observations	 to	vary.	And	so	astronomers	must
understand	how,	given	a	series	of	discrepant	measurements,	they	can	determine	a
body’s	true	position.	But	just	because	oenophiles	and	scientists	share	a	problem,
it	 doesn’t	 mean	 they	 can	 share	 its	 solution.	 Can	 we	 identify	 general
characteristics	of	random	error,	or	does	the	character	of	random	error	depend	on
the	context?

One	 of	 the	 first	 to	 imply	 that	 diverse	 sets	 of	 measurements	 share	 common
characteristics	 was	 Jakob	 Bernoulli’s	 nephew	 Daniel.	 In	 1777	 he	 likened	 the
random	errors	 in	 astronomical	observation	 to	 the	deviations	 in	 the	 flight	 of	 an
archer’s	 arrows.	 In	 both	 cases,	 he	 reasoned,	 the	 target—true	 value	 of	 the
measured	quantity,	or	the	bull’s-eye—should	lie	somewhere	near	the	center,	and
the	observed	results	should	be	bunched	around	it,	with	more	reaching	the	inner
bands	and	fewer	falling	farther	from	the	mark.	The	law	he	proposed	to	describe
the	distribution	did	not	prove	to	be	the	correct	one,	but	what	is	important	is	the
insight	that	the	distribution	of	an	archer’s	errors	might	mirror	the	distribution	of
errors	in	astronomical	observations.

That	 the	distribution	of	errors	 follows	some	universal	 law,	 sometimes	called
the	error	law,	is	the	central	precept	on	which	the	theory	of	measurement	is	based.
Its	magical	 implication	 is	 that,	 given	 that	 certain	 very	 common	 conditions	 are
satisfied,	 any	 determination	 of	 a	 true	 value	 based	 on	measured	 values	 can	 be
solved	employing	a	single	mathematical	analysis.	When	such	a	universal	law	is
employed,	 the	 problem	 of	 determining	 the	 true	 position	 of	 a	 heavenly	 body
based	on	a	set	of	astronomers’	measurements	is	equivalent	to	that	of	determining
the	 position	 of	 a	 bull’s-eye	 given	 only	 the	 arrow	 holes	 or	 a	 wine’s	 “quality”
given	a	series	of	ratings.	That	is	the	reason	mathematical	statistics	is	a	coherent
subject	rather	than	merely	a	bag	of	tricks:	whether	your	repeated	measurements
are	aimed	at	determining	the	position	of	Jupiter	at	4	A.M.	on	Christmas	Day	or
the	weight	of	a	loaf	of	raisin	bread	coming	off	an	assembly	line,	the	distribution
of	errors	is	the	same.

This	 doesn’t	 mean	 random	 error	 is	 the	 only	 kind	 of	 error	 that	 can	 affect
measurement.	If	half	a	group	of	wine	critics	liked	only	red	wines	and	the	other
half	only	white	wines	but	they	all	otherwise	agreed	perfectly	(and	were	perfectly
consistent),	 then	 the	 ratings	 earned	 by	 a	 particular	wine	would	 not	 follow	 the
error	law	but	instead	would	consist	of	two	sharp	peaks,	one	due	to	the	red	wine



lovers	 and	one	due	 to	 the	white	wine	 lovers.	But	 even	 in	 situations	where	 the
applicability	 of	 the	 law	 may	 not	 be	 obvious,	 from	 the	 point	 spreads	 of	 pro
football	games25	to	IQ	ratings,	the	error	law	often	does	apply.	Many	years	ago	I
got	hold	of	a	few	thousand	registration	cards	for	a	consumer	software	program	a
friend	had	designed	for	eight-and	nine-year-olds.	The	software	wasn’t	selling	as
well	 as	 expected.	Who	was	 buying	 it?	After	 some	 tabulation	 I	 found	 that	 the
greatest	number	of	users	occurred	at	age	seven,	indicating	an	unwelcome	but	not
unexpected	mismatch.	But	what	was	truly	striking	was	that	when	I	made	a	bar
graph	showing	how	the	number	of	buyers	diminished	as	the	buyers’	age	strayed
from	the	mean	of	seven,	I	found	that	the	graph	took	a	very	familiar	shape—that
of	the	error	law.

It	 is	 one	 thing	 to	 suspect	 that	 archers	 and	 astronomers,	 chemists	 and
marketers,	 encounter	 the	 same	 error	 law;	 it	 is	 another	 to	 discover	 the	 specific
form	of	that	law.	Driven	by	the	need	to	analyze	astronomical	data,	scientists	like
Daniel	Bernoulli	and	Laplace	postulated	a	series	of	flawed	candidates	in	the	late
eighteenth	century.	As	it	turned	out,	the	correct	mathematical	function	describing
the	error	law—the	bell	curve—had	been	under	their	noses	the	whole	time.	It	had
been	discovered	in	London	in	a	different	context	many	decades	earlier.

									
OF	THE	THREE	PEOPLE	instrumental	in	uncovering	the	importance	of	the	bell
curve,	 its	 discoverer	 is	 the	 one	 who	 least	 often	 gets	 the	 credit.	 Abraham	 De
Moivre’s	breakthrough	came	in	1733,	when	he	was	in	his	mid-sixties,	and	wasn’t
made	 public	 until	 his	 book	 The	 Doctrine	 of	 Chances	 came	 out	 in	 its	 second
edition	five	years	 later.	De	Moivre	was	led	to	 the	curve	while	searching	for	an
approximation	 to	 the	 numbers	 that	 inhabit	 the	 regions	 of	 Pascal’s	 triangle	 far
beneath	the	place	where	I	truncated	it,	hundreds	or	thousands	of	lines	down.	In
order	to	prove	his	version	of	the	law	of	large	numbers,	Jakob	Bernoulli	had	had
to	 grapple	with	 certain	 properties	 of	 the	 numbers	 that	 appeared	 in	 those	 lines.
The	numbers	can	be	very	large—for	instance,	one	coefficient	in	the	200th	row	of
Pascal’s	triangle	has	fifty-nine	digits!	In	Bernoulli’s	day,	and	indeed	in	the	days
before	 computers,	 such	numbers	were	obviously	very	hard	 to	 calculate.	That’s
why,	 as	 I	 said,	 Bernoulli	 proved	 his	 law	 of	 large	 numbers	 employing	 various
approximations,	which	diminished	the	practical	usefulness	of	his	result.	With	his
curve,	De	Moivre	was	able	to	make	far	better	approximations	to	the	coefficients



and	therefore	greatly	improve	on	Bernoulli’s	estimates.

The	 approximation	 De	 Moivre	 derived	 is	 evident	 if,	 as	 I	 did	 for	 the
registration	 cards,	 you	 represent	 the	 numbers	 in	 a	 row	 of	 the	 triangle	 by	 the
height	of	the	bars	on	a	bar	graph.	For	instance,	the	three	numbers	in	the	third	line
of	 the	 triangle	 are	 1,	 2,	 1.	 In	 their	 bar	 graph	 the	 first	 bar	 rises	 one	 unit;	 the
second	is	twice	that	height;	and	the	third	is	again	just	one	unit.	Now	look	at	the
five	numbers	in	the	fifth	line:	1,	4,	6,	4,	1.	That	graph	will	have	five	bars,	again
starting	 low,	 rising	 to	 a	 peak	 at	 the	 center,	 and	 then	 falling	 off	 symmetrically.
The	coefficients	very	far	down	in	the	triangle	lead	to	bar	graphs	with	very	many
bars,	but	they	behave	in	the	same	manner.	The	bar	graphs	in	the	case	of	the	10th,
100th,	and	1,000th	lines	of	Pascal’s	triangle	are	shown	on	chapter	07.

If	you	draw	a	curve	connecting	 the	 tops	of	all	 the	bars	 in	each	bar	graph,	 it
will	take	on	a	characteristic	shape,	a	shape	approaching	that	of	a	bell.	And	if	you
smooth	 the	 curve	 a	 bit,	 you	 can	 write	 a	 mathematical	 expression	 for	 it.	 That
smooth	bell	 curve	 is	more	 than	 just	 a	 visualization	of	 the	 numbers	 in	Pascal’s
triangle;	it	 is	a	means	for	obtaining	an	accurate	and	easy-to-use	estimate	of	the
numbers	 that	 appear	 in	 the	 triangle’s	 lower	 lines.	 This	 was	 De	 Moivre’s
discovery.

Today	the	bell	curve	is	usually	called	the	normal	distribution	and	sometimes
the	Gaussian	distribution	(we’ll	see	later	where	that	term	originated).	The	normal
distribution	 is	actually	not	a	 fixed	curve	but	a	 family	of	curves,	 in	which	each
depends	 on	 two	 parameters	 to	 set	 its	 specific	 position	 and	 shape.	 The	 first
parameter	determines	where	its	peak	is	located,	which	is	at	5,	50,	and	500	in	the
graphs	on	chapter	7.	The	second	parameter	determines	the	amount	of	spread	in
the	curve.	Though	it	didn’t	receive	its	modern	name	until	1894,	this	measure	is
called	the	standard	deviation,	and	it	is	the	theoretical	counterpart	of	the	concept	I
spoke	of	earlier,	the	sample	standard	deviation.	Roughly	speaking,	it	is	half	the
width	 of	 the	 curve	 at	 the	 point	 at	 which	 the	 curve	 is	 about	 60	 percent	 of	 its
maximum	height.	Today	the	importance	of	the	normal	distribution	stretches	far
beyond	its	use	as	an	approximation	to	the	numbers	in	Pascal’s	triangle.	It	is,	in
fact,	 the	 most	 widespread	 manner	 in	 which	 data	 have	 been	 found	 to	 be
distributed.

When	employed	to	describe	 the	distribution	of	data,	 the	bell	curve	describes
how,	when	 you	make	many	 observations,	most	 of	 them	 fall	 around	 the	mean,



which	 is	 represented	 by	 the	 peak	 of	 the	 curve.	Moreover,	 as	 the	 curve	 slopes
symmetrically	 downward	 on	 either	 side,	 it	 describes	 how	 the	 number	 of
observations	 diminishes	 equally	 above	 and	 below	 the	 mean,	 at	 first	 rather
sharply	 and	 then	 less	 drastically.	 In	 data	 that	 follow	 the	 normal	 distribution,
about	 68	 percent	 (roughly	 two-thirds)	 of	 your	 observations	 will	 fall	 within	 1
standard	deviation	of	 the	mean,	about	95	percent	within	2	 standard	deviations,
and	99.7	percent	within	3.

The	bars	in	the	graphs	above	represent	the	relative	magnitudes	of	the	entries	in
the	10th,	100th,	and	1,000th	rows	of	Pascal’s	triangle	(see	chapter	04).	The
numbers	along	the	horizontal	axis	indicate	to	which	entry	the	bar	refers.	By
convention,	that	labeling	begins	at	0,	rather	than	1	(the	middle	and	bottom

graphs	have	been	truncated	so	that	the	entries	whose	bars	would	have	negligible
height	are	not	shown).



In	order	to	visualize	this,	have	a	look	at	the	graph	on	chapter	07.	In	this	table
the	 data	 marked	 by	 squares	 concern	 the	 guesses	 made	 by	 300	 students,	 each
observing	 a	 series	 of	 10	 coin	 flips.26	Along	 the	 horizontal	 axis	 is	 plotted	 the
number	of	correct	guesses,	 from	0	 to	10.	Along	 the	vertical	axis	 is	plotted	 the
number	of	students	who	achieved	 that	number	of	correct	guesses.	The	curve	 is
bell	shaped,	centered	at	5	correct	guesses,	at	which	point	its	height	corresponds
to	about	75	students.	The	curve	falls	to	about	two-thirds	of	its	maximum	height,
corresponding	 to	 about	 51	 students,	 about	 halfway	 between	 3	 and	 4	 correct
guesses	 on	 the	 left	 and	 between	 6	 and	 7	 on	 the	 right.	 A	 bell	 curve	 with	 this
magnitude	of	standard	deviation	is	typical	of	a	random	process	such	as	guessing
the	result	of	a	coin	toss.

The	same	graph	also	displays	another	set	of	data,	marked	by	circles.	That	set
describes	 the	 performance	 of	 300	 mutual	 fund	 managers.	 In	 this	 case	 the
horizontal	 axis	 represents	 not	 correct	 guesses	 of	 coin	 flips	 but	 the	 number	 of
years	 (out	of	10)	 that	a	manager	performed	above	 the	group	average.	Note	 the
similarity!	We’ll	get	back	to	this	in	chapter	9.

A	good	way	to	get	a	feeling	for	how	the	normal	distribution	relates	to	random
error	is	to	consider	the	process	of	polling,	or	sampling.	You	may	recall	the	poll	I
described	in	chapter	5	regarding	the	popularity	of	the	mayor	of	Basel.	In	that	city
a	 certain	 fraction	 of	 voters	 approved	 of	 the	 mayor,	 and	 a	 certain	 fraction
disapproved.	 For	 the	 sake	 of	 simplicity	 we	 will	 now	 assume	 each	 was	 50
percent.	As	we	saw,	there	is	a	chance	that	those	involved	in	the	poll	would	not
reflect	exactly	this	50/50	split.	In	fact,	if	N	voters	were	questioned,	the	chances
that	any	given	number	of	them	would	support	the	mayor	are	proportional	to	the
numbers	on	line	N	of	Pascal’s	triangle.	And	so,	according	to	De	Moivre’s	work,
if	 pollsters	 poll	 a	 large	 number	 of	 voters,	 the	 probabilities	 of	 different	 polling
results	 can	 be	 described	 by	 the	 normal	 distribution.	 In	 other	 words	 about	 95
percent	of	the	time	the	approval	rating	they	observe	in	their	poll	will	fall	within
2	standard	deviations	of	the	true	rating,	50	percent.	Pollsters	use	the	term	margin
of	error	 to	describe	 this	uncertainty.	When	pollsters	 tell	 the	media	 that	a	poll’s
margin	of	error	is	plus	or	minus	5	percent,	they	mean	that	if	they	were	to	repeat
the	poll	 a	 large	number	of	 times,	 19	out	 of	 20	 (95	percent)	 of	 those	 times	 the
result	would	be	within	5	percent	of	the	correct	answer.	(Though	pollsters	rarely
point	this	out,	that	also	means,	of	course,	that	about	1	time	in	20	the	result	will
be	wildly	 inaccurate.)	As	a	 rule	of	 thumb,	a	 sample	of	100	yields	a	margin	of



error	that	is	too	great	for	most	purposes.	A	sample	of	1,000,	on	the	other	hand,
usually	 yields	 a	margin	 of	 error	 in	 the	 ballpark	 of	 3	 percent,	 which	 for	 most
purposes	suffices.

Coin	toss	guessing	compared	to	stock-picking	success

It	is	important,	whenever	assessing	any	kind	of	survey	or	poll,	to	realize	that
when	 it	 is	 repeated,	 we	 should	 expect	 the	 results	 to	 vary.	 For	 example,	 if	 in
reality	 40	 percent	 of	 registered	 voters	 approve	 of	 the	 way	 the	 president	 is
handling	his	job,	it	is	much	more	likely	that	six	independent	surveys	will	report
numbers	like	37,	39,	39,	40,	42,	and	42	than	it	is	that	all	six	surveys	will	agree
that	the	president’s	support	stands	at	40	percent.	(Those	six	numbers	are	in	fact
the	 results	of	 six	 independent	polls	gauging	 the	president’s	 job	approval	 in	 the
first	two	weeks	of	September	2006.)27	That’s	why,	as	another	rule	of	thumb,	any
variation	within	 the	margin	of	 error	 should	be	 ignored.	But	 although	The	New
York	Times	would	not	run	the	headline	“Jobs	and	Wages	Increased	Modestly	at	2
P.M.,”	 analogous	headlines	 are	 common	 in	 the	 reporting	of	political	polls.	For
example,	 after	 the	 Republican	 National	 Convention	 in	 2004,	 CNN	 ran	 the
headline	“Bush	Apparently	Gets	Modest	Bounce.”28	The	experts	at	CNN	went
on	 to	 explain	 that	 “Bush’s	 convention	 bounce	 appeared	 to	 be	 2	 percentage
points….	 The	 percentage	 of	 likely	 voters	 who	 said	 he	 was	 their	 choice	 for
president	rose	from	50	right	before	the	convention	to	52	immediately	afterward.”
Only	 later	 did	 the	 reporter	 remark	 that	 the	 poll’s	margin	 of	 error	was	 plus	 or
minus	 3.5	 percentage	 points,	which	means	 that	 the	 news	 flash	was	 essentially
meaningless.	Apparently	 the	word	apparently,	 in	CNN-talk,	means	“apparently



not.”

For	 many	 polls	 a	 margin	 of	 error	 of	 more	 than	 5	 percent	 is	 considered
unacceptable,	yet	in	our	everyday	lives	we	make	judgments	based	on	far	fewer
data	 points	 than	 that.	 People	 don’t	 get	 to	 play	 100	 years	 of	 professional
basketball,	invest	in	100	apartment	buildings,	or	start	100	chocolate-chip-cookie
companies.	And	so	when	we	judge	 their	success	at	 those	enterprises,	we	 judge
them	on	just	a	few	data	points.	Should	a	football	team	lavish	$50	million	to	lure
a	 guy	 coming	 off	 a	 single	 record-breaking	 year?	 How	 likely	 is	 it	 that	 the
stockbroker	 who	 wants	 your	 money	 for	 a	 sure	 thing	 will	 repeat	 her	 earlier
successes?	Does	the	success	of	the	wealthy	inventor	of	sea	monkeys	mean	there
is	 a	 good	 chance	 he’ll	 succeed	 with	 his	 new	 ideas	 of	 invisible	 goldfish	 and
instant	 frogs?	 (For	 the	 record,	 he	 didn’t.)29	When	we	 observe	 a	 success	 or	 a
failure,	we	are	observing	one	data	point,	a	sample	from	under	the	bell	curve	that
represents	the	potentialities	that	previously	existed.	We	cannot	know	whether	our
single	observation	represents	the	mean	or	an	outlier,	an	event	to	bet	on	or	a	rare
happening	that	is	not	likely	to	be	reproduced.	But	at	a	minimum	we	ought	to	be
aware	 that	 a	 sample	 point	 is	 just	 a	 sample	 point,	 and	 rather	 than	 accepting	 it
simply	as	reality,	we	ought	to	see	it	in	the	context	of	the	standard	deviation	or	the
spread	 of	 possibilities	 that	 produced	 it.	 The	 wine	might	 be	 rated	 91,	 but	 that
number	is	meaningless	if	we	have	no	estimate	of	the	variation	that	would	occur
if	 the	 identical	wine	were	 rated	 again	 and	 again	 or	 by	 someone	 else.	 It	might
help	to	know,	for	instance,	that	a	few	years	back,	when	both	The	Penguin	Good
Australian	Wine	 Guide	 and	 On	Wine’s	 Australian	Wine	 Annual	 reviewed	 the
1999	 vintage	 of	 the	Mitchelton	 Blackwood	 Park	 Riesling,	 the	 Penguin	 guide
gave	the	wine	five	stars	out	of	five	and	named	it	Penguin	Best	Wine	of	the	Year,
while	On	Wine	rated	it	at	the	bottom	of	all	the	wines	it	reviewed,	deeming	it	the
worst	vintage	produced	in	a	decade.30	The	normal	distribution	not	only	helps	us
understand	 such	 discrepancies,	 but	 also	 has	 enabled	 a	 myriad	 of	 statistical
applications	 widely	 employed	 today	 in	 both	 science	 and	 commerce—for
example,	 whenever	 a	 drug	 company	 assesses	whether	 the	 results	 of	 a	 clinical
trial	are	significant,	a	manufacturer	assesses	whether	a	sample	of	parts	accurately
reflects	the	proportion	of	those	that	are	defective,	or	a	marketer	decides	whether
to	act	on	the	results	of	a	research	survey.

									



THE	RECOGNITION	that	 the	normal	distribution	describes	 the	distribution	of
measurement	error	came	decades	after	De	Moivre’s	work,	by	that	fellow	whose
name	 is	 sometimes	attached	 to	 the	bell	 curve,	 the	German	mathematician	Carl
Friedrich	Gauss.	It	was	while	working	on	the	problem	of	planetary	motion	that
Gauss	 came	 to	 that	 realization,	 at	 least	 regarding	 astronomical	measurements.
Gauss’s	 “proof,”	 however,	 was,	 by	 his	 own	 later	 admission,	 invalid.31
Moreover,	its	far-reaching	consequences	also	eluded	him.	And	so	he	slipped	the
law	inconspicuously	into	a	section	at	the	end	of	a	book	called	The	Theory	of	the
Motion	 of	Heavenly	Bodies	Moving	 about	 the	 Sun	 in	Conic	 Sections.	 There	 it
may	well	have	died,	just	another	in	the	growing	pile	of	abandoned	proposals	for
the	error	law.

It	 was	 Laplace	 who	 plucked	 the	 normal	 distribution	 from	 obscurity.	 He
encountered	 Gauss’s	 work	 in	 1810,	 soon	 after	 he	 had	 read	 a	 memoir	 to	 the
Académie	 des	 Sciences	 proving	 a	 theorem	 called	 the	 central	 limit	 theorem,
which	 says	 that	 the	probability	 that	 the	 sum	of	 a	 large	number	of	 independent
random	 factors	 will	 take	 on	 any	 given	 value	 is	 distributed	 according	 to	 the
normal	distribution.	For	example,	 suppose	you	bake	100	 loaves	of	bread,	each
time	following	a	recipe	that	is	meant	to	produce	a	loaf	weighing	1,000	grams.	By
chance	you	will	 sometimes	 add	 a	bit	more	or	 a	 bit	 less	 flour	 or	milk,	 or	 a	 bit
more	or	less	moisture	may	escape	in	the	oven.	If	in	the	end	each	of	a	myriad	of
possible	causes	adds	or	subtracts	a	few	grams,	the	central	limit	theorem	says	that
the	weight	of	your	 loaves	will	vary	according	 to	 the	normal	distribution.	Upon
reading	 Gauss’s	 work,	 Laplace	 immediately	 realized	 that	 he	 could	 use	 it	 to
improve	his	own	and	that	his	work	could	provide	a	better	argument	than	Gauss’s
to	support	the	notion	that	the	normal	distribution	is	indeed	the	error	law.	Laplace
rushed	to	press	a	short	sequel	 to	his	memoir	on	the	theorem.	Today	the	central
limit	theorem	and	the	law	of	large	numbers	are	the	two	most	famous	results	of
the	theory	of	randomness.

To	 illustrate	 how	 the	 central	 limit	 theorem	 explains	 why	 the	 normal
distribution	is	the	correct	error	law,	let’s	reconsider	Daniel	Bernoulli’s	example
of	the	archer.	I	played	the	role	of	the	archer	one	night	after	a	pleasant	interlude
of	wine	and	adult	company,	when	my	younger	son,	Nicolai,	handed	me	a	bow
and	 arrow	and	dared	me	 to	 shoot	 an	 apple	 off	 his	 head.	The	 arrow	had	 a	 soft
foam	 tip,	 but	 still	 it	 seemed	 reasonable	 to	 conduct	 an	 analysis	 of	my	 possible
errors	 and	 their	 likelihood.	 For	 obvious	 reasons	 I	 was	mainly	 concerned	with



vertical	errors.	A	simple	model	of	the	errors	is	this:	Each	random	factor—say,	a
sighting	 error,	 the	 effect	 of	 air	 currents,	 and	 so	 on—would	 throw	 my	 shot
vertically	off	target,	either	high	or	low,	with	equal	probability.	My	total	error	in
aim	 would	 then	 be	 the	 sum	 of	 my	 errors.	 If	 I	 was	 lucky,	 about	 half	 the
component	errors	would	deflect	 the	arrow	upward	and	half	downward,	and	my
shot	would	end	up	right	on	target.	If	I	was	unlucky	(or,	more	to	the	point,	if	my
son	was	unlucky),	the	errors	would	all	fall	one	way	and	my	aim	would	be	far	off,
either	high	or	 low.	The	relevant	question	was,	how	likely	was	it	 that	 the	errors
would	cancel	 each	other,	or	 that	 they	would	add	up	 to	 their	maximum,	or	 that
they	 would	 take	 any	 other	 value	 in	 between?	 But	 that	 was	 just	 a	 Bernoulli
process—like	tossing	coins	and	asking	how	likely	it	is	that	the	tosses	will	result
in	a	certain	number	of	heads.	The	answer	is	described	by	Pascal’s	triangle	or,	if
many	 trials	 are	 involved,	 by	 the	 normal	 distribution.	And	 that,	 in	 this	 case,	 is
precisely	what	the	central	limit	theorem	tells	us.	(As	it	turned	out,	I	missed	both
apple	and	son,	but	did	knock	over	a	glass	of	very	nice	cabernet.)

By	the	1830s	most	scientists	had	come	to	believe	that	every	measurement	is	a
composite,	 subject	 to	 a	 great	 number	of	 sources	of	 deviation	 and	hence	 to	 the
error	law.	The	error	law	and	the	central	limit	theorem	thus	allowed	for	a	new	and
deeper	understanding	of	data	and	their	relation	to	physical	reality.	In	the	ensuing
century,	scholars	interested	in	human	society	also	grasped	these	ideas	and	found
to	 their	 surprise	 that	 the	 variation	 in	 human	 characteristics	 and	 behavior	 often
displays	 the	 same	 pattern	 as	 the	 error	 in	measurement.	And	 so	 they	 sought	 to
extend	the	application	of	the	error	law	from	physical	science	to	a	new	science	of
human	affairs.



CHAPTER	8



The	Order	in	Chaos

IN	THE	MID-1960S,	some	ninety	years	old	and	in	great	need	of	money	to	live
on,	a	Frenchwoman	named	Jeanne	Calment	made	a	deal	with	a	forty-seven-year-
old	 lawyer:	 she	 sold	 him	 her	 apartment	 for	 the	 price	 of	 a	 low	 monthly
subsistence	payment	with	the	agreement	that	the	payments	would	stop	upon	her
death,	 at	 which	 point	 she	 would	 be	 carried	 out	 and	 he	 could	 move	 in.1	 The
lawyer	must	have	known	that	Ms.	Calment	had	already	exceeded	the	French	life
expectancy	 by	more	 than	 ten	 years.	 He	may	 not	 have	 been	 aware	 of	 Bayes’s
theory,	however,	nor	known	that	 the	relevant	issue	was	not	whether	she	should
be	expected	to	die	in	minus	ten	years	but	that	her	life	expectancy,	given	that	she
had	already	made	 it	 to	ninety,	was	about	 six	more	years.2	Still,	 he	had	 to	 feel
comfortable	believing	 that	any	woman	who	as	a	 teenager	had	met	Vincent	van
Gogh	in	her	father’s	shop	would	soon	be	joining	van	Gogh	in	the	hereafter.	(For
the	record,	she	found	the	artist	“dirty,	badly	dressed,	and	disagreeable.”)

Ten	years	later	the	attorney	had	presumably	found	an	alternative	dwelling,	for
Jeanne	Calment	 celebrated	 her	 100th	 birthday	 in	 good	health.	And	 though	her
life	expectancy	was	then	about	two	years,	she	reached	her	110th	birthday	still	on
the	lawyer’s	dime.	By	that	point	the	attorney	had	turned	sixty-seven.	But	it	was
another	decade	before	the	attorney’s	long	wait	came	to	an	end,	and	it	wasn’t	the
end	he	expected.	In	1995	the	attorney	himself	died	while	Jeanne	Calment	lived
on.	Her	day	of	reckoning	finally	came	on	August	4,	1997,	at	the	age	of	122.	Her
age	at	death	exceeded	the	lawyer’s	age	at	his	death	by	forty-five	years.

Individual	 life	 spans—and	 lives—are	 unpredictable,	 but	 when	 data	 are
collected	from	groups	and	analyzed	en	masse,	regular	patterns	emerge.	Suppose
you	have	driven	accident-free	for	twenty	years.	Then	one	fateful	afternoon	while
you’re	on	vacation	in	Quebec	with	your	spouse	and	your	in-laws,	your	mother-
in-law	yells,	“Look	out	for	that	moose!”	and	you	swerve	into	a	warning	sign	that
says	essentially	the	same	thing.	To	you	the	incident	would	feel	like	an	odd	and
unique	event.	But	as	the	need	for	the	sign	indicates,	in	an	ensemble	of	thousands
of	 drivers	 a	 certain	 percentage	 of	 drivers	 can	 be	 counted	 on	 to	 encounter	 a
moose.	 In	 fact,	 a	 statistical	ensemble	of	people	acting	 randomly	often	displays



behavior	as	consistent	and	predictable	as	a	group	of	people	pursuing	conscious
goals.	Or	as	the	philosopher	Immanuel	Kant	wrote	in	1784,	“Each,	according	to
his	own	 inclination	 follows	his	own	purpose,	often	 in	opposition	 to	others;	yet
each	 individual	 and	 people,	 as	 if	 following	 some	 guiding	 thread,	 go	 toward	 a
natural	but	to	each	of	them	unknown	goal;	all	work	toward	furthering	it,	even	if
they	would	set	little	store	by	it	if	they	did	know	it.”3

According	 to	 the	 Federal	 Highway	 Administration,	 for	 example,	 there	 are
about	200	million	drivers	 in	 the	United	States.4	And	according	 to	 the	National
Highway	Traffic	Safety	Administration,	in	one	recent	year	those	drivers	drove	a
total	 of	 about	 2.86	 trillion	miles.5	 That’s	 about	 14,300	miles	 per	 driver.	 Now
suppose	 everyone	 in	 the	 country	had	decided	 it	would	be	 fun	 to	 hit	 that	 same
total	again	the	following	year.	Let’s	compare	two	methods	that	could	have	been
used	 to	 achieve	 that	 goal.	 In	 method	 1	 the	 government	 institutes	 a	 rationing
system	 employing	 one	 of	 the	 National	 Science	 Foundation’s	 supercomputing
centers	 to	 assign	 personal	 mileage	 targets	 that	 meet	 each	 of	 the	 200	 million
motorists’	 needs	 while	maintaining	 the	 previous	 annual	 average	 of	 14,300.	 In
method	2	we	tell	drivers	not	to	stress	out	over	it	and	to	drive	as	much	or	as	little
as	they	please	with	no	regard	to	how	far	they	drove	the	prior	year.	If	Uncle	Billy
Bob,	who	used	to	walk	to	work	at	the	liquor	store,	decides	instead	to	log	100,000
miles	as	a	shotgun	wholesaler	in	West	Texas,	that’s	fine.	And	if	Cousin	Jane	in
Manhattan,	who	logged	most	of	her	mileage	circling	the	block	on	street-cleaning
days	 in	 search	of	 a	 parking	 space,	 gets	married	 and	moves	 to	New	 Jersey,	we
won’t	worry	about	that	either.	Which	method	would	come	closer	to	the	target	of
14,300	 miles	 per	 driver?	 Method	 1	 is	 impossible	 to	 test,	 though	 our	 limited
experience	with	gasoline	rationing	indicates	that	it	probably	wouldn’t	work	very
well.	Method	2,	on	the	other	hand,	was	actually	instituted—that	is,	the	following
year,	drivers	drove	as	much	or	as	little	as	they	pleased	without	attempting	to	hit
any	quota.	How	did	they	do?	According	to	the	National	Highway	Traffic	Safety
Administration,	 that	year	American	drivers	drove	2.88	 trillion	miles,	or	14,400
miles	per	person,	only	100	miles	above	 target.	What’s	more,	 those	200	million
drivers	also	suffered,	within	less	than	200,	the	same	number	of	fatalities	in	both
years	(42,815	versus	42,643).

We	associate	randomness	with	disorder.	Yet	although	the	lives	of	200	million
drivers	 vary	 unforeseeably,	 in	 the	 aggregate	 their	 behavior	 could	 hardly	 have
proved	more	 orderly.	Analogous	 regularities	 can	 be	 found	 if	we	 examine	 how



people	vote,	buy	stocks,	marry,	are	 told	 to	get	 lost,	misaddress	 letters,	or	sit	 in
traffic	on	their	way	to	a	meeting	they	didn’t	want	to	go	to	in	the	first	place—or	if
we	 measure	 the	 length	 of	 their	 legs,	 the	 size	 of	 their	 feet,	 the	 width	 of	 their
buttocks,	or	the	breadth	of	their	beer	bellies.	As	nineteenth-century	scientists	dug
into	newly	available	social	data,	wherever	they	looked,	the	chaos	of	life	seemed
to	 produce	 quantifiable	 and	 predictable	 patterns.	 But	 it	 was	 not	 just	 the
regularities	 that	astonished	 them.	It	was	also	 the	nature	of	 the	variation.	Social
data,	they	discovered,	often	follow	the	normal	distribution.

That	the	variation	in	human	characteristics	and	behavior	is	distributed	like	the
error	 in	 an	 archer’s	 aim	 led	 some	 nineteenth-century	 scientists	 to	 study	 the
targets	toward	which	the	arrows	of	human	existence	are	aimed.	More	important,
they	 sought	 to	understand	 the	 social	 and	physical	 causes	 that	 sometimes	move
the	target.	And	so	the	field	of	mathematical	statistics,	developed	to	aid	scientists
in	 data	 analysis,	 flourished	 in	 a	 far	 different	 realm:	 the	 study	 of	 the	 nature	 of
society.

									
STATISTICIANS	 have	 been	 analyzing	 life’s	 data	 at	 least	 since	 the	 eleventh
century,	when	William	the	Conqueror	commissioned	what	was,	in	effect,	the	first
national	 census.	 William	 began	 his	 rule	 in	 1035,	 at	 age	 seven,	 when	 he
succeeded	 his	 father	 as	 duke	 of	 Normandy.	 As	 his	 moniker	 implies,	 Duke
William	II	liked	to	conquer,	and	in	1066	he	invaded	England.	By	Christmas	Day
he	was	able	to	give	himself	the	present	of	being	crowned	king.	His	swift	victory
left	 him	 with	 a	 little	 problem:	 whom	 exactly	 had	 he	 conquered,	 and	 more
important,	how	much	could	he	tax	his	new	subjects?	To	answer	those	questions,
he	 sent	 inspectors	 into	 every	 part	 of	England	 to	 note	 the	 size,	 ownership,	 and
resources	 of	 each	 parcel	 of	 land.6	 To	 make	 sure	 they	 got	 it	 right,	 he	 sent	 a
second	set	of	inspectors	to	duplicate	the	effort	of	the	first	set.	Since	taxation	was
based	not	on	population	but	on	land	and	its	usage,	the	inspectors	made	a	valiant
effort	 to	 count	 every	 ox,	 cow,	 and	 pig	 but	 didn’t	 gather	much	 data	 about	 the
people	who	shoveled	their	droppings.	Even	if	population	data	had	been	relevant,
in	medieval	 times	 a	 statistical	 survey	 regarding	 the	most	 vital	 statistics	 about
humans—their	 life	 spans	 and	 diseases—would	 have	 been	 considered
inconsistent	 with	 the	 traditional	 Christian	 concept	 of	 death.	 According	 to	 that
doctrine,	 it	 was	 wrong	 to	 make	 death	 the	 object	 of	 speculation	 and	 almost



sacrilegious	to	look	for	laws	governing	it.	For	whether	a	person	died	from	a	lung
infection,	 a	 stomachache,	 or	 a	 rock	 whose	 impact	 exceeded	 the	 compressive
strength	 of	 his	 skull,	 the	 true	 cause	 of	 his	 or	 her	 death	 was	 considered	 to	 be
simply	God’s	will.	Over	the	centuries	that	fatalistic	attitude	gradually	gave	way,
yielding	to	an	opposing	view,	according	to	which,	by	studying	the	regularities	of
nature	 and	 society,	we	 are	 not	 challenging	God’s	 authority	 but	 rather	 learning
about	his	ways.

A	big	step	in	that	transformation	of	views	came	in	the	sixteenth	century,	when
the	lord	mayor	of	London	ordered	the	compilation	of	weekly	“bills	of	mortality”
to	account	for	the	christenings	and	burials	recorded	by	parish	clerks.	For	decades
the	bills	were	compiled	sporadically,	but	in	1603,	one	of	the	worst	years	of	the
plague,	 the	city	 instituted	a	weekly	 tally.	Theorists	on	 the	Continent	 turned	up
their	noses	at	the	data-laden	mortality	bills	as	peculiarly	English	and	of	little	use.
But	 to	 one	 peculiar	 Englishman,	 a	 shopkeeper	 named	 John	Graunt,	 the	 tallies
told	a	gripping	tale.7

Graunt	and	his	friend	William	Petty	have	been	called	the	founders	of	statistics,
a	field	sometimes	considered	lowbrow	by	those	in	pure	mathematics	owing	to	its
focus	on	mundane	practical	issues,	and	in	that	sense	Graunt	in	particular	makes	a
fitting	 founder.	 For	 unlike	 some	 of	 the	 amateurs	who	 developed	 probability—
Cardano	 the	 doctor,	 Fermat	 the	 jurist,	 or	Bayes	 the	 clergyman—Graunt	was	 a
seller	of	common	notions:	buttons,	thread,	needles,	and	other	small	items	used	in
a	household.	But	Graunt	wasn’t	just	a	button	salesman;	he	was	a	wealthy	button
salesman,	 and	 his	 wealth	 afforded	 him	 the	 leisure	 to	 pursue	 interests	 having
nothing	 to	 do	with	 implements	 for	 holding	 garments	 together.	 It	 also	 enabled
him	to	befriend	some	of	the	greatest	intellectuals	of	his	day,	including	Petty.

One	inference	Graunt	gleaned	from	the	mortality	bills	concerned	the	number
of	people	who	starved	to	death.	In	1665	that	number	was	reported	to	be	45,	only
about	 double	 the	 number	 who	 died	 from	 execution.	 In	 contrast,	 4,808	 were
reported	to	have	died	from	consumption,	1,929	from	“spotted	fever	and	purples,”
2,614	from	“teeth	and	worms,”	and	68,596	from	the	plague.	Why,	when	London
was	 “teeming	 with	 beggars,”	 did	 so	 few	 starve?	 Graunt	 concluded	 that	 the
populace	must	be	feeding	the	hungry.	And	so	he	proposed	instead	that	the	state
provide	 the	 food,	 thereby	 costing	 society	 nothing	 while	 ridding	 seventeenth-
century	 London	 streets	 of	 their	 equivalent	 of	 panhandlers	 and	 squeegee	 men.



Graunt	also	weighed	in	on	the	two	leading	theories	of	how	the	plague	is	spread.
One	theory	held	that	the	illness	was	transmitted	by	foul	air;	the	other,	that	it	was
transmitted	from	person	to	person.	Graunt	looked	at	the	week-to-week	records	of
deaths	 and	 concluded	 that	 the	 fluctuations	 in	 the	 data	 were	 too	 great	 to	 be
random,	 as	 he	 expected	 they	 would	 be	 if	 the	 person-to-person	 theory	 were
correct.	On	 the	 other	 hand,	 since	weather	 varies	 erratically	week	 by	week,	 he
considered	 the	 fluctuating	 data	 to	 be	 consistent	with	 the	 foul-air	 theory.	As	 it
turned	out,	London	was	not	ready	for	soup	kitchens,	and	Londoners	would	have
fared	better	if	they	had	avoided	ugly	rats	rather	than	foul	air,	but	Graunt’s	great
discoveries	 lay	 not	 in	 his	 conclusions.	 They	 lay	 instead	 in	 his	 realization	 that
statistics	 can	 provide	 insights	 into	 the	 system	 from	 which	 the	 statistics	 are
derived.

Petty’s	 work	 is	 sometimes	 considered	 a	 harbinger	 of	 classical	 economics.8
Believing	 that	 the	 strength	 of	 the	 state	 depends	 on,	 and	 is	 reflected	 by,	 the
number	 and	 character	 of	 its	 subjects,	 Petty	 employed	 statistical	 reasoning	 to
analyze	national	issues.	Typically	his	analyses	were	made	from	the	point	of	view
of	the	sovereign	and	treated	members	of	society	as	objects	to	be	manipulated	at
will.	 Regarding	 the	 plague,	 he	 pointed	 out	 that	 money	 should	 be	 spent	 on
prevention	 because,	 in	 saving	 lives,	 the	 realm	 would	 preserve	 part	 of	 the
considerable	investment	society	made	in	raising	men	and	women	to	maturity	and
therefore	 would	 reap	 a	 higher	 return	 than	 it	 would	 on	 the	 most	 lucrative	 of
alternative	 investments.	 Regarding	 the	 Irish,	 Petty	 was	 not	 as	 charitable.	 He
concluded,	for	example,	 that	 the	economic	value	of	an	English	life	was	greater
than	that	of	an	Irish	one,	so	the	wealth	of	the	kingdom	would	be	increased	if	all
Irishmen	 except	 a	 few	 cowherds	 were	 forcibly	 relocated	 to	 England.	 As	 it
happened,	Petty	owed	his	own	wealth	to	those	same	Irish:	as	a	doctor	with	the
invading	British	army	in	the	1650s,	he	had	been	given	the	task	of	assessing	the
spoils	 and	 assessed	 that	 he	 could	 get	 away	 with	 grabbing	 a	 good	 share	 for
himself,	which	he	did.9

If,	as	Petty	believed,	the	size	and	growth	of	a	population	reflect	the	quality	of
its	 government,	 then	 the	 lack	 of	 a	 good	 method	 for	 measuring	 the	 size	 of	 a
population	 made	 the	 assessment	 of	 its	 government	 difficult.	 Graunt’s	 most
famous	 calculations	 addressed	 that	 issue—in	 particular	 the	 population	 of
London.	From	the	bills	of	mortality,	Graunt	knew	the	number	of	births.	Since	he
had	a	rough	idea	of	 the	fertility	rate,	he	could	infer	how	many	women	were	of



childbearing	age.	That	datum	allowed	him	to	guess	the	total	number	of	families
and,	using	his	own	observations	of	 the	mean	size	of	a	London	 family,	 thereby
estimate	 the	 city’s	 population.	 He	 came	 up	 with	 384,000—previously	 it	 was
believed	to	be	2	million.	Graunt	also	raised	eyebrows	by	showing	that	much	of
the	 growth	 of	 the	 city	was	 due	 to	 immigration	 from	outlying	 areas,	 not	 to	 the
slower	 method	 of	 procreation,	 and	 that	 despite	 the	 horrors	 of	 the	 plague,	 the
decrease	 in	 population	 due	 to	 even	 the	 worst	 epidemic	 was	 always	 made	 up
within	 two	years.	 In	 addition,	Graunt	 is	 generally	 credited	with	publishing	 the
first	“life	 table,”	a	systematic	arrangement	of	 life-expectancy	data	 that	 today	is
widely	employed	by	organizations—from	life	insurance	companies	to	the	World
Health	Organization—that	are	interested	in	knowing	how	long	people	live.	A	life
table	displays	how	many	people,	in	a	group	of	100,	can	be	expected	to	survive	to
any	given	age.	To	Graunt’s	data	(the	column	in	the	table	below	labeled	“London,
1662”),	 I’ve	 added	 columns	 exhibiting	 the	 same	 data	 for	 a	 few	 countries
today.10

Graunt’s	life	table	extended

In	 1662,	 Graunt	 published	 his	 analyses	 in	 Natural	 and	 Political
Observations…upon	 the	Bills	of	Mortality.	The	book	met	with	acclaim.	A	year
later	Graunt	was	elected	to	the	Royal	Society.	Then,	 in	1666,	 the	Great	Fire	of
London,	which	burned	down	a	large	part	of	the	city,	destroyed	his	business.	To
add	insult	to	injury,	he	was	accused	of	helping	to	cause	the	destruction	by	giving
instructions	to	halt	the	water	supply	just	before	the	fire	started.	In	truth	he	had	no
affiliation	with	 the	water	 company	 until	 after	 the	 fire.	 Still,	 after	 that	 episode,
Graunt’s	name	disappeared	from	the	books	of	the	Royal	Society.	Graunt	died	of



jaundice	a	few	years	later.

Largely	 because	 of	Graunt’s	work,	 in	 1667	 the	 French	 fell	 in	 line	with	 the
British	and	revised	their	legal	code	to	enable	surveys	like	the	bills	of	mortality.
Other	European	countries	followed	suit.	By	the	nineteenth	century,	statisticians
all	over	Europe	were	up	 to	 their	elbows	 in	government	 records	such	as	census
data—“an	 avalanche	 of	 numbers.”11	 Graunt’s	 legacy	 was	 to	 demonstrate	 that
inferences	about	a	population	as	a	whole	could	be	made	by	carefully	examining
a	 limited	sample	of	data.	But	 though	Graunt	and	others	made	valiant	efforts	 to
learn	 from	 the	data	 through	 the	 application	of	 simple	 logic,	most	of	 the	data’s
secrets	 awaited	 the	 development	 of	 the	 tools	 created	 by	 Gauss,	 Laplace,	 and
others	in	the	nineteenth	and	early	twentieth	centuries.

									
THE	 TERM	 statistics	 entered	 the	 English	 language	 from	 the	 German	 word
Statistik	through	a	1770	translation	of	the	book	Bielfield’s	Elementary	Universal
Education,	which	stated	that	“the	science	that	is	called	statistics	teaches	us	what
is	the	political	arrangement	of	all	the	modern	states	in	the	known	world.”12	By
1828	 the	 subject	 had	 evolved	 such	 that	 Noah	Webster’s	American	Dictionary
defined	 statistics	 as	 “a	 collection	 of	 facts	 respecting	 the	 state	 of	 society,	 the
condition	of	 the	people	 in	a	nation	or	country,	 their	health,	 longevity,	domestic
economy,	arts,	property	and	political	strength,	the	state	of	their	country,	&c.”13
The	field	had	embraced	the	methods	of	Laplace,	who	had	sought	 to	extend	his
mathematical	analysis	from	planets	and	stars	to	issues	of	everyday	life.

The	normal	distribution	describes	the	manner	in	which	many	phenomena	vary
around	a	central	value	that	represents	their	most	probable	outcome;	in	his	Essai
philosophique	 sur	 les	 probabilités,	 Laplace	 argued	 that	 this	 new	 mathematics
could	 be	 employed	 to	 assess	 legal	 testimony,	 predict	marriage	 rates,	 calculate
insurance	premiums.	But	by	 the	 final	 edition	of	 that	work,	Laplace	was	 in	his
sixties,	 and	 so	 it	 fell	 to	 a	 younger	 man	 to	 develop	 his	 ideas.	 That	 man	 was
Adolphe	Quételet,	born	in	Ghent,	Flanders,	on	February	22,	1796.14

Quételet	did	not	enter	his	studies	spurred	by	a	keen	interest	in	the	workings	of
society.	His	dissertation,	which	in	1819	earned	him	the	first	doctorate	in	science
awarded	by	the	new	university	in	Ghent,	was	on	the	theory	of	conic	sections,	a



topic	 in	 geometry.	His	 interest	 then	 turned	 to	 astronomy,	 and	 around	 1820	 he
became	active	in	a	movement	to	found	a	new	observatory	in	Brussels,	where	he
had	 taken	 a	 position.	 An	 ambitious	 man,	 Quételet	 apparently	 saw	 the
observatory	as	a	step	toward	establishing	a	scientific	empire.	It	was	an	audacious
move,	not	 least	because	he	knew	relatively	little	about	astronomy	and	virtually
nothing	 about	 running	 an	 observatory.	 But	 he	 must	 have	 been	 persuasive,
because	not	only	did	his	observatory	receive	funding,	but	he	personally	received
a	 grant	 to	 travel	 to	 Paris	 for	 several	months	 to	 remedy	 the	 deficiencies	 in	 his
knowledge.	 It	proved	a	 sound	 investment,	 for	Quételet’s	Royal	Observatory	of
Belgium	is	still	in	existence	today.

In	Paris,	Quételet	was	affected	in	his	own	way	by	the	disorder	of	life,	and	it
pulled	him	in	a	completely	different	direction.	His	romance	with	statistics	began
when	 he	 made	 the	 acquaintance	 of	 several	 great	 French	 mathematicians,
including	Laplace	and	Joseph	Fourier,	and	studied	statistics	and	probability	with
Fourier.	In	the	end,	though	he	learned	how	to	run	an	observatory,	he	fell	in	love
with	a	different	pursuit,	the	idea	of	applying	the	mathematical	tools	of	astronomy
to	social	data.

When	 Quételet	 returned	 to	 Brussels,	 he	 began	 to	 collect	 and	 analyze
demographic	data,	soon	focusing	on	records	of	criminal	activity	that	the	French
government	began	to	publish	in	1827.	In	Sur	l’homme	et	le	développement	de	ses
facultés,	 a	 two-volume	work	he	published	 in	 1835,	Quételet	 printed	 a	 table	 of
annual	murders	reported	in	France	from	1826	to	1831.	The	number	of	murders,
he	noted,	was	 relatively	constant,	 as	was	 the	proportion	of	murders	committed
each	year	with	guns,	swords,	knives,	canes,	stones,	 instruments	for	cutting	and
stabbing,	kicks	and	punches,	strangulation,	drowning,	and	fire.15	Quételet	also
analyzed	mortality	according	to	age,	geography,	season,	and	profession,	as	well
as	 in	 hospitals	 and	 prisons.	He	 studied	 statistics	 on	 drunkenness,	 insanity,	 and
crime.	And	he	discovered	statistical	regularities	describing	suicide	by	hanging	in
Paris	and	the	number	of	marriages	between	sixty-something	women	and	twenty-
something	men	in	Belgium.

Statisticians	 had	 conducted	 such	 studies	 before,	 but	Quételet	 did	 something
more	with	 the	data:	he	went	beyond	examining	 the	average	 to	 scrutinizing	 the
manner	in	which	the	data	strayed	from	its	average.	Wherever	he	looked,	Quételet
found	the	normal	distribution:	in	the	propensities	to	crime,	marriage,	and	suicide



and	 in	 the	height	of	American	 Indians	and	 the	chest	measurements	of	Scottish
soldiers	(he	came	upon	a	sample	of	5,738	chest	measurements	in	an	old	issue	of
the	Edinburgh	Medical	and	Surgical	Journal).	 In	 the	height	 of	 100,000	young
Frenchmen	called	up	for	the	draft	he	also	found	meaning	in	a	deviation	from	the
normal	 distribution.	 In	 that	 data,	 when	 the	 number	 of	 conscripts	 was	 plotted
against	their	height,	the	bell-shaped	curve	was	distorted:	too	few	prospects	were
just	above	five	feet	two	and	a	compensating	surplus	was	just	below	that	height.
Quételet	argued	that	the	difference—about	2,200	extra	“short	men”—was	due	to
fraud	 or,	 you	 might	 say	 friendly	 fudging,	 as	 those	 below	 five	 feet	 two	 were
excused	from	service.

Decades	later	the	great	French	mathematician	Jules-Henri	Poincaré	employed
Quételet’s	method	to	nab	a	baker	who	was	shortchanging	his	customers.	At	first,
Poincaré,	who	made	a	habit	of	picking	up	a	loaf	of	bread	each	day,	noticed	after
weighing	 his	 loaves	 that	 they	 averaged	 about	 950	 grams	 instead	 of	 the	 1,000
grams	 advertised.	 He	 complained	 to	 the	 authorities	 and	 afterward	 received
bigger	loaves.	Still	he	had	a	hunch	that	something	about	his	bread	wasn’t	kosher.
And	so	with	the	patience	only	a	famous—or	at	least	tenured—scholar	can	afford,
he	 carefully	weighed	 his	 bread	 every	 day	 for	 the	 next	 year.	 Though	 his	 bread
now	averaged	closer	to	1,000	grams,	if	the	baker	had	been	honestly	handing	him
random	loaves,	 the	number	of	 loaves	heavier	and	 lighter	 than	 the	mean	should
have—as	 I	 mentioned	 in	 chapter	 7—diminished	 following	 the	 bell-shaped
pattern	 of	 the	 error	 law.	 Instead,	 Poincaré	 found	 that	 there	were	 too	 few	 light
loaves	and	a	surplus	of	heavy	ones.	He	concluded	that	the	baker	had	not	ceased
baking	 underweight	 loaves	 but	 instead	 was	 seeking	 to	 placate	 him	 by	 always
giving	him	the	largest	loaf	he	had	on	hand.	The	police	again	visited	the	cheating
baker,	who	was	 reportedly	 appropriately	 astonished	 and	 presumably	 agreed	 to
change	his	ways.16

Quételet	had	stumbled	on	a	useful	discovery:	the	patterns	of	randomness	are
so	reliable	that	in	certain	social	data	their	violation	can	be	taken	as	evidence	of
wrongdoing.	Today	such	analyses	are	applied	to	reams	of	data	too	large	to	have
been	 analyzed	 in	 Quételet’s	 time.	 In	 recent	 years,	 in	 fact,	 such	 statistical
sleuthing	has	become	popular,	creating	a	new	field,	called	 forensic	economics,
perhaps	the	most	famous	example	of	which	is	the	statistical	study	suggesting	that
companies	 were	 backdating	 their	 stock	 option	 grants.	 The	 idea	 is	 simple:
companies	grant	stock	options—the	right	 to	buy	shares	 later	at	 the	price	of	 the



stock	on	 the	date	of	 the	grant—as	an	 incentive	 for	executives	 to	 improve	 their
firms’	 share	 prices.	 If	 the	 grants	 are	 backdated	 to	 times	when	 the	 shares	were
especially	 low,	 the	 executives’	 profits	 will	 be	 correspondingly	 high.	 A	 clever
idea,	but	when	done	in	secret	it	violates	securities	laws.	It	also	leaves	a	statistical
fingerprint,	which	has	led	to	the	investigation	of	such	practices	at	about	a	dozen
major	companies.17	In	a	less	publicized	example,	Justin	Wolfers,	an	economist
at	 the	Wharton	School,	 found	evidence	of	 fraud	 in	 the	 results	of	 about	70,000
college	basketball	games.18

Wolfers	discovered	the	anomaly	by	comparing	Las	Vegas	bookmakers’	point
spreads	 to	 the	 games’	 actual	 outcomes.	 When	 one	 team	 is	 favored,	 the
bookmakers	offer	point	spreads	in	order	to	attract	a	roughly	even	number	of	bets
on	 both	 competitors.	 For	 instance,	 suppose	 the	 basketball	 team	 at	 Caltech	 is
considered	better	 than	 the	 team	at	UCLA	(for	college	basketball	 fans,	yes,	 this
was	 actually	 true	 in	 the	 1950s).	 Rather	 than	 assigning	 lopsided	 odds,	 bookies
could	instead	offer	an	even	bet	on	the	game	but	pay	out	on	a	Caltech	bet	only	if
their	team	beat	UCLA	by,	say,	13	or	more	points.

Though	such	point	spreads	are	set	by	the	bookies,	they	are	really	fixed	by	the
mass	 of	 bettors	 because	 the	 bookies	 adjust	 them	 to	 balance	 the	 demand.
(Bookies	make	their	money	on	fees	and	seek	to	have	an	equal	amount	of	money
bet	on	each	side	so	that	they	can’t	lose,	whatever	the	outcome.)	To	measure	how
well	bettors	assess	two	teams,	economists	use	a	number	called	the	forecast	error,
which	 is	 the	 difference	 between	 the	 favored	 team’s	margin	 of	 victory	 and	 the
point	 spread	 determined	 by	 the	marketplace.	 It	 may	 come	 as	 no	 surprise	 that
forecast	 error,	 being	 a	 type	 of	 error,	 is	 distributed	 according	 to	 the	 normal
distribution.	Wolfers	 found	 that	 its	mean	 is	 0,	meaning	 that	 the	 point	 spreads
don’t	tend	to	either	overrate	or	underrate	teams,	and	its	standard	deviation	is	10.9
points,	meaning	that	about	two	thirds	of	the	time	the	point	spread	is	within	10.9
points	 of	 the	 margin	 of	 victory.	 (In	 a	 study	 of	 professional	 football	 games,	 a
similar	 result	 was	 found,	 with	 a	 mean	 of	 0	 and	 a	 standard	 deviation	 of	 13.9
points.)19

When	Wolfers	examined	the	subset	of	games	that	involved	heavy	favorites,	he
found	 something	 astonishing:	 there	 were	 too	 few	 games	 in	 which	 the	 heavy
favorite	won	by	a	little	more	than	the	point	spread	and	an	inexplicable	surplus	of
games	in	which	the	favorite	won	by	just	less.	This	was	again	Quételet’s	anomaly.



Wolfers’s	 conclusion,	 like	 Quételet’s	 and	 Poincaré’s,	 was	 fraud.	 His	 analysis
went	like	this:	it	is	hard	for	even	a	top	player	to	ensure	that	his	team	will	beat	a
point	spread,	but	 if	 the	 team	is	a	heavy	favorite,	a	player,	without	endangering
his	team’s	chance	of	victory,	can	slack	off	enough	to	ensure	that	the	team	does
not	beat	the	spread.	And	so	if	unscrupulous	bettors	wanted	to	fix	games	without
asking	 players	 to	 risk	 losing,	 the	 result	 would	 be	 just	 the	 distortions	Wolfers
found.	Does	Wolfers’s	work	prove	that	in	some	percentage	of	college	basketball
games,	players	are	taking	bribes	to	shave	points?	No,	but	as	Wolfers	says,	“You
shouldn’t	have	what’s	happening	on	the	court	reflecting	what’s	happening	in	Las
Vegas.”	 And	 it	 is	 interesting	 to	 note	 that	 in	 a	 recent	 poll	 by	 the	 National
Collegiate	 Athletic	 Association,	 1.5	 percent	 of	 players	 admitted	 knowing	 a
teammate	“who	took	money	for	playing	poorly.”20

									
QUÉTELET	DID	NOT	PURSUE	the	forensic	applications	of	his	ideas.	He	had
bigger	plans:	to	employ	the	normal	distribution	in	order	to	illuminate	the	nature
of	 people	 and	 society.	 If	 you	 made	 1,000	 copies	 of	 a	 statue,	 he	 wrote,	 those
copies	 would	 vary	 due	 to	 errors	 of	 measurement	 and	 workmanship,	 and	 that
variation	 would	 be	 governed	 by	 the	 error	 law.	 If	 the	 variation	 in	 people’s
physical	traits	follows	the	same	law,	he	reasoned,	it	must	be	because	we,	too,	are
imperfect	replicas	of	a	prototype.	Quételet	called	that	prototype	l’homme	moyen,
the	 average	man.	He	 felt	 that	 a	 template	 existed	 for	 human	 behavior	 too.	The
manager	 of	 a	 large	 department	 store	 may	 not	 know	 whether	 the	 spacey	 new
cashier	will	pocket	that	half-ounce	bottle	of	Chanel	Allure	she	was	sniffing,	but
he	 can	 count	 on	 the	 prediction	 that	 in	 the	 retail	 business,	 inventory	 loss	 runs
pretty	steadily	from	year	to	year	at	about	1.6	percent	and	that	consistently	about
45	percent	to	48	percent	of	it	is	due	to	employee	theft.21	Crime,	Quételet	wrote,
is	“like	a	budget	that	is	paid	with	frightening	regularity.”22

Quételet	 recognized	 that	 l’homme	 moyen	 would	 be	 different	 for	 different
cultures	and	that	it	could	change	with	changing	social	conditions.	In	fact,	it	is	the
study	 of	 those	 changes	 and	 their	 causes	 that	was	Quételet’s	 greatest	 ambition.
“Man	is	born,	grows	up,	and	dies	according	to	certain	laws,”	he	wrote,	and	those
laws	“have	never	been	studied.”23	Newton	became	the	father	of	modern	physics
by	recognizing	and	formulating	a	set	of	universal	 laws.	Modeling	himself	after



Newton,	Quételet	desired	to	create	a	new	“social	physics”	describing	the	laws	of
human	 behavior.	 In	 Quételet’s	 analogy,	 just	 as	 an	 object,	 if	 undisturbed,
continues	 in	 its	 state	 of	 motion,	 so	 the	 mass	 behavior	 of	 people,	 if	 social
conditions	 remain	unchanged,	 remains	constant.	And	 just	as	Newton	described
how	physical	forces	deflect	an	object	from	its	straight	path,	so	Quételet	sought
laws	 of	 human	 behavior	 describing	 how	 social	 forces	 transform	 the
characteristics	of	society.	For	example,	Quételet	thought	that	vast	inequalities	of
wealth	 and	 great	 fluctuations	 in	 prices	 were	 responsible	 for	 crime	 and	 social
unrest	and	that	a	steady	level	of	crime	represented	a	state	of	equilibrium,	which
would	change	with	changes	in	the	underlying	causes.	A	vivid	example	of	such	a
change	 in	 social	 equilibrium	 occurred	 in	 the	 months	 after	 the	 attacks	 of
September	11,	2001,	when	travelers,	afraid	to	take	airplanes,	suddenly	switched
to	 cars.	 Their	 fear	 translated	 into	 about	 1,000	more	 highway	 fatalities	 in	 that
period	 than	 in	 the	 same	 period	 the	 year	 before—hidden	 casualties	 of	 the
September	11	attack.24

But	 to	believe	 that	 a	 social	 physics	 exists	 is	 one	 thing,	 and	 to	define	one	 is
another.	 In	 a	 true	 science,	 Quételet	 realized,	 theories	 could	 be	 explored	 by
placing	people	in	a	great	number	of	experimental	situations	and	measuring	their
behavior.	Since	that	is	not	possible,	he	concluded	that	social	science	is	more	like
astronomy	 than	 physics,	with	 insights	 deduced	 from	 passive	 observation.	And
so,	 seeking	 to	uncover	 the	 laws	of	 social	physics,	he	 studied	 the	 temporal	 and
cultural	variation	in	l’homme	moyen.

Quételet’s	 ideas	were	well	 received,	 especially	 in	 France	 and	Great	Britain.
One	physiologist	 even	collected	urine	 from	a	 railroad-station	urinal	 frequented
by	 people	 of	 many	 nationalities	 in	 order	 to	 determine	 the	 properties	 of	 the
“average	 European	 urine.”25	 In	 Britain,	 Quételet’s	 most	 enthusiastic	 disciple
was	 a	 wealthy	 chess	 player	 and	 historian	 named	 Henry	 Thomas	 Buckle,	 best
known	 for	 an	 ambitious	 multivolume	 book	 called	 History	 of	 Civilization	 in
England.	Unfortunately,	in	1861,	when	he	was	forty,	Buckle	caught	typhus	while
traveling	 in	 Damascus.	 Offered	 the	 services	 of	 a	 local	 physician,	 he	 refused
because	the	man	was	French,	and	so	he	died.	Buckle	hadn’t	finished	his	treatise.
But	he	did	complete	the	initial	two	volumes,	the	first	of	which	presented	history
from	a	statistical	point	of	view.	It	was	based	on	the	work	of	Quételet	and	was	an
instant	success.	Read	throughout	Europe,	it	was	translated	into	French,	German,
and	Russian.	Darwin	read	it;	Alfred	Russel	Wallace	read	it;	Dostoyevsky	read	it



twice.26

Despite	 the	 book’s	 popularity,	 the	 verdict	 of	 history	 is	 that	 Quételet’s
mathematics	proved	more	sensible	than	his	social	physics.	For	one	thing,	not	all
that	 happens	 in	 society,	 especially	 in	 the	 financial	 realm,	 is	 governed	 by	 the
normal	 distribution.	 For	 example,	 if	 film	 revenue	 were	 normally	 distributed,
most	 films	 would	 earn	 near	 some	 average	 amount,	 and	 two-thirds	 of	 all	 film
revenue	would	 fall	within	a	 standard	deviation	of	 that	number.	But	 in	 the	 film
business,	20	percent	of	the	movies	bring	in	80	percent	of	the	revenue.	Such	hit-
driven	 businesses,	 though	 thoroughly	 unpredictable,	 follow	 a	 far	 different
distribution,	one	for	which	the	concepts	of	mean	and	standard	deviation	have	no
meaning	because	there	is	no	“typical”	performance,	and	megahit	outliers,	which
in	an	ordinary	business	might	occur	only	once	every	few	centuries,	happen	every
few	years.27

More	 important	 than	 his	 ignoring	 other	 probability	 distributions,	 though,	 is
Quételet’s	failure	 to	make	much	progress	 in	uncovering	the	laws	and	forces	he
sought.	So	in	the	end	his	direct	impact	on	the	social	sciences	proved	modest,	yet
his	 legacy	is	both	undeniable	and	far-reaching.	It	 lies	not	 in	the	social	sciences
but	 in	 the	 “hard”	 sciences,	 where	 his	 approach	 to	 understanding	 the	 order	 in
large	 numbers	 of	 random	 events	 inspired	 many	 scholars	 and	 spawned
revolutionary	work	that	transformed	the	manner	of	thinking	in	both	biology	and
physics.

									
IT	 WAS	 CHARLES	 DARWIN’S	 FIRST	 COUSIN	 who	 introduced	 statistical
thinking	 to	 biology.	 A	 man	 of	 leisure,	 Francis	 Galton	 had	 entered	 Trinity
College,	 Cambridge,	 in	 1840.28	 He	 first	 studied	 medicine	 but	 then	 followed
Darwin’s	advice	and	changed	his	field	to	mathematics.	He	was	twenty-two	when
his	father	died	and	he	inherited	a	substantial	sum.	Never	needing	to	work	for	a
living,	 he	 became	 an	 amateur	 scientist.	 His	 obsession	 was	 measurement.	 He
measured	 the	 size	 of	 people’s	 heads,	 noses,	 and	 limbs,	 the	 number	 of	 times
people	 fidgeted	while	 listening	 to	 lectures,	 and	 the	 degree	 of	 attractiveness	 of
girls	he	passed	on	the	street	(London	girls	scored	highest;	Aberdeen,	lowest).	He
measured	the	characteristics	of	people’s	fingerprints,	an	endeavor	that	led	to	the
adoption	 of	 fingerprint	 identification	 by	 Scotland	 Yard	 in	 1901.	 He	 even



measured	the	life	spans	of	sovereigns	and	clergymen,	which,	being	similar	to	the
life	spans	of	people	in	other	professions,	led	him	to	conclude	that	prayer	brought
no	benefit.

In	 his	 1869	 book,	Hereditary	Genius,	 Galton	 wrote	 that	 the	 fraction	 of	 the
population	in	any	given	range	of	heights	must	be	nearly	uniform	over	time	and
that	 the	 normal	 distribution	 governs	 height	 and	 every	 other	 physical	 feature:
circumference	of	the	head,	size	of	the	brain,	weight	of	the	gray	matter,	number
of	brain	fibers,	and	so	on.	But	Galton	didn’t	stop	there.	He	believed	that	human
character,	 too,	 is	 determined	 by	 heredity	 and,	 like	 people’s	 physical	 features,
obeys	in	some	manner	the	normal	distribution.	And	so,	according	to	Galton,	men
are	 not	 “of	 equal	 value,	 as	 social	 units,	 equally	 capable	 of	 voting,	 and	 the
rest.”29	 Instead,	 he	 asserted,	 about	 250	 out	 of	 every	 1	 million	 men	 inherit
exceptional	 ability	 in	 some	area	 and	as	 a	 result	 become	eminent	 in	 their	 field.
(As,	 in	 his	 day,	 women	 did	 not	 generally	 work,	 he	 did	 not	 make	 a	 similar
analysis	 of	 them.)	Galton	 founded	 a	 new	 field	 of	 study	 based	 on	 those	 ideas,
calling	it	eugenics,	from	the	Greek	words	eu	(good)	and	genos	(birth).	Over	the
years,	eugenics	has	meant	many	different	 things	 to	many	different	people.	The
term	and	some	of	his	ideas	were	adopted	by	the	Nazis,	but	there	is	no	evidence
that	Galton	would	have	approved	of	the	Germans’	murderous	schemes.	His	hope,
rather,	 was	 to	 find	 a	 way	 to	 improve	 the	 condition	 of	 humankind	 through
selective	breeding.

Much	 of	 chapter	 9	 is	 devoted	 to	 understanding	 the	 reasons	Galton’s	 simple
cause-and-effect	 interpretation	 of	 success	 is	 so	 seductive.	 But	 we’ll	 see	 in
chapter	10	 that	because	of	 the	myriad	of	 foreseeable	and	chance	obstacles	 that
must	be	overcome	to	complete	a	task	of	any	complexity,	the	connection	between
ability	and	accomplishment	is	far	less	direct	than	anything	that	can	possibly	be
explained	 by	Galton’s	 ideas.	 In	 fact,	 in	 recent	 years	 psychologists	 have	 found
that	the	ability	to	persist	in	the	face	of	obstacles	is	at	least	as	important	a	factor
in	 success	 as	 talent.30	 That’s	 why	 experts	 often	 speak	 of	 the	 “ten-year	 rule,”
meaning	 that	 it	 takes	 at	 least	 a	 decade	 of	 hard	work,	 practice,	 and	 striving	 to
become	 highly	 successful	 in	most	 endeavors.	 It	might	 seem	 daunting	 to	 think
that	 effort	 and	chance,	 as	much	as	 innate	 talent,	 are	what	 counts.	But	 I	 find	 it
encouraging	because,	while	our	genetic	makeup	is	out	of	our	control,	our	degree
of	 effort	 is	 up	 to	 us.	 And	 the	 effects	 of	 chance,	 too,	 can	 be	 controlled	 to	 the
extent	 that	 by	 committing	 ourselves	 to	 repeated	 attempts,	we	 can	 increase	 our



odds	of	success.

Whatever	 the	 pros	 and	 cons	 of	 eugenics,	Galton’s	 studies	 of	 inheritance	 led
him	to	discover	two	mathematical	concepts	that	are	central	to	modern	statistics.
One	came	to	him	in	1875,	after	he	distributed	packets	of	sweet	pea	pods	to	seven
friends.	Each	friend	received	seeds	of	uniform	size	and	weight	and	returned	 to
Galton	 the	 seeds	 of	 the	 successive	 generations.	 On	 measuring	 them,	 Galton
noticed	 that	 the	median	diameter	 of	 the	 offspring	of	 large	 seeds	was	 less	 than
that	of	the	parents,	whereas	the	median	diameter	of	the	offspring	of	small	seeds
was	greater	 than	 that	of	 the	parents.	Later,	 employing	data	he	obtained	 from	a
laboratory	he	had	set	up	in	London,	he	noticed	the	same	effect	in	the	height	of
human	 parents	 and	 children.	 He	 dubbed	 the	 phenomenon—that	 in	 linked
measurements,	 if	one	measured	quantity	 is	 far	 from	its	mean,	 the	other	will	be
closer	to	its	mean—regression	toward	the	mean.

Galton	soon	realized	that	processes	that	did	not	exhibit	regression	toward	the
mean	would	eventually	go	out	of	control.	For	example,	suppose	the	sons	of	tall
fathers	would	on	average	be	as	tall	as	their	fathers.	Since	heights	vary,	some	sons
would	be	 taller.	Now	imagine	 the	next	generation,	and	suppose	 the	sons	of	 the
taller	sons,	grandsons	of	 the	original	men,	were	also	on	average	as	tall	as	 their
fathers.	Some	of	them,	too,	would	have	to	be	taller	than	their	fathers.	In	this	way,
as	 generation	 followed	 generation,	 the	 tallest	 humans	 would	 be	 ever	 taller.
Because	of	regression	toward	the	mean,	that	does	not	happen.	The	same	can	be
said	of	innate	intelligence,	artistic	talent,	or	the	ability	to	hit	a	golf	ball.	And	so
very	 tall	 parents	 should	 not	 expect	 their	 children	 to	 be	 as	 tall,	 very	 brilliant
parents	should	not	expect	 their	children	to	be	as	brilliant,	and	the	Picassos	and
Tiger	 Woodses	 of	 this	 world	 should	 not	 expect	 their	 children	 to	 match	 their
accomplishments.	 On	 the	 other	 hand,	 very	 short	 parents	 can	 expect	 taller
offspring,	 and	 those	 of	 us	who	 are	 not	 brilliant	 or	 can’t	 paint	 have	 reasonable
hope	that	our	deficiencies	will	be	improved	upon	in	the	next	generation.

At	his	 laboratory,	Galton	 attracted	 subjects	 through	 advertisements	 and	 then
subjected	 them	 to	 a	 series	 of	 measurements	 of	 height,	 weight,	 even	 the
dimensions	of	 certain	bones.	His	goal	was	 to	 find	 a	method	 for	 predicting	 the
measurements	of	children	based	on	those	of	their	parents.	One	of	Galton’s	plots
showed	 parents’	 heights	 versus	 the	 heights	 of	 their	 offspring.	 If,	 say,	 those
heights	were	always	equal,	the	graph	would	be	a	neat	line	rising	at	45	degrees.	If
that	relationship	held	on	average	but	individual	data	points	varied,	then	the	data



would	 show	 some	 scatter	 above	 and	 below	 that	 line.	 Galton’s	 graphs	 thus
exhibited	visually	not	just	the	general	relationship	between	the	heights	of	parent
and	 offspring	 but	 also	 the	 degree	 to	 which	 the	 relationship	 holds.	 That	 was
Galton’s	 other	 major	 contribution	 to	 statistics:	 defining	 a	 mathematical	 index
describing	 the	consistency	of	 such	 relationships.	He	called	 it	 the	coefficient	of
correlation.

The	coefficient	of	correlation	is	a	number	between	-1	and	1;	if	it	is	near	±	1,	it
indicates	that	two	variables	are	linearly	related;	a	coefficient	of	0	means	there	is
no	 relation.	For	example,	 if	data	 revealed	 that	by	eating	 the	 latest	McDonald’s
1,000-calorie	meal	once	a	week,	people	gained	10	pounds	a	year	and	by	eating	it
twice	a	week	they	gained	20	pounds,	and	so	on,	the	correlation	coefficient	would
be	1.	If	for	some	reason	everyone	were	to	instead	lose	those	amounts	of	weight,
the	correlation	coefficient	would	be	-1.	And	if	the	weight	gain	and	loss	were	all
over	the	map	and	didn’t	depend	on	meal	consumption,	the	coefficient	would	be
0.	Today	correlation	coefficients	are	among	the	most	widely	employed	concepts
in	 statistics.	 They	 are	 used	 to	 assess	 such	 relationships	 as	 those	 between	 the
number	of	cigarettes	 smoked	and	 the	 incidence	of	cancer,	 the	distance	of	 stars
from	Earth	and	the	speed	with	which	they	are	moving	away	from	our	planet,	and
the	scores	students	achieve	on	standardized	tests	and	the	income	of	the	students’
families.

Galton’s	work	was	significant	not	just	for	its	direct	importance	but	because	it
inspired	much	of	the	statistical	work	done	in	the	decades	that	followed,	in	which
the	 field	 of	 statistics	 grew	 rapidly	 and	matured.	One	 of	 the	most	 important	 of
these	advances	was	made	by	Karl	Pearson,	a	disciple	of	Galton’s.	Earlier	in	this
chapter,	 I	 mentioned	many	 types	 of	 data	 that	 are	 distributed	 according	 to	 the
normal	distribution.	But	with	a	 finite	 set	of	data	 the	 fit	 is	never	perfect.	 In	 the
early	 days	 of	 statistics,	 scientists	 sometimes	 determined	 whether	 data	 were
normally	 distributed	 simply	 by	 graphing	 them	 and	 observing	 the	 shape	 of	 the
resulting	 curve.	 But	 how	 do	 you	 quantify	 the	 accuracy	 of	 the	 fit?	 Pearson
invented	 a	 method,	 called	 the	 chi-square	 test,	 by	 which	 you	 can	 determine
whether	 a	 set	 of	 data	 actually	 conforms	 to	 the	 distribution	 you	 believe	 it
conforms	to.	He	demonstrated	his	test	in	Monte	Carlo	in	July	1892,	performing	a
kind	of	rigorous	repeat	of	Jagger’s	work.31	In	Pearson’s	test,	as	in	Jagger’s,	the
numbers	 that	 came	up	on	 a	 roulette	wheel	 did	not	 follow	 the	distribution	 they
would	have	followed	if	the	wheel	had	produced	random	results.	In	another	test,



Pearson	examined	how	many	5s	and	6s	came	up	in	26,306	tosses	of	twelve	dice.
He	found	that	the	distribution	was	not	one	you’d	see	in	a	chance	experiment	with
fair	dice—that	is,	in	an	experiment	in	which	the	probability	of	a	5	or	a	6	on	one
roll	were	1	in	3,	or	0.3333.	But	it	was	consistent	if	the	probability	of	a	5	or	a	6
were	0.3377—that	is,	if	the	dice	were	skewed.	In	the	case	of	the	roulette	wheel
the	 game	may	 have	 been	 rigged,	 but	 the	 dice	were	 probably	 biased	 owing	 to
variations	 in	 manufacturing,	 which	 my	 friend	 Moshe	 emphasized	 are	 always
present.

Today	 chi-square	 tests	 are	 widely	 employed.	 Suppose,	 for	 instance,	 that
instead	 of	 testing	 dice,	 you	wish	 to	 test	 three	 cereal	 boxes	 for	 their	 consumer
appeal.	If	consumers	have	no	preference,	you	would	expect	about	1	in	3	of	those
polled	 to	 vote	 for	 each	 box.	 As	 we’ve	 seen,	 the	 actual	 results	 will	 rarely	 be
distributed	 so	 evenly.	 Employing	 the	 chi-square	 test,	 you	 can	 determine	 how
likely	it	is	that	the	winning	box	received	more	votes	due	to	consumer	preference
rather	 than	 to	 chance.	 Similarly,	 suppose	 researchers	 at	 a	 pharmaceutical
company	 perform	 an	 experiment	 in	 which	 they	 test	 two	 treatments	 used	 in
preventing	acute	transplant	rejection.	They	can	use	a	chi-square	test	to	determine
whether	 there	 is	 a	 statistically	 significant	 difference	 between	 the	 results.	 Or
suppose	 that	 before	 opening	 a	 new	 outlet,	 the	 CFO	 of	 a	 rental	 car	 company
expects	 that	 25	 percent	 of	 the	 company’s	 customers	 will	 request	 subcompact
cars,	50	percent	will	want	compacts,	and	12.5	percent	each	will	ask	for	cars	 in
the	midsize	and	“other”	categories.	When	the	data	begin	to	come	in,	a	chi-square
test	can	help	the	CFO	quickly	decide	whether	his	assumption	was	correct	or	the
new	site	is	atypical	and	the	company	would	do	well	to	alter	the	mix.

Through	Galton,	Quételet’s	work	infused	the	biological	sciences.	But	Quételet
also	helped	spur	a	revolution	in	the	physical	sciences:	both	James	Clerk	Maxwell
and	 Ludwig	 Boltzmann,	 two	 of	 the	 founders	 of	 statistical	 physics,	 drew
inspiration	from	Quételet’s	theories.	(Like	Darwin	and	Dostoyevsky,	they	read	of
them	 in	 Buckle’s	 book.)	 After	 all,	 if	 the	 chests	 of	 5,738	 Scottish	 soldiers
distribute	 themselves	nicely	along	 the	curve	of	 the	normal	distribution	and	 the
average	yearly	mileage	of	200	million	drivers	can	vary	by	as	little	as	100	miles
from	year	to	year,	it	doesn’t	take	an	Einstein	to	guess	that	the	10	septillion	or	so
molecules	 in	 a	 liter	 of	 gas	 might	 exhibit	 some	 interesting	 regularities.	 But
actually	 it	 did	 take	 an	 Einstein	 to	 finally	 convince	 the	 scientific	 world	 of	 the
need	for	that	new	approach	to	physics.	Albert	Einstein	did	it	in	1905,	the	same



year	in	which	he	published	his	first	work	on	relativity.	And	though	hardly	known
in	 popular	 culture,	 Einstein’s	 1905	 paper	 on	 statistical	 physics	 proved	 equally
revolutionary.	In	the	scientific	literature,	in	fact,	it	would	become	his	most	cited
work.32

									
EINSTEIN’S	 1905	 WORK	 on	 statistical	 physics	 was	 aimed	 at	 explaining	 a
phenomenon	 called	 Brownian	 motion.	 The	 process	 was	 named	 for	 Robert
Brown,	 botanist,	 world	 expert	 in	 microscopy,	 and	 the	 person	 credited	 with
writing	 the	 first	 clear	 description	 of	 the	 cell	 nucleus.	 Brown’s	 goal	 in	 life,
pursued	 with	 relentless	 energy,	 was	 to	 discover	 through	 his	 observations	 the
source	 of	 the	 life	 force,	 a	 mysterious	 influence	 believed	 in	 his	 day	 to	 endow
something	with	the	property	of	being	alive.	In	that	quest,	Brown	was	doomed	to
failure,	but	one	day	in	June	1827,	he	thought	he	had	succeeded.

Peering	 through	 his	 lens,	 Brown	 noted	 that	 the	 granules	 inside	 the	 pollen
grains	he	was	observing	seemed	to	be	moving.33	Though	a	source	of	life,	pollen
is	 not	 itself	 a	 living	 being.	Yet	 as	 long	 as	Brown	 stared,	 the	movement	 never
ceased,	 as	 if	 the	 granules	 possessed	 some	 mysterious	 energy.	 This	 was	 not
intentioned	movement;	 it	seemed,	 in	fact,	 to	be	completely	random.	With	great
excitement,	 Brown	 concluded	 at	 first	 that	 he	 had	 bagged	 his	 quarry,	 for	what
could	this	energy	be	but	the	energy	that	powers	life	itself?

In	 a	 string	 of	 experiments	 he	 performed	 assiduously	 over	 the	 next	 month,
Brown	 observed	 the	 same	 kind	 of	 movement	 when	 suspending	 in	 water,	 and
sometimes	in	gin,	as	wide	a	variety	of	organic	particles	as	he	could	get	his	hands
on:	 decomposing	 fibers	 of	 veal,	 spider’s	 web	 “blackened	 with	 London	 dust,”
even	his	own	mucus.	Then,	 in	 a	deathblow	 to	his	wishful	 interpretation	of	 the
discovery,	Brown	also	observed	the	motion	when	looking	at	inorganic	particles
—of	asbestos,	copper,	bismuth,	antimony,	and	manganese.	He	knew	then	that	the
movement	he	was	observing	was	unrelated	to	the	issue	of	life.	The	true	cause	of
Brownian	 motion	 would	 prove	 to	 be	 the	 same	 force	 that	 compelled	 the
regularities	in	human	behavior	that	Quételet	had	noted—not	a	physical	force	but
an	apparent	force	arising	from	the	patterns	of	randomness.	Unfortunately,	Brown
did	not	live	to	see	this	explanation	of	the	phenomenon	he	observed.



The	 groundwork	 for	 the	 understanding	 of	Brownian	motion	was	 laid	 in	 the
decades	 that	 followed	 Brown’s	 work,	 by	 Boltzmann,	 Maxwell,	 and	 others.
Inspired	by	Quételet,	they	created	the	new	field	of	statistical	physics,	employing
the	 mathematical	 edifice	 of	 probability	 and	 statistics	 to	 explain	 how	 the
properties	 of	 fluids	 arise	 from	 the	movement	 of	 the	 (then	 hypothetical)	 atoms
that	 make	 them	 up.	 Their	 ideas	 did	 not	 catch	 on	 for	 several	 more	 decades,
however.	 Some	 scientists	 had	 mathematical	 issues	 with	 the	 theory.	 Others
objected	because	at	the	time	no	one	had	ever	seen	an	atom	and	no	one	believed
anyone	ever	would.	But	most	physicists	are	practical,	and	so	the	most	important
roadblock	to	acceptance	was	that	although	the	theory	reproduced	some	laws	that
were	 known,	 it	 made	 few	 new	 predictions.	 And	 so	 matters	 stood	 until	 1905,
when	long	after	Maxwell	was	dead	and	shortly	before	a	despondent	Boltzmann
would	commit	suicide,	Einstein	employed	the	nascent	theory	to	explain	in	great
numerical	detail	the	precise	mechanism	of	Brownian	motion.34	The	necessity	of
a	statistical	approach	to	physics	would	never	again	be	in	doubt,	and	the	idea	that
matter	 is	 made	 of	 atoms	 and	molecules	 would	 prove	 to	 be	 the	 basis	 of	 most
modern	technology	and	one	of	the	most	important	ideas	in	the	history	of	physics.

The	 random	motion	of	molecules	 in	 a	 fluid	 can	be	viewed,	 as	we’ll	 note	 in
chapter	10,	as	a	metaphor	for	our	own	paths	through	life,	and	so	it	is	worthwhile
to	 take	 a	 little	 time	 to	 give	 Einstein’s	 work	 a	 closer	 look.	 According	 to	 the
atomic	 picture,	 the	 fundamental	 motion	 of	 water	 molecules	 is	 chaotic.	 The
molecules	 fly	 first	 this	 way,	 then	 that,	 moving	 in	 a	 straight	 line	 only	 until
deflected	 by	 an	 encounter	 with	 one	 of	 their	 sisters.	 As	 mentioned	 in	 the
Prologue,	 this	 type	 of	 path—in	 which	 at	 various	 points	 the	 direction	 changes
randomly—is	often	called	a	drunkard’s	walk,	for	reasons	obvious	to	anyone	who
has	 ever	 enjoyed	 a	 few	 too	 many	 martinis	 (more	 sober	 mathematicians	 and
scientists	sometimes	call	it	a	random	walk).	If	particles	that	float	in	a	liquid	are,
as	atomic	theory	predicts,	constantly	and	randomly	bombarded	by	the	molecules
of	 the	 liquid,	 one	might	 expect	 them	 to	 jiggle	 this	way	 and	 that	 owing	 to	 the
collisions.	 But	 there	 are	 two	 problems	 with	 that	 picture	 of	 Brownian	motion:
first,	 the	 molecules	 are	 far	 too	 light	 to	 budge	 the	 visible	 floating	 particles;
second,	molecular	collisions	occur	far	more	frequently	than	the	observed	jiggles.
Part	 of	 Einstein’s	 genius	 was	 to	 realize	 that	 those	 two	 problems	 cancel	 each
other	out:	though	the	collisions	occur	very	frequently,	because	the	molecules	are
so	light,	those	frequent	isolated	collisions	have	no	visible	effect.	It	is	only	when
pure	 luck	 occasionally	 leads	 to	 a	 lopsided	 preponderance	 of	 hits	 from	 some



particular	 direction—the	 molecular	 analogue	 of	 Roger	 Maris’s	 record	 year	 in
baseball—that	a	noticeable	jiggle	occurs.	When	Einstein	did	the	math,	he	found
that	 despite	 the	 chaos	 on	 the	 microscopic	 level,	 there	 was	 a	 predictable
relationship	 between	 factors	 such	 as	 the	 size,	 number,	 and	 speed	 of	 the
molecules	and	the	observable	frequency	and	magnitude	of	the	jiggling.	Einstein
had,	for	the	first	time,	connected	new	and	measurable	consequences	to	statistical
physics.	 That	 might	 sound	 like	 a	 largely	 technical	 achievement,	 but	 on	 the
contrary,	 it	 represented	the	triumph	of	a	great	principle:	 that	much	of	 the	order
we	perceive	 in	nature	belies	an	 invisible	underlying	disorder	and	hence	can	be
understood	 only	 through	 the	 rules	 of	 randomness.	 As	 Einstein	 wrote,	 “It	 is	 a
magnificent	 feeling	 to	 recognize	 the	 unity	 of	 a	 complex	 of	 phenomena	which
appear	to	be	things	quite	apart	from	the	direct	visible	truth.”35

In	 Einstein’s	 mathematical	 analysis	 the	 normal	 distribution	 again	 played	 a
central	 role,	 reaching	 a	 new	 place	 of	 glory	 in	 the	 history	 of	 science.	 The
drunkard’s	walk,	too,	became	established	as	one	of	the	most	fundamental—and
soon	one	of	the	most	studied—processes	in	nature.	For	as	scientists	in	all	fields
began	 to	 accept	 the	 statistical	 approach	 as	 legitimate,	 they	 recognized	 the
thumbprints	 of	 the	 drunkard’s	 walk	 in	 virtually	 all	 areas	 of	 study—in	 the
foraging	 of	 mosquitoes	 through	 cleared	 African	 jungle,	 in	 the	 chemistry	 of
nylon,	in	the	formation	of	plastics,	in	the	motion	of	free	quantum	particles,	in	the
movement	 of	 stock	 prices,	 even	 in	 the	 evolution	 of	 intelligence	 over	 eons	 of
time.	We’ll	examine	the	effects	of	randomness	on	our	own	paths	through	life	in
chapter	 10.	 But	 as	 we’re	 about	 to	 see,	 though	 in	 random	 variation	 there	 are
orderly	patterns,	patterns	are	not	always	meaningful.	And	as	important	as	it	is	to
recognize	 the	 meaning	 when	 it	 is	 there,	 it	 is	 equally	 important	 not	 to	 extract
meaning	 when	 it	 is	 not	 there.	 Avoiding	 the	 illusion	 of	 meaning	 in	 random
patterns	is	a	difficult	task.	It	is	the	subject	of	the	following	chapter.



CHAPTER	9

Illusions	of	Patterns	and	Patterns	of	Illusion

IN	1848	TWO	TEENAGE	GIRLS,	Margaret	and	Kate	Fox,	heard	unexplained
noises,	like	knocking	or	the	moving	of	furniture.	Their	house,	it	happened,	had	a
reputation	for	being	haunted.	As	the	story	goes,1	Kate	challenged	the	source	of
the	noises	to	repeat	the	snap	of	her	fingers	and	to	rap	out	her	age.	It	rose	to	both
challenges.	 Over	 the	 next	 few	 days,	 with	 their	mother’s	 and	 some	 neighbors’
assistance,	 the	 sisters	worked	 out	 a	 code	with	which	 they	 could	 communicate
with	 the	 rapper	 (no	pun	 intended).	They	 concluded	 that	 the	 rapping	originated
with	 the	 spirit	 of	 a	 peddler	who	 had	 been	murdered	 years	 earlier	 in	 the	 home
they	now	occupied.	With	that,	modern	spiritualism—the	belief	that	the	dead	can
communicate	with	the	living—was	born.	By	the	early	1850s	a	particular	type	of
spiritual	 contact,	 called	 table	 rapping,	 and	 its	 cousins,	 table	moving	 and	 table
turning,	 had	 become	 the	 rage	 in	 the	United	 States	 and	Europe.	 The	 enterprise
consisted	of	a	group	of	individuals	arranging	themselves	around	a	table,	resting
their	hands	upon	it,	and	waiting.	In	table	rapping,	after	some	time	passed,	a	rap
would	be	heard.	 In	 table	moving	and	table	 turning,	after	 time	passed,	 the	 table
would	begin	to	tilt	or	move	about,	sometimes	dragging	the	sitters	along	with	it.
One	 pictures	 serious	 bearded	 men	 with	 jackets	 reaching	 their	 midthigh	 and
ardent	women	 in	hoop	skirts,	eyes	wide	 in	wonder	as	 their	hands	 followed	 the
table	this	way	or	that.

Table	moving	became	so	popular	that	in	the	summer	of	1853	scientists	began
to	look	into	it.	One	group	of	physicians	noted	that	during	the	silent	sitting	period
a	kind	of	unconscious	consensus	seemed	to	form	about	the	direction	in	which	the
table	would	move.2	They	found	that	when	they	diverted	the	sitters’	attention	so
that	a	common	expectation	could	not	 form,	 the	 table	did	not	move.	 In	another
trial	 they	managed	 to	 create	 a	 condition	 in	which	 half	 the	 sitters	 expected	 the
table	to	move	to	the	left	and	half	expected	it	to	move	to	the	right,	and	again	it	did
not	move.	They	concluded	that	“the	motion	was	due	to	muscular	action,	mostly



exercised	unconsciously.”	But	the	definitive	investigation	was	performed	by	the
physicist	 Michael	 Faraday,	 one	 of	 the	 founders	 of	 electromagnetic	 theory,
inventor	of	the	electric	motor,	and	one	of	the	greatest	experimental	scientists	in
history.3	Faraday	 first	discovered	 that	 the	phenomenon	would	occur	even	with
just	one	subject	sitting	at	the	table.	Then,	enrolling	subjects	who	were	both	“very
honorable”	and	accomplished	table	movers,	he	conducted	a	series	of	 ingenious
and	 intricate	 experiments	 proving	 that	 the	 movement	 of	 the	 sitters’	 hands
preceded	 that	 of	 the	 table.	 Further,	 he	 designed	 an	 indicator	 that	 alerted	 the
subjects	 in	 real	 time	whenever	 that	was	 occurring.	He	 found	 that	 “as	 soon	 as
the…[indicator]	 is	placed	before	 the	most	earnest	 [subject]…the	power	 [of	 the
illusion]	 is	gone;	and	this	only	because	the	parties	are	made	conscious	of	what
they	are	really	doing.”4

Faraday	 concluded,	 as	 the	 doctors	 had,	 that	 the	 sitters	 were	 unconsciously
pulling	 and	 pushing	 the	 table.	 The	 movement	 probably	 began	 as	 random
fidgeting.	Then	at	some	point	the	sitters	perceived	in	the	randomness	a	pattern.
That	 pattern	 precipitated	 a	 self-fulfilling	 expectation	 as	 the	 subjects’	 hands
followed	 the	 imagined	 leadership	 of	 the	 table.	 The	 value	 of	 his	 indicator,
Faraday	wrote,	was	thus	“the	corrective	power	it	possesses	over	the	mind	of	the
table-turner.”5	 Human	 perception,	 Faraday	 recognized,	 is	 not	 a	 direct
consequence	of	reality	but	rather	an	act	of	imagination.6

Perception	 requires	 imagination	 because	 the	 data	 people	 encounter	 in	 their
lives	 are	 never	 complete	 and	 always	 equivocal.	 For	 example,	 most	 people
consider	 that	 the	greatest	evidence	of	an	event	one	can	obtain	 is	 to	 see	 it	with
their	 own	 eyes,	 and	 in	 a	 court	 of	 law	 little	 is	 held	 in	 more	 esteem	 than
eyewitness	testimony.	Yet	if	you	asked	to	display	for	a	court	a	video	of	the	same
quality	as	the	unprocessed	data	captured	on	the	retina	of	a	human	eye,	the	judge
might	wonder	what	 you	were	 trying	 to	 put	 over.	 For	 one	 thing,	 the	 view	will
have	a	blind	spot	where	the	optic	nerve	attaches	to	the	retina.	Moreover,	the	only
part	of	our	field	of	vision	with	good	resolution	is	a	narrow	area	of	about	1	degree
of	visual	angle	around	 the	 retina’s	center,	an	area	 the	width	of	our	 thumb	as	 it
looks	 when	 held	 at	 arm’s	 length.	 Outside	 that	 region,	 resolution	 drops	 off
sharply.	To	compensate,	we	constantly	move	our	eyes	to	bring	the	sharper	region
to	bear	on	different	portions	of	the	scene	we	wish	to	observe.	And	so	the	pattern
of	raw	data	sent	to	the	brain	is	a	shaky,	badly	pixilated	picture	with	a	hole	in	it.
Fortunately	 the	 brain	 processes	 the	 data,	 combining	 the	 input	 from	 both	 eyes,



filling	 in	 gaps	 on	 the	 assumption	 that	 the	 visual	 properties	 of	 neighboring
locations	 are	 similar	 and	 interpolating.7	 The	 result—at	 least	 until	 age,	 injury,
disease,	or	an	excess	of	mai	tais	takes	its	toll—is	a	happy	human	being	suffering
from	the	compelling	illusion	that	his	or	her	vision	is	sharp	and	clear.

We	 also	 use	 our	 imagination	 and	 take	 shortcuts	 to	 fill	 gaps	 in	 patterns	 of
nonvisual	data.	As	with	visual	input,	we	draw	conclusions	and	make	judgments
based	on	uncertain	and	incomplete	information,	and	we	conclude,	when	we	are
done	analyzing	the	patterns,	that	our	“picture”	is	clear	and	accurate.	But	is	it?

Scientists	have	moved	to	protect	themselves	from	identifying	false	patterns	by
developing	methods	of	statistical	analysis	to	decide	whether	a	set	of	observations
provides	good	support	for	a	hypothesis	or	whether,	on	the	contrary,	the	apparent
support	 is	 probably	 due	 to	 chance.	 For	 example,	 when	 physicists	 seek	 to
determine	whether	the	data	from	a	supercollider	is	significant,	they	don’t	eyeball
their	 graphs,	 looking	 for	 bumps	 that	 rise	 above	 the	 noise;	 they	 apply
mathematical	 techniques.	 One	 such	 technique,	 significance	 testing,	 was
developed	 in	 the	1920s	by	R.	A.	Fisher,	one	of	 the	greatest	 statisticians	of	 the
twentieth	 century	 (a	 man	 also	 known	 for	 his	 uncontrollable	 temper	 and	 for	 a
feud	 with	 his	 fellow	 statistics	 pioneer	 Karl	 Pearson	 that	 was	 so	 bitter	 he
continued	to	attack	his	nemesis	long	after	Pearson’s	death,	in	1936).

To	 illustrate	 Fisher’s	 ideas,	 suppose	 that	 a	 student	 in	 a	 research	 study	 on
extrasensory	 perception	 predicts	 the	 result	 of	 some	 coin	 tosses.	 If	 in	 our
observations	we	find	that	she	is	almost	always	right,	we	might	hypothesize	that
she	is	somehow	skilled	at	it,	for	instance,	through	psychic	powers.	On	the	other
hand,	if	she	is	right	about	half	the	time,	the	data	support	the	hypothesis	that	she
was	 just	 guessing.	But	what	 if	 the	 data	 fall	 somewhere	 in	 between	 or	 if	 there
isn’t	much	data?	Where	do	we	draw	the	line	between	accepting	and	rejecting	the
competing	 hypotheses?	 This	 is	 what	 significance	 testing	 does:	 it	 is	 a	 formal
procedure	 for	 calculating	 the	 probability	 of	 our	 having	 observed	 what	 we
observed	 if	 the	 hypothesis	we	 are	 testing	 is	 true.	 If	 the	 probability	 is	 low,	we
reject	the	hypothesis.	If	it	is	high,	we	accept	it.

For	example,	suppose	we	are	skeptics	and	hypothesize	that	the	student	cannot
accurately	predict	the	results	of	coin	tosses.	And	suppose	that	in	an	experimental
trial	she	predicts	the	coin	tosses	correctly	in	a	certain	number	of	cases.	Then	the
methods	we	analyzed	in	chapter	4	allow	us	to	calculate	the	probability	that	she



could	have	accomplished	the	predictions	by	chance	alone.	If	she	had	guessed	the
coin-toss	 results	 correctly	 so	 often	 that,	 say,	 the	 probability	 of	 her	 being	 that
successful	 by	 chance	 alone	 is	 only	 3	 percent,	 then	 we	 would	 reject	 the
hypothesis	that	she	was	guessing.	In	the	jargon	of	significance	testing,	we	would
say	the	significance	level	of	our	rejection	is	3	percent,	meaning	that	the	chances
are	at	most	3	percent	that	by	chance	the	data	has	led	us	astray.	A	3	percent	level
of	 significance	 is	 fairly	 impressive,	 and	 so	 the	media	might	 report	 the	 feat	 as
new	evidence	of	 the	 existence	 of	 psychic	 powers.	Still,	 those	 of	 us	who	don’t
believe	in	psychic	powers	might	remain	skeptical.

This	example	illustrates	an	important	point:	even	with	data	significant	at,	say,
the	3	percent	 level,	 if	you	 test	100	nonpsychic	people	 for	psychic	abilities—or
100	ineffective	drugs	for	their	effectiveness—you	ought	to	expect	a	few	people
to	show	up	as	psychic	or	a	few	ineffective	drugs	to	show	up	as	effective.	That’s
one	 reason	political	polls	or	medical	 studies,	 especially	 small	ones,	 sometimes
contradict	earlier	polls	or	studies.	Still,	significance	 testing	and	other	statistical
methods	 serve	 scientists	 well,	 especially	 when	 they	 can	 conduct	 large-scale
controlled	studies.	But	in	everyday	life	we	don’t	conduct	such	studies,	nor	do	we
intuitively	apply	statistical	analysis.	 Instead,	we	rely	on	gut	 instinct.	When	my
Viking	stove	 turned	out	 to	be	a	 lemon	and	by	chance	an	acquaintance	 told	me
she’d	had	 the	same	experience,	 I	 started	 telling	my	friends	 to	avoid	 the	brand.
When	 the	 flight	 attendants	on	 several	United	Airlines	 flights	 seemed	grumpier
than	those	on	other	airlines	I’d	recently	flown	with,	I	started	avoiding	United’s
flights.	Not	a	lot	of	data	there,	but	my	gut	instinct	identified	patterns.

Sometimes	 those	patterns	 are	meaningful.	Sometimes	 they	 are	not.	 In	 either
case,	the	fact	that	our	perception	of	the	patterns	of	life	is	both	highly	convincing
and	highly	subjective	has	profound	implications.	It	implies	a	kind	of	relativity,	a
situation	 in	which,	 as	Faraday	 found,	 reality	 is	 in	 the	 eye	of	 the	beholder.	For
example,	 in	 2006	 The	 New	 England	 Journal	 of	 Medicine	 published	 a	 $12.5
million	study	of	patients	with	documented	osteoarthritis	of	the	knee.	The	study
showed	 that	 a	 combination	 of	 the	 nutritional	 supplements	 glucosamine	 and
chondroitin	is	no	more	effective	in	relieving	arthritis	pain	than	a	placebo.	Still,
one	eminent	doctor	had	a	hard	time	letting	go	of	his	feeling	that	the	supplements
were	effective	and	ended	his	analysis	of	the	study	on	a	national	radio	program	by
reaffirming	 the	 possible	 benefit	 of	 the	 treatment,	 remarking	 that,	 “One	 of	my
wife’s	doctors	has	a	cat	and	she	says	that	this	cat	cannot	get	up	in	the	morning



without	a	little	dose	of	glucosamine	and	chondroitin	sulfate.”8

When	 we	 look	 closely,	 we	 find	 that	 many	 of	 the	 assumptions	 of	 modern
society	are	based,	as	table	moving	is,	on	shared	illusions.	Whereas	chapter	8	is
concerned	with	 the	 surprising	 regularities	exhibited	by	 random	events,	 in	what
follows,	I	shall	approach	the	issue	from	the	opposite	direction	and	examine	how
events	 whose	 patterns	 appear	 to	 have	 a	 definite	 cause	 may	 actually	 be	 the
product	of	chance.

IT	IS	HUMAN	NATURE	to	look	for	patterns	and	to	assign	them	meaning	when
we	 find	 them.	 Kahneman	 and	 Tversky	 analyzed	 many	 of	 the	 shortcuts	 we
employ	 in	 assessing	 patterns	 in	 data	 and	 in	 making	 judgments	 in	 the	 face	 of
uncertainty.	 They	 dubbed	 those	 shortcuts	 heuristics.	 In	 general,	 heuristics	 are
useful,	but	just	as	our	manner	of	processing	optical	information	sometimes	leads
to	optical	illusions,	so	heuristics	sometimes	lead	to	systematic	error.	Kahneman
and	Tversky	 called	 such	 errors	 biases.	We	all	 use	heuristics,	 and	we	 all	 suffer
from	biases.	But	although	optical	 illusions	seldom	have	much	relevance	 in	our
everyday	 world,	 cognitive	 biases	 play	 an	 important	 role	 in	 human	 decision
making.	And	 so	 in	 the	 late	 twentieth	 century	 a	movement	 sprang	 up	 to	 study
how	 randomness	 is	 perceived	by	 the	human	mind.	Researchers	 concluded	 that
“people	 have	 a	 very	 poor	 conception	 of	 randomness;	 they	 do	 not	 recognize	 it
when	they	see	it	and	they	cannot	produce	it	when	they	try,”9	and	what’s	worse,
we	routinely	misjudge	the	role	of	chance	in	our	lives	and	make	decisions	that	are
demonstrably	misaligned	with	our	own	best	interests.10

Imagine	 a	 sequence	 of	 events.	 The	 events	might	 be	 quarterly	 earnings	 or	 a
string	of	good	or	bad	dates	set	up	through	an	Internet	dating	service.	In	each	case
the	 longer	 the	 sequence,	 or	 the	 more	 sequences	 you	 look	 at,	 the	 greater	 the
probability	 that	 you’ll	 find	 every	 pattern	 imaginable—purely	 by	 chance.	As	 a
result,	a	string	of	good	or	bad	quarters,	or	dates,	need	not	have	any	“cause”	at	all.
The	point	was	 rather	 starkly	 illustrated	by	 the	mathematician	George	Spencer-
Brown,	who	wrote	that	in	a	random	series	of	101,000,007	zeroes	and	ones,	you
should	expect	at	least	10	nonoverlapping	subsequences	of	1	million	consecutive
zeros.11	 Imagine	 the	 poor	 fellow	 who	 bumps	 into	 one	 of	 those	 strings	 when



attempting	to	use	the	random	numbers	for	some	scientific	purpose.	His	software
generates	5	zeros	 in	a	 row,	 then	10,	 then	20,	1,000,	10,000,	100,000,	500,000.
Would	he	be	wrong	 to	 send	back	 the	program	and	ask	 for	a	 refund?	And	how
would	a	 scientist	 react	upon	 flipping	open	a	newly	purchased	book	of	 random
digits	only	to	find	that	all	 the	digits	are	zeros?	Spencer-Brown’s	point	was	that
there	 is	 a	 difference	 between	 a	 process	 being	 random	 and	 the	 product	 of	 that
process	 appearing	 to	 be	 random.	 Apple	 ran	 into	 that	 issue	 with	 the	 random
shuffling	method	it	initially	employed	in	its	iPod	music	players:	true	randomness
sometimes	produces	repetition,	but	when	users	heard	the	same	song	or	songs	by
the	same	artist	played	back-to-back,	they	believed	the	shuffling	wasn’t	random.
And	 so	 the	 company	 made	 the	 feature	 “less	 random	 to	 make	 it	 feel	 more
random,”	said	Apple	founder	Steve	Jobs.12

One	of	the	earliest	speculations	about	the	perception	of	random	patterns	came
from	 the	 philosopher	 Hans	 Reichenbach,	 who	 remarked	 in	 1934	 that	 people
untrained	 in	 probability	 would	 have	 difficulty	 recognizing	 a	 random	 series	 of
events.13	Consider	the	following	printout,	representing	the	results	of	a	sequence
of	 200	 tosses	 of	 a	 coin,	 with	 X	 representing	 tails	 and	 O	 representing	 heads:
ooooxxxxoooxxxooooxxooxoooxxxooxxoooxxxxoooxooxoxoooooxooxoooooxxooxxxoxxoxoxxxxoooxxooxxoxooxxxooxooxoxoxxoxoooxoxooooxxxxoooxxooxoxxoooxoooxxoxooxxooooxooxxxxooooxxxoooxoooxxxxxxooxxxooxooxoooooxxxx.
It	is	easy	to	find	patterns	in	the	data—for	instance,	the	four	Os	followed	by	four
Xs	 at	 the	 beginning	 and	 the	 run	 of	 six	 Xs	 toward	 the	 end.	 According	 to	 the
mathematics	of	randomness,	such	runs	are	to	be	expected	in	200	random	tosses.
Yet	 they	 surprise	most	 people.	 As	 a	 result,	 when	 instead	 of	 representing	 coin
tosses,	 strings	of	Xs	 and	Os	 represent	 events	 that	 affect	our	 lives,	 people	 seek
meaningful	 explanations	 for	 the	 pattern.	When	 a	 string	of	Xs	 represents	 down
days	on	the	stock	market,	people	believe	the	experts	who	explain	that	the	market
is	 jittery.	 When	 a	 string	 of	 Os	 represents	 a	 run	 of	 accomplishments	 by	 your
favorite	sports	star,	announcers	sound	convincing	when	they	drone	on	about	the
player’s	 “streakiness.”	 And	 when,	 as	 we	 saw	 earlier,	 the	 Xs	 or	 Os	 stood	 for
strings	 of	 failed	 films	 made	 by	 Paramount	 and	 Columbia	 Pictures,	 everyone
nodded	 as	 the	 industry	 rags	 proclaimed	 just	who	 did	 and	who	 did	 not	 have	 a
finger	on	the	pulse	of	the	worldwide	movie	audience.

Academics	 and	 writers	 have	 devoted	 much	 effort	 to	 studying	 patterns	 of
random	success	 in	 the	financial	markets.	There	 is	much	evidence,	 for	 instance,
that	 the	performance	of	stocks	 is	 random—or	so	close	 to	being	random	that	 in
the	absence	of	insider	information	and	in	the	presence	of	a	cost	to	make	trades	or



manage	your	portfolio,	you	can’t	profit	from	any	deviations	from	randomness.14
Nevertheless,	Wall	Street	has	a	long	tradition	of	guru	analysts,	and	the	average
analyst’s	salary,	at	the	end	of	the	1990s,	was	about	$3	million.15	How	do	those
analysts	 do?	According	 to	 a	 1995	 study,	 the	 eight	 to	 twelve	most	 highly	 paid
“Wall	Street	superstars”	invited	by	Barron’s	to	make	market	recommendations	at
its	 annual	 roundtable	merely	matched	 the	 average	market	 return.16	 Studies	 in
1987	 and	 1997	 found	 that	 stocks	 recommended	 by	 the	 prognosticators	 on	 the
television	 show	 Wall	 $treet	 Week	 did	 much	 worse,	 lagging	 far	 behind	 the
market.17	 And	 in	 a	 study	 of	 153	 newsletters,	 a	 researcher	 at	 the	 Harvard
Institute	of	Economic	Research	found	“no	significant	evidence	of	stock-picking
ability.”18

By	 chance	 alone,	 some	 analysts	 and	 mutual	 funds	 will	 always	 exhibit
impressive	 patterns	 of	 success.	And	 though	many	 studies	 show	 that	 these	 past
market	 successes	 are	 not	 good	 indicators	 of	 future	 success—that	 is,	 that	 the
successes	were	largely	just	luck—most	people	feel	that	the	recommendations	of
their	 stockbrokers	 or	 the	 expertise	 of	 those	 running	 mutual	 funds	 are	 worth
paying	 for.	 Many	 people,	 even	 intelligent	 investors,	 therefore	 buy	 funds	 that
charge	 exorbitant	 management	 fees.	 In	 fact,	 when	 a	 group	 of	 savvy	 students
from	 the	 Wharton	 business	 school	 were	 given	 a	 hypothetical	 $10,000	 and
prospectuses	describing	four	index	funds,	each	composed	in	order	to	mirror	the
S&P	 500,	 the	 students	 overwhelmingly	 failed	 to	 choose	 the	 funds	 with	 the
lowest	fees.19	Since	paying	even	an	extra	1	percent	per	year	in	fees	could,	over
the	years,	diminish	your	 retirement	 fund	by	as	much	as	one-third	or	even	one-
half,	the	savvy	students	didn’t	exhibit	very	savvy	behavior.

Of	course,	as	Spencer-Brown’s	example	 illustrates,	 if	you	look	long	enough,
you’re	 bound	 to	 find	 someone	 who,	 through	 sheer	 luck,	 really	 has	 made
startlingly	 successful	predictions.	For	 those	who	prefer	 real-world	examples	 to
mathematical	scenarios	involving	101,000,007	random	digits,	consider	 the	case
of	the	columnist	Leonard	Koppett.20	In	1978,	Koppett	revealed	a	system	that	he
claimed	 could	 determine,	 by	 the	 end	 of	 January	 every	 year,	whether	 the	 stock
market	 would	 go	 up	 or	 down	 in	 that	 calendar	 year.	 His	 system	 had	 correctly
predicted	 the	 market,	 he	 said,	 for	 the	 past	 eleven	 years.21	 Of	 course,	 stock-
picking	 systems	 are	 easy	 to	 identify	 in	 hindsight;	 the	 true	 test	 is	whether	 they
will	work	in	the	future.	Koppett’s	system	passed	that	test	too:	judging	the	market



by	the	Dow	Jones	Industrial	Average,	 it	worked	for	eleven	straight	years,	from
1979	through	1989,	got	it	wrong	in	1990,	and	was	correct	again	every	year	until
1998.	But	although	Koppett’s	predictions	were	correct	 for	 a	 streak	of	 eighteen
out	 of	 nineteen	 years,	 I	 feel	 confident	 in	 asserting	 that	 his	 streak	 involved	 no
skill	whatsoever.	Why?	Because	Leonard	Koppett	was	a	columnist	for	Sporting
News,	 and	 his	 system	 was	 based	 on	 the	 results	 of	 the	 Super	 Bowl,	 the
championship	 game	 of	 professional	 football.	 Whenever	 the	 team	 from	 the
(original)	National	Football	League	won,	the	stock	market,	he	predicted,	would
rise.	Whenever	the	team	from	the	(original)	American	Football	League	won,	he
predicted,	the	market	would	go	down.	Given	that	information,	few	people	would
argue	that	Koppett	was	anything	but	lucky.	Yet	had	he	had	different	credentials
—and	not	 revealed	his	method—he	could	have	been	hailed	as	 the	most	 clever
analyst	since	Charles	H.	Dow.

As	a	counterpoint	to	Koppett’s	story,	consider	now	the	story	of	a	fellow	who
does	have	credentials,	a	fellow	named	Bill	Miller.	For	years,	Miller	maintained	a
winning	streak	that,	unlike	Koppett’s,	was	compared	to	Joe	DiMaggio’s	fifty-six-
game	hitting	streak	and	the	seventy-four	consecutive	victories	by	the	Jeopardy!
quiz-show	champ	Ken	 Jennings.	But	 in	 at	 least	 one	 respect	 these	 comparisons
were	not	very	apt:	Miller’s	 streak	earned	him	each	year	more	 than	 those	other
gentlemen’s	streaks	had	earned	 them	in	 their	 lifetimes.	For	Bill	Miller	was	 the
sole	portfolio	manager	of	Legg	Mason	Value	Trust	Fund,	and	in	each	year	of	his
fifteen-year	streak	his	fund	beat	the	portfolio	of	equity	securities	that	constitute
the	Standard	&	Poor’s	500.

For	his	accomplishments,	Miller	was	heralded	“the	Greatest	Money	Manager
of	 the	 1990s”	 by	 Money	 magazine,	 “Fund	 Manager	 of	 the	 Decade”	 by
Morningstar,	 and	 one	 of	 the	 top	 thirty	 most	 influential	 people	 in	 investing	 in
2001,	2003,	2004,	2005,	and	2006	by	SmartMoney.22	In	the	fourteenth	year	of
Miller’s	streak,	one	analyst	was	quoted	on	the	CNNMoney	Web	site	as	putting
the	odds	of	a	fourteen-year	streak	by	chance	alone	at	372,529	to	1	(more	on	that
later).23

Academics	 call	 the	 mistaken	 impression	 that	 a	 random	 streak	 is	 due	 to
extraordinary	performance	 the	hot-hand	 fallacy.	Much	of	 the	work	on	 the	hot-
hand	 fallacy	 has	 been	 done	 in	 the	 context	 of	 sports	 because	 in	 sports,
performance	is	easy	to	define	and	measure.	Also,	the	rules	of	the	game	are	clear



and	definite,	data	are	plentiful	and	public,	and	situations	of	interest	are	replicated
repeatedly.	 Not	 to	 mention	 that	 the	 subject	 gives	 academics	 a	 way	 to	 attend
games	and	pretend	they	are	working.

Interest	in	the	hot-hand	fallacy	began	around	1985,	in	particular	with	a	paper
by	 Tversky	 and	 his	 co-workers	 that	 was	 published	 in	 the	 journal	 Cognitive
Psychology.24	In	that	paper,	“The	Hot	Hand	in	Basketball:	On	the	Misperception
of	 Random	 Sequences,”	 Tversky	 and	 his	 colleagues	 investigated	 reams	 of
basketball	statistics.	The	players’	talent	varied,	of	course.	Some	made	half	their
shots,	 some	 more,	 some	 less.	 Each	 player	 also	 had	 occasional	 hot	 and	 cold
streaks.	The	paper’s	authors	asked	the	question,	how	do	the	number	and	length
of	 the	streaks	compare	with	what	you	would	observe	 if	 the	 result	of	each	shot
were	determined	by	a	 random	process?	That	 is,	how	would	 things	have	 turned
out	 if	 rather	 than	 shooting	 baskets,	 the	 players	 had	 tossed	 coins	 weighted	 to
reflect	 their	observed	shooting	percentages?	The	researchers	 found	 that	despite
the	 streaks,	 the	 floor	 shots	 of	 the	 Philadelphia	 76ers,	 the	 free	 throws	 of	 the
Boston	 Celtics,	 and	 the	 experimentally	 controlled	 floor	 shots	 of	 the	 Cornell
University	men’s	and	women’s	varsity	basketball	teams	exhibited	no	evidence	of
nonrandom	behavior.

In	 particular,	 one	 direct	 indicator	 of	 “streakiness”	 is	 the	 conditional
probability	of	success	(that	is,	making	a	basket)	if	on	the	prior	attempt	the	player
had	achieved	success.	For	a	streaky	player,	the	chance	of	a	success	on	the	heels
of	a	prior	success	should	be	higher	than	his	or	her	overall	chance	of	success.	But
the	authors	found	that	for	each	player	a	success	following	a	success	was	just	as
likely	as	a	success	following	a	failure	(that	is,	a	missed	basket).

A	 few	 years	 after	 Tversky’s	 paper	 appeared,	 the	 Nobel	 Prize–winning
physicist	E.	M.	Purcell	decided	to	investigate	the	nature	of	streaks	in	the	sport	of
baseball.25	As	I	mentioned	in	chapter	1,	he	found,	in	the	words	of	his	Harvard
colleague	 Stephen	 Jay	 Gould,	 that	 except	 for	 Joe	 DiMaggio’s	 fifty-six-game
hitting	 streak,	 “nothing	 ever	 happened	 in	 baseball	 above	 and	 beyond	 the
frequency	 predicted	 by	 coin-tossing	 models.”	 Not	 even	 the	 twenty-one-game
losing	 streak	 experienced	 at	 the	 start	 of	 the	 1988	 season	 by	 Major	 League
Baseball’s	 Baltimore	 Orioles.	 Bad	 players	 and	 teams	 have	 longer	 and	 more
frequent	streaks	of	failure	than	great	players	and	great	teams,	and	great	players
and	 great	 teams	 have	 longer	 and	more	 frequent	 streaks	 of	 success	 than	 lesser



players	and	lesser	teams.	But	that	is	because	their	average	failure	or	success	rate
is	higher,	and	the	higher	the	average	rate,	 the	longer	and	more	frequent	are	the
streaks	that	randomness	will	produce.	To	understand	these	events,	you	need	only
to	understand	the	tossing	of	coins.

What	about	Bill	Miller’s	streak?	That	a	streak	like	Miller’s	could	result	from	a
random	process	may	 seem	 less	 shocking	 in	 light	 of	 a	 few	other	 statistics.	 For
instance,	 in	2004	Miller’s	 fund	gained	 just	under	12	percent	while	 the	average
stock	 in	 the	S&P	gained	more	 than	15	percent.26	 It	might	 sound	 like	 the	S&P
trounced	Miller	 that	 year,	 but	 actually	 he	 counted	 2004	 in	 his	 “win”	 column.
That	is	because	the	S&P	500	is	not	the	simple	average	of	the	prices	of	the	stocks
it	 comprises;	 it	 is	 a	 weighted	 average	 in	 which	 stocks	 exert	 influence
proportional	to	each	company’s	capitalization.	Miller’s	fund	did	worse	than	the
simple	 average	of	S&P	 stocks	but	 better	 than	 that	weighted	 average.	Actually,
there	were	more	than	thirty	twelve-month	periods	during	his	streak	in	which	he
lost	to	the	weighted	average,	but	they	weren’t	calendar	years,	and	the	streak	was
based	on	the	intervals	from	January	1	to	December	31.27	So	the	streak	in	a	sense
was	an	artificial	one	to	start	with,	one	that	by	chance	was	defined	in	a	manner
that	worked	for	Miller.

But	 how	 can	 we	 reconcile	 these	 revelations	 with	 those	 372,529-to-1	 odds
against	 him?	 In	 discussing	Miller’s	 streak	 in	 2003,	 writers	 for	The	 Consilient
Observer	 newsletter	 (published	 by	 Credit	 Suisse–First	 Boston)	 said	 that	 “no
other	fund	has	ever	outperformed	the	market	for	a	dozen	consecutive	years	in	the
last	 40	 years.”	 They	 raised	 the	 question	 of	 the	 probability	 of	 a	 fund’s
accomplishing	 that	 by	 chance	 and	 went	 on	 to	 give	 three	 estimates	 of	 that
probability	(the	year	being	2003,	they	referred	to	the	chances	of	a	fund’s	beating
the	market	for	only	twelve	consecutive	years):	1	in	4,096,	1	in	477,000,	and	1	in
2.2	billion.28	To	paraphrase	Einstein,	if	their	estimates	were	correct,	they	would
have	needed	only	one.	What	were	the	actual	chances?	Roughly	3	out	of	4,	or	75
percent.	That’s	quite	a	discrepancy,	so	I’d	better	explain.

Those	who	quoted	the	low	odds	were	right	in	one	sense:	if	you	had	singled	out
Bill	Miller	in	particular	at	the	start	of	1991	in	particular	and	calculated	the	odds
that	by	pure	chance	 the	specific	person	you	selected	would	beat	 the	market	 for
precisely	 the	 next	 fifteen	 years,	 then	 those	 odds	 would	 indeed	 have	 been
astronomically	low.	You	would	have	had	the	same	odds	against	you	if	you	had



flipped	a	coin	once	a	year	for	fifteen	years	with	the	goal	of	having	it	land	heads
up	 each	 time.	But	 as	 in	 the	Roger	Maris	 home	 run	 analysis,	 those	 are	 not	 the
relevant	odds	because	there	are	thousands	of	mutual	fund	managers	(over	6,000
currently),	and	there	were	many	fifteen-year	periods	in	which	the	feat	could	have
been	 accomplished.	 So	 the	 relevant	 question	 is,	 if	 thousands	 of	 people	 are
tossing	 coins	 once	 a	 year	 and	 have	 been	 doing	 so	 for	 decades,	 what	 are	 the
chances	that	one	of	them,	for	some	fifteen-year	period,	will	toss	all	heads?	That
probability	 is	 far,	 far	higher	 than	 the	odds	of	 simply	 tossing	 fifteen	heads	 in	a
row.

To	make	 this	explanation	concrete,	 suppose	1,000	 fund	managers—certainly
an	underestimate—had	each	tossed	a	coin	once	a	year	starting	in	1991	(the	year
Miller	 began	 his	 streak).	 After	 the	 first	 year	 about	 half	 of	 them	 would	 have
tossed	heads;	after	two	years	about	one-quarter	of	them	would	have	tossed	two
heads;	after	the	third	year	one-eighth	of	them	would	have	tossed	three	heads;	and
so	on.	By	then	some	who	had	tossed	tails	would	have	started	to	drop	out	of	the
game,	but	that	wouldn’t	affect	the	analysis	because	they	had	already	failed.	The
chances	 that,	after	 fifteen	years,	a	particular	coin	 tosser	would	have	 tossed	all
heads	are	then	1	in	32,768.	But	the	chances	that	someone	among	the	1,000	who
had	started	tossing	coins	in	1991	would	have	tossed	all	heads	are	much	higher,
about	 3	percent.	Finally,	 there	 is	 no	 reason	 to	 consider	 only	 those	who	 started
tossing	coins	in	1991—the	fund	managers	could	have	started	in	1990	or	1970	or
any	 other	 year	 in	 the	 era	 of	 modern	 mutual	 funds.	 Since	 the	 writers	 for	 The
Consilient	Observer	 used	 forty	 years	 in	 their	 discussion,	 I	 calculated	 the	 odds
that	 by	 chance	 some	manager	 in	 the	 last	 four	 decades	would	 beat	 the	market
each	year	for	some	fifteen-year	period.	That	latitude	increased	the	odds	again,	to
the	probability	I	quoted	earlier,	almost	3	out	of	4.	So	rather	than	being	surprised
by	Miller’s	streak,	I	would	say	that	if	no	one	had	achieved	a	streak	like	Miller’s,
you	could	have	legitimately	complained	that	all	those	highly	paid	managers	were
performing	worse	than	they	would	have	by	blind	chance!

I’ve	cited	some	examples	of	the	hot-hand	fallacy	in	the	context	of	sports	and
the	financial	world.	But	in	all	aspects	of	our	lives	we	encounter	streaks	and	other
peculiar	 patterns	 of	 success	 and	 failure.	 Sometimes	 success	 predominates,
sometimes	 failure.	Either	way	 it	 is	 important	 in	our	own	 lives	 to	 take	 the	 long
view	and	understand	that	streaks	and	other	patterns	that	don’t	appear	random	can
indeed	 happen	 by	 pure	 chance.	 It	 is	 also	 important,	when	 assessing	 others,	 to



recognize	 that	 among	 a	 large	 group	 of	 people	 it	would	 be	 very	 odd	 if	 one	 of
them	didn’t	experience	a	long	streak	of	successes	or	failures.

No	 one	 credited	 Leonard	 Koppett	 for	 his	 lopsided	 successes,	 and	 no	 one
would	credit	a	coin	tosser.	Many	people	did	credit	Bill	Miller.	In	his	case,	though
the	 type	of	analysis	 I	performed	seems	 to	have	escaped	many	of	 the	observers
quoted	 in	 the	 media,	 it	 is	 no	 news	 to	 those	 who	 study	Wall	 Street	 from	 the
academic	perspective.	For	example,	the	Nobel	Prize–winning	economist	Merton
Miller	 (no	 relation	 to	 Bill)	 wrote,	 “If	 there	 are	 10,000	 people	 looking	 at	 the
stocks	 and	 trying	 to	 pick	winners,	 one	 in	 10,000	 is	 going	 to	 score,	 by	 chance
alone,	 and	 that’s	 all	 that’s	 going	 on.	 It’s	 a	 game,	 it’s	 a	 chance	 operation,	 and
people	think	they	are	doing	something	purposeful	but	they’re	really	not.”29	We
must	all	draw	our	own	conclusions	depending	on	the	circumstances,	but	with	an
understanding	of	how	randomness	operates,	at	least	our	conclusions	need	not	be
naive.

									
IN	THE	PRECEDING	I’ve	discussed	how	we	can	be	fooled	by	 the	patterns	 in
random	sequences	that	develop	over	time.	But	random	patterns	in	space	can	be
just	 as	misleading.	 Scientists	 know	 that	 one	 of	 the	 clearest	ways	 to	 reveal	 the
meaning	of	data	is	to	display	them	in	some	sort	of	picture	or	graph.	When	we	see
data	 exhibited	 in	 this	 manner,	 meaningful	 relationships	 that	 we	 would	 likely
have	 missed	 are	 often	 made	 obvious.	 The	 cost	 is	 that	 we	 also	 sometimes
perceive	patterns	that	in	reality	have	no	meaning.	Our	minds	are	made	that	way
—to	assimilate	data,	fill	in	gaps,	and	look	for	patterns.	For	example,	look	at	the
following	arrangement	of	grayish	squares	in	the	figure	below.



Photo	from	Frank	H.	Durgin,	“The	Tinkerbell	Effect,”	Journal	of	Consciousness
Studies	9,	nos.	5–6	(May	to	June	2002)

The	 image	 does	 not	 literally	 look	 like	 a	 human	 being.	 Yet	 you	 can	 make
enough	 sense	 of	 the	 pattern	 that	 if	 you	 saw	 in	 person	 the	 baby	 pictured,	 you
would	 probably	 recognize	 it.	 And	 if	 you	 hold	 this	 book	 at	 arm’s	 length	 and
squint,	you	might	not	even	perceive	the	imperfections	in	the	image.	Now	look	at
this	pattern	of	Xs	and	Os:

Here	we	see	rectangular	clusters,	especially	in	the	corners.	I	have	put	them	in
boldface.	If	the	Xs	and	Os	represented	events	of	interest,	we	might	be	tempted	to
wonder	if	those	clusters	signified	something.	But	any	meaning	we	assigned	them
would	be	misconceived	because	these	data	are	identical	to	the	earlier	set	of	200
random	Xs	and	Os,	except	for	the	geometric	5-by-40	arrangement	and	the	choice
of	which	letters	to	put	in	boldface.

This	very	issue	drew	much	attention	toward	the	end	of	World	War	II,	when	V2
rockets	started	raining	down	on	London.	The	rockets	were	terrifying,	traveling	at
over	five	times	the	speed	of	sound,	so	that	one	heard	them	approach	only	after
they	had	hit.	Newspapers	soon	published	maps	of	the	impact	sites,	which	seemed
to	 reveal	 not	 random	 patterns	 but	 purposeful	 clusters.	 To	 some	 observers	 the
clusters	indicated	a	precision	in	the	control	of	the	rockets’	flight	path	that,	given
the	 distance	 the	 rockets	 had	 to	 travel,	 suggested	 that	 German	 technology	was
much	more	 advanced	 than	 anyone	 had	 dreamed	 possible.	 Civilians	 speculated
that	the	areas	spared	were	home	to	German	spies.	Military	leaders	worried	that
the	Germans	could	target	crucial	military	sites,	with	devastating	consequences.

In	 1946	 a	mathematical	 analysis	 of	 the	 bombing	 data	 was	 published	 in	 the
Journal	of	the	Institute	of	Actuaries.	Its	author,	R.	D.	Clarke,	divided	the	area	of
interest	 into	 576	 parcels	 half	 a	 kilometer	 on	 each	 side.	 Of	 these,	 229	 parcels
sustained	no	hits	while,	despite	 their	minuscule	size,	8	parcels	had	four	or	five



hits.	 Still,	 Clarke’s	 analysis	 showed	 that,	 like	 the	 coin-toss	 data	 above,	 the
overall	pattern	was	consistent	with	a	random	distribution.30

Similar	issues	arise	frequently	in	reports	of	cancer	clusters.	If	you	divide	any
city	 or	 county	 into	 parcels	 and	 randomly	 distribute	 incidents	 of	 cancer,	 some
parcels	 will	 receive	 less	 than	 average	 and	 some	 more.	 In	 fact,	 according	 to
Raymond	 Richard	 Neutra,	 chief	 of	 the	 Division	 of	 Environmental	 and
Occupational	 Disease	 Control	 in	 California’s	 Department	 of	 Health,	 given	 a
typical	cancer	registry—a	database	on	local	rates	for	dozens	of	different	cancers
—for	 California’s	 5,000	 census	 tracts,	 you	 could	 expect	 to	 find	 2,750	 with
statistically	significant	but	random	elevations	of	some	form	of	cancer.31	And	if
you	look	at	a	large	enough	number	of	such	parcels,	you’ll	find	some	regions	in
which	cancer	occurred	at	many	times	the	normal	rate.

The	 picture	 looks	 even	 worse	 if	 you	 draw	 the	 parcel	 boundaries	 after	 the
cancers	are	distributed.	What	you	get	then	is	called	the	sharpshooter	effect,	after
the	apocryphal	 fellow	who	excels	 in	his	 aim	because	he	 shoots	 at	blank	paper
and	draws	the	target	afterward.	Unfortunately	 that	 is	how	it	usually	happens	in
practice:	 first	 some	citizens	notice	neighbors	with	 cancer;	 then	 they	define	 the
boundaries	of	the	area	at	issue.	Thanks	to	the	availability	of	data	on	the	Internet,
America	these	days	is	being	scoured	for	such	clusters.	Not	surprisingly,	they	are
being	found.	Yet	the	development	of	cancer	requires	successive	mutations.	That
means	 very	 long	 exposure	 and/or	 highly	 concentrated	 carcinogens.	 For	 such
clusters	of	cancer	to	develop	from	environmental	causes	and	show	themselves	in
concert	and	before	the	victims	have	moved	away	from	the	affected	area	is	quite	a
long	 shot.	 According	 to	 Neutra,	 to	 produce	 the	 kind	 of	 cancer	 clusters
epidemiologists	are	typically	called	on	to	investigate,	a	population	would	have	to
be	 exposed	 to	 concentrations	 of	 carcinogens	 that	 are	 usually	 credible	 only	 in
patients	 undergoing	 chemotherapy	 or	 in	 some	 work	 settings—far	 greater
concentrations	than	people	receive	in	contaminated	neighborhoods	and	schools.
Nevertheless,	people	resist	accepting	the	explanation	that	the	clusters	are	random
fluctuations,	and	so	each	year	state	departments	of	health	 receive	 thousands	of
residential	cancer-cluster	reports,	which	result	in	the	publication	of	hundreds	of
exhaustive	 analyses,	 none	 of	 which	 has	 convincingly	 identified	 an	 underlying
environmental	cause.	Says	Alan	Bender,	an	epidemiologist	with	 the	Minnesota
Department	of	Health,	those	studies	“are	an	absolute,	total,	and	complete	waste
of	taxpayer	dollars.”32



So	far	in	this	chapter	we	have	considered	some	of	the	ways	in	which	random
patterns	can	fool	us.	But	psychologists	have	not	contented	themselves	to	merely
study	and	categorize	such	misperceptions.	They	have	also	studied	the	reasons	we
fall	prey	to	them.	Let’s	now	turn	our	attention	to	some	of	those	factors.

									
PEOPLE	 LIKE	 TO	 EXERCISE	 CONTROL	 over	 their	 environment,	 which	 is
why	many	of	the	same	people	who	drive	a	car	after	consuming	half	a	bottle	of
scotch	will	 freak	out	 if	 the	 airplane	 they	 are	on	 experiences	minor	 turbulence.
Our	 desire	 to	 control	 events	 is	 not	 without	 purpose,	 for	 a	 sense	 of	 personal
control	is	integral	to	our	self-concept	and	sense	of	self-esteem.	In	fact,	one	of	the
most	beneficial	 things	we	can	do	 for	ourselves	 is	 to	 look	 for	ways	 to	 exercise
control	over	our	lives—or	at	least	to	look	for	ways	that	help	us	feel	that	we	do.
The	psychologist	Bruno	Bettelheim	observed,	for	instance,	that	survival	in	Nazi
concentration	 camps	 “depended	 on	 one’s	 ability	 to	 arrange	 to	 preserve	 some
areas	of	independent	action,	to	keep	control	of	some	important	aspects	of	one’s
life	despite	an	environment	that	seemed	overwhelming.”33	Later	studies	showed
that	a	prior	sense	of	helplessness	and	lack	of	control	is	linked	to	both	stress	and
the	onset	of	disease.	In	one	study	wild	rats	were	suddenly	deprived	of	all	control
over	their	environment.	They	soon	stopped	struggling	to	survive	and	died.34	In
another	 study,	 in	a	group	of	 subjects	who	were	 told	 they	were	going	 to	 take	a
battery	of	important	tests,	even	the	pointless	power	to	control	the	order	of	those
tests	was	found	to	reduce	anxiety	levels.35

One	 of	 the	 pioneers	 in	 the	 psychology	 of	 control	 is	 the	 psychologist	 and
amateur	painter	Ellen	Langer,	now	a	professor	at	Harvard.	Years	ago,	when	she
was	at	Yale,	Langer	and	a	collaborator	studied	the	effect	of	the	feeling	of	control
on	elderly	nursing	home	patients.36	One	group	was	told	they	could	decide	how
their	 rooms	would	be	arranged	and	were	allowed	to	choose	a	plant	 to	care	for.
Another	group	had	their	rooms	set	up	for	them	and	a	plant	chosen	and	tended	to
for	them.	Within	weeks	the	group	that	exercised	control	over	their	environment
achieved	 higher	 scores	 on	 a	 predesigned	measure	 of	 well-being.	 Disturbingly,
eighteen	months	later	a	follow-up	study	shocked	researchers:	the	group	that	was
not	given	control	experienced	a	death	rate	of	30	percent,	whereas	the	group	that
was	given	control	experienced	a	death	rate	of	only	15	percent.37



Why	 is	 the	human	need	 to	be	 in	 control	 relevant	 to	 a	discussion	of	 random
patterns?	Because	if	events	are	random,	we	are	not	 in	control,	and	if	we	are	 in
control	of	events,	 they	are	not	 random.	There	 is	 therefore	 a	 fundamental	 clash
between	 our	 need	 to	 feel	 we	 are	 in	 control	 and	 our	 ability	 to	 recognize
randomness.	That	clash	 is	one	of	 the	principal	reasons	we	misinterpret	 random
events.	In	fact,	inducing	people	to	mistake	luck	for	skill,	or	pointless	actions	for
control,	 is	one	of	 the	easiest	enterprises	a	research	psychologist	can	engage	 in.
Ask	people	to	control	flashing	lights	by	pressing	a	dummy	button,	and	they	will
believe	 they	 are	 succeeding	 even	 though	 the	 lights	 are	 flashing	 at	 random.38
Show	 people	 a	 circle	 of	 lights	 that	 flash	 at	 random	 and	 tell	 them	 that	 by
concentrating	they	can	cause	the	flashing	to	move	in	a	clockwise	direction,	and
they	will	astonish	themselves	with	their	ability	to	make	it	happen.	Or	have	two
groups	 simultaneously	 compete	 in	 a	 similar	 enterprise—one	 strives	 for
clockwise	 motion	 along	 the	 circle,	 and	 the	 other	 attempts	 to	 make	 the	 lights
travel	 counterclockwise—and	 the	 two	 groups	will	 simultaneously	 perceive	 the
lights	traveling	around	the	circle	in	the	direction	of	their	intention.39

Langer	showed	again	and	again	how	the	need	to	feel	in	control	interferes	with
the	accurate	perception	of	random	events.	In	one	of	her	studies,	participants	were
found	 to	 be	 more	 confident	 of	 success	 when	 competing	 against	 a	 nervous,
awkward	 rival	 than	when	 competing	 against	 a	 confident	 one	 even	 though	 the
card	game	 in	which	 they	competed,	 and	hence	 their	probability	of	 succeeding,
was	determined	purely	by	chance.40	In	another	study	she	asked	a	group	of	bright
and	well-educated	Yale	 undergraduates	 to	 predict	 the	 results	 of	 thirty	 random
coin	tosses.41	The	experimenters	secretly	manipulated	the	outcomes	so	that	each
student	was	 correct	 exactly	 half	 the	 time.	 They	 also	 arranged	 for	 some	 of	 the
students	 to	 have	 early	 streaks	of	 success.	After	 the	 coin	 tosses	 the	 researchers
quizzed	 the	students	 in	order	 to	 learn	how	 they	assessed	 their	guessing	ability.
Many	answered	as	if	guessing	a	coin	toss	were	a	skill	they	could	cultivate.	One
quarter	reported	that	their	performance	would	be	hampered	by	distraction.	Forty
percent	 felt	 that	 their	 performance	 would	 improve	 with	 practice.	 And	 when
asked	 directly	 to	 rate	 their	 ability	 at	 predicting	 the	 tosses,	 the	 students	 who
achieved	the	early	streaks	of	success	rated	themselves	better	at	the	task	than	did
the	others	even	though	the	number	of	successes	was	the	same	for	all	the	subjects.

In	another	clever	experiment,	Langer	set	up	a	lottery	in	which	each	volunteer
received	a	sports	trading	card	with	a	player’s	picture	on	it.42	A	card	identical	to



one	of	the	distributed	cards	was	placed	in	a	bag	with	the	understanding	that	the
participant	 whose	 card	 it	 matched	 would	 be	 declared	 the	 winner.	 The	 players
were	divided	into	 two	groups.	Those	in	one	group	had	been	allowed	to	choose
their	 card;	 those	 in	 the	 other	 had	 been	 handed	 a	 card	 at	 random.	 Before	 the
drawing	 each	 participant	 was	 given	 the	 opportunity	 to	 sell	 his	 or	 her	 card.
Obviously,	whether	participants	chose	 their	cards	or	were	handed	 them	had	no
effect	on	 their	 chances	of	winning.	Yet	 those	who	had	chosen	 their	 own	cards
demanded	more	 than	 four	 times	 as	much	money	 for	 them	 as	 those	 selling	 the
randomly	assigned	cards.

The	subjects	 in	Langer’s	experiments	“knew,”	at	 least	 intellectually,	 that	 the
enterprises	 in	 which	 they	 were	 engaging	 were	 random.	When	 questioned,	 for
example,	none	of	 the	participants	 in	 the	 trading-card	 lottery	said	 they	believed
that	 being	 allowed	 to	 choose	 their	 card	 had	 influenced	 their	 probability	 of
winning.	Yet	they	had	behaved	as	if	it	had.	Or	as	Langer	wrote,	“While	people
may	 pay	 lip	 service	 to	 the	 concept	 of	 chance,	 they	 behave	 as	 though	 chance
events	are	subject	to	control.”43

In	real	life	the	role	of	randomness	is	far	less	obvious	than	it	was	in	Langer’s
experiments,	and	we	are	much	more	invested	in	the	outcomes	and	our	ability	to
influence	them.	And	so	in	real	life	it	is	even	more	difficult	to	resist	the	illusion	of
control.

One	manifestation	of	that	illusion	occurs	when	an	organization	experiences	a
period	of	improvement	or	failure	and	then	readily	attributes	it	not	to	the	myriad
of	circumstances	constituting	the	state	of	the	organization	as	a	whole	and	to	luck
but	 to	 the	 person	 at	 the	 top.	 That’s	 especially	 obvious	 in	 sports,	 where,	 as	 I
mentioned	in	the	Prologue,	if	the	players	have	a	bad	year	or	two,	it	is	the	coach
who	gets	fired.	In	major	corporations,	in	which	operations	are	large	and	complex
and	 to	 a	 great	 extent	 affected	 by	 unpredictable	 market	 forces,	 the	 causal
connection	between	brilliance	at	the	top	and	company	performance	is	even	less
direct	 and	 the	 efficacy	 of	 reactionary	 firings	 is	 no	 greater	 than	 it	 is	 in	 sports.
Researchers	at	Columbia	University	and	Harvard,	for	example,	recently	studied
a	 large	 number	 of	 corporations	 whose	 bylaws	 made	 them	 vulnerable	 to
shareholders’	 demands	 that	 they	 respond	 to	 rough	 periods	 by	 changing
management.44	They	found	that	in	the	three	years	after	the	firing	there	was	no
improvement,	on	average,	in	operating	performance	(a	measure	of	earnings).	No



matter	what	the	differences	in	ability	among	the	CEOs,	they	were	swamped	by
the	 effect	 of	 the	 uncontrollable	 elements	 of	 the	 system,	 just	 as	 the	 differences
among	musicians	might	become	unapparent	in	a	radio	broadcast	with	sufficient
noise	and	static.	Yet	in	determining	compensation,	corporate	boards	of	directors
often	behave	as	if	the	CEO	is	the	only	one	who	matters.

Research	 has	 shown	 that	 the	 illusion	 of	 control	 over	 chance	 events	 is
enhanced	 in	 financial,	 sports,	 and	 especially,	 business	 situations	 when	 the
outcome	of	a	chance	task	is	preceded	by	a	period	of	strategizing	(those	endless
meetings),	when	performance	of	the	task	requires	active	involvement	(those	long
hours	at	the	office),	or	when	competition	is	present	(this	never	happens,	right?).
The	first	step	in	battling	the	illusion	of	control	is	to	be	aware	of	it.	But	even	then
it	is	difficult,	for,	as	we	shall	see	in	the	following	pages,	once	we	think	we	see	a
pattern,	we	do	not	easily	let	go	of	our	perception.

Suppose	 I	 tell	 you	 that	 I	 have	 made	 up	 a	 rule	 for	 the	 construction	 of	 a
sequence	of	 three	numbers	and	that	 the	sequence	2,	4,	6	satisfies	my	rule.	Can
you	guess	the	rule?	A	single	set	of	three	numbers	is	not	a	lot	 to	go	on,	so	let’s
pretend	that	if	you	present	me	with	other	sequences	of	three	numbers,	I	will	tell
you	whether	or	not	they	satisfy	my	rule.	Please	take	a	moment	to	think	up	some
three-number	 sequences	 to	 test—the	 advantage	 of	 reading	 a	 book	 over
interacting	in	person	is	that	in	the	book	the	author	can	display	infinite	patience.

Now	that	you	have	pondered	your	strategy,	I	can	say	that	if	you	are	like	most
people,	the	sequences	you	present	will	look	something	like	4,	6,	8	or	8,	10,	12	or
20,	24,	30.	Yes,	those	sequences	obey	my	rule.	So	what’s	the	rule?	Most	people,
after	presenting	a	handful	of	such	 test	cases,	will	grow	confident	and	conclude
that	 the	rule	 is	 that	 the	sequence	must	consist	of	 increasing	even	numbers.	But
actually	my	rule	was	simply	that	the	series	must	consist	of	increasing	numbers.
The	 sequence	 1,	 2,	 3,	 for	 example,	would	 have	 fit;	 there	was	 no	 need	 for	 the
numbers	to	be	even.	Would	the	sequences	you	thought	of	have	revealed	this?

When	we	 are	 in	 the	 grasp	 of	 an	 illusion—or,	 for	 that	matter,	 whenever	we
have	a	new	 idea—instead	of	 searching	 for	ways	 to	prove	our	 ideas	wrong,	we
usually	 attempt	 to	 prove	 them	correct.	 Psychologists	 call	 this	 the	 confirmation
bias,	 and	 it	 presents	 a	major	 impediment	 to	 our	 ability	 to	 break	 free	 from	 the
misinterpretation	 of	 randomness.	 In	 the	 example	 above,	 most	 people
immediately	 recognize	 that	 the	 sequence	 consists	 of	 increasing	 even	 numbers.



Then,	seeking	to	confirm	their	guess,	they	try	out	many	more	sequences	of	that
type.	But	very	few	find	the	answer	the	fast	way—through	the	attempt	to	falsify
their	idea	by	testing	a	sequence	that	includes	an	odd	number.45	As	philosopher
Francis	Bacon	put	it	in	1620,	“the	human	understanding,	once	it	has	adopted	an
opinion,	collects	any	instances	that	confirm	it,	and	though	the	contrary	instances
may	be	more	numerous	and	more	weighty,	it	either	does	not	notice	them	or	else
rejects	them,	in	order	that	this	opinion	will	remain	unshaken.”46

To	 make	 matters	 worse,	 not	 only	 do	 we	 preferentially	 seek	 evidence	 to
confirm	our	preconceived	notions,	but	we	also	interpret	ambiguous	evidence	in
favor	of	our	ideas.	This	can	be	a	big	problem	because	data	are	often	ambiguous,
so	 by	 ignoring	 some	 patterns	 and	 emphasizing	 others,	 our	 clever	 brains	 can
reinforce	their	beliefs	even	in	the	absence	of	convincing	data.	For	instance,	if	we
conclude,	based	on	flimsy	evidence,	that	a	new	neighbor	is	unfriendly,	then	any
future	actions	that	might	be	interpreted	in	that	light	stand	out	in	our	minds,	and
those	that	don’t	are	easily	forgotten.	Or	if	we	believe	in	a	politician,	then	when
she	 achieves	 good	 results,	 we	 credit	 her,	 and	 when	 she	 fails,	 we	 blame
circumstances	or	the	other	party,	either	way	reinforcing	our	initial	ideas.

In	 one	 study	 that	 illustrated	 the	 effect	 rather	 vividly,	 researchers	 gathered	 a
group	of	undergraduates,	some	of	whom	supported	the	death	penalty	and	some
of	whom	were	against	it.47	The	researchers	then	provided	all	the	students	with
the	same	set	of	academic	studies	on	the	efficacy	of	capital	punishment.	Half	the
studies	supported	the	idea	that	the	death	penalty	has	a	deterrent	effect;	the	other
half	contradicted	that	idea.	The	researchers	also	gave	the	subjects	clues	hinting
at	 the	 weak	 points	 in	 each	 of	 the	 studies.	 Afterward	 the	 undergraduates	 were
asked	 to	 rate	 the	 quality	 of	 the	 studies	 individually	 and	 whether	 and	 how
strongly	 their	 attitudes	 about	 the	 death	 penalty	were	 affected	 by	 their	 reading.
The	 participants	 gave	 higher	 ratings	 to	 the	 studies	 that	 confirmed	 their	 initial
point	of	view	even	when	the	studies	on	both	sides	had	supposedly	been	carried
out	by	the	same	method.	And	in	the	end,	though	everyone	had	read	all	the	same
studies,	 both	 those	 who	 initially	 supported	 the	 death	 penalty	 and	 those	 who
initially	 opposed	 it	 reported	 that	 reading	 the	 studies	 had	 strengthened	 their
beliefs.	Rather	than	convincing	anyone,	the	data	polarized	the	group.	Thus	even
random	patterns	can	be	interpreted	as	compelling	evidence	if	 they	relate	to	our
preconceived	notions.



The	confirmation	bias	has	many	unfortunate	consequences	in	the	real	world.
When	 a	 teacher	 initially	 believes	 that	 one	 student	 is	 smarter	 than	 another,	 he
selectively	focuses	on	evidence	that	tends	to	confirm	the	hypothesis.48	When	an
employer	 interviews	 a	 prospective	 candidate,	 the	 employer	 typically	 forms	 a
quick	first	 impression	and	spends	 the	rest	of	 the	 interview	seeking	 information
that	supports	it.49	When	counselors	in	clinical	settings	are	advised	ahead	of	time
that	 an	 interviewee	 is	 combative,	 they	 tend	 to	 conclude	 that	 he	 is	 even	 if	 the
interviewee	is	no	more	combative	than	the	average	person.50	And	when	people
interpret	the	behavior	of	someone	who	is	a	member	of	a	minority,	they	interpret
it	in	the	context	of	preconceived	stereotypes.51

The	human	brain	has	evolved	to	be	very	efficient	at	pattern	recognition,	but	as
the	confirmation	bias	shows,	we	are	focused	on	finding	and	confirming	patterns
rather	than	minimizing	our	false	conclusions.	Yet	we	needn’t	be	pessimists,	for	it
is	possible	to	overcome	our	prejudices.	It	is	a	start	simply	to	realize	that	chance
events,	too,	produce	patterns.	It	is	another	great	step	if	we	learn	to	question	our
perceptions	 and	 our	 theories.	 Finally,	 we	 should	 learn	 to	 spend	 as	much	 time
looking	for	evidence	that	we	are	wrong	as	we	spend	searching	for	reasons	we	are
correct.

Our	 journey	 through	 randomness	 is	 now	 almost	 at	 its	 end.	We	 began	 with
simple	 rules	 and	 went	 on	 to	 learn	 how	 they	 reflect	 themselves	 in	 complex
systems.	How	great	is	the	role	of	chance	in	that	most	important	complex	system
of	 all—our	 personal	 destiny?	 That’s	 a	 difficult	 question,	 one	 that	 has	 infused
much	of	what	we	have	considered	thus	far.	And	though	I	can’t	hope	to	answer	it
fully,	I	do	hope	to	shed	light	on	it.	My	conclusion	is	evident	from	the	following
chapter’s	title,	which	is	the	same	as	that	of	this	book:	“The	Drunkard’s	Walk.”



CHAPTER	10

The	Drunkard’s	Walk

IN	1814,	near	 the	height	of	 the	great	 successes	of	Newtonian	physics,	Pierre-
Simon	de	Laplace	wrote:

If	an	intelligence,	at	a	given	instant,	knew	all	the	forces	that	animate	nature
and	 the	 position	 of	 each	 constituent	 being;	 if,	moreover,	 this	 intelligence
were	sufficiently	great	to	submit	these	data	to	analysis,	it	could	embrace	in
the	same	formula	the	movements	of	the	greatest	bodies	in	the	universe	and
those	of	the	smallest	atoms:	to	this	intelligence	nothing	would	be	uncertain,
and	the	future,	as	the	past,	would	be	present	to	its	eyes.1

Laplace	was	expressing	a	view	called	determinism:	the	idea	that	the	state	of	the
world	 at	 the	 present	 determines	 precisely	 the	manner	 in	which	 the	 future	will
unfold.

In	everyday	life,	determinism	implies	a	world	in	which	our	personal	qualities
and	 the	 properties	 of	 any	 given	 situation	 or	 environment	 lead	 directly	 and
unequivocally	 to	precise	consequences.	That	 is	an	orderly	world,	one	 in	which
everything	 can	 be	 foreseen,	 computed,	 predicted.	 But	 for	 Laplace’s	 dream	 to
hold	true,	several	conditions	must	be	met.	First,	the	laws	of	nature	must	dictate	a
definite	future,	and	we	must	know	those	laws.	Second,	we	must	have	access	to
data	 that	 completely	 describe	 the	 system	 of	 interest,	 allowing	 no	 unforeseen
influences.	Finally,	we	must	have	sufficient	intelligence	or	computing	power	to
be	able	to	decide	what,	given	the	data	about	the	present,	the	laws	say	the	future
will	 hold.	 In	 this	 book	 we’ve	 examined	 many	 concepts	 that	 aid	 our
understanding	of	random	phenomena.	Along	the	way	we’ve	gained	insight	into	a



variety	of	specific	life	situations.	Yet	there	remains	the	big	picture,	the	question
of	how	much	randomness	contributes	to	where	we	are	in	life	and	how	well	we
can	predict	where	we	are	going.

In	 the	study	of	human	affairs	from	the	late	Renaissance	to	 the	Victorian	era,
many	 scholars	 shared	Laplace’s	belief	 in	determinism.	They	 felt	 as	Galton	did
that	 our	 path	 in	 life	 is	 strictly	 determined	 by	 our	 personal	 qualities,	 or	 like
Quételet	they	believed	that	the	future	of	society	is	predictable.	Often	they	were
inspired	by	the	success	of	Newtonian	physics	and	believed	that	human	behavior
could	be	foretold	as	reliably	as	other	phenomena	in	nature.	It	seemed	reasonable
to	 them	 that	 the	 future	 events	 of	 the	 everyday	 world	 should	 be	 as	 rigidly
determined	by	the	present	state	of	affairs	as	are	the	orbits	of	the	planets.

In	 the	 1960s	 a	 meteorologist	 named	 Edward	 Lorenz	 sought	 to	 employ	 the
newest	 technology	 of	 his	 day—a	 primitive	 computer—to	 carry	 out	 Laplace’s
program	in	the	limited	realm	of	the	weather.	That	is,	if	Lorenz	supplied	his	noisy
machine	with	data	on	the	atmospheric	conditions	of	his	idealized	earth	at	some
given	 time,	 it	would	 employ	 the	 known	 laws	 of	meteorology	 to	 calculate	 and
print	out	rows	of	numbers	representing	the	weather	conditions	at	future	times.

One	day,	Lorenz	decided	he	wanted	to	extend	a	particular	simulation	further
into	 the	future.	 Instead	of	 repeating	 the	entire	calculation,	he	decided	 to	 take	a
shortcut	 by	 beginning	 the	 calculation	midway	 through.	To	 accomplish	 that,	 he
employed	 as	 initial	 conditions	 data	 printed	 out	 in	 the	 earlier	 simulation.	 He
expected	 the	 computer	 to	 regenerate	 the	 remainder	 of	 the	 previous	 simulation
and	then	carry	it	further.	But	instead	he	noticed	something	strange:	the	weather
had	 evolved	 differently.	 Rather	 than	 duplicating	 the	 end	 of	 the	 previous
simulation,	 the	 new	 one	 diverged	 wildly.	 He	 soon	 recognized	 why:	 in	 the
computer’s	 memory	 the	 data	 were	 stored	 to	 six	 decimal	 places,	 but	 in	 the
printout	 they	were	 quoted	 to	 only	 three.	As	 a	 result,	 the	 data	 he	 had	 supplied
were	a	tiny	bit	off.	A	number	like	0.293416,	for	example,	would	have	appeared
simply	as	0.293.

Scientists	usually	assume	that	if	the	initial	conditions	of	a	system	are	altered
slightly,	 the	evolution	of	 that	system,	 too,	will	be	altered	slightly.	After	all,	 the
satellites	that	collect	weather	data	can	measure	parameters	to	only	two	or	three
decimal	 places,	 and	 so	 they	 cannot	 even	 track	 a	 difference	 as	 tiny	 as	 that
between	0.293416	and	0.293.	But	Lorenz	found	that	such	small	differences	led



to	massive	 changes	 in	 the	 result.2	 The	 phenomenon	was	 dubbed	 the	 butterfly
effect,	 based	 on	 the	 implication	 that	 atmospheric	 changes	 so	 small	 they	 could
have	 been	 caused	 by	 a	 butterfly	 flapping	 its	wings	 can	 have	 a	 large	 effect	 on
subsequent	 global	 weather	 patterns.	 That	 notion	 might	 sound	 absurd—the
equivalent	of	 the	extra	cup	of	coffee	you	sip	one	morning	 leading	 to	profound
changes	 in	 your	 life.	But	 actually	 that	 does	 happen—for	 instance,	 if	 the	 extra
time	 you	 spent	 caused	 you	 to	 cross	 paths	 with	 your	 future	 wife	 at	 the	 train
station	 or	 to	 miss	 being	 hit	 by	 a	 car	 that	 sped	 through	 a	 red	 light.	 In	 fact,
Lorenz’s	story	is	itself	an	example	of	the	butterfly	effect,	for	if	he	hadn’t	taken
the	minor	 decision	 to	 extend	his	 calculation	 employing	 the	 shortcut,	 he	would
not	have	discovered	the	butterfly	effect,	a	discovery	which	sparked	a	whole	new
field	of	mathematics.	When	we	 look	back	 in	detail	on	 the	major	events	of	our
lives,	it	is	not	uncommon	to	be	able	to	identify	such	seemingly	inconsequential
random	events	that	led	to	big	changes.

Determinism	in	human	affairs	fails	to	meet	the	requirements	for	predictability
alluded	to	by	Laplace	for	several	reasons.	First,	as	far	as	we	know,	society	is	not
governed	 by	 definite	 and	 fundamental	 laws	 in	 the	 way	 physics	 is.	 Instead,
people’s	 behavior	 is	 not	 only	 unpredictable,	 but	 as	 Kahneman	 and	 Tversky
repeatedly	showed,	also	often	irrational	(in	the	sense	that	we	act	against	our	best
interests).	 Second,	 even	 if	 we	 could	 uncover	 the	 laws	 of	 human	 affairs,	 as
Quételet	 attempted	 to	 do,	 it	 is	 impossible	 to	 precisely	 know	 or	 control	 the
circumstances	 of	 life.	 That	 is,	 like	 Lorenz,	 we	 cannot	 obtain	 the	 precise	 data
necessary	for	making	predictions.	And	third,	human	affairs	are	so	complex	that	it
is	doubtful	we	could	carry	out	the	necessary	calculations	even	if	we	understood
the	laws	and	possessed	the	data.	As	a	result,	determinism	is	a	poor	model	for	the
human	experience.	Or	as	the	Nobel	laureate	Max	Born	wrote,	“Chance	is	a	more
fundamental	conception	than	causality.”3

In	 the	 scientific	 study	 of	 random	 processes	 the	 drunkard’s	 walk	 is	 the
archetype.	 In	 our	 lives	 it	 also	 provides	 an	 apt	model,	 for	 like	 the	 granules	 of
pollen	floating	in	the	Brownian	fluid,	we’re	continually	nudged	in	this	direction
and	then	that	one	by	random	events.	As	a	result,	although	statistical	regularities
can	be	found	in	social	data,	the	future	of	particular	individuals	is	impossible	to
predict,	and	for	our	particular	achievements,	our	jobs,	our	friends,	our	finances,
we	all	owe	more	to	chance	than	many	people	realize.	On	the	following	pages,	I
shall	 argue,	 furthermore,	 that	 in	 all	 except	 the	 simplest	 real-life	 endeavors



unforeseeable	 or	 unpredictable	 forces	 cannot	 be	 avoided,	 and	 moreover	 those
random	forces	and	our	 reactions	 to	 them	account	 for	much	of	what	constitutes
our	 particular	 path	 in	 life.	 I	will	 begin	my	 argument	 by	 exploring	 an	 apparent
contradiction	to	that	idea:	if	the	future	is	really	chaotic	and	unpredictable,	why,
after	events	have	occurred,	does	it	often	seem	as	if	we	should	have	been	able	to
foresee	them?

									
IN	 THE	 FALL	 OF	 1941,	 a	 few	 months	 before	 the	 Japanese	 attack	 on	 Pearl
Harbor,	 an	 agent	 in	 Tokyo	 sent	 a	 spy	 in	 Honolulu	 an	 alarming	 request.4	 The
request	was	intercepted	and	sent	 to	 the	Office	of	Naval	Intelligence.	It	wended
its	way	through	the	bureaucracy,	reaching	Washington	in	decoded	and	translated
form	on	October	 9.	The	message	 requested	 the	 Japanese	 agent	 in	Honolulu	 to
divide	Pearl	Harbor	 into	 five	areas	and	 to	make	 reports	on	 ships	 in	 the	harbor
with	reference	to	those	areas.	Of	special	interest	were	battleships,	destroyers,	and
aircraft	carriers,	as	well	as	information	regarding	the	anchoring	of	more	than	one
ship	at	a	single	dock.	Some	weeks	later	another	curious	incident	occurred:	U.S.
monitors	lost	track	of	radio	communications	from	all	known	carriers	in	the	first
and	 second	 Japanese	 fleets,	 losing	with	 it	 all	 knowledge	of	 their	whereabouts.
Then	 in	early	December	 the	Combat	 Intelligence	Unit	of	 the	Fourteenth	Naval
District	in	Hawaii	reported	that	the	Japanese	had	changed	their	call	signs	for	the
second	time	in	a	month.	Call	signs,	such	as	WCBS	or	KNPR,	are	designations
identifying	the	source	of	a	radio	transmission.	In	wartime	they	reveal	the	identity
of	a	source	not	only	to	friend	but	also	to	foe,	so	they	are	periodically	altered.	The
Japanese	 had	 a	 habit	 of	 changing	 them	 every	 six	months	 or	more.	 To	 change
them	 twice	 in	 thirty	 days	 was	 considered	 a	 “step	 in	 preparing	 for	 active
operations	on	a	large	scale.”	The	change	made	identification	of	the	whereabouts
of	 Japanese	 carriers	 and	 submarines	 in	 the	 ensuing	 days	 difficult,	 further
confusing	the	issue	of	the	radio	silence.

Two	 days	 later	messages	 sent	 to	 Japanese	 diplomatic	 and	 consular	 posts	 at
Hong	 Kong,	 Singapore,	 Batavia,	 Manila,	 Washington,	 and	 London	 were
intercepted	and	decoded.	They	called	for	the	diplomats	to	destroy	most	of	their
codes	and	ciphers	immediately	and	to	burn	all	other	important	confidential	and
secret	 documents.	 Around	 that	 time	 the	 FBI	 also	 intercepted	 a	 telephone	 call
from	 a	 cook	 at	 the	 Japanese	 consulate	 in	 Hawaii	 to	 someone	 in	 Honolulu



reporting	 in	 great	 excitement	 that	 the	 officials	 there	 were	 burning	 all	 major
documents.	The	assistant	head	of	the	main	unit	of	army	intelligence,	Lieutenant
Colonel	George	W.	Bicknell,	brought	one	of	the	intercepted	messages	to	his	boss
as	 he	 was	 preparing	 to	 go	 to	 dinner	 with	 the	 head	 of	 the	 army’s	 Hawaiian
Department.	It	was	late	afternoon	on	Saturday,	December	6,	 the	day	before	the
attack.	 Bicknell’s	 higher-up	 took	 five	 minutes	 to	 consider	 the	 message,	 then
dismissed	 it	 and	 went	 to	 eat.	 With	 events	 so	 foreboding	 when	 considered	 in
hindsight,	why	hadn’t	anyone	privy	to	this	information	seen	the	attack	coming?

In	 any	 complex	 string	 of	 events	 in	 which	 each	 event	 unfolds	 with	 some
element	 of	 uncertainty,	 there	 is	 a	 fundamental	 asymmetry	 between	 past	 and
future.	 This	 asymmetry	 has	 been	 the	 subject	 of	 scientific	 study	 ever	 since
Boltzmann	made	his	 statistical	 analysis	 of	 the	molecular	 processes	 responsible
for	the	properties	of	fluids	(see	chapter	8).	Imagine,	for	example,	a	dye	molecule
floating	 in	 a	 glass	 of	water.	 The	molecule	will,	 like	 one	 of	Brown’s	 granules,
follow	 a	 drunkard’s	walk.	But	 even	 that	 aimless	movement	makes	 progress	 in
some	direction.	If	you	wait	three	hours,	for	example,	the	molecule	will	typically
have	traveled	about	an	inch	from	where	it	started.	Suppose	that	at	some	point	the
molecule	moves	to	a	position	of	significance	and	so	finally	attracts	our	attention.
As	 many	 did	 after	 Pearl	 Harbor,	 we	 might	 look	 for	 the	 reason	 why	 that
unexpected	 event	 occurred.	 Now	 suppose	 we	 dig	 into	 the	 molecule’s	 past.
Suppose,	in	fact,	we	trace	the	record	of	all	its	collisions.	We	will	indeed	discover
how	first	this	bump	from	a	water	molecule	and	then	that	one	propelled	the	dye
molecule	on	its	zigzag	path	from	there	to	here.	In	hindsight,	in	other	words,	we
can	clearly	explain	why	the	past	of	the	dye	molecule	developed	as	it	did.	But	the
water	contains	many	other	water	molecules	 that	could	have	 been	 the	ones	 that
interacted	with	the	dye	molecule.	To	predict	the	dye	molecule’s	path	beforehand
would	have	therefore	required	us	to	calculate	the	paths	and	mutual	interactions
of	all	those	potentially	important	water	molecules.	That	would	have	involved	an
almost	unimaginable	number	of	mathematical	calculations,	 far	greater	 in	scope
and	difficulty	 than	 the	 list	of	collisions	needed	 to	understand	 the	past.	 In	other
words,	 the	movement	 of	 the	 dye	molecule	was	 virtually	 impossible	 to	 predict
before	the	fact	even	though	it	was	relatively	easy	to	understand	afterward.

That	 fundamental	 asymmetry	 is	why	 in	day-to-day	 life	 the	past	often	 seems
obvious	even	when	we	could	not	have	predicted	it.	It’s	why	weather	forecasters
can	tell	you	the	reasons	why	three	days	ago	the	cold	front	moved	like	this	and



yesterday	 the	warm	 front	moved	 like	 that,	 causing	 it	 to	 rain	 on	your	 romantic
garden	wedding,	but	 the	same	forecasters	are	much	 less	successful	at	knowing
how	the	 fronts	will	behave	 three	days	hence	and	at	providing	 the	warning	you
would	 have	 needed	 to	 get	 that	 big	 tent	 ready.	 Or	 consider	 a	 game	 of	 chess.
Unlike	card	games,	chess	involves	no	explicit	random	element.	And	yet	there	is
uncertainty	because	neither	player	knows	for	sure	what	his	or	her	opponent	will
do	next.	If	the	players	are	expert,	at	most	points	in	the	game	it	may	be	possible
to	see	a	few	moves	 into	 the	future;	 if	you	look	out	any	further,	 the	uncertainty
will	compound,	and	no	one	will	be	able	to	say	with	any	confidence	exactly	how
the	game	will	turn	out.	On	the	other	hand,	looking	back,	it	is	usually	easy	to	say
why	each	player	made	 the	moves	he	or	she	made.	This	again	 is	a	probabilistic
process	whose	future	is	difficult	to	predict	but	whose	past	is	easy	to	understand.

The	 same	 thing	 is	 true	 of	 the	 stock	 market.	 Consider,	 for	 instance,	 the
performance	of	mutual	funds.	As	I	mentioned	in	chapter	9,	it	is	common,	when
choosing	a	mutual	 fund,	 to	 look	at	past	performance.	 Indeed,	 it	 is	easy	 to	 find
nice,	orderly	patterns	when	 looking	back.	Here,	 for	example,	 is	 a	graph	of	 the
performance	of	800	mutual	fund	managers	over	the	five-year	period,	1991–1995.

Performance	versus	ranking	of	the	top	mutual	funds	in	the	five-year	period
1991–1995.

On	 the	 vertical	 axis	 are	 plotted	 the	 funds’	 gains	 or	 losses	 relative	 to	 the
average	fund	of	the	group.	In	other	words,	a	return	of	0	percent	means	the	fund’s
performance	 was	 average	 for	 this	 five-year	 period.	 On	 the	 horizontal	 axis	 is



plotted	the	managers’	relative	rank,	from	the	number-1	performer	to	the	number-
800	performer.	To	 look	 up	 the	 performance	 of,	 say,	 the	 100th	most	 successful
mutual	 fund	manager	 in	 the	 given	 five-year	 period,	 you	 find	 the	 point	 on	 the
graph	corresponding	to	the	spot	labeled	100	on	the	horizontal	axis.

Any	 analyst,	 no	doubt,	 could	give	 a	 number	of	 convincing	 reasons	why	 the
top	managers	represented	here	succeeded,	why	the	bottom	ones	failed,	and	why
the	curve	should	take	this	shape.	And	whether	or	not	we	take	the	time	to	follow
such	analyses	in	detail,	few	are	the	investors	who	would	choose	a	fund	that	has
performed	10	percent	below	average	in	the	past	five	years	over	a	fund	that	has
done	10	percent	better	than	average.	It	 is	easy,	looking	at	the	past,	 to	construct
such	nice	graphs	and	neat	explanations,	but	this	logical	picture	of	events	is	just
an	illusion	of	hindsight	with	little	relevance	for	predicting	future	events.	In	 the
graph	on	chapter	10,	for	example,	I	compare	how	the	same	funds,	still	ranked	in
order	of	their	performance	in	the	 initial	 five-year	period,	performed	in	the	next
five-year	 period.	 In	 other	 words,	 I	 maintain	 the	 ranking	 based	 on	 the	 period
1991–1995,	but	display	the	return	the	funds	achieved	in	1996–2000.	If	the	past
were	a	good	indication	of	the	future,	the	funds	I	considered	in	the	period	1991–
1995	would	have	had	more	or	less	the	same	relative	performance	in	1996–2000.
That	 is,	 if	 the	winners	(at	 the	 left	of	 the	graph)	continued	 to	do	better	 than	 the
others,	and	the	losers	(at	the	right)	worse,	this	graph	should	be	nearly	identical	to
the	last.	Instead,	as	we	can	see,	the	order	of	the	past	dissolves	when	extrapolated
to	the	future,	and	the	graph	ends	up	looking	like	random	noise.

People	systematically	fail	to	see	the	role	of	chance	in	the	success	of	ventures
and	 in	 the	success	of	people	 like	 the	equity-fund	manager	Bill	Miller.	And	we
unreasonably	 believe	 that	 the	 mistakes	 of	 the	 past	 must	 be	 consequences	 of
ignorance	or	incompetence	and	could	have	been	remedied	by	further	study	and
improved	 insight.	That’s	why,	 for	 example,	 in	 spring	 2007,	when	 the	 stock	 of
Merrill	Lynch	was	trading	around	$95	a	share,	its	CEO	E.	Stanley	O’Neal	could
be	celebrated	as	the	risk-taking	genius	responsible,	and	in	the	fall	of	2007,	after
the	credit	market	collapsed,	derided	as	the	risk-taking	cowboy	responsible—and
promptly	 fired.	 We	 afford	 automatic	 respect	 to	 superstar	 business	 moguls,
politicians,	 and	 actors	 and	 to	 anyone	 flying	 around	 in	 a	 private	 jet,	 as	 if	 their
accomplishments	must	reflect	unique	qualities	not	shared	by	those	forced	to	eat
commercial-airline	 food.	 And	 we	 place	 too	 much	 confidence	 in	 the	 overly
precise	 predictions	 of	 people—political	 pundits,	 financial	 experts,	 business



consultants—who	claim	a	track	record	demonstrating	expertise.

How	the	top	funds	in	1991–1995	performed	in	1996–2000.

One	 large	 publishing	 company	 I’m	 familiar	 with	 went	 to	 great	 pains	 to
develop	 one-year,	 three-year,	 and	 five-year	 plans	 for	 its	 educational	 software
division.	 There	 were	 high-paid	 consultants,	 lengthy	 marketing	 meetings,	 late-
night	 financial-analysis	 sessions,	 long	 offsite	 afternoon	 powwows.	 In	 the	 end,
hunches	 were	 turned	 into	 formulas	 claiming	 the	 precision	 of	 several	 decimal
places,	and	wild	guesses	were	codified	as	likely	outcomes.	When	in	the	first	year
certain	 products	 didn’t	 sell	 as	 well	 as	 expected	 or	 others	 sold	 better	 than
projected,	reasons	were	found	and	the	appropriate	employees	blamed	or	credited
as	if	the	initial	expectations	had	been	meaningful.	The	next	year	saw	a	series	of
unforeseen	price	wars	started	by	two	competitors.	The	year	after	that	the	market
for	 educational	 software	 collapsed.	As	 the	 uncertainty	 compounded,	 the	 three-
year	plan	never	had	a	chance	 to	succeed.	And	 the	 five-year	plan,	polished	and
precise	as	a	diamond,	was	spared	any	comparison	with	performance,	for	by	then
virtually	everyone	in	the	division	had	moved	on	to	greener	pastures.

Historians,	whose	profession	is	to	study	the	past,	are	as	wary	as	scientists	of
the	idea	that	events	unfold	in	a	manner	that	can	be	predicted.	In	fact,	in	the	study
of	history	the	illusion	of	inevitability	has	such	serious	consequences	that	it	is	one
of	 the	 few	 things	 that	 both	 conservative	 and	 socialist	 historians	 can	 agree	 on.



The	 socialist	 historian	 Richard	 Henry	 Tawney,	 for	 example,	 put	 it	 like	 this:
“Historians	 give	 an	 appearance	 of	 inevitability…by	 dragging	 into	 prominence
the	forces	which	have	triumphed	and	thrusting	into	the	background	those	which
they	have	swallowed	up.”5	And	the	historian	Roberta	Wohlstetter,	who	received
the	Presidential	Medal	of	Freedom	from	Ronald	Reagan,	said	it	this	way:	“After
the	 event,	 of	 course,	 a	 signal	 is	 always	 crystal	 clear;	 we	 can	 now	 see	 what
disaster	it	was	signaling….	But	before	the	event	it	is	obscure	and	pregnant	with
conflicting	meanings.”6

In	some	sense	this	 idea	is	encapsulated	in	the	cliché	that	hindsight	 is	always
20/20,	but	people	often	behave	as	if	the	adage	weren’t	true.	In	government,	for
example,	a	should-have-known-it	blame	game	 is	played	after	every	 tragedy.	 In
the	case	of	Pearl	Harbor	(and	the	September	11	attacks)	the	events	leading	up	to
the	 attack,	when	we	 look	 back	 at	 them,	 certainly	 seem	 to	 point	 in	 an	 obvious
direction.	Yet	as	with	 the	dye	molecule,	 the	weather,	or	 the	chess	game,	 if	you
start	well	 before	 the	 fact	 and	 trace	 events	 forward,	 the	 feeling	 of	 inevitability
quickly	dissolves.	For	one	thing,	in	addition	to	the	intelligence	reports	I	quoted,
there	was	a	huge	amount	of	useless	 intelligence,	with	each	week	bringing	new
reams	of	sometimes	alarming	or	mysterious	messages	and	transcripts	that	would
later	prove	misleading	or	 insignificant.	And	even	 if	we	 focused	on	 the	 reports
that	hindsight	tells	us	were	important,	before	the	attack	there	existed	for	each	of
those	 reports	 a	 reasonable	 alternative	 explanation	 that	 did	 not	 point	 toward	 a
surprise	attack	on	Pearl	Harbor.	For	example,	the	request	to	divide	Pearl	Harbor
into	 five	areas	was	similar	 in	 style	 to	other	 requests	 that	had	gone	 to	 Japanese
agents	in	Panama,	Vancouver,	San	Francisco,	and	Portland,	Oregon.	The	loss	of
radio	contact	was	also	not	unheard	of	and	had	in	the	past	often	meant	simply	that
the	warships	were	in	home	waters	and	communicating	via	telegraphic	landlines.
Moreover,	even	 if	you	believed	a	broadening	of	 the	war	was	 impending,	many
signs	 pointed	 toward	 an	 attack	 elsewhere—in	 the	 Philippines,	 on	 the	 Thai
peninsula,	 or	 on	Guam,	 for	 example.	There	were	 not,	 to	 be	 sure,	 as	many	 red
herrings	as	water	molecules	encountered	by	a	molecule	of	dye,	but	 there	were
enough	to	obscure	a	clear	vision	of	the	future.

After	 Pearl	 Harbor	 seven	 committees	 of	 the	 U.S.	 Congress	 delved	 into	 the
process	of	discovering	why	the	military	had	missed	all	the	“signs”	of	a	coming
attack.	 Army	 Chief	 of	 Staff	 General	 George	 Marshall,	 for	 one,	 drew	 heavy
criticism	for	a	May	1941	memo	 to	President	Roosevelt	 in	which	he	wrote	 that



“the	 Island	 of	 Oahu,	 due	 to	 its	 fortification,	 its	 garrison	 and	 its	 physical
characteristic,	is	believed	to	be	the	strongest	fortress	in	the	world”	and	reassured
the	president	that,	in	case	of	attack,	enemy	forces	would	be	intercepted	“within
200	miles	of	 their	objective…by	all	 types	of	bombardment.”	General	Marshall
was	no	fool,	but	neither	did	he	have	a	crystal	ball.	The	study	of	randomness	tells
us	that	the	crystal	ball	view	of	events	is	possible,	unfortunately,	only	after	they
happen.	And	so	we	believe	we	know	why	a	 film	did	well,	a	candidate	won	an
election,	a	storm	hit,	a	stock	went	down,	a	soccer	team	lost,	a	new	product	failed,
or	a	disease	took	a	turn	for	the	worse,	but	such	expertise	is	empty	in	the	sense
that	it	is	of	little	use	in	predicting	when	a	film	will	do	well,	a	candidate	will	win
an	election,	a	storm	will	hit,	a	stock	will	go	down,	a	soccer	team	will	lose,	a	new
product	will	fail,	or	a	disease	will	take	a	turn	for	the	worse.

It	is	easy	to	concoct	stories	explaining	the	past	or	to	become	confident	about
dubious	scenarios	for	the	future.	That	there	are	traps	in	such	endeavors	doesn’t
mean	we	 should	not	undertake	 them.	But	we	can	work	 to	 immunize	ourselves
against	 our	 errors	 of	 intuition.	 We	 can	 learn	 to	 view	 both	 explanations	 and
prophecies	with	skepticism.	We	can	focus	on	the	ability	to	react	to	events	rather
than	 relying	 on	 the	 ability	 to	 predict	 them,	 on	 qualities	 like	 flexibility,
confidence,	courage,	and	perseverance.	And	we	can	place	more	 importance	on
our	 direct	 impressions	 of	 people	 than	 on	 their	 well-trumpeted	 past
accomplishments.	 In	 these	 ways	 we	 can	 resist	 forming	 judgments	 in	 our
automatic	deterministic	framework.

									
IN	MARCH	1979	another	famously	unanticipated	chain	of	events	occurred,	this
one	at	a	nuclear	power	plant	in	Pennsylvania.7	It	resulted	in	a	partial	meltdown
of	the	core,	in	which	the	nuclear	reaction	occurs,	threatening	to	release	into	the
environment	an	alarming	dose	of	radiation.	The	mishap	began	when	a	cup	or	so
of	water	emerged	through	a	leaky	seal	from	a	water	filter	called	a	polisher.	The
leaked	 water	 entered	 a	 pneumatic	 system	 that	 drives	 some	 of	 the	 plant’s
instruments,	tripping	two	valves.	The	tripped	valves	shut	down	the	flow	of	cold
water	 to	 the	plant’s	 steam	generator—the	 system	 responsible	 for	 removing	 the
heat	 generated	by	 the	nuclear	 reaction	 in	 the	 core.	An	 emergency	water	 pump
then	 came	 on,	 but	 a	 valve	 in	 each	 of	 its	 two	 pipes	 had	 been	 left	 in	 a	 closed
position	after	maintenance	two	days	earlier.	The	pumps	therefore	were	pumping



water	uselessly	toward	a	dead	end.	Moreover,	a	pressure-relief	valve	also	failed,
as	did	a	gauge	in	the	control	room	that	ought	to	have	shown	that	the	valve	was
not	working.

Viewed	 separately,	 each	 of	 the	 failures	 was	 of	 a	 type	 considered	 both
commonplace	and	acceptable.	Polisher	problems	were	not	unusual	at	 the	plant,
nor	were	 they	 normally	 very	 serious;	with	 hundreds	 of	 valves	 regularly	 being
opened	 or	 closed	 in	 a	 nuclear	 power	 plant,	 leaving	 some	 valves	 in	 the	wrong
position	was	not	considered	rare	or	alarming;	and	the	pressure-relief	valve	was
known	 to	 be	 somewhat	 unreliable	 and	 had	 failed	 at	 times	 without	 major
consequences	 in	 at	 least	 eleven	 other	 power	 plants.	 Yet	 strung	 together,	 these
failures	make	the	plant	seem	as	if	it	had	been	run	by	the	Keystone	Kops.	And	so
after	 the	 incident	 at	 Three	 Mile	 Island	 came	 many	 investigations	 and	 much
laying	of	blame,	as	well	as	a	very	different	consequence.	That	string	of	events
spurred	Yale	sociologist	Charles	Perrow	to	create	a	new	theory	of	accidents,	in
which	 is	 codified	 the	 central	 argument	 of	 this	 chapter:	 in	 complex	 systems
(among	which	 I	 count	 our	 lives)	we	 should	 expect	 that	minor	 factors	we	 can
usually	ignore	will	by	chance	sometimes	cause	major	incidents.8

In	 his	 theory	 Perrow	 recognized	 that	 modern	 systems	 are	 made	 up	 of
thousands	of	parts,	 including	fallible	human	decision	makers,	which	 interrelate
in	 ways	 that	 are,	 like	 Laplace’s	 atoms,	 impossible	 to	 track	 and	 anticipate
individually.	Yet	one	can	bet	on	the	fact	that	just	as	atoms	executing	a	drunkard’s
walk	 will	 eventually	 get	 somewhere,	 so	 too	 will	 accidents	 eventually	 occur.
Called	normal	accident	theory,	Perrow’s	doctrine	describes	how	that	happens—
how	accidents	can	occur	without	clear	causes,	without	 those	glaring	errors	and
incompetent	 villains	 sought	 by	 corporate	 or	 government	 commissions.	 But
although	normal	accident	theory	is	a	theory	of	why,	inevitably,	things	sometimes
go	 wrong,	 it	 could	 also	 be	 flipped	 around	 to	 explain	 why,	 inevitably,	 they
sometimes	go	 right.	For	 in	a	complex	undertaking,	no	matter	how	many	 times
we	 fail,	 if	 we	 keep	 trying,	 there	 is	 often	 a	 good	 chance	 we	 will	 eventually
succeed.	 In	 fact,	 economists	 like	W.	Brian	Arthur	 argue	 that	 a	 concurrence	 of
minor	 factors	 can	 even	 lead	 companies	 with	 no	 particular	 edge	 to	 come	 to
dominate	 their	 competitors.	 “In	 the	 real	 world,”	 he	 wrote,	 “if	 several	 similar-
sized	 firms	 entered	 a	 market	 together,	 small	 fortuitous	 events—unexpected
orders,	chance	meetings	with	buyers,	managerial	whims—would	help	determine
which	 ones	 received	 early	 sales	 and,	 over	 time,	 which	 came	 to	 dominate.



Economic	activity	is…[determined]	by	individual	transactions	that	are	too	small
to	 foresee,	 and	 these	 small	 ‘random’	 events	 could	 [ac]cumulate	 and	 become
magnified	by	positive	feedbacks	over	time.”9

The	 same	 phenomenon	 has	 been	 noticed	 by	 researchers	 in	 sociology.	 One
group,	for	example,	studied	the	buying	habits	of	consumers	in	what	sociologists
call	the	cultural	industries—books,	film,	art,	music.	The	conventional	marketing
wisdom	 in	 those	 fields	 is	 that	 success	 is	 achieved	 by	 anticipating	 consumer
preference.	 In	 this	view	 the	most	productive	way	 for	executives	 to	 spend	 their
time	is	to	study	what	it	 is	about	the	likes	of	Stephen	King,	Madonna,	or	Bruce
Willis	that	appeals	to	so	many	fans.	They	study	the	past	and,	as	I’ve	just	argued,
have	no	 trouble	extracting	 reasons	 for	whatever	 success	 they	are	attempting	 to
explain.	They	then	try	to	replicate	it.

That	is	the	deterministic	view	of	the	marketplace,	a	view	in	which	it	is	mainly
the	intrinsic	qualities	of	the	person	or	the	product	that	governs	success.	But	there
is	another	way	to	look	at	it,	a	nondeterministic	view.	In	this	view	there	are	many
high-quality	but	unknown	books,	singers,	actors,	and	what	makes	one	or	another
come	to	stand	out	is	largely	a	conspiracy	of	random	and	minor	factors—that	is,
luck.	In	this	view	the	traditional	executives	are	just	spinning	their	wheels.

Thanks	to	the	Internet,	this	idea	has	been	tested.	The	researchers	who	tested	it
focused	on	 the	music	market,	 in	which	 Internet	 sales	 are	 coming	 to	 dominate.
For	 their	 study	 they	 recruited	14,341	participants	who	were	 asked	 to	 listen	 to,
rate,	and	if	they	desired,	download	48	songs	by	bands	they	had	not	heard	of.10
Some	 of	 the	 participants	were	 also	 allowed	 to	 view	 data	 on	 the	 popularity	 of
each	song—that	is,	on	how	many	fellow	participants	had	downloaded	it.	These
participants	 were	 divided	 into	 eight	 separate	 “worlds”	 and	 could	 see	 only	 the
data	on	downloads	of	people	in	their	own	world.	All	the	artists	in	all	the	worlds
began	 with	 zero	 downloads,	 after	 which	 each	 world	 evolved	 independently.
There	was	also	a	ninth	group	of	participants,	who	were	not	shown	any	data.	The
researchers	employed	the	popularity	of	the	songs	in	this	latter	group	of	insulated
listeners	to	define	the	“intrinsic	quality”	of	each	song—that	is,	its	appeal	in	the
absence	of	external	influence.

If	the	deterministic	view	of	the	world	were	true,	the	same	songs	ought	to	have
dominated	 in	 each	 of	 the	 eight	 worlds,	 and	 the	 popularity	 rankings	 in	 those



worlds	 ought	 to	 have	 agreed	 with	 the	 intrinsic	 quality	 as	 determined	 by	 the
isolated	 individuals.	 But	 the	 researchers	 found	 exactly	 the	 opposite:	 the
popularity	 of	 individual	 songs	 varied	 widely	 among	 the	 different	 worlds,	 and
different	songs	of	similar	intrinsic	quality	also	varied	widely	in	their	popularity.
For	 example,	 a	 song	 called	 “Lockdown”	 by	 a	 band	 called	 52metro	 ranked
twenty-six	out	of	 forty-eight	 in	 intrinsic	quality	but	was	 the	number-1	 song	 in
one	world	and	the	number-40	song	in	another.	In	this	experiment,	as	one	song	or
another	 by	 chance	 got	 an	 early	 edge	 in	 downloads,	 its	 seeming	 popularity
influenced	future	shoppers.	It’s	a	phenomenon	that	 is	well-known	in	the	movie
industry:	moviegoers	will	report	liking	a	movie	more	when	they	hear	beforehand
how	 good	 it	 is.	 In	 this	 example,	 small	 chance	 influences	 created	 a	 snowball
effect	 and	 made	 a	 huge	 difference	 in	 the	 future	 of	 the	 song.	 Again,	 it’s	 the
butterfly	effect.

In	 our	 lives,	 too,	 we	 can	 see	 through	 the	microscope	 of	 close	 scrutiny	 that
many	major	events	would	have	turned	out	differently	were	it	not	for	the	random
confluence	of	minor	factors,	people	we’ve	met	by	chance,	job	opportunities	that
randomly	came	our	way.	For	example,	consider	 the	actor	who,	 for	seven	years
starting	in	the	late	1970s,	lived	in	a	fifth-floor	walk-up	on	Forty-ninth	Street	in
Manhattan,	 struggling	 to	make	 a	 name	 for	 himself.	 He	worked	 off-Broadway,
sometimes	far	off,	and	in	television	commercials,	taking	all	the	steps	he	could	to
get	noticed,	build	a	career,	and	earn	the	money	to	eat	an	occasional	hanger	steak
in	 a	 restaurant	without	 having	 to	 duck	 out	 before	 the	 check	 arrived.	And	 like
many	other	wannabes,	no	matter	how	hard	this	aspiring	actor	worked	to	get	the
right	parts,	make	the	right	career	choices,	and	excel	in	his	trade,	his	most	reliable
role	 remained	 the	one	he	played	 in	his	other	 career—as	a	bartender.	Then	one
day	in	the	summer	of	1984	he	flew	to	Los	Angeles,	either	to	attend	the	Olympics
(if	you	believe	his	publicist)	or	to	visit	a	girlfriend	(if	you	believe	The	New	York
Times).	Whichever	 account	 is	 accurate,	one	 thing	 is	 clear:	 the	decision	 to	visit
the	West	Coast	had	little	to	do	with	acting	and	much	to	do	with	love,	or	at	least
the	love	of	sports.	Yet	it	proved	to	be	the	best	career	decision	he	ever	made,	most
likely	the	best	decision	of	his	life.

The	actor’s	name	is	Bruce	Willis,	and	while	he	was	in	Los	Angeles,	an	agent
suggested	he	go	on	a	few	television	auditions.11	One	was	for	a	show	in	its	final
stages	 of	 casting.	 The	 producers	 already	 had	 a	 list	 of	 finalists	 in	mind,	 but	 in
Hollywood	nothing	is	final	until	the	ink	on	the	contract	is	dry	and	the	litigation



has	ended.	Willis	got	his	audition	and	landed	the	role—that	of	David	Addison,
the	 male	 lead	 paired	 with	 Cybill	 Shepherd	 in	 a	 new	 ABC	 offering	 called
Moonlighting.

It	might	be	tempting	to	believe	that	Willis	was	the	obvious	choice	over	Mr.	X,
the	fellow	at	the	top	of	the	list	when	the	newcomer	arrived,	and	that	the	rest	is,
as	 they	 say,	 history.	 Since	 in	 hindsight	we	 know	 that	Moonlighting	 and	Willis
became	 huge	 successes,	 it	 is	 hard	 to	 imagine	 the	 assemblage	 of	 Hollywood
decision	makers,	upon	 seeing	Willis,	 doing	anything	but	 lighting	up	 stogies	 as
they	celebrated	their	brilliant	discovery	and	put	to	flame	their	now-outmoded	list
of	 finalists.	But	what	 really	 happened	 at	 the	 casting	 session	 is	more	 like	what
you	get	when	you	send	your	kids	out	 for	a	single	gallon	of	 ice	cream	and	 two
want	 strawberry	 while	 the	 third	 demands	 triple-chocolate-fudge	 brownie.	 The
network	 executives	 fought	 for	Mr.	X,	 their	 judgment	 being	 that	Willis	 did	 not
look	 like	 a	 serious	 lead.	 Glenn	 Caron,	 Moonlighting’s	 executive	 producer,
argued	for	Willis.	It	is	easy,	looking	back,	to	dismiss	the	network	executives	as
ignorant	 buffoons.	 In	my	 experience,	 television	 producers	 often	 do,	 especially
when	the	executives	are	out	of	earshot.	But	before	we	make	that	choice,	consider
this:	television	viewers	at	first	agreed	with	the	executives’	mediocre	assessment.
Moonlighting	 debuted	 in	 March	 1985	 to	 low	 ratings	 and	 continued	 with	 a
mediocre	 performance	 through	 the	 rest	 of	 its	 first	 season.	 Only	 in	 the	 second
season	did	viewers	change	their	minds	and	the	show	become	a	major	hit.	Willis’s
appeal	 and	 his	 success	 were	 apparently	 unforeseeable	 until,	 of	 course,	 he
suddenly	 became	 a	 star.	 One	 might	 at	 this	 point	 chalk	 up	 the	 story	 to	 crazy
Hollywood,	but	Willis’s	drunkard’s	walk	to	success	is	not	at	all	unusual.	A	path
punctuated	by	random	impacts	and	unintended	consequences	is	the	path	of	many
successful	people,	not	only	in	their	careers	but	also	in	their	loves,	hobbies,	and
friendships.	In	fact,	it	is	more	the	rule	than	the	exception.

I	 was	 watching	 late-night	 television	 recently	 when	 another	 star,	 though	 not
one	 from	 the	entertainment	world,	 appeared	 for	 an	 interview.	His	name	 is	Bill
Gates.	Though	the	interviewer	is	known	for	his	sarcastic	approach,	toward	Gates
he	seemed	unusually	deferential.	Even	the	audience	seemed	to	ogle	Gates.	The
reason,	of	course,	is	that	for	thirteen	years	straight	Gates	was	named	the	richest
man	in	the	world	by	Forbes	magazine.	In	fact,	since	founding	Microsoft,	Gates
has	earned	more	than	$100	a	second.	And	so	when	he	was	asked	about	his	vision
for	interactive	television,	everyone	waited	with	great	anticipation	to	hear	what	he



had	 to	 say.	 But	 his	 answer	 was	 ordinary,	 no	 more	 creative,	 ingenious,	 or
insightful	 than	anything	I’ve	heard	from	a	dozen	other	computer	professionals.
Which	brings	us	to	this	question:	does	Gates	earn	$100	per	second	because	he	is
godlike,	or	is	he	godlike	because	he	earns	$100	per	second?

In	August	1980,	when	a	group	of	IBM	employees	working	on	a	secret	project
to	build	a	personal	 computer	 flew	 to	Seattle	 to	meet	with	 the	young	computer
entrepreneur,	 Bill	 Gates	 was	 running	 a	 small	 company	 and	 IBM	 needed	 a
program,	 called	 an	 operating	 system,	 for	 its	 planned	 “home	 computer.”
Recollections	of	the	ensuing	events	vary,	but	the	gist	goes	like	this:12	Gates	said
he	couldn’t	provide	the	operating	system	and	referred	the	IBM	people	to	a	famed
programmer	named	Gary	Kildall	at	Digital	Research	Inc.	The	talks	between	IBM
and	 Kildall	 did	 not	 go	 well.	 For	 one	 thing,	 when	 IBM	 showed	 up	 at	 DRI’s
offices,	 Kildall’s	 then	 wife,	 the	 company’s	 business	 manager,	 refused	 to	 sign
IBM’s	nondisclosure	agreement.	The	IBM	emissaries	called	again,	and	that	time
Kildall	 did	 meet	 with	 them.	 No	 one	 knows	 exactly	 what	 transpired	 in	 that
meeting,	but	if	an	informal	deal	was	made,	it	didn’t	stick.	Around	that	time	one
of	the	IBM	employees,	Jack	Sams,	saw	Gates	again.	They	both	knew	of	another
operating	system	that	was	available,	a	system	that	was,	depending	on	whom	you
ask,	based	on	or	inspired	by	Kildall’s.	According	to	Sams,	Gates	said,	“Do	you
want	to	get…[that	operating	system],	or	do	you	want	me	to?”	Sams,	apparently
not	appreciating	the	implications,	said,	“By	all	means,	you	get	it.”	Gates	did,	for
$50,000	(or,	by	some	accounts,	a	bit	more),	made	a	few	changes,	and	renamed	it
DOS	(disk	operating	system).	IBM,	apparently	with	little	faith	in	the	potential	of
its	 new	 idea,	 licensed	DOS	 from	Gates	 for	 a	 low	per-copy	 royalty	 fee,	 letting
Gates	retain	the	rights.	DOS	was	no	better—and	many,	including	most	computer
professionals,	would	 claim	 far	worse—than,	 say,	Apple’s	Macintosh	 operating
system.	But	 the	growing	base	of	IBM	users	encouraged	software	developers	 to
write	for	DOS,	thereby	encouraging	prospective	users	 to	buy	IBM	machines,	a
circumstance	 that	 in	 turn	encouraged	software	developers	 to	write	 for	DOS.	In
other	words,	as	W.	Brian	Arthur	would	say,	people	bought	DOS	because	people
were	buying	DOS.	In	the	fluid	world	of	computer	entrepreneurs,	Gates	became
the	 molecule	 that	 broke	 from	 the	 pack.	 But	 had	 it	 not	 been	 for	 Kildall’s
uncooperativeness,	IBM’s	lack	of	vision,	or	the	second	encounter	between	Sams
and	Gates,	despite	whatever	visionary	or	business	acumen	Gates	possesses,	he
might	 have	 become	 just	 another	 software	 entrepreneur	 rather	 than	 the	 richest
man	in	the	world,	and	that	is	probably	why	his	vision	seems	like	that	of	just	that



—another	software	entrepreneur.

Our	society	can	be	quick	 to	make	wealthy	people	 into	heroes	and	poor	ones
into	goats.	That’s	why	the	real	estate	mogul	Donald	Trump,	whose	Plaza	Hotel
went	bankrupt	and	whose	casino	empire	went	bankrupt	twice	(a	shareholder	who
invested	$10,000	in	his	casino	company	in	1994	would	thirteen	years	later	have
come	 away	 with	 $636),13	 nevertheless	 dared	 to	 star	 in	 a	 wildly	 successful
television	program	 in	which	he	 judged	 the	business	 acumen	of	 aspiring	young
people.

Obviously	it	can	be	a	mistake	to	assign	brilliance	in	proportion	to	wealth.	We
cannot	 see	 a	 person’s	 potential,	 only	 his	 or	 her	 results,	 so	 we	 often	misjudge
people	by	thinking	that	the	results	must	reflect	the	person.	The	normal	accident
theory	 of	 life	 shows	 not	 that	 the	 connection	 between	 actions	 and	 rewards	 is
random	but	that	random	influences	are	as	important	as	our	qualities	and	actions.

On	an	emotional	level	many	people	resist	the	idea	that	random	influences	are
important	 even	 if,	 on	 an	 intellectual	 level,	 they	 understand	 that	 they	 are.	 If
people	underestimate	 the	 role	of	chance	 in	 the	careers	of	moguls,	do	 they	also
downplay	its	role	in	the	lives	of	the	least	successful?	In	the	1960s	that	question
inspired	 the	 social	 psychologist	Melvin	 Lerner	 to	 look	 into	 society’s	 negative
attitudes	 toward	 the	 poor.14	 Realizing	 that	 “few	 people	 would	 engage	 in
extended	activity	if	they	believed	that	there	were	a	random	connection	between
what	they	did	and	the	rewards	they	received,”15	Lerner	concluded	that	“for	the
sake	of	their	own	sanity,”	people	overestimate	the	degree	to	which	ability	can	be
inferred	 from	 success.16	We	 are	 inclined,	 that	 is,	 to	 see	 movie	 stars	 as	 more
talented	 than	 aspiring	 movie	 stars	 and	 to	 think	 that	 the	 richest	 people	 in	 the
world	must	also	be	the	smartest.

									
WE	 MIGHT	 NOT	 THINK	 we	 judge	 people	 according	 to	 their	 income	 or
outward	 signs	 of	 success,	 but	 even	 when	 we	 know	 for	 a	 fact	 that	 a	 person’s
salary	 is	 completely	 random,	 many	 people	 cannot	 avoid	 making	 the	 intuitive
judgment	that	salary	is	correlated	with	worth.	Melvin	Lerner	examined	that	issue
by	arranging	for	subjects	to	sit	in	a	small	darkened	auditorium	facing	a	one-way



mirror.17	From	their	seats	these	observers	could	gaze	into	a	small	well-lit	room
containing	 a	 table	 and	 two	 chairs.	 The	 observers	were	 led	 to	 believe	 that	 two
workers,	Tom	and	Bill,	would	soon	enter	the	room	and	work	together	for	fifteen
minutes	 unscrambling	 anagrams.	The	 curtains	 in	 front	 of	 the	 viewing	window
were	then	closed,	and	Lerner	told	the	observers	that	he	would	keep	the	curtains
shut	because	 the	experiment	would	go	better	 if	 they	could	hear	but	not	see	 the
workers,	so	that	they	would	not	be	influenced	by	their	appearance.	He	also	told
them	that	because	his	funds	were	limited,	he	could	pay	only	one	of	the	workers,
who	would	be	chosen	at	random.	As	Lerner	left	 the	room,	an	assistant	 threw	a
switch	 that	 began	 to	 play	 an	 audiotape.	 The	 observers	 believed	 they	 were
listening	in	as	Tom	and	Bill	entered	the	room	behind	the	curtain	and	began	their
work.	Actually	they	were	listening	to	a	recording	of	Tom	and	Bill	reading	a	fixed
script,	 which	 had	 been	 constructed	 such	 that,	 by	 various	 objective	 measures,
each	of	them	appeared	to	be	equally	adept	and	successful	at	his	task.	Afterward
the	observers,	not	knowing	this,	were	asked	to	rate	Tom	and	Bill	on	their	effort,
creativity,	and	success.	When	Tom	was	selected	to	receive	the	payment,	about	90
percent	 of	 the	 observers	 rated	 him	 as	 having	 made	 the	 greater	 contribution.
When	 Bill	 was	 selected,	 about	 70	 percent	 of	 the	 observers	 rated	 him	 higher.
Despite	 Tom	 and	 Bill’s	 equivalent	 performance	 and	 the	 observers’	 knowledge
that	the	pay	was	randomly	assigned,	the	observers	perceived	the	worker	who	got
paid	 as	 being	better	 than	 the	 one	who	had	worked	 for	 nothing.	Alas,	 as	 all	 of
those	who	 dress	 for	 success	 know,	we	 are	 all	 too	 easily	 fooled	 by	 the	money
someone	earns.

A	series	of	related	studies	investigated	the	same	effect	from	the	point	of	view
of	the	workers	themselves.18	Everyone	knows	that	bosses	with	 the	right	social
and	academic	credentials	and	a	nice	 title	and	salary	have	at	 times	put	a	higher
value	 on	 their	 own	 ideas	 than	 on	 those	 of	 their	 underlings.	 Researchers
wondered,	will	people	who	earn	more	money	purely	by	chance	behave	the	same
way?	Does	even	unearned	“success”	instill	a	feeling	of	superiority?	To	find	out,
pairs	 of	 volunteers	were	 asked	 to	 cooperate	 on	 various	 pointless	 tasks.	 In	 one
task,	 for	 instance,	 a	 black-and-white	 image	 was	 briefly	 displayed	 and	 the
subjects	had	 to	decide	whether	 the	 top	or	 the	bottom	of	 the	 image	contained	a
greater	 proportion	 of	 white.	 Before	 each	 task	 began,	 one	 of	 the	 subjects	 was
randomly	 chosen	 to	 receive	 considerably	 more	 pay	 for	 participating	 than	 the
other.	When	 that	 information	was	 not	made	 available,	 the	 subjects	 cooperated
pretty	 harmoniously.	 But	 when	 they	 knew	 how	 much	 they	 each	 were	 getting



paid,	 the	 higher-paid	 subjects	 exhibited	 more	 resistance	 to	 input	 from	 their
partners	 than	 the	 lower-paid	ones.	Even	 random	differences	 in	 pay	 lead	 to	 the
backward	 inference	 of	 differences	 in	 skill	 and	 hence	 to	 the	 development	 of
unequal	influence.	It’s	an	element	of	personal	and	office	dynamics	that	cannot	be
ignored.

But	 it	 is	 the	 other	 side	 of	 the	 question	 that	 was	 closer	 to	 the	 original
motivation	for	Lerner’s	work.	With	a	colleague,	Lerner	asked	whether	people	are
inclined	 to	 feel	 that	 those	who	 are	 not	 successful	 or	 who	 suffer	 deserve	 their
fate.19	 In	 that	 study	 small	 groups	 of	 female	 college	 students	 gathered	 in	 a
waiting	room.	After	a	few	minutes	one	was	selected	and	 led	out.	That	student,
whom	I	will	call	the	victim,	was	not	really	a	test	subject	but	had	been	planted	in
the	 room	 by	 the	 experimenters.	 The	 remaining	 subjects	 were	 told	 that	 they
would	observe	the	victim	working	at	a	learning	task	and	that	each	time	she	made
an	 incorrect	 response,	 she	 would	 receive	 an	 electric	 shock.	 The	 experimenter
adjusted	some	knobs	said	to	control	the	shock	levels,	and	then	a	video	monitor
was	 turned	on.	The	 subjects	watched	as	 the	victim	entered	an	adjoining	 room,
was	 strapped	 to	 a	 “shock	 apparatus,”	 and	 then	 attempted	 to	 learn	 pairs	 of
nonsense	syllables.

During	the	task	the	victim	received	several	apparently	painful	electric	shocks
for	her	incorrect	responses.	She	reacted	with	exclamations	of	pain	and	suffering.
In	 reality	 the	 victim	 was	 acting,	 and	 what	 played	 on	 the	 monitor	 was	 a
prerecorded	 tape.	 At	 first,	 as	 expected,	 most	 of	 the	 observers	 reported	 being
extremely	 upset	 by	 their	 peer’s	 unjust	 suffering.	 But	 as	 the	 experiment
continued,	 their	 sympathy	 for	 the	 victim	 began	 to	 erode.	 Eventually	 the
observers,	powerless	to	help,	instead	began	to	denigrate	the	victim.	The	more	the
victim	suffered,	the	lower	their	opinion	of	her	became.	As	Lerner	had	predicted,
the	observers	had	a	need	to	understand	the	situation	in	terms	of	cause	and	effect.
To	be	certain	that	some	other	dynamic	wasn’t	really	at	work,	the	experiment	was
repeated	with	other	groups	of	subjects,	who	were	told	that	the	victim	would	be
well	compensated	for	her	pain.	 In	other	words,	 these	subjects	believed	 that	 the
victim	 was	 being	 “fairly”	 treated	 but	 were	 otherwise	 exposed	 to	 the	 same
scenario.	 Those	 observers	 did	 not	 develop	 a	 tendency	 to	 think	 poorly	 of	 the
victim.	 We	 unfortunately	 seem	 to	 be	 unconsciously	 biased	 against	 those	 in
society	who	come	out	on	the	bottom.



We	miss	the	effects	of	randomness	in	life	because	when	we	assess	the	world,
we	 tend	 to	 see	what	we	 expect	 to	 see.	We	 in	 effect	 define	degree	of	 talent	 by
degree	 of	 success	 and	 then	 reinforce	 our	 feelings	 of	 causality	 by	 noting	 the
correlation.	 That’s	why	 although	 there	 is	 sometimes	 little	 difference	 in	 ability
between	 a	wildly	 successful	 person	 and	 one	who	 is	 not	 as	 successful,	 there	 is
usually	 a	 big	 difference	 in	 how	 they	 are	 viewed.	Before	Moonlighting,	 if	 you
were	told	by	the	young	bartender	Bruce	Willis	 that	he	hoped	to	become	a	film
star,	 you	would	not	 have	 thought,	gee,	 I	 sure	 am	 lucky	 to	 have	 this	 chance	 to
chat	one-on-one	with	a	charismatic	future	celebrity,	but	rather	you	would	have
thought	something	more	along	the	lines	of	yeah,	well,	for	now	just	make	sure	not
to	 overdo	 it	 on	 the	 vermouth.	 The	 day	 after	 the	 show	 became	 a	 hit,	 however,
everyone	suddenly	viewed	Bruce	Willis	as	a	star,	a	guy	who	has	that	something
special	it	takes	to	capture	viewers’	hearts	and	imagination.

The	power	of	expectations	was	dramatically	 illustrated	 in	a	bold	experiment
conducted	 years	 ago	 by	 the	 psychologist	 David	 L.	 Rosenhan.20	 In	 that	 study
each	 of	 eight	 “pseudopatients”	 made	 an	 appointment	 at	 one	 of	 a	 variety	 of
hospitals	 and	 then	 showed	 up	 at	 the	 admissions	 office	 complaining	 that	 they
were	 hearing	 strange	 voices.	 The	 pseudopatients	 were	 a	 varied	 group:	 three
psychologists,	a	psychiatrist,	a	pediatrician,	a	student,	a	painter,	and	a	housewife.
Other	 than	 alleging	 that	 single	 symptom	 and	 reporting	 false	 names	 and
vocations,	they	all	described	their	lives	with	complete	honesty.	Confident	in	the
clockwork	 operation	 of	 our	 mental	 health	 system,	 some	 of	 the	 subjects	 later
reported	 having	 feared	 that	 their	 obvious	 sanity	would	 be	 immediately	 sniffed
out,	causing	great	embarrassment	on	their	part.	They	needn’t	have	worried.	All
but	 one	 were	 admitted	 to	 the	 hospital	 with	 a	 diagnosis	 of	 schizophrenia.	 The
remaining	patient	was	admitted	with	a	diagnosis	of	manic-depressive	psychosis.

Upon	admission,	they	all	ceased	simulating	any	symptoms	of	abnormality	and
reported	that	the	voices	were	gone.	Then,	as	previously	instructed	by	Rosenhan,
they	waited	for	the	staff	to	notice	that	they	were	not,	in	fact,	insane.	None	of	the
staff	 noticed.	 Instead,	 the	 hospital	 workers	 interpreted	 the	 pseudopatients’
behavior	through	the	lens	of	insanity.	When	one	patient	was	observed	writing	in
his	 diary,	 it	 was	 noted	 in	 the	 nursing	 record	 that	 “patient	 engages	 in	 writing
behavior,”	 identifying	 the	 writing	 as	 a	 sign	 of	 mental	 illness.	 When	 another
patient	had	an	outburst	while	being	mistreated	by	an	attendant,	the	behavior	was
also	assumed	to	be	part	of	the	patient’s	pathology.	Even	the	act	of	arriving	at	the



cafeteria	 before	 it	 opened	 for	 lunch	was	 seen	 as	 a	 symptom	of	 insanity.	Other
patients,	 unimpressed	 by	 formal	medical	 diagnoses,	would	 regularly	 challenge
the	pseudopatients	with	comments	like	“You’re	not	crazy.	You’re	a	journalist…
you’re	 checking	 up	 on	 the	 hospital.”	 The	 pseudopatients’	 doctors,	 however,
wrote	 notes	 like	 “This	 white	 39-year-old	 male…manifests	 a	 long	 history	 of
considerable	 ambivalence	 in	 close	 relationships,	 which	 begins	 in	 early
childhood.	 A	 warm	 relationship	 with	 his	 mother	 cools	 during	 adolescence.	 A
distant	relationship	with	his	father	is	described	as	being	very	intense.”

The	good	news	is	that	despite	their	suspicious	habits	of	writing	and	showing
up	 early	 for	 lunch,	 the	 pseudopatients	 were	 judged	 not	 to	 be	 a	 danger	 to
themselves	 or	 others	 and	 released	 after	 an	 average	 stay	 of	 nineteen	 days.	 The
hospitals	never	detected	the	ruse	and,	when	later	informed	of	what	had	gone	on,
denied	that	such	a	scenario	could	be	possible.

If	it	is	easy	to	fall	victim	to	expectations,	it	is	also	easy	to	exploit	them.	That
is	why	struggling	people	in	Hollywood	work	hard	to	look	as	though	they	are	not
struggling,	why	doctors	wear	white	coats	and	place	all	manner	of	certificates	and
degrees	 on	 their	 office	 walls,	 why	 used-car	 salesmen	 would	 rather	 repair
blemishes	on	 the	outside	of	a	car	 than	sink	money	 into	engine	work,	and	why
teachers	will,	on	average,	give	a	higher	grade	to	a	homework	assignment	turned
in	by	an	“excellent”	student	than	to	identical	work	turned	in	by	a	“weak”	one.21
Marketers	also	know	this	and	design	ad	campaigns	to	create	and	then	exploit	our
expectations.	One	 arena	 in	which	 that	was	 done	 very	 effectively	 is	 the	 vodka
market.	 Vodka	 is	 a	 neutral	 spirit,	 distilled,	 according	 to	 the	 U.S.	 government
definition,	 “as	 to	be	without	 distinctive	 character,	 aroma,	 taste	or	 color.”	Most
American	 vodkas	 originate,	 therefore,	 not	with	 passionate,	 flannel-shirted	men
like	 those	 who	 create	 wines,	 but	 with	 corporate	 giants	 like	 the	 agrochemical
supplier	 Archer	 Daniels	Midland.	 And	 the	 job	 of	 the	 vodka	 distiller	 is	 not	 to
nurture	an	aging	process	that	imparts	finely	nuanced	flavor	but	to	take	the	190-
proof	industrial	swill	such	suppliers	provide,	add	water,	and	subtract	as	much	of
the	 taste	 as	 possible.	 Through	 massive	 image-building	 campaigns,	 however,
vodka	producers	have	managed	to	create	very	strong	expectations	of	difference.
As	a	result,	people	believe	that	this	liquor,	which	by	its	very	definition	is	without
a	 distinctive	 character,	 actually	 varies	 greatly	 from	 brand	 to	 brand.	Moreover,
they	are	willing	to	pay	large	amounts	of	money	based	on	those	differences.	Lest
I	be	dismissed	as	a	tasteless	boor,	I	wish	to	point	out	that	there	is	a	way	to	test



my	 ravings.	 You	 could	 line	 up	 a	 series	 of	 vodkas	 and	 a	 series	 of	 vodka
sophisticates	and	perform	a	blind	tasting.	As	it	happens,	The	New	York	Times	did
just	 that.22	And	without	 their	 labels,	 fancy	vodkas	 like	Grey	Goose	and	Ketel
One	didn’t	fare	so	well.	Compared	with	conventional	wisdom,	in	fact,	the	results
appeared	random.	Moreover,	of	 the	 twenty-one	vodkas	 tasted,	 it	was	 the	cheap
bar	brand,	Smirnoff,	 that	came	out	at	 the	 top	of	 the	 list.	Our	assessment	of	 the
world	 would	 be	 quite	 different	 if	 all	 our	 judgments	 could	 be	 insulated	 from
expectation	and	based	only	on	relevant	data.

									
A	FEW	YEARS	AGO	The	Sunday	Times	of	London	conducted	an	experiment.
Its	 editors	 submitted	 typewritten	 manuscripts	 of	 the	 opening	 chapters	 of	 two
novels	that	had	won	the	Booker	Prize—one	of	the	world’s	most	prestigious	and
most	 influential	 awards	 for	 contemporary	 fiction—to	 twenty	 major	 publishers
and	agents.23	One	of	the	novels	was	In	a	Free	State	by	V.	S.	Naipaul,	who	won
the	Nobel	Prize	for	Literature;	the	other	was	Holiday	by	Stanley	Middleton.	One
can	 safely	 assume	 that	 each	 of	 the	 recipients	 of	 the	 manuscripts	 would	 have
heaped	 praise	 on	 the	 highly	 lauded	 novels	 had	 they	 known	 what	 they	 were
reading.	 But	 the	 submissions	were	made	 as	 if	 they	were	 the	work	 of	 aspiring
authors,	and	none	of	the	publishers	or	agents	appeared	to	recognize	them.	How
did	the	highly	successful	works	fare?	All	but	one	of	the	replies	were	rejections.
The	exception	was	an	expression	of	 interest	 in	Middleton’s	novel	by	a	London
literary	 agent.	 The	 same	 agent	wrote	 of	Naipaul’s	 book,	 “We…thought	 it	was
quite	 original.	 In	 the	 end	 though	 I’m	 afraid	we	 just	weren’t	 quite	 enthusiastic
enough	to	be	able	to	offer	to	take	things	further.”

The	author	Stephen	King	unwittingly	conducted	a	 similar	 experiment	when,
worried	that	the	public	would	not	accept	his	books	as	quickly	as	he	could	churn
them	out,	he	wrote	a	series	of	novels	under	 the	pseudonym	Richard	Bachman.
Sales	figures	indicated	that	even	Stephen	King,	without	the	name,	is	no	Stephen
King.	 (Sales	 picked	 up	 considerably	 after	 word	 of	 the	 author’s	 true	 identity
finally	got	out.)	Sadly,	one	experiment	King	did	not	perform	was	the	opposite:	to
swathe	 wonderful	 unpublished	 manuscripts	 by	 struggling	 writers	 in	 covers
naming	 him	 as	 the	 author.	But	 if	 even	Stephen	King,	without	 the	 name,	 is	 no
Stephen	King,	then	the	rest	of	us,	when	our	creative	work	receives	a	less-than-
Kingly	reception,	might	take	comfort	in	knowing	that	the	differences	in	quality



might	not	be	as	great	as	some	people	would	have	us	believe.

Years	ago	at	Caltech,	 I	had	an	office	around	 the	corner	 from	 the	office	of	a
physicist	 named	 John	 Schwarz.	 He	 was	 getting	 little	 recognition	 and	 had
suffered	 a	 decade	 of	 ridicule	 as	 he	 almost	 single-handedly	 kept	 alive	 a
discredited	 theory,	 called	 string	 theory,	 which	 predicted	 that	 space	 has	 many
more	dimensions	 than	 the	 three	we	observe.	Then	one	day	he	and	a	co-worker
made	a	 technical	breakthrough,	 and	 for	 reasons	 that	need	not	 concern	us	here,
suddenly	the	extra	dimensions	sounded	more	acceptable.	String	theory	has	been
the	 hottest	 thing	 in	 physics	 ever	 since.	 Today	 John	 is	 considered	 one	 of	 the
brilliant	elder	statesmen	of	physics,	yet	had	he	let	 the	years	of	obscurity	get	 to
him,	 he	 would	 have	 been	 a	 testament	 to	 Thomas	 Edison’s	 observation	 that
“many	of	 life’s	 failures	are	people	who	did	not	 realize	how	close	 they	were	 to
success	when	they	gave	up.”24

Another	physicist	I	knew	had	a	story	that	was	strikingly	similar	to	John’s.	He
was,	coincidentally,	John’s	PhD	adviser	at	the	University	of	California,	Berkeley.
Considered	 one	 of	 the	most	 brilliant	 scientists	 of	 his	 generation,	 this	 physicist
was	 a	 leader	 in	 an	 area	 of	 research	 called	 S-matrix	 theory.	Like	 John,	 he	was
stubbornly	persistent	and	continued	to	work	on	his	theory	for	years	after	others
had	given	up.	But	unlike	John,	he	did	not	succeed.	And	because	of	his	 lack	of
success	he	ended	his	career	with	many	people	 thinking	him	a	crackpot.	But	 in
my	opinion	both	he	and	John	were	brilliant	physicists	with	the	courage	to	work
—with	no	promise	of	an	imminent	breakthrough—on	a	theory	that	had	gone	out
of	 style.	 And	 just	 as	 authors	 should	 be	 judged	 by	 their	 writing	 and	 not	 their
books’	 sales,	 so	 physicists—and	 all	 who	 strive	 to	 achieve—should	 be	 judged
more	by	their	abilities	than	by	their	success.

The	cord	that	tethers	ability	to	success	is	both	loose	and	elastic.	It	 is	easy	to
see	 fine	 qualities	 in	 successful	 books	 or	 to	 see	 unpublished	 manuscripts,
inexpensive	vodkas,	or	people	struggling	in	any	field	as	somehow	lacking.	It	is
easy	to	believe	that	ideas	that	worked	were	good	ideas,	that	plans	that	succeeded
were	well	designed,	and	that	ideas	and	plans	that	did	not	were	ill	conceived.	And
it	is	easy	to	make	heroes	out	of	the	most	successful	and	to	glance	with	disdain	at
the	 least.	 But	 ability	 does	 not	 guarantee	 achievement,	 nor	 is	 achievement
proportional	 to	ability.	And	so	it	 is	 important	 to	always	keep	in	mind	the	other
term	in	the	equation—the	role	of	chance.



It	 is	 no	 tragedy	 to	 think	 of	 the	 most	 successful	 people	 in	 any	 field	 as
superheroes.	But	it	is	a	tragedy	when	a	belief	in	the	judgment	of	experts	or	the
marketplace	 rather	 than	 a	 belief	 in	 ourselves	 causes	 us	 to	 give	 up,	 as	 John
Kennedy	 Toole	 did	 when	 he	 committed	 suicide	 after	 publishers	 repeatedly
rejected	 his	 manuscript	 for	 the	 posthumously	 best-selling	 Confederacy	 of
Dunces.	And	so	when	tempted	to	judge	someone	by	his	or	her	degree	of	success,
I	like	to	remind	myself	that	were	they	to	start	over,	Stephen	King	might	be	only
a	 Richard	 Bachman	 and	 V.	 S.	 Naipaul	 just	 another	 struggling	 author,	 and
somewhere	out	there	roam	the	equals	of	Bill	Gates	and	Bruce	Willis	and	Roger
Maris	who	are	not	rich	and	famous,	equals	on	whom	Fortune	did	not	bestow	the
right	breakthrough	product	or	TV	show	or	year.	What	I’ve	learned,	above	all,	is
to	keep	marching	forward	because	the	best	news	is	that	since	chance	does	play	a
role,	one	important	factor	in	success	is	under	our	control:	the	number	of	at	bats,
the	 number	 of	 chances	 taken,	 the	 number	 of	 opportunities	 seized.	 For	 even	 a
coin	weighted	 toward	 failure	 will	 sometimes	 land	 on	 success.	 Or	 as	 the	 IBM
pioneer	Thomas	Watson	said,	“If	you	want	to	succeed,	double	your	failure	rate.”

I	 have	 tried	 in	 this	 book	 to	 present	 the	 basic	 concepts	 of	 randomness,	 to
illustrate	how	they	apply	to	human	affairs,	and	to	present	my	view	that	its	effects
are	 largely	 overlooked	 in	 our	 interpretations	 of	 events	 and	 in	 our	 expectations
and	decisions.	 It	may	come	as	an	epiphany	merely	 to	 recognize	 the	ubiquitous
role	of	 random	processes	 in	our	 lives;	 the	 true	power	of	 the	 theory	of	 random
processes,	however,	lies	in	the	fact	that	once	we	understand	the	nature	of	random
processes,	we	can	alter	the	way	we	perceive	the	events	that	happen	around	us.

The	psychologist	David	Rosenhan	wrote	that	“once	a	person	is	abnormal,	all
of	his	other	behaviors	and	characteristics	are	colored	by	that	label.”25	The	same
applies	 for	 stardom,	 for	many	other	 labels	of	 success,	 and	 for	 those	of	 failure.
We	judge	people	and	initiatives	by	their	results,	and	we	expect	events	to	happen
for	good,	understandable	reasons.	But	our	clear	visions	of	inevitability	are	often
only	illusions.	I	wrote	this	book	in	the	belief	that	we	can	reorganize	our	thinking
in	the	face	of	uncertainty.	We	can	improve	our	skill	at	decision	making	and	tame
some	of	 the	biases	 that	 lead	us	 to	make	poor	 judgments	and	poor	choices.	We
can	seek	to	understand	people’s	qualities	or	the	qualities	of	a	situation	quite	apart
from	the	results	they	attain,	and	we	can	learn	to	judge	decisions	by	the	spectrum
of	 potential	 outcomes	 they	might	 have	 produced	 rather	 than	 by	 the	 particular
result	that	actually	occurred.



My	 mother	 always	 warned	 me	 not	 to	 think	 I	 could	 predict	 or	 control	 the
future.	 She	 once	 related	 the	 incident	 that	 converted	 her	 to	 that	 belief.	 It
concerned	her	sister,	Sabina,	of	whom	she	still	often	speaks	although	it	has	been
over	sixty-five	years	since	she	last	saw	her.	Sabina	was	seventeen.	My	mother,
who	 idolized	 her	 as	 younger	 siblings	 sometimes	 do	 their	 older	 siblings,	 was
fifteen.	The	Nazis	had	invaded	Poland,	and	my	father,	from	the	poor	section	of
town,	had	joined	the	underground	and,	as	I	said	earlier,	eventually	ended	up	in
Buchenwald.	My	mother,	 who	 didn’t	 know	 him	 then,	 came	 from	 the	wealthy
part	of	town	and	ended	up	in	a	forced-labor	camp.	There	she	was	given	the	job
of	nurse’s	aide	and	took	care	of	patients	suffering	from	typhus.	Food	was	scarce,
and	 random	death	was	always	near.	To	help	protect	my	mother	 from	 the	ever-
present	dangers,	Sabina	agreed	to	a	plan.	She	had	a	friend	who	was	a	member	of
the	Jewish	police,	a	group,	generally	despised	by	 the	 inmates,	who	carried	out
the	Germans’	commands	and	helped	keep	order	in	the	camp.	Sabina’s	friend	had
offered	to	marry	her—a	marriage	in	name	only—so	that	Sabina	might	obtain	the
protections	 that	his	position	afforded.	Sabina,	 thinking	 those	protections	would
extend	to	my	mother,	agreed.	For	a	while	it	worked.	Then	something	happened,
and	the	Nazis	soured	on	the	Jewish	police.	They	sent	a	number	of	officers	to	the
gas	chambers,	along	with	their	spouses—including	Sabina’s	husband	and	Sabina
herself.	My	mother	has	lived	now	for	many	more	years	without	Sabina	than	she
had	 lived	with	her,	but	Sabina’s	death	still	haunts	her.	My	mother	worries	 that
when	she	is	gone,	there	will	no	longer	be	any	trace	that	Sabina	ever	existed.	To
her	this	story	shows	that	it	is	pointless	to	make	plans.	I	do	not	agree.	I	believe	it
is	 important	 to	plan,	 if	we	do	 so	with	our	 eyes	open.	But	more	 important,	my
mother’s	experience	has	taught	me	that	we	ought	to	identify	and	appreciate	the
good	luck	that	we	have	and	recognize	the	random	events	that	contribute	to	our
success.	 It	 has	 taught	me,	 too,	 to	 accept	 the	 chance	 events	 that	may	 cause	 us
grief.	Most	 of	 all	 it	 has	 taught	me	 to	 appreciate	 the	 absence	 of	 bad	 luck,	 the
absence	 of	 events	 that	 might	 have	 brought	 us	 down,	 and	 the	 absence	 of	 the
disease,	war,	famine,	and	accident	that	have	not—or	have	not	yet—befallen	us.
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