MZM Laser Synthesizer Development

Version: February 11, 2011

Filename = MZM_LS_development

D. Kubo (Hardware/Test)

R. Srinivasan (Software/Test)

M. Chen (Technical Management)

H. Kiuchi (NAOJ, MZM-LS Developer/Technical Consultant)

Academia Sinica Institute of Astronomy & Astrophysics

Atacama Large Millimeter Array - Taiwan

Table of Contents

Photo - Oblique	3
Functional Block Diagram	4
Photos – Top, Bottom, Rear	5
Simplified Description	8
Application for ALMA	9
Schedule	11
Material Cost	12
Chassis Description	13
Chassis Assembly	14
Thermal Design & Performance	15
MZ1 & J2 Optical Outputs vs. Frequency	16
Graph of MZ1 Optical Output vs. Frequency	25
Graph of J2 Optical Output vs. Frequency	26
EDFA Output Noise Pedestal with & without FL3	27
Optical Output SNR vs. Frequency	28
RF Spectral Outputs of CVR & Photomixer vs. Frequency	29
RF Phase Noise of CVR & Photomixer vs. Frequency	31
Residual Phase Noise Summary	33
J2 Optical Output Power vs. Time	34
J2 Optical Output PER & SOPC vs. Time	35
Fast Frequency Switching Mode	36
Issue with LLC in Fast Frequency Switching Mode	38
Instrument Communication Interconnect Diagram	39
Software Flow Diagram	40
Sample MZM-LS Software Control Windows	41
Summary	44
APPENDIX	45
Frequency Coverage	46
Power Consumption	47
Requirements vs. Capabilities	48

Academia Sinica Institute of Astronomy & Astrophysics

Academia Sinica

Atacama Large Millimeter Array - Taiwan

Institute of Astronomy & Astrophysics

Academia Sinica
Institute of Astronomy & Astrophysics

Academia Sinica
Institute of Astronomy & Astrophysics

Academia Sinica Institute of Astronomy & Astrophysics

Academia Sinica
Institute of Astronomy & Astrophysics

Atacama Large Millimeter Array - Taiwan

Simplified Description of MZM-LS

Sumitomo LiNbO3 MZ Modulator

Optical Output Spectra from MZ Modulator

Atacama Large Millimeter Array - Taiwan

Laser Synthesizer Application for ALMA Project

February 15, 2011

Academia Sinica Institute of Astronomy & Astrophysics

Atacama Large Millimeter Array - Taiwan

MZM-LS Application for ALMA Project (continued)

Academia Sinica Institute of Astronomy & Astrophysics

Atacama Large Millimeter Array - Taiwan

• Schedule

Atacama Large Millimeter Array - Taiwan

Academia Sinica Institute of Astronomy & Astrophysics

- Material Costs
 - \$54.1k USD
 - Does not include:
 - Spares
 - Test equipment

вом,	MZM LASER SYNTHESIZER	2011 FEBRUARY 8	D. KUBO				
ITEM	DESCRIPTION	PART NO.	SUPPLIER	REF. DES.	QTY/	\$/EA.	TOTAL \$
					ASSY	(USD)	(USD)
1	PM EDFA, gain +35 dB, Psat +18 dBm	AEDFA-C-PM-17I-M	Amonics	AR2	1	\$11,500	\$11,500
2	RF power amplifier, 2 - 50 GHz, P1dBc +27 dBm	TA2U50HA	Centellax	AR1	1	\$9,568	\$9,568
3	Optical Modulator	T.FSX1.5-10-P-FA	Sumitomo Osaka Cement	MZ1	1	\$9,500	\$9,500
4	PM isolator/polarizer, notail	NISO-D-15-PP2-FC/APC	General Photonics	IS1, IS2, IS4, IS	5 4	\$940	\$3,760
5	PM Fiber Bragg Grating filter, custom	AT-FBGT3FXC4545 REV.00	Avensys	FB1, FB2	2	\$1,250	\$2,500
6	PM optical bandpass filter	BPF1556.2-3.2n/2c-P/FA	Optoquest	FL3	1	\$2,250	\$2,250
7	PM SPDT switch, pigtail	Custom	Leoni	SW1	1	\$2,082	\$2,082
8	FBG assembly, custom	-	Bear Machinery, Inc	-	1	\$1,500	\$1,500
9	PM isolator/polarizer, pigtail	ISO-S-15-PP2-FC/APC-90	General Photonics	IS3, IS6	2	\$710	\$1,420
10	Centellax/MZM plate, custom	-	Bear Machinery, Inc	-	1	\$1,150	\$1,150
11	Bias-T, 0.1 - 40 GHz, K-connector	K250	Anritsu	BT1	1	\$1,065	\$1,065
12	PM coupler, notail, 90/10	NPMC-12-F-15-10/90-FC/APC	General Photonics	CP3	1	\$945	\$945
13	PM FC/APC to FC/APC adapter	ADAFC2-PMN	Thorlabs	AD1 - AD17	17	\$47	\$799
14	Deck plate, custom	-	Dayton Jackson Machine Works	-	1	\$640	\$640
15	PM coupler, pigtail, 50/50	PM-C-12-F-15-50/50-FC/APC	General Photonics	CP2	1	\$625	\$625
16	Rear panel fabrication service	-	Dayton Jackson Machine Works	-	1	\$500	\$500
17	Miscellaneous	-		-	1	\$500	\$500
18	Front panel fabrication service	-	Bear Machinery, Inc	-	1	\$445	\$445
19	Ethernet controller, 4-slot	ADAM-5000/TCP-AE	Advantech	A1	1	\$365	\$365
20	Plug-in module, DAC	ADAM-5024	Advantech	A1-A2	1	\$285	\$285
21	Plug-in module, thermistor	ADAM-5016-P	Advantech	A1-A1	1	\$270	\$270
22	Plug-in module, ADC	ADAM-5017-P	Advantech	A1-A3	1	\$250	\$250
23	DC power supply, +12 VDC, low noise	HFS50-12	Daitron	PS1	1	\$205	\$205
24	DC power supply, +/-15 VDC, low noise	HFD30-15	Daitron	PS2	1	\$195	\$195
25	Blank chassis, EMI, 19 x 22 x 8.75"	14-19225A	Par-metal	-	1 1	\$165	\$165
26	Power supply plate		Bear Machinery, Inc	-	1	\$165	\$165
27	ADAM plate	-	Bear Machinery, Inc	-	1 1	\$165	\$165
28	Exhaust vent plate, custom	-	Dayton Jackson Machine Works	-	2	\$75	\$150
29	Attenuator, 6 dB, DC - 40 GHz, 2.9(m/f)	40AH2W-06	Aeroflex	AT2	1 1	\$125	\$125
30	Plug-in module, Digital I/O	ADAM-5055-S	Advantech	A1-A4	1	\$120	\$120
31	Thermocouple	A6-2	Nanmac Corporation	-	7 7	\$16	\$112
32	DC power supply, +24 VDC	RTW24-2R2	TDK/Lambda	PS3	1	\$110	\$110
33	K connector (f/f), 4-hole flange, DC - 40 GHz	5344	Aeroflex	J4, J5	2	\$54	\$108
34	DC amplifier, gain 2 V/V, -5 V offset, custom	Custom	ASIAA	A3	1	\$100	\$100
35	RF adapter, 2.4(m) to 2.9(f), DC - 40 GHz	5153	Aeroflex	-	1 1	\$90	\$90
36	Semirigid coax cable, 2.92(m) to 1.85(m), 15"	-	RFCoax, Inc.	W1	1	\$88	\$88
37	FC/APC connector bracket	-	Jackson Machine Works	-	4	\$15	\$60
38	Angle bracket, deck plate support	_	Dayton Jackson Machine Works	-	2	\$28	\$56
39	DC fan, +24 VDC, 92 mm, 48 CFM	965-0346 (Allied Electronics)	Globe Motors	FN1, FN2	2	\$20	\$40
40	RF adapter, 2.9(m) to 2.9(m), DC - 40 GHz	5171	Aeroflex		1	\$38	\$38
41	+9 VDC regulator assembly	LM350T + caps + pot	ASIAA	-	1 1	\$20	\$20
42	DC terminal block assembly		ASIAA	-	1	\$20	\$20
43	Mesh guard, 92 mm	592-2122 (Allied Electronics)	Orion	-	4	\$4	\$16
44	EMI line filter, switch, fuse	689-4318 (Allied Electronics)	Allied	18	1	\$14	\$14
45	Ethernet connector, bulkhead, EMI shielded	ECF504-SC5E	L-com Global	J7	† <u>†</u> †	\$11	\$11
46	+5 VDC regulator assembly	LM7805 + caps	ASIAA	12	1	\$5	\$5
47	Subminiature D-connector, 9-pin	- Caps	-	16	1 1	\$5 \$5	\$5 \$5
48	Ground stud	_	- I -	E1	1	\$5	\$5 \$5
	oround stud				+	33	33

ALMA

MZM Laser Synthesizer

Academia Sinica
Institute of Astronomy & Astrophysics

- Chassis Description
 - Dimensions 19 x 22 x 8.75" (W x D x H), excluding front panel handles and rear panel connectors
 - Rack mountable
 - Weight 42 LBS (19 kg) with covers installed
 - EMI Chassis (Par-metal Products Inc.)
 - All components mounted onto a fixed aluminum deck plate (16.625 x 18.0 x 0.25 inches)
 - 483 M3 tapped holes
 - 20 mm spacing
 - Power dissipation 58 W
 - Forced air cooled

Academia Sinica
Institute of Astronomy & Astrophysics

Atacama Large Millimeter Array - Taiwan

Chassis Assembly

Academia Sinica
Institute of Astronomy & Astrophysics

Atacama Large Millimeter Array - Taiwan

Thermal Design

- 2 x 48 CFM fans powered from dedicated +24 VDC TDK/Lambda supply
- Fixed aluminum deck plate provides large thermal reference mass
- Observe an exhaust vs. intake air temperature difference of ~4 degrees C at sea level

Academia Sinica
Institute of Astronomy & Astrophysics

Atacama Large Millimeter Array - Taiwan

MZ1 Optical Output, Null Bias Mode

J2 Optical Output, Null Bias Mode

CVR = 11.0 GHz (LO = 22.0 GHz)

CVR = 12.0 GHz (LO = 24.0 GHz)

Academia Sinica
Institute of Astronomy & Astrophysics

Atacama Large Millimeter Array - Taiwan

MZ1 Optical Output, Null Bias Mode

J2 Optical Output, Null Bias Mode

Mkr 3(A)

CVR = 14.0 GHz (LO = 28.0 GHz)

CVR = 15.0 GHz (LO = 30.0 GHz)

Academia Sinica
Institute of Astronomy & Astrophysics

Atacama Large Millimeter Array - Taiwan

MZ1 Optical Output, Null Bias Mode

J2 Optical Output, Null Bias Mode

CVR = 16.0 GHz (LO = 32.0 GHz)

CVR = 17.0 GHz (LO = 34.0 GHz)

Academia Sinica
Institute of Astronomy & Astrophysics

Atacama Large Millimeter Array - Taiwan

MZ1 Optical Output, Full Bias Mode

J2 Optical Output, Full Bias Mode

CVR = 17.0 GHz (LO = 68.0 GHz)

CVR = 18.0 GHz (LO = 72.0 GHz)

Academia Sinica
Institute of Astronomy & Astrophysics

Atacama Large Millimeter Array - Taiwan

MZ1 Optical Output, Full Bias Mode

J2 Optical Output, Full Bias Mode

Mkr(2-1)

CVR = 20.0 GHz (LO = 80.0 GHz)

CVR = 21.0 GHz (LO = 84.0 GHz)

Academia Sinica
Institute of Astronomy & Astrophysics

Atacama Large Millimeter Array - Taiwan

MZ1 Optical Output, Full Bias Mode

J2 Optical Output, Full Bias Mode

CVR = 23.0 GHz (LO = 92.0 GHz)

CVR = 24.0 GHz (LO = 96.0 GHz)

Academia Sinica
Institute of Astronomy & Astrophysics

Atacama Large Millimeter Array - Taiwan

MZ1 Optical Output, Full Bias Mode

J2 Optical Output, Full Bias Mode

CVR = 26.0 GHz (LO = 104.0 GHz)

CVR = 27.0 GHz (LO = 108.0 GHz)

February 15, 2011 ALMA-T All Hands Meeting

22

Academia Sinica
Institute of Astronomy & Astrophysics

Atacama Large Millimeter Array - Taiwan

MZ1 Optical Output, Full Bias Mode

J2 Optical Output, Full Bias Mode

Mkr 2(A)

Mkr(2-1)

Mkr 3(A)

CVR = 29.0 GHz (LO = 116.0 GHz)

CVR = 30.0 GHz (LO = 120.0 GHz)

Academia Sinica Institute of Astronomy & Astrophysics

Atacama Large Millimeter Array - Taiwan

MZ1 Optical Output, Full Bias Mode

J2 Optical Output, Full Bias Mode

0.518 nm

Mkr 3(A)

CVR = 32.0 GHz (LO = 116.0 GHz)

Academia Sinica
Institute of Astronomy & Astrophysics

- Plot of MZ1 Optical Output Power vs. Offset Frequency
 - 0 GHz represents 1556.21 nm master laser (192.642,702 THz)
 - MZ1 modulation efficiency reduces with increasing RF frequency

Academia Sinica
Institute of Astronomy & Astrophysics

- Plot of J2 Final Optical Output Power vs. Optical Frequency
 - AR2 EDFA gain is adjusted to compensate for MZ1 frequency roll-off
 - Upward/downward tails at +/- 32.5 GHz were caused by FBGs and are no longer present (replaced FBGs)

Academia Sinica
Institute of Astronomy & Astrophysics

Atacama Large Millimeter Array - Taiwan

- EDFA Output Noise Pedestal Characterization at J3 (identical to J2)
 - FL3 optical filter removes ~80% of the EDFA ASE noise
 - Remaining ASE noise pedestal accounts for approximately -13 dBm
 - Desired tones +7 dBm, undesired noise -13 dBm → optical SNR ~20 dB

Output without FL3 (CVR = 25 GHz)

Output with FL3

Academia Sinica
Institute of Astronomy & Astrophysics

Atacama Large Millimeter Array - Taiwan

- EDFA Output Noise Pedestal Characterization (continued)
 - Comparison of output SNR at 27, 100, and 124 GHz
 - Higher EDFA gain is required at higher LO frequencies
 - Results in lower SNR at higher LO frequencies
 - Worst case optical SNR is 18 dB (spec is 10 dB)

SNR = 21 dB @ LO = 100 GHz

SNR = 18 dB @ LO = 124 GHz

Academia Sinica Institute of Astronomy & Astrophysics

Atacama Large Millimeter Array - Taiwan

CVR Spectral Response (5 MHz span)

Photomixer Spectral Response (5 MHz span)

SHP 1.38e+88sec

Scale 19dB/

CVR = 20.0 GHz, PM = 80.0 GHz

CVR = 25.0 GHz, PM = 100.0 GHz

February 15, 2011

ALMA-T All Hands Meeting

Academia Sinica Institute of Astronomy & Astrophysics

Atacama Large Millimeter Array - Taiwan

CVR Spectral Response (5 MHz span)

Photomixer Spectral Response (5 MHz span)

February 15, 2011

ALMA-T All Hands Meeting

(200 kHz span)

(200 kHz span)

Academia Sinica
Institute of Astronomy & Astrophysics

Atacama Large Millimeter Array - Taiwan

CVR L(f) Phase Noise

Photomixer L(f) Phase Noise

February 15, 2011

ALMA-T All Hands Meeting

Academia Sinica
Institute of Astronomy & Astrophysics

Atacama Large Millimeter Array - Taiwan

CVR L(f) Phase Noise

Photomixer L(f) Phase Noise

Total RMS integrated phase noise (3 kHz - 3 MHz):

- 20.0 GHz = 0.2069 deg.
- -22.5 GHz = 0.2527
- -25.0 GHz = 0.2656
- -26.25 GHz = 0.2492

<u>Total RMS integrated phase</u> <u>noise (3 kHz - 3 MHz):</u>

- 80.0 GHz = 0.8873 deg.
- -90.0 GHz = 1.0376
- 100.0 GHz = 1.1297
- 105.0 GHz = 1.1722

Academia Sinica
Institute of Astronomy & Astrophysics

Atacama Large Millimeter Array - Taiwan

Calculation of MZM-LS Residual Phase Noise

$$\Phi_{\text{total}} = [(4*\Phi_{\text{CVR}})^2 + (\Phi_{\text{ALS}})^2]^{0.5} \longrightarrow \Phi_{\text{ALS}} = [(\Phi_{\text{total}})^2 - (4*\Phi_{\text{CVR}})^2]^{0.5}$$

Frequen	cy (GHz)	Integrated Phase Noise, RMS (3 kHz - 3 MHz)			
CVR	Photomixer	Total (deg)	CVR (deg)	MZM-LS (deg)	MZM-LS (fsec)
20.000	80.000	0.8873	0.2069	0.3200	11.11
22.500	90.000	1.0376	0.2527	0.2343	7.23
25.000	100.000	1.1297	0.2656	0.3841	10.67
26.250	105.000	1.1722	0.2492	0.6168	16.32

Specification

· Can't measure below 3 kHz with test equipment in Hilo, will have to wait for tests in CV

</= 27 fsec (</= 0.972 degrees @ 100.0 GHz), integrated from 1 kHz - 1 MHz</p>

Worst case measured value was 16.3 fsec seen at 105 GHz (3 kHz - 3 MHz)

Academia Sinica
Institute of Astronomy & Astrophysics

- J2 Optical Output Power Stability vs. Time
 - Plots below represent optical power output at 65 GHz and 120 GHz over a duration of 12 hours
 - Power stability spec is < 0.4 dB variation over any 300 second (5 minute) interval with samples averaged over 10 seconds
 - Measured maximum 1 sigma value of 0.04 dB → peak-to-peak value ~0.24 dB

Academia Sinica
Institute of Astronomy & Astrophysics

- J2 Optical Output PER & SOPC Stability vs. Time
- Plots below represent optical PER & SOP output at 65 GHz and 120 GHz over a duration of 12 hours
- PER (Polarization Extinction Ratio) spec is > 20 dB
 - Measured worst case value of 23.3 dB
- SOPC (State of Polarization Change) spec is < +/- 0.01 radians RMS over any 300 second interval
 - Measured worst case value of +/- 0.0095 radians RMS

Academia Sinica Institute of Astronomy & Astrophysics

Atacama Large Millimeter Array - Taiwan

- Fast Frequency Switching Mode
 - Use an OzOptics optical power meter to indirectly measure the frequency switching time
 - 2 plots below represent 65/120 GHz and 100/120 GHz frequency switching
 - Imbalance in power at the 2 LO frequencies is due to non-flat response of MZ1 and AR1
 - For the 65/120 case there is ~7 dB power difference exiting MZ1 and is subsequently leveled to ~0.4 dB by dynamically adjusting the EDFA gain
 - For 100/120 GHz case there is ~2 dB difference exiting MZ1 which is leveled to ~0.1 dB

February 15, 2011

ALMA-T All Hands Meeting

36

Academia Sinica
Institute of Astronomy & Astrophysics

- Fast Frequency Switching Mode (continued)
 - Closer time span look at 100/120 GHz frequency switching
 - Power meter sample rate is 15 samples/second (67 msec per data point)
 - Based on the sample rate it appears that the switching time is no greater than 2 sample times or 133 msec (spec is < 500 msec, goal is 100 msec)

Academia Sinica
Institute of Astronomy & Astrophysics

- Issue with Line Length Corrector in Fast Frequency Switching Mode
 - Abrupt change in CVR (Agilent E8257D) frequency causes momentary dropout of RF signal
 - Results in momentary dropout of optical tones
 - Loss of lock for LLC
 - One possible solution is the re-introduction of the Master Laser after the MZM-LS
 - Tests at CV confirms that this works
 - 3rd optical tone may impact the lock reliability of the WCAs

Academia Sinica
Institute of Astronomy & Astrophysics

Atacama Large Millimeter Array - Taiwan

Instrument Communication Interconnect Diagram

Academia Sinica
Institute of Astronomy & Astrophysics

- Software Flow Diagram
 - Each stage collects instrument read-back which is logged
 - Unresponsive instruments create appropriate error messages which terminates the program

Academia Sinica
Institute of Astronomy & Astrophysics

- MZM-LS Control Window
 - Main window is shown below

Academia Sinica
Institute of Astronomy & Astrophysics

- MZM-LS Control Window (continued)
 - MZM DC bias can be controlled by either the external Kikusui unit or the internal ADAM unit
 - Must swap internal 9-pin D-sub connectors to switch between the 2 bias sources

Academia Sinica
Institute of Astronomy & Astrophysics

- MZM-LS Control Window (continued)
 - Health page monitors 2 regulated voltage values (+5 and +9 VDC) and 7 temperature values

Academia Sinica
Institute of Astronomy & Astrophysics

Atacama Large Millimeter Array - Taiwan

Summary

- Residual phase noise performance of MZM Laser Synthesizer is very good
 - Measure 11 fsec (0.4 degrees), spec is 27 fsec (1.0 degrees), both at 100 GHz
 - Residual phase noise is ~0.5 of the baseline Laser Synthesizer
- Final LO phase noise is driven by individual contributors
 - CVR, LS, LLC, WCA, CCA
 - Overall improvement in final LO phase noise is ~0.7
- Compatibility issue with LLC in Fast Frequency Switching mode
 - Re-introduction of ML after LS needs to be further evaluated
 - Requires hardware modification of existing CLO system
- Monitor & Control
 - ALMA standard protocol is CANbus
 - MZM Laser Synthesizer utilizes Ethernet protocol
- Physical Form Factor
 - CLO system spec calls for "flow through" air chassis design
 - MZM Laser Synthesizer utilized a commercial EMI chassis
- Working with ALMA on an upgrade proposal for the CLO system

Academia Sinica Institute of Astronomy & Astrophysics

Atacama Large Millimeter Array - Taiwan

APPENDIX

Academia Sinica
Institute of Astronomy & Astrophysics

Atacama Large Millimeter Array - Taiwan

Frequency Coverage

Band		lef. Freq. Hz)	CC		requency Hz)	Sky Freque	ency (GHz)	IF Freque	ncy (GHz)	# of IFs	Total IF BW
	Low	High	Multiplier	Low	High	Low	High	Low	High		(GHz)
1	27.3	33.0	1	27.3	33.0	31.3	45.0	4.0	12.0	2	16.0
2	79.0	94.0	1	79.0	94.0	67.0	90.0	4.0	12.0	2	16.0
3	92.0	108.0	1	92.0	108.0	84.0	116.0	4.0	8.0	4	16.0
4	66.5	77.5	2	133.0	155.0	125.0	163.0	4.0	8.0	4	16.0
5	28.5	34.0	6	171.0	204.0	163.0	211.0	4.0	8.0	4	16.0
6	73.7	88.3	3	221.1	264.9	211.0	275.0	6.0	10.0	4	16.0
7	94.3	121.7	3	282.9	365.1	275.0	373.0	4.0	8.0	4	16.0
8	65.5	82.0	6	393.0	492.0	385.0	500.0	4.0	8.0	4	16.0
9	67.8	79.1	9	610.2	711.9	602.0	720.0	4.0	12.0	2	16.0
10	88.3	104.7	9	794.7	942.3	787.0	950.0	4.0	12.0	2	16.0

Academia Sinica
Institute of Astronomy & Astrophysics

Atacama Large Millimeter Array - Taiwan

Power Consumption

Ref Des	Description	V (V)	I (A)	P (W)	Comments
AR1	Centellax TA2U50HA, RF amplifier	9.0	1.5	13.5	Operate from PS1
AR2	Amonics AEDFA-C-PM-17I-M, PM EDFA	5.0	1.0	5.0	Operate from PS1
SW1	Leoni, SPDT PM switch	5.0	0.1	0.5	Operate from PS1
FN1	Globe Motors D36-B10A-05W3-100	24.0	0.2	4.8	Operate from PS3
FN2	Globe Motors D36-B10A-05W3-100	24.0	0.2	4.8	Operate from PS3
A1	Advantech ADAM-5000	12.0	0.6	7.2	Operate from PS2
A2	Custom DC amplifier board	15.0 -15.0	0.1 0.1	1.5 1.5	Operate from PS2
	Total calculated DC of individual components			37.3	
PS1	Diatron HFS50-12, +12V @ 4.2A, 5mV ripple (85-264 VAC, 47-63 Hz)		2.6	31.2	AR1, AR2, SW1
PS2	Diatron HFD30-15, +15V @ 1.5A, -15.0V @ 0.5A, 3mV ripple (87-264 VAC, 47-63 Hz)		0.7 / 0.1	12.0	A1, A2, future AMBSI board
PS3	TDK Lambda RTW24-2R2, 24V @ 2.2A, 100mV ripple (85-265 VAC, 47-440 Hz)		0.4	9.6	FN1, FN2
	Total calculated DC including regulator losses			52.8	
	Measured AC consumption (120 VAC)			58	MZM-LS in active mode

Academia Sinica Institute of Astronomy & Astrophysics

Atacama Large Millimeter Array - Taiwan

• Requirements Overview [reference ALMA-56.15.00.00-001-A-SPE, rev A]

Para. #	Parameter	Specification	Capability	Comments
	AC INPUT POWER			
	AC INPOT POWER			
4.1	Input power voltage/frequency	120 VAC, 60 Hz /	Comply	By design, auto switching
		230 VAC, 60 Hz		
4.1	Power consumption	< 200 W	< 50 W	
	MASTER LASER INPUT SOURCE			
2.1.1	Dptical input wavelength	1556.21 +/- 0.01	Comply	Defined for tests
		nm		
2.1.3	Optical input power	20 +/- 10 mW	20 mW	Settable with variable attenuator
2.1.5	Optical input polarization	Linear	Comply	Slow axis keyed
2.1.6	Optical input PER	>/= 25 dB	21 dB	TeraXion master laser, can
	CENTRAL VARIABLE REFERENCE			improve with external polarizer
	CENTRAL VARIABLE REFERENCE			
2.2.1	RF input frequency	8.182 - 16.525	13.630 - 30.428	MZM-LS does not have an internal
		GHz	GHz	frequency doubler (can be added
2.2.3	RF input power	+21 +/- 3 dBm	+8 +/- 1 dBm	upon request) 13 - 31 GHz
2.2.5	RF input RMS phase delay noise	< 50 fsec, 1 Hz to 1 kHz	TBD	Spec is equivalent to 0.425 degrees at 25 GHz
		LO 1 KHZ		degrees at 25 GHZ
2.2.5	RF input RMS phase delay noise	< 27 fsec, 1 kHz	29 fsec, 3 kHz	Spec is equivalent to 0.243
		to 1 MHz	to 3 MHz (@ 25	degrees at 25 GHz
			GHz)	

Academia Sinica
Institute of Astronomy & Astrophysics

Atacama Large Millimeter Array - Taiwan

Requirements Overview (continued)

Para. #	Parameter	Specification	Capability	Comments
	OPTICAL OUTPUT (J2)			Single fiber output will carry 2
				optical wavelengths
3.3.1	Band 1 LO coverage (difference	27.260 - 33.050	26.0 - 34.0 GHz	Null bias mode
	frequency between optical tones)	GHz		
3.3.1	Bands 2 - 10 LO coverage	65.460 - 121.712	64.0 - 124.0 GHz	
	*	GHz		
3.4.7	Foot foot coop outlibling		200 mass	
3.4.7	Fast frequency switching	<pre><!--= 500 msec (goal < 100 msec)</pre--></pre>	200 msec	
3.4.4 /	Fast frequency switching duty cycle	10 seconds min.	Comply	10 sec frequency A, 10 sec
3.4.7				frequency B,
2.3.5	Optical output wavelength range,	1555.7 - 1556.7	1555.709 -	For 124.0 GHz LO frequency
	approximate	nm	1556.711 nm	
3.5.1	Optical output power per lightwave	>/= 2 mW		
		(>/= +3 dBm)	+4.0 dBm	Output power tunable via EDFA, can achieve +7 dBm per tone
3.5.4	Optical output power stability, RMS over 300 sec interval, samples	= 0.4 dB</td <td>0.04 dB</td> <td>Worstcase over a measurement interval of 12 hours</td>	0.04 dB	Worstcase over a measurement interval of 12 hours
	averaged over 10 sec			
3.5.3	Optical output lightwave tone imbalance	= 3 dB</td <td>< 0.6 dB</td> <td>Can easily meet this requirement</td>	< 0.6 dB	Can easily meet this requirement
3.5.2	Optical output desired tone to	>/= 10 dB	18 dB	Degrades with higher LO frequency,
	undesired tone + noise power			18 dB was measured at 124 GHz

Academia Sinica Institute of Astronomy & Astrophysics

Atacama Large Millimeter Array - Taiwan

Requirements Overview (continued)

Para. #	Parameter	Specification	Capability	Comments
3.9	Optical output polarization	Slow axis keyed	Comply	By design
3.9	Polarization extinction ratio (PER)	>/= 20 dB	23 dB	
3.9	Misalignment of 2 lightwaves	= 1.15 degrees</td <td>TBD</td> <td>Measurement of NAOJ system was</td>	TBD	Measurement of NAOJ system was
				< 0.9 degrees
3.9	State of polarization change,	= +/-0 01 radians	± +/-0 0095 radians	RMS value, worst case over a
	measured over 300 seconds	, , , , , , , , , , , , , , , , , , ,	. 17 0.0033 (udians	measurement interval of 12 hours
	PHOTOMIXER OUTPUT			
3.6.3 /	Residual phase noise:			"Residual" refers to phase noise
	1 Hz to 1 kHz, coherent noise over	= 50 fsec</td <td>TBD</td> <td>contribution of the ALS alone &</td>	TBD	contribution of the ALS alone &
	differential fiber distances of 0.2 km	(= 1.800 deg.</td <td></td> <td>excludes the CVR contribution</td>		excludes the CVR contribution
	to 15 km	at 100 GHz)		
3.6.1	Residual phase noise:			
	1 kHz to 1 MHz, non-coherent noise	= 27 fsec</td <td>12 fsec, 3 kHz to</td> <td></td>	12 fsec, 3 kHz to	
	over differential fiber distances of	(= 0.972 deg.</td <td>3 MHz (@ 100 GHz)</td> <td></td>	3 MHz (@ 100 GHz)	
	0.2 km to 15 km	at 100 GHz)		
3.7	Optical output phase drift WRTo	< 200 fsec/K	TBD	
	temperature	< 200 fsec/K (<7.2 deg./K at		
		100 GHz)		