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Although it is increasingly being recognized that drug-target 
interaction networks can be powerful tools for the interrogation 
of systems biology and the rational design of multitargeted 
drugs, there is no generalized, statistically validated approach to 
harmonizing sequence-dependent and pharmacology-dependent 
networks. Here we demonstrate the creation of a comprehensive 
kinome interaction network based not only on sequence 
comparisons but also on multiple pharmacology parameters 
derived from activity profiling data. The framework described 
for statistical interpretation of these network connections  
also enables rigorous investigation of chemotype-specific 
interaction networks, which is critical for multitargeted  
drug design. 

Rationally designing drugs that modulate the activity of multiple 
protein targets (targeted polypharmacology) is an established and 
growing trend in drug discovery programs across the pharmaceutical 
industry1–3. The use of drug-target networks to inform and accelerate 
these efforts holds great promise4–8, but their utility in truly pro-
spective drug design has been limited. We present a critical statisti-
cal analysis of kinomics screening data across 172 different protein 
kinases, establishing rigorous criteria for understanding both the 
information content and the reliability of the derived pharmacology 
relationships. We then implement these criteria to not only interpret 
global pharmacology relationships between kinases but also to iden-
tify specific chemotypes that have the potential to bias either toward 
or away from polypharmacology between any two protein kinases. 
The ability to rationally navigate and analyze both the biological and 
chemical data should dramatically improve our ability to identify 
drug leads with a high likelihood of targeting disease-related kinases 
while avoiding kinases associated with clinical liabilities.

There has been an explosion in the recent literature of tech-
niques and analyses for deducing relationships between protein 
targets using the similarity (either chemical or biochemical) of 
the compounds to which they bind9,10 rather than their underlying 
sequence similarity. It has been recognized that our ability to ratio-
nally leverage pharmacology data across large numbers of clini-
cally relevant proteins has the potential to dramatically increase 
discovery productivity by enhancing both the efficacy and safety 
of new drug candidates1,2. Targeted polypharmacology also holds 
significant potential in the identification of treatments for highly 
complex diseases that are resistant to the reductionist approaches 
(for instance, modulating a single, isolated molecular target) that 
dominate most of the pharmaceutical industry. However, optimiz-
ing multiple activities, minimizing off-target liabilities and trying 
to balance drug-like properties is an exceedingly difficult task, and 
robust new tools and approaches for leveraging network pharma-
cology in lead selection and optimization are required.

The multitargeted design of drugs that inhibit two or more pro-
tein kinases has been the object of intense pharmaceutical research 
over the last decade3. The high homology between protein kinases 
(especially within the ATP-binding site), makes targeted polyphar-
macology against multiple kinases highly achievable, but this carries 
the associated risk of serious selectivity issues that can translate  

into toxic side effects. This is typically addressed with empirical 
screening of large numbers of compounds across large numbers 
of kinases to determine the biochemical profile of lead candidates 
and has thereby resulted in rich datasets of ligand activity that can 
be probed to understand kinase pharmacology. Using proprietary 
databases, a number of “kinome networks” have been described 
that relate kinases via the similarity in their ligand-binding pro-
files11–13 rather than via their sequence similarity. Such networks 
can highlight those kinases that are most likely to be simultane-
ously inhibited by a common ligand, which can aid in opportunistic 
discovery efforts or in the design of tailored selectivity panels for 
off-target liabilities. Unfortunately, no criteria have been described 
for understanding the information content in such relationships 
(which relates to their reliability) or for determining how to create 
subnetworks of desired pharmacological patterns (for example, 
targeting kinases A and B but not C and D) in the context of  
(or even in spite of) their overall relationships.

We have collected a dataset of more than 150,000 kinase 
inhibitory values, comprising more than 3,800 compounds tested 
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Figure 1 | Statistical analysis of kinome pharmacology data.  
(a,b) Basic pharmacology parameters derived from activity data  
(in pKi units) are shown for (a) CAMK2D and CAMK2G and (b) BMX 
and LCK. (c) Median absolute deviations in Pij values upon introduction 
of simulated experimental noise are shown as a function of the scaled 
Shannon entropy (SSE), in which it can be observed that SSE values  
below 0.4 lead to unacceptably large median errors (<MAD> ≥ 0.1)  
in Pij. (d) Relevance of the derived pharmacology values was determined 
by comparison with sequence identities, as shown for Pij, for which it 
can be observed that 93% of kinases with greater than 60% sequence 
identity also have Pij values greater than 0.6.
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against 172 different protein kinases (see Supplementary Results, 
Supplementary Table 1, Supplementary Figs. 1 and 6). General 
analyses of trends in the data indicate that certain kinases can be 
potently inhibited by a large number of compounds, whereas oth-
ers are apparently exquisitely selective (see Supplementary Fig. 1). 
In addition, the ability of a compound to potently inhibit multiple 
kinases slightly increases with the number of hydrogen bond donors 
and acceptors but does not correlate with size or hydrophobicity 
(see Supplementary Fig. 2). Examples of pKI values (the negative 
base-10 log of the KI values) for two pairs of highly related kinases 
are shown in Figure 1a,b, along with the derived pharmacology 
values Pij (the Hopkins pharmacology interaction strength)5, Rij 
(the Pearson correlation coefficient) and Tij (the activity profile 
Tanimoto)13. Questions that must be satisfactorily addressed before 
engaging in prospective drug discovery using these data relate to 
data quality, robustness and relevance. In other words, when a pre-
diction is made about the pharmacological relationship between 
any two kinases, how reliable, how meaningful and how stable 
(with respect to new data) is the connection? The problems of data 
incompleteness and the significant changes in interaction networks 
that can occur as new data become available are well documented 
and represent a serious limitation to productive use of pharmacol-
ogy networks in drug discovery4,14. To address these questions, we 
use the information content (as measured by the scaled Shannon 
information entropy, SSE)15,16 in the pKI values between the two 
kinases to assess the reliability and robustness of the network. The 
level of information available between any two kinase pairs will 
depend not only on the number of data points but also on how 
the data are spread across the potency range. As an example, the 
two kinase pairs in Figure 1a,b have the same level of information  
(SSE = 0.59), despite having nearly an order of magnitude difference 
in the number of data points (481 versus 67). To calibrate the level 
of information required to make a robust pharmacology connection 
between kinases, we assessed the influence of random experimental 
noise on the resulting pharmacology parameters. When the scaled 
Shannon entropy drops below about 0.4, the associated errors in 
the Hopkins Pharmacology Interaction Strength parameter, Pij

5, 
become (on average) larger than 0.1 unit (see Fig. 1c). An alterna-
tive view of the relationship between the information content and 

the reliability of the derived pharmacology parameters is the change 
in the parameter values when only fractions of the data are used. 
When the SSE value is greater than 0.4, even discarding half of the 
compounds relating two kinases results, on average, in small (<0.05) 
changes in the pharmacology parameters. As a result, we propose 
that kinases can be confidently classified as ‘related’ or ‘unrelated’ 
only when the information content extant in the underlying activity 
data exceeds this minimum threshold (SSE ≥ 0.4). Kinase ‘related-
ness’ is, of course, a smoothly varying function, but values corre-
sponding to exceptionally strong correlations can be derived from a 
comparison with sequence identities. As shown in Figure 1d, >90% 
of kinases that share sequence identities of >60% (which has been 
proposed as the level of identity correlated to structure-activity 
relationship similarity)12 also have Pij values ≥ 0.6. Such values of 
Pij are also rare, composing only the top 10% of the Pij distribution. 
Note that in the original description, Pij values of as low as 0.1 were 
used to propose pharmacology relationships across a broad range of 
target families5. Such a value is not useful for kinome pharmacology, 
as most values exceed this number (see Supplementary Table 2). 
Similar analyses with Rij and Tij result in lower limits of 0.45 and 
0.55, respectively, to establish strong pharmacology relationships 
between kinases.

Given statistical measures for both reliability (SSE ≥ 0.4) and 
relevance (Pij ≥ 0.6; Rij ≥ 0.45; Tij ≥ 0.55), we can now construct a 
kinase interaction map based on both sequence and ligand-binding 
activity that gives the fullest possible picture of kinase relationships 
and is highly resistant to new data. The structure of this map is 
given in the Supplementary Information (Supplementary Fig. 3). 
In contrast to the sequence-only network (shown in Supplementary 
Fig. 3a), in which families of kinases exist as independent network 
‘islands,’ the network based on both sequence and pharmacology 
similarity is highly condensed and inter-related. In fact, the average 
number of connections for any kinase increases from eight on the 
basis of sequence identity alone to seventeen using both sequence 
and pharmacology similarity. The nearest-neighbor network for 
KDR is shown in Supplementary Figure 3c, illustrating the 39 
kinases that show either sequence or pharmacology similarity. It 
is also important to note that the calculated pharmacology mea-
sures change in a very systematic and expected manner as various 
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Figure 2 | Chemotype analyses of kinase pharmacology data. (a,b) PRKCN and MAP4K2 show a general pharmacological relationship (Pij ≥ 0.6) (a), 
which can be maintained with certain subseries, as illustrated by Chemotype 5 (b). (c) However, the overall relatedness can be abolished with other 
subseries, as illustrated for Chemotype 2 (c, where all pharmacology parameters fall below critical thresholds). (d–f) Similarly, although no global 
pharmacology relationship exists between KDR and CHEK1 (d), certain subseries can drive a pharmacology connection (e, as illustrated by  
Chemotype 6) whereas others can achieve specificity (f, as illustrated by Chemotype 2).
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thresholds are modified (for example, potency windows or potency 
limits, as illustrated in Supplementary Fig. 4), suggesting that the 
resulting networks are quite robust and not strongly dependent on 
these variables.

Although such maps can be highly useful for understanding 
trends in polypharmacology, they reflect only the overall likeli-
hood that a compound active against one kinase will also be active 
against a connected kinase. Not all compounds between connected 
kinases will be active against both kinases, and kinases without a 
robust connection can still have many active compounds in com-
mon. In order to impact medicinal chemistry design decisions, what 
is required is an understanding of specific chemotypes or functional 
groups that either create or destroy a specific connection, as defined 
by the therapeutic endpoint. This requires analyzing subsets of the 
data as defined by chemical structure with the goal of achieving a 
specific sub-network of connections (and lack of connections)3. We 
have clustered the 3,800 compounds used in this analysis, resulting 
in more than 600 clusters that can be represented by a common 
substructure (see Supplementary Table 1). Given these clusters, 
the pharmacology relationships between any two kinases can be 
evaluated on a chemotype-by-chemotype basis. An example of this 
process is given in Figure 2a–c, where the connection between two 
kinases that are globally related can either be maintained or reduced 
by pursuing specific chemotypes, thus enabling multitargeted opti-
mization.  Likewise, as shown in Figure 2e–f, specific chemotypes 
can also drive a pharmacology connection between two kinases 
that are not globally related. Although subset analyses invariably 
involve analyzing smaller and smaller sets of data, it is important 
to note that the same level of statistical rigor can be applied to the 
subset analysis as was applied to the global analysis by using the 
principles of information content (Pipeline Pilot XML script for 
calculating kinase interaction parameters from the provided data 
has been provided; see Supplementary Methods, Supplementary 
Fig. 5 and Supplementary Dataset 1).

In summary, we have completed a robust statistical analysis 
of kinome profiling data that establishes quantitative criteria for 
understanding both the reliability of a proposed pharmacology con-
nection and its relevance to protein polypharmacology. As a result, 
multiple pharmacology interaction parameters can be simultane-
ously interrogated and can be robustly combined with sequence 
information to construct comprehensive pharmacology networks 
that enable kinome-wide analyses of potential drug polypharmacol-
ogy. Although this work has focused exclusively on kinase activity 
data, the principles can be extended to proteome-wide compound 

profiling data. As demonstrated here, the ability to confidently 
explore these networks using individual chemotypes is a critical 
next step in systematically leveraging such information to rationally 
design multitargeted drugs while minimizing toxic liabilities medi-
ated by unwanted kinase activity. 
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