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Rational approaches to targeted polypharmacology:
creating and navigating protein–ligand interaction networks
James T Metz and Philip J Hajduk
Many successful drugs bind to and modulate multiple targets in

vivo. Successfully navigating protein–ligand polypharmacology

will be a crucial and increasingly utilized component of

pharmaceutical research. As publicly available databases of

ligand activity values continue to grow in size and quality,

infrastructure is needed to enable scientists to create and

interact with these networks to fuel hypothesis-driven science.

While most of the individual tools for creating this infrastructure

exist, effectively connecting the data to the network to the

scientist is very much a work in progress. Standards for

publishing network data are also important to facilitate the

analysis and comparison of networks from different research

groups using different methods.
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Introduction
Over the past two decades, the vast majority of pharma-

ceutical discovery research could be classified as a ‘reduc-

tionist’ or target-centric approach, wherein a single

molecular entity thought to be involved in disease onset

or progression was targeted for therapeutic intervention.

While this strategy has certainly led to the discovery of

several novel drugs (e.g. HIV protease inhibitors and

Gleevec1, among others), there has been significant

criticism that, overall, the return on investment has been

rather disappointing [1,2]. This intentional shift toward

‘magic bullets’ targeting individual ‘disease-causing

genes’ [3,4] largely ignores earlier (and arguably equally

successful) drug discovery efforts that by necessity tar-

geted entire organisms, often in the absence of knowl-

edge about the target or mechanism. This ‘holistic’ or

systems-centric approach was the basis for the discovery

of many highly successful drugs (e.g. valproic acid and

clozapine, among others) whose putative molecular
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target(s) are only recently coming to light. Surprisingly,

interrogation of these older drugs using panels of con-

ventional biochemical assays indicate that many of them

are promiscuous and exhibit activity against a wide range

of molecular targets. In fact, it is now commonly accepted

that the polypharmacology of these drugs (i.e. their ability

to modulate the activity of multiple protein targets) is at

least partly responsible for their efficacy, such that they

can be viewed as ‘magic shotguns’ [5]. It is also significant

that even drugs designed to target one specific molecular

entity can demonstrate unexpected efficacy that can be

linked to activity against additional targets, as in the case

of Gleevec and the PDGF receptor [6]. Mestres et al.
analyzed a drug–target network consisting of 4767 unique

interactions and 802 drugs leading to the conclusion that,

on average, a drug interacts with 6 targets [7]. It is

interesting to note that the thousand year old traditional

folk medicine of several cultures (e.g. Ayurvedic medi-

cine) has implicitly embraced polypharmacology for

activity [8]. These observations have led to a new wave

of pharmaceutical research that has variously been termed

‘systems chemical biology,’ [9] ‘system-based’ discovery,

‘network-based’ discovery, ‘multi-targeted’ drug design,

or ‘targeted polypharmacology’ [10��]. In essence, all of

these designations recognize what may be obvious in

hindsight: that trying to treat complex, heterogeneous

diseases that tend to result from multiple molecular

abnormalities (such as cancer, cardiovascular, and psy-

chiatric disorders) with a highly specific drug that targets a

single molecular entity will have, at best, a very low

probability of success. Instead, these diseases must be

addressed with a more integrated methodology, and the

complexity of the disease must be equally matched by the

complexity of our approach. The problem is, given the

inherent difficulties in targeting even a single molecular

entity, how do we rationally approach targeting two,

three, or even more protein targets? Which targets are

most likely to be modulated in concert by a single drug?

Or, conversely, which drugs or drug scaffolds are most

amenable to multi-targeted drug design? And how do we

avoid the likely increased risk of toxicity resulting from

unwanted polypharmacology? Another complication is that

off-target activities of medicines may be due to the

connectivity of a signal transduction network affected

by a compound and not necessarily the promiscuity or

polypharmacology of the compound itself [11].

While complete answers to these questions are well out-

side of the scope of this review, an explosion of papers is

appearing in the literature that gives the drug discovery

scientist an important first step: the means to map the
www.sciencedirect.com
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Figure 1

Heat map analysis of kinase activity data. Activity data for 200 compounds (y-axis) against 100 kinases (x-axis) is shown, where the compounds and

kinases have been clustered (using the hierarchical clustering algorithm within Spotfire) according to their activity profile. Activity data ranges from less

than or equal to 10 nM (red) to 1 mM (yellow). Values greater than 1 mM are in gray.
connections between targets not in sequence space but in

pharmacological space. A pharmacological relationship

between two proteins is defined as their ability to bind

with similar affinities to a range of chemical entities,

regardless of their underlying sequence similarity. For

example, it has long been known that the protein kinases

GSK3b and CDK4 exhibit very similar structure–activity

relationships, despite sharing only 28% sequence identity

[12�]. While this unexpected pharmacological similarity

between pairs or triplets of proteins has been long known,

our ability to interrogate these relationships on a pro-

teome-wide scale and to quantitatively assess their

importance has only recently emerged. This review

will discuss methods for establishing pharmacological

relationships between proteins and how these values

can be used to construct interaction networks that can

guide the design of multi-targeted drugs.

Quantifying pharmacological relationships
The conventional approach to assessing the degree of

similarity between two protein targets I and J is to

evaluate their sequence identity or homology, with higher

identity (or homology) indicating a closer relationship

between the two proteins, and a concomitant increase

in the expectation that a compound with high affinity for
www.sciencedirect.com
Target I may also exhibit affinity toward Target J. At least

in the realm of protein kinases, a general rule of thumb is

that any two kinases with >60% sequence identity are

likely to exhibit similar affinities for the same chemical

inhibitors [13]. However, as illustrated above for GSK3b

and CDK4, the converse is not as generalizable as even

very distantly related kinases (from a gene sequence

perspective) can exhibit surprisingly high pharmacologi-

cal similarity. These pharmacological relationships must

be empirically determined by testing large numbers of

compounds in common against an array of protein targets.

The similarity in the resulting inhibition or ligand-bind-

ing profiles then yields insight into the degree of related-

ness.

The most common approach to understanding the

relationship between proteins based on their ligand-bind-

ing profiles is simply to directly examine the profile itself,

and employ any of a variety of clustering algorithms to

place similar profiles in similar clusters. Some of the

earliest work in this area was described by Weinstein

in 1997 [14�]. An example of a profile analysis is given in

Figure 1 for in-house kinomics data, where a set of 200

compounds was tested against a panel of 100 different

protein kinases. In this example, compounds that exhibit
Current Opinion in Chemical Biology 2010, 14:498–504
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Table 1

Various parameters for assessing pharmacological relationships

based on ligand-binding profiles

Parameter Symbol

Sequence identity Sij

Pearson correlation coefficient Rij

Pharmacology interaction strength [18��] Pij

SAR similarity [12�] SARSimij

Tanimoto similaritya [16�] Tij

Jaccard distance [17] Jij

a The Tanimoto similarity Tij is simply 1 minus the Jaccard distance

(1 � Jij).

Figure 2

Deriving pharmacology metrics. Examples of activity data (given in pKi units) and resulting pharmacological assessments for EGFR against (A) ErbB2

and (B) Flt4. The Pharmacology Interaction strength (Pij) is essentially the fraction of compounds contained within 1-log unit of unity (denoted by the

black and gray solid lines). The Pearson Rij is derived from a linear fit of the data, shown in red. The Tanimoto Tij is the fraction of compounds that

exhibit sub-mM potency against both enzymes, denoted by the compounds in the yellow shaded area.
similar inhibition patterns across kinases are grouped

together by row, while kinases that exhibit similar pat-

terns across compounds are grouped by column. While

such an analysis can be exceptionally insightful when

trying to interrogate the most pharmacologically related

proteins to your target of interest, it suffers from several

disadvantages. First, proteins are grouped by profile ‘sim-

ilarity,’ which is somewhat arbitrary and yields no real

insight into whether the proximity in the resulting top-

ology is biologically relevant. Second, these analyses are

only applicable to proteins against which this specific set

of compounds has been tested. This, it has no transfer-

ability to other systems or datasets. Historically, this has

limited the investigation of pharmacological similarity to

very local analyses on limited datasets.

Several approaches have been put forward to overcome

these problems and quantify the pharmacological sim-

ilarity of two proteins based on their ability to bind with

similar affinities to different compounds. In an early

study, a novel set of fingerprints (Similog keys) were

used to identify both active ligands binding to the same

target as well as active ligands to similar targets [15].

Latter approaches have extended these concepts and

permit the pharmacological grouping of targets that

may have little or no structural or sequence similarity.

A number of metrics have been put forward to quantify

these relationships, as listed in Table 1. One of most basic
Current Opinion in Chemical Biology 2010, 14:498–504
is the familiar Pearson correlation coefficient, Rij, where

the potencies of a set of compounds against Target I and

Target J are compared for dependence. An example of

this is shown in Figure 2 for highly related (Figure 2A)

and unrelated (Figure 2B) protein kinases. Unfortunately,

the Pearson correlation coefficient can be highly sensitive

to outliers (e.g. compounds very potent against Target I

but inactive against Target J), which is especially true for

small datasets. Vieth et al. [12�,13] developed the ‘SAR

Similarity’ measure, which is essentially the mean

absolute deviation of pIC50 values (negative base-10

logarithm of the IC50) between the two kinases (normal-

ized by the pIC50 range). Other related measures for

assessing ‘profile similarity’ are the profile Tanimoto
www.sciencedirect.com
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Figure 3

Distribution of values for a series of pharmacology parameters. The

range of values for various pharmacology metrics varies widely, and care

must be taken to define ‘significant’ values for the purpose of deriving

pharmacology networks.

Table 2

Correlation matrix for six pharmacology similarity parameters

based on in-house kinomics data

Sij Pij Rij SARSimij Tij Jij

Sij 1.0 0.30 0.35 0.29 0.31 0.31

Pij 0.30 1.0 0.38 0.82 0.45 0.45

Rij 0.35 0.38 1.0 0.28 0.25 0.25

SARSimij 0.29 0.82 0.28 1.0 0.30 0.30

Tij 0.31 0.45 0.25 0.30 1.0 1.0

Jij 0.31 0.45 0.25 0.30 1.0 1.0
coefficient (Tij) [16�] or Jaccard distance (Jij) [17], which

designate compounds as either ‘active’ or ‘inactive’

(based on a user-defined activity level) to reduce the

profile to a sequence of bits. Yet another measure was

introduced by Paolini et al., termed the Pharmacology

Interaction strength (Pij) that measures the fraction of

compounds tested against two proteins that exhibit com-

parable affinity [18��]. Examples of all of these

parameters are given in Figure 2. It is also important to

note that several of these measures are highly correlated

(see Table 2), such that one does not need to calculate all

of them in order to infer a pharmacological link between

two targets. In our lab, we have relied on Sij (sequence

identity), Rij (the Pearson correlation), and Pij (Hopkins’

interaction strength) as three relatively uncorrelated

views of ligand polypharmacology.

All the pharmacology measures discussed above require

that activity data be available for some subset of com-

pounds against each pair of targets that are to be assessed.

This precludes the utilization of the vast majority of

publicly (or even privately) available activity databases,

as most compounds are only tested against a very small

number (usually one) of protein targets. Recent work

from Shoichet’s group has paved the way for using ligand

similarity rather than activity comparisons to derive

pharmacology relationships between different proteins

[19,20�,21��]. Thus, one only needs a set of actives for

Target I and a completely independent set of actives for

Target J in order to assess pharmacological similarity.

Interpreting pharmacological relationships
In deriving pharmacology relationships based on ligand-

binding, once a set of compounds with associated activity

has been identified, a number can be calculated. However,

great care must be taken in interpreting these values and

postulating whether or not a pharmacological relationship

exists between two targets. First, all of these parameters

span a range of values (see Figure 3 for ranges of these

values for in-house kinomics data), and there is no a priori
guidance as to what value constitutes a significant pharma-

cological link. For example, Paolini et al. [18��] used a Pij

value cut-off of 0.1 to derive genome-wide interaction

networks (e.g. over all protein families). However, as can

be observed from Figure 3, the vast majority (�97%) of
www.sciencedirect.com
kinase pairs exceed this threshold and are pharmacologi-

cally ‘related’ at this level of discrimination. Another

significant precaution in interpreting pharmacology values

is that, unlike sequence identity, interactions can

strengthen or weaken as new data becomes available

[22]. As a result, interactions proposed with one set of data

may completely disappear upon re-analysis with a different

or larger dataset. This will be especially true when inter-

action networks are proposed based on only a small number

of compounds (for example, some of the pharmacology

‘connections’ reported in the literature are based on a

single active in common between two proteins). The

converse is also true, in that relationships might not be

inferred simply owing to lack of data, and not on the basis of

data suggesting that no link exists. Impact of this ‘data

completeness’ problem on commonly utilized public data-

bases has been the topic of several recent publications [22].

Vogt and Mestres have also shown that for the case of

target-only networks (where the relationships between

targets is derived from many compound observations, as

is the case for the metrics listed in Table 1), there is

information loss of more detailed relationships of com-

pound subsets and targets [23]. Finally, it should be

recognized that simply observing a correlation of potency

values between two targets does not in fact establish that a

true causative pharmacological relationship exists, as is

well documented in the study of causality [24�].

Leveraging pharmacological relationships
Despite these cautions, researchers have been able to

utilize ligand-based pharmacology data to construct

sequence-independent interaction networks that yield
Current Opinion in Chemical Biology 2010, 14:498–504
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Figure 4

Sequence-independent kinome-inhibitor interaction map derived from publicly available data [16�]. In this view of 100 kinases (requiring a minimum Tij

value of 0.3), the majority of kinases are contained in a dense, highly interconnected network where achieving selectivity is unlikely. A smaller number

of kinases exist as disconnected ‘islands.’ The pharmacological link between the GSK and CDK families of kinases (which exhibit low sequence

similarity) is shown in the inset to the right.
unprecedented insight into polypharmacology. Although

networks have been studied by academics since the 18th

century, it is only recently that they have gained much

wider interest and application [25]. Once a pharmacology

parameter has been identified and a cut-off for signifi-

cance established, visualizations that allow a researcher to

navigate the connections between targets can be gener-

ated using a variety of software packages (a partial listing

is given in Table 3). Cytoscape is free software that can

take as input a simple text file and generate a number of

network representations, as illustrated in Figure 4 for

reported kinomics data [16�]. This gives the researcher

an immediate feel for the ‘connectedness’ of the network

as a whole and more specifically for the target under
Table 3

Software programs for creating and navigating protein–ligand

interaction networks

Software Website or Reference

Cytoscape http://cytoscape.org/

GCG Growtree Devereux (1984) [28]

TreeDyn Chevenet (2006) [29]

PHYLIP http://evolution.genetics.washington.

edu/phylip.html

SARANEA Lounkine (2010) [30]

SNAVI Ma’ayan (2009) [31]
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consideration. Although networks may in some cases

appear complicated, the information in a network is

similar to a set of interconnected ‘hotspots’ in a heat

map [26]. As a result, networks may better convey a sense

of the pharmacological connectedness than a heat map.

Connections between different targets indicate a signifi-

cantly higher than random probability that a compound

with activity against one target will also inhibit the con-

nected targets. This, of course, can represent either an

opportunity (targeted polypharmacology) or a liability (an

off-target to be avoided). As examples, such sequence-

independent pharmacology networks have been con-

structed for a set of 200 kinases using kinome profiling

data [16�], a set of 480 drug targets using publicly avail-

able activity data [7], and 700 targets using a combination

of internal and external activity data [18��].

It is important to emphasize that any of these connections

ultimately correspond to probabilities of targeting multiple

proteins. Thus, the presence of a connection does not

guarantee polypharmacology, and the lack of a connection

does not suggest that it is not possible to simultaneously

modulate both proteins with a single compound—only

that it has either not yet been observed or will be less

common. Connections made with the Pij or Tij values are

especially intuitive here, as the cut-off used corresponds

to the likelihood of hitting both targets with a single
www.sciencedirect.com
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compound (e.g. a Pij value of 0.6 for a protein pair means

that 60% of the compounds tested were equipotent

against both targets, while a Tij of 0.6 indicates that

60% of the compounds tested were below a defined

potency threshold against both targets).

Summary
Successfully navigating protein–ligand polypharmacology

will be a crucial and increasingly utilized component of

pharmaceutical research. As publicly available databases

of ligand activity values continue to grow in size and

quality, the infrastructure will need to be developed to

enable scientists to create and interact with these net-

works in order to fuel hypothesis-driven science. While

most of the individual tools for creating this infrastructure

exist, effectively connecting the data to the network to

the scientist is very much a work in progress. Although

there are no current standards for publishing networks at

the present time, it is strongly suggested that authors

include network information in the form of an easily

readable, delimited text file. This will greatly facilitate

the analysis and comparison of networks from various

research groups and from various methods. Software tools

to compare networks are available [27]. Other tools,

algorithms, and network metrics are in-progress and will

be described in future publications.
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