

Net Protein Balance: Why Timing Matters for Young Adults

What is Net Protein Balance (NPB)?

Net protein balance is the difference between the rate at which your muscles synthesize new protein (muscle protein synthesis, or MPS) and the rate at which they break down existing protein (muscle protein breakdown, or MPB). The equation is simple: **NPB = MPS – MPB** [1].

When NPB is **positive** (synthesis exceeds breakdown), your muscles gain protein and grow. When NPB is **negative** (breakdown exceeds synthesis), your muscles lose protein and shrink. As a young lifter seeking hypertrophy, your goal is to maintain positive NPB as often and as long as possible throughout your training cycle.

The Problem: Post-Exercise Without Protein

Here is what happens immediately after resistance training [2]:

1. **Exercise stimulates both MPS and MPB simultaneously** [1]. While your MPS is elevated, your MPB is also elevated—and in the fasted post-exercise state, MPB initially exceeds MPS [3].
2. **Your NPB is negative** despite the acute training stimulus. Without protein intake, you are operating in a catabolic state, losing muscle protein even though your muscles are primed to grow [4].
3. **MPS peaks within 1–4 hours** after exercise, then gradually declines back toward baseline [5]. However, if no amino acids are provided during this window, the elevated MPS cannot drive net protein accretion.

The 6-Hour Delay: A Missed Opportunity

If you train and do not eat for 6 hours [6]:

- You remain in a **net catabolic state** for the entire 6-hour period [3].
- By the time you consume protein, the acute MPS surge has largely subsided, though muscle remains sensitized for up to 24 hours [5].
- You sacrifice the **cumulative anabolic effect** of protein ingestion during the period of peak exercise-induced sensitivity [7].
- While the protein you eventually consume will still stimulate a strong MPS response (because the 24-hour sensitivity window is real), you have extended the duration of negative NPB, reducing total muscle protein accretion over the day.

The Solution: Eat Protein Immediately Post-Exercise

Consuming **20–25 g of high-quality protein** immediately after (or shortly before) your workout accomplishes three critical goals [8]:

1. **Stimulates MPS** while it is most acutely elevated, maximizing the synthetic response [1].
2. **Inhibits MPB**, shifting the balance from negative to positive [9].
3. **Initiates muscle protein accretion** when the muscle is most sensitive to amino acids [5].

Research in young men shows that this immediate post-exercise protein intake results in significantly greater gains in lean mass and strength over 8–12 weeks of training compared to delayed intake [10].

The Bottom Line

Your muscles do remain responsive to protein for up to 24 hours after exercise. However, this does not mean timing is irrelevant. The acute post-exercise window (0–3 hours) represents the period of *greatest*

sensitivity and the fastest shift from catabolic to anabolic state. Delaying protein intake for 6 hours prolongs the catabolic period and reduces cumulative daily protein accretion.

For young lifters: consume protein immediately post-exercise to maximize NPB and muscle growth.

Author Information

Eugene Capitano, BA, BSc, DC, DAc, MSc, ACSM-CPT, ACSM-EIM

Chiropractor | Functional Wellness Specialist | Clinical Researcher

MSc in Psychology & Neuroscience of Mental Health – King's College London

Eugene Capitano is a clinician-scientist integrating musculoskeletal rehabilitation, exercise physiology, and nutritional neuroscience. He holds a *Master of Science in Psychology & Neuroscience of Mental Health* from King's College London, is an American College of Sports Medicine-certified Exercise is Medicine® practitioner and Personal Trainer, and has over 25 years of clinical experience in chiropractic and functional wellness care. His research and professional focus bridge the gut–brain–muscle axis, exploring how targeted nutrition, resistance training, and mitochondrial health strategies optimize metabolic function and healthy aging.

References

- [1] Phillips, S. M., Tipton, K. D., Aarsland, A., Wolf, S. E., & Wolfe, R. R. (1997). Mixed muscle protein synthesis and breakdown after resistance exercise in humans. *American Journal of Physiology*, 273(1), E99–E107. <https://doi.org/10.1152/ajpendo.1997.273.1.E99>
- [2] Biolo, G., Maggi, S. P., Williams, B. D., Tipton, K. D., & Wolfe, R. R. (1995). Increased rates of muscle protein turnover and amino acid transport after resistance exercise in humans. *American Journal of Physiology*, 268(3), E514–E520. <https://doi.org/10.1152/ajpendo.1995.268.3.E514>
- [3] Biolo, G., Tipton, K. D., Klein, S., & Wolfe, R. R. (1997). An abundant supply of amino acids enhances the metabolic effect of exercise on muscle protein. *American Journal of Physiology*, 273(1), E122–E129. <https://doi.org/10.1152/ajpendo.1997.273.1.E122>
- [4] Moore, D. R., Robinson, M. J., Fry, J. L., Tang, J. E., Glover, E. I., Wilkinson, S. B., ... Phillips, S. M. (2009). Ingested protein dose response of muscle and albumin protein synthesis after resistance exercise in young men. *American Journal of Clinical Nutrition*, 89(2), 161–168. <https://doi.org/10.3945/ajcn.2008.26401>

[5] Burd, N. A., West, D. W., Moore, D. R., Atherton, P. J., Staples, A. W., Prior, T., ... Phillips, S. M. (2011). Enhanced amino acid sensitivity of myofibrillar protein synthesis persists for up to 24 h after resistance exercise in young men. *Journal of Nutrition*, 141(4), 568–573.

<https://doi.org/10.3945/jn.110.135038>

[6] Lak, M., Bagheri, R., Ghobadi, H., Campbell, B., Wong, A., Shahrabaf, A., ... Dutheil, F. (2024). Timing matters? The effects of two different timing of high protein diets on body composition, muscular performance, and biochemical markers in resistance-trained males. *Frontiers in Nutrition*, 11, 1397090. <https://doi.org/10.3389/fnut.2024.1397090>

[7] Areta, J. L., Burke, L. M., Ross, M. L., Camera, D. M., West, D. W., Broad, E. M., ... Coffey, V. G. (2013). Timing and distribution of protein ingestion during prolonged recovery from resistance exercise alters myofibrillar protein synthesis. *Journal of Physiology*, 591(9), 2319–2331.

<https://doi.org/10.1113/jphysiol.2012.244897>

[8] Snijders, T., Res, P. T., Smeets, J. S., van Vliet, S., van Kranenburg, J., Maase, K., ... van Loon, L. J. (2015). Protein ingestion before sleep increases muscle mass and strength gains during prolonged resistance-type exercise training in healthy young men. *Journal of Nutrition*, 145(6), 1178–1184.

<https://doi.org/10.3945/jn.114.208371>

[9] Pennings, B., Koopman, R., Beelen, M., Senden, J. M., Saris, W. H., & van Loon, L. J. (2011). Exercising before protein intake allows for greater use of dietary protein-derived amino acids for de novo muscle protein synthesis in both young and elderly men. *American Journal of Clinical Nutrition*, 93(2), 322–331. <https://doi.org/10.3945/ajcn.2010.29649>

[10] Morton, R. W., Murphy, K. T., McKellar, S. R., Schoenfeld, B. J., Henselmans, M., Helms, E., ... Phillips, S. M. (2018). A systematic review, meta-analysis and meta-regression of the effect of protein supplementation on resistance training-induced gains in muscle mass and strength in healthy adults. *British Journal of Sports Medicine*, 52(6), 376–384. <https://doi.org/10.1136/bjsports-2017-097608>