Environmental Toxicology and Pharmacology

Volume 104, November 2023, 104319

Impact of gold nanoparticles (AuNPs) in human neutrophils *in vitro* and in leukocytes attraction *in vivo*: A sex-based analysis

Author links open overlay panelMarion Vanharen, Thomas Mahbeer, Alexanne Léveillé, Audrey Méthot, Phonsiri Samountry, Denis Girard

Show more

Add to Mendeley

Share

Cite

https://doi.org/10.1016/j.etap.2023.104319Get rights and content

Abstract

Some differences exist between the male and female immune systems. Despite this, a sex-based analysis is not frequently performed in most studies. Knowing that inflammation is a common undesired effect observed resulting from nanoparticle (NP) exposure, we investigate here how gold NPs with a primary size of 20 (AuNP₂₀) and 70 nm (AuNP₇₀) will alter the biology of polymorphonuclear neutrophil cells (PMNs) isolated from men and women as well as their potential pro-inflammatory effect in vivo in male and female mice. We found that AuNP₂₀ significantly delay apoptosis only in PMN isolated from men. The production of interleukin (IL)– 8 by PMNs was increased by both AuNPs regardless of sex although significance was only observed in AuNP₂₀-induced PMNs. Using the murine air pouch model of inflammation, AuNPs did not induce a neutrophilic infiltration regardless of sex. In conclusion, AuNPs could differently alter the biology of PMNs according to sex.