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Abstract—This study uses a transcriptomic and machine 

learning-based approach to gain a comprehensive understanding 

of the genomic landscape of Plasmodium falciparum, a malaria-

causing parasite. This enables us to understand this life-

threatening disease better and thus identify new treatment targets 

and intervention methods. We used single-cell RNA sequencing 

data from the Malarial Cell Atlas with 5,177 genes across 37,624 

cells. Our approach combined static analyses, including highly 

variable gene identification, differential expression analysis, and 

M3Drop (a feature selection method based on noise filtration), to 

obtain stage-specific markers along with trajectory analysis 

(Monocle3) to identify top genes active during stage progression. 

The feature selection analyses were done for each stage and 

lifecycle gene, which are genes that remain active throughout the 

lifecycle. These complementary approaches gave us distinct gene 

sets: static analysis revealed genes necessary for stage-specific 

functions, while dynamic trajectory analysis highlighted genes 

that play an important role in cellular development. A neural 

network classifier trained on these gene sets achieved high 

accuracy (Accuracy: 96%; F1-score: 0.96) using trajectory-

derived genes, performing better than the model trained on the 

entire gene set, indicating that the gene set has captured stage-

specific signatures. Further, to validate the biological significance 

of the shortlisted genes, we performed a Gene Ontology analysis. 

We found that our analysis revealed results that are in line with 

existing literature. The ring stage genes were linked to immune 

evasion, trophozoite genes to haemoglobin digestion, schizont 

genes to merozoite invasion, and gametocyte genes to sexual 

differentiation. We plan to build on this work by studying the 

behaviour of important genes using a Poisson-Beta model to infer 

the kinetics of key genes, which will help us better understand how 

they change throughout the parasite’s life cycle. 

Index Terms—Plasmodium falciparum, Single-cell RNA 

sequencing, Gene expression profiling, Machine learning in 

parasitology 

I. INTRODUCTION 

The Plasmodium species are known to cause Malaria, a life-

threatening disease that has been a global health concern, 

especially in developing nations within sub-Saharan Africa, 

Asia and Latin America [1]. Within the Plasmodium species, 

Plasmodium falciparum is the most virulent. It is responsible for 

severe cases of Malaria and presents a significant challenge in 

the prevention and control of the disease. Thus, a comprehensive 

understanding of its life cycle at a genomic level would 

immensely help develop advanced clinical treatments and 

specific targets. The complex life cycle of a Plasmodium 

parasite involves many stages in different hosts, some of which 

take place in a mosquito, while the rest occur in the mammalian 

host. Each of the distinct stages, namely, sporozoite, merozoite, 

ring, trophozoite, schizont, and gametocyte, are all characterised 

by unique biological and genomic signatures [2]. 

In particular, with advancements taking place in the single-

cell RNA sequencing (scRNA-seq) technology, we are able to 

perform detailed analyses on the gene expression data, enabling 

us to gain novel insights into cellular processes and gene 

expression changes at a single-cell level [3, 4]. Additionally, 

considering the Plasmodium life cycle, scRNA-seq has enabled 

the identification of high-variance genes (HVGs) and 

differentially expressed genes (DEGs) [5, 6]. These genes play 

a critical role in different stages of the cycle. Moreover, 

identifying these transcriptional markers in Malaria has the 

potential to help us understand regulatory mechanisms that are 

crucial for the parasite’s interaction with its host [7]. Some 

studies have also demonstrated that stagewise expression data in 

P. falciparum contribute to adaptive mechanisms against host 

immune responses, especially in the asexual and gametocyte 

stages [8]. This emphasises the potential for targeted therapies. 

We can discover more about the underlying biological processes 

that facilitate the parasite’s development and bring about the 

progression of disease using transcriptome data from every stage 

of the life cycle. 

To address these challenges, we present an analytical 

approach using transcriptomic techniques along with machine 

learning (ML) models to add to our understanding of P. 

falciparum. Using scRNA-seq data, we identify gene sets that 
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capture changes across the different stages of the Plasmodium 

life cycle. We use three feature selection methods and perform a 

trajectory analysis to identify key genes that are important 

during stage-specific as well as stage transition phases. Further, 

we implement a neural network-based classification model to 

evaluate these gene sets. This approach allows us to capture 

stage-specific gene expression signatures that may be promising 

targets for malaria intervention and further aid our 

understanding of malaria biology. 

II. RESULTS 

A. Data Processing 

We performed the analysis on single-cell RNA sequencing 

data obtained from the Malarial Cell Atlas, consisting of 5,177 

genes across 37,624 cells. The dataset was well-balanced across 

the four stages of P. falciparum lifecycle (Table 1). 

There was no loss in the number of genes or cells during our 

processing, as none showed zero variance after RPKM 

normalization, log transformation, and scaling. After 

processing, we performed dimensionality reduction using 30 

principal components for UMAP. The UMAP in Figure 1 

(plotted with just the first two principal components) used the 

complete processed dataset and resulted in distinct clusters of 

cells based on the stages as per their label. The UMAP 

visualization demonstrates distinct transcriptional profiles for 

each developmental stage, with gametocytes showing the most 

divergent expression pattern compared to the asexual stages 

(Figure 1). We observe a continuous trajectory within the 

asexual stages, indicating the progression of the lifecycle. 

However, the separation of the gametocytes, the only sexual 

stage, indicates significant changes in the expression patterns. 

TABLE I.  DISTRIBUTION OF CELLS ACROSS DIFFERENT STAGES OF P. 
FALCIPARUM 

Stage Number of Cells 

Trophozoite 13,436 

Gametocyte 8,958 

Schizont 8,159 

Ring 7,071 

Total 37,624 

 

Fig. 1.  UMAP visualization of P. falciparum single-cell RNA sequencing 

data coloured by developmental stage. 

B. Feature Selection Identifies Stage-Specific Gene Signatures 

To identify essential genes that would help distinguish 

between the stages, we used three distinct feature selection 

methods: highly variable genes (HVGs), differentially expressed 

genes (DEGs), and dropout-based feature selection (M3Drop). 

We applied these techniques to each stage and the complete 

dataset. We shortlisted the top 3000 HVGs and DEGs each. 

Using M3Drop, we obtained 1196 genes for the ring stage, 2088 

for schizont, 2588 for trophozoite and 2103 for the gametocyte 

stage. 

For further analysis, we only considered the intersection of 

all three methods to get a comprehensive gene set that ensured 

stage characteristics were captured for each method. The 

intersected list for each stage contained 1146 genes for the ring 

stage, 1099 genes for schizont, 1602 for trophozoite and 1182 

for gametocyte. When we combined these three asexual stages, 

it resulted in 2394 common intersection genes, which represent 

the common expression patterns present across the asexual 

stages. There were 2020 genes in the feature sets for the 

complete data across all three methods. Additionally, we found 

1818 lifecycle genes, which consist of genes operational 

throughout the lifecycle but do not contain stage-specific 

signatures. These signify that one-fifth of the genes present in 

the P. falciparum genome may be contributing to its 

development irrespective of stage. 

C. Trajectory Analysis Reveals Dynamic Gene Expression 

Patterns 

In this analysis, we obtain genes that change dynamically as 

a function of pseudo-time when the lifecycle transitions from 

one stage to another. Figure 2 depicts the trajectory plot for the 

complete dataset, where the time progresses from Day 0 in dark 

blue to Day 10 in yellow. When the spatial arrangement is 

mapped to the UMAP (Figure 1), it becomes clear that the 

trajectory progresses from the asexual stages in the early days 

and ends with the gametocyte stage. There is a continuous path 

within the asexual stages, which then separates into the 

gametocyte phase, thus marking a key change in dynamics. 
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Fig. 2.  Pseudo-time trajectory analysis of P. falciparum cells showing 

developmental progression 

Stage-wise trajectory plots revealed multiple branches in the 

ring stage that account for the various development options 

available to the parasite early in its lifecycle. The schizont plot 

showed a distinctive divide into two parts suggesting alternative 

options, whereas we observed a horseshoe pattern in the 

trophozoite stage. These stage-specific plots help us gain deeper 

insights into the temporal changes that take place during 

development. 

D. Neural Network Classification Performance 

Our neural network classifier demonstrated robust 

performance across different feature sets (Table 2). Our 

benchmark model, using all the genes of the dataset, gave us an 

accuracy of 95.6%. This is marginally superseded when we use 

the trajectory-based feature set of the top 1000 genes. It achieved 

the highest overall accuracy of 96%, suggesting that it captured 

the stage-specific signature the best. We observed trends across 

stages, and the model demonstrated high reliability in 

classifying the schizont stage with precision ranging from 0.97 

to 0.99, as well as the gametocyte stage (precision: 0.96-0.98). 

TABLE II.  CLASSIFICATION PERFORMANCE METRICS ACROSS DIFFERENT 

FEATURE SETS 

Input Feature Set Number of 

Features 

Accuracy F1-

Score 

All Genes 5,177 0.956 0.96 

Intersection of HVGs, DEGs, 

M3Drop genes 

2,753 0.948 0.95 

Top 1000 from trajectory analysis 2,288 0.960 0.96 

Top 500 from trajectory analysis 1,170 0.942 0.94 

Union set with Top 1000 from 

trajectory analysis 

3,908 0.956 0.96 

Union set with Top 500 from 
trajectory analysis 

3,360 0.951 0.95 

E. Gene Ontology Enrichment Analysis 

We performed a GO enrichment analysis utilizing all the 

feature sets across each stage. For the ring stage, genes 

highlighted GO terms related to host cell invasion and protein 

synthesis, and trophozoite genes highlighted metabolic 

processes and haemoglobin digestion. For the schizont-specific 

genes, we observe different terms being associated with them 

depending on the method used. For the first method (Section 

2.2), terms were linked to cell division and merozoite formation, 

while genes from the trajectory analysis (Section 2.3) enriched 

for transcriptional regulation and cell cycle progression. 

Gametocyte-related genes, the only sexual stage, were enriched 

for sexual development and transmission-related functions. 

Further, most of the terms associated with feature sets from the 

trajectory analysis result in themes revolving around dynamic 

processes involved in stage transitions. These include processes 

like cell cycle regulation, metabolic switching, etc. 

III. METHODS 

We aimed to develop an approach that integrates 

transcriptomic methods along with ML-based models to 

enhance our understanding of the malaria parasite Plasmodium 

falciparum using Raw single-cell RNA sequencing (scRNA-

seq) data. Gene sets that capture static and dynamic changes 

across the different stages of the lifecycle were used, and then 

their biological relevance was explored. 

A. Data Processing 

Raw single-cell RNA sequencing data from the Malarial Cell 

Atlas is downloaded for Plasmodium falciparum from [9]. We 

used data only from the Chromium 10x platform rather than 

SmartSeq2, as we wanted to focus on mammalian host cells. The 

data processing was done using the Seurat package (v4.0.0) [10] 

(R version 4.1.0). Our raw dataset contained 5,177 genes across 

37,624 cells and was first normalised using reads per kilobase 

million (RPKM). This was followed by log normalisation with 

a factor of 1e6, and then we performed scaling to regress the 

effects of input variables. We then prepared stage-wise datasets 

for the four distinct stages present in the dataset: ring, 

trophozoite, schizont, and gametocyte. 

B. Identification of Key Genes by Stage and Lifecycle 

We use three different methods to shortlist features from our 

initial 5,177 genes within each stage and across the dataset. The 

first method we deployed in our study included finding the most 

highly variable genes (HVGs). Utilising Seurat’s 

FindVariableFeatures function with the variance stabilising 

transform (VST), we identified the top 3,000 genes. Next, we 

found the top differentially expressed genes (DEGs) to identify 

the most active genes in different stages. Pre-processing steps 

for this method involved performing dimensionality reduction 

using the first 30 principal components and clustering with a 

resolution of 0.5. The third feature selection method fits a model 

to identify genes with significant dropout patterns in the single-

cell RNA-seq data using M3Drop [11]. As our final step, we 
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identified “lifecycle genes”. These are genes significant 

throughout the malarial lifecycle rather than in a particular stage. 

To obtain this gene set, we subtracted the intersection of the 

feature set across the dataset with the union of stage-specific 

genes for every feature selection method. The different feature 

selection methods allowed us to identify genes that are active 

within each stage and across the lifecycle. 

C. Trajectory Analysis 

To map the progression of the cell development, we 

performed a trajectory analysis using Monoocle3 [12]. The 

processed scRNA-seq and cell metadata were used as input. As 

part of the analysis, we began by creating a UMAP, using 30 

principal components from PCA, in order to identify essential 

patterns in gene expression and, at the same time, maintain cell 

relationships. A trajectory was plotted in pseudo-time using the 

Day 0 cells as the starting point of reference (root cells). We 

select two feature sets each, the top 500 and 1000 genes, based 

on the adjusted p-values. This gave us gene sets that are most 

associated with the progression of the parasite’s gene expression 

as it transitions from one stage to another. Similar to the feature 

selection methods, we repeated this analysis within each of the 

four stages and across the complete dataset. 

Performing the trajectory analysis over cells ranging from 

Day 0 to Day 10, we were able to obtain genes that change with 

the parasite’s lifecycle progression. 

D. Neural Network-based Stage Classification 

We designed a neural network to classify malaria stages to 

understand which approach helped us identify stage-wise 

signatures the best. To see the baseline performance of our 

model, we trained it with the complete scRNA-seq matrix as the 

input and used this benchmark model to compare the 

performance of the rest of the feature sets. We gave the 

following five feature sets as input: 

1. Intersection of the gene sets across the three static 

feature selection methods used to identify key genes. 

2. Top 1000 genes from the trajectory analysis. 

3. Top 500 genes from the trajectory analysis. 

4. Union of the static gene set (1) and the top 1000 genes 

from the trajectory analysis. 

5. Union of the static gene set (1) and the top 1000 genes 

from the trajectory analysis. 

The goal was to determine if the static, that is, stage-specific 

focused analysis using three methods, dynamic using trajectory 

analysis or the former two combined, giving complementary 

insights, gave us better insights into understanding stages of 

Malaria. This could aid the development of targeted treatments 

for Malaria. 

The model is a neural network which has an input layer with 

the dimensionality of the input feature set size, two hidden layers 

consisting of 256 and 128 nodes that finally classify the gene 

expression sample into one of four stages. Prior to training, we 

standardised the data and had a train, validation and test data 

split of 70%, 10% and 20% each. The performance of the models 

was evaluated using their accuracy and F1-score, as we did not 

observe any significant class imbalance.  

Our public GitHub repository 

(https://github.com/SP9144/MalariaInsightsTranscriptomicML

) contains all the code. 

E. Gene Function Analysis 

To understand the biological relevance of our static and 

dynamic feature analysis, we performed a gene ontology 

analysis on each feature set using gProfiler [13] with the P. 

falciparum 3D7 database. A p-value threshold of 0.05 was used 

to identify significant biological processes. 

IV. DISCUSSION 

Our integrated approach of combining transcriptomic 

analysis along with machine learning gave us novel insights into 

the stage-specific gene expression patterns of P. falciparum. Our 

neural network model achieved a high accuracy (96%) using 

only the top 1000 genes that change as a function of pseudo-

time. This suggests that the trajectory analysis was successfully 

able to capture genome-level signatures that are specific to each 

stage. The performance was better than our baseline model using 

the full gene set. 

As part of our feature analysis, we shortlisted lifecycle 

genes. These helped us gain insights into the core processes 

taking place throughout the P. falciparum lifecycle regardless of 

the stage. Representing nearly one-fifth of the parasite’s 

genome, they maintain essential cellular functions throughout 

development. This is validated by the proportion of genes 

inherently expressed genes in Plasmodium based on the study 

conducted by Bozdech et al. [14]. 

The Monocle3-based trajectory analysis, in addition to 

contributing the best-performing feature set, revealed several 

interesting patterns that occur during the transition of stages. The 

branching out of the gametocyte stage from the asexual stages, 

breaking up the continuous trajectory of the latter three stages, 

is consistent with existing literature [15] and can be attributed to 

the sexual development of the parasite. Further, in stage-specific 

analysis, Brancucci et al.’s [16] findings pertaining to 

environmental sensitivity during early development were 

supported by the trends of multiple branches we observed in the 

ring stage. These are the developmental decision points in the 

earliest life stages that may be critical for the parasite’s 

adaptability. 

The GO enrichment analysis results confirmed the potential 

in our approach by confirming known stage-specific functions 

while also highlighting new potential targets. The significant 

association of the ring stage genes with host cell invasion 

mechanisms aligns with previous literature about the importance 

of this stage in the initial phases of infection [17]. Metabolic 

processes enriched by the trophozoite-specific genes supported 

this stage’s already known role in nutrient acquisition and 

growth of the parasite [18]. Recent research by Josling et al. [19] 

on the molecular mechanisms driving sexual commitment in 

https://github.com/SP9144/
https://github.com/SP9144/
https://github.com/SP9144/MalariaInsightsTranscriptomicML
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Plasmodium supports the distinctive transcriptional profile of 

gametocyte-specific genes. 

Using these complementary approaches, we achieve a 

holistic understanding of the genomic landscape and underlying 

changes during the different stages of the P. falciparum 

lifecycle. The trajectory analysis captures the complex 

regulatory networks influencing Plasmodium development, 

wherein we identified genes involved in stage transitions. In 

contrast, the static analysis found markers distinct to each stage. 

V. CONCLUSION 

Our study demonstrates the effectiveness of applying 

transcriptomic analyses along with machine learning approaches 

to understand the complex nature of P. falciparum biology. The 

trajectory analysis identifies genes that alter their expression 

patterns as a function of pseudo-time, revealing new insights 

into developmental progression. On the other hand, the high 

performance of our neural network-based stage classifier and 

gene ontology analysis of the various feature sets reinforces the 

potential of our approach and validates its biological correctness 

and relevance. Potential targets for therapeutic intervention at 

different stages of the parasite’s development can be identified 

using both stage-specific and lifecycle genes. Stage-specific 

treatments can be developed using the unique gene patterns 

revealed for each stage, particularly during the transition points 

that are highlighted by trajectory analysis. As part of future 

work, we want to extend the study by modelling the behaviour 

of key genes using a PoissonBeta model. This will enable a 

deeper understanding of their kinetics throughout the lifecycle, 

providing novel insights into the temporal dynamics of gene 

expression. Our combined static and dynamic analyses could be 

applied to explore other aspects of Plasmodium biology and 

related parasitic diseases. 
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