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Abstract— Gliomas, accounting for nearly one-third of all brain 

tumours, present themselves as significant medical challenges 

owing to their heterogeneous and aggressive nature. Given that 

traditional diagnostic techniques often fall short of capturing the 

entire genetic landscape, there are minimal options currently 

present in personalised medicine, thus adding to existing 

challenges. In order to aid precision oncology, we present a 

machine learning (ML) framework for glioma subtype 

classification and mutation prediction using RNA sequencing 

data. We used a two-step feature selection procedure that included 

XGBoost and LASSO, leveraging RNA sequencing and somatic 

mutation data of 667 glioma samples from the Cancer Genome 

Atlas (TCGA) Pan-Cancer project to identify key genes that are 

associated with glioma subtypes and important mutations. Metrics 

such as AUROC, F1-Score, and Matthews Correlation Coefficient 

(MCC) were used to train and evaluate the supervised machine 

learning models, including Random Forest and Stochastic 

Gradient Descent. Our framework performed robustly despite the 

class imbalance present in the dataset. We achieved a high 

classification accuracy for Diffuse Glioma (DG) subtypes 

(AUROC 0.90-1.00), distinguishing between low-grade gliomas 

(LGGs) and glioblastoma multiforme (GBM). Mutation status 

predictions for the key prognostic genes, including IDH, TP53, and 

ATRX, achieved high AUROC scores of 0.89-0.98 and MCC 

values of 0.72-0.97. Further, we used feature sets from our top-

performing models to perform gene set enrichment as part of our 

post-analysis. This confirmed the biological significance of 

identified genes related to established carcinogenic pathways and 

further validated the clinical applicability of our technique. Our 

ML-driven framework presented offers a scalable, data-driven 

solution in computational oncology with potential applications 

across cancer types. 

Index Terms—Glioma Classification, Mutation Prediction, 

Machine Learning, RNA Sequencing, Precision Oncology 

I. INTRODUCTION 

Glial cells, which are crucial for maintaining neurons and 

their surroundings, are the primary cause of gliomas, the most 

common tumours in the brain and spinal cord [1]. As a standard, 

the World Health Organization (WHO) assigns a grade of I, II, 

III, or IV to tumours. However, regardless of their grade, 

gliomas are known to grow and cause disability or even death 

[2]. Generally, adult diffuse gliomas (DGs) comprise gliomas of 

grades II, III, and IV and can be further categorised into low-

grade gliomas (LGGs), which include grades II and III, and 

glioblastoma multiforme (GBM), grade IV, the most invasive 

and deadly glioma [3, 4]. 

Histopathology has historically been used to diagnose and 

classify gliomas. This classification was well-established and 

served as the foundation for the WHO classification of central 

nervous system tumours, which has evolved significantly 

through multiple editions, with the latest update published in 

2021 [2]. However, it has significant intra- and inter-observer 

variation, especially for grade II–III tumours (LGGs) [5]. The 

classification of gliomas into subtypes based on genomic, 

epigenomic, and proteomic profiles has come a long way as 

well. Discoveries of multiple biologically and prognostically 

important biomarkers have led to new classifications of gliomas. 

Among the several key mutations involved in gliomas, isoforms 

of isocitrate dehydrogenase (IDH1 and IDH2) are very common 

[6]. Tumour protein p53 (TP53), a known glioma driver [7], is 

another such mutation that is often dysregulated in cancer. 

Alpha-thalassemia/mental retardation, X-linked (ATRX) is a 

chromatin-remodelling protein that is encoded by the X 

chromosome and was recently discovered as a clinical target [8]. 

Mutations in the ATRX genes are a common occurrence in 

LGGs. The development of advanced sequencing and data 

integration methods has made molecular profiling an attractive 

tool for detecting patterns and markers unique to tumours. Our 

proposed method is more reliable than traditional 

histopathological evaluations as it has the potential to improve 

diagnostic accuracy in glioma subtyping and grading by 

identifying prognostic markers. 

Based on histological classification, LGGs were formerly 

divided into Astrocytoma (A), Oligoastrocytoma (OA), and 

Oligodendroglioma (OD). However, they exhibit extremely 

diverse clinical behaviour, which makes it difficult to predict 

subtypes based on histologic class. Recent studies suggest, 

irrespective of grade or histology, glioma cases should be 

divided into three categories: IDH wildtype cases, IDH mutant 

samples containing codeletion of chromosome arms 1p and 19q 

(IDH mutant-codel), and samples with euploid 1p/19q (IDH-

mutant-non-codel) [9, 10]. This classification of LGGs based on 

histopathology and the one with molecular signature share 
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similarities; for example, LGGs with both an IDH mutation (i.e., 

a mutation in either IDH1 or IDH2) and 1p/19q codeletion occur 

most often in oligodendrogliomas [10]. Understanding how 

these mutations affect the pathophysiology of gliomas may help 

us develop precision treatments that target the pathways most 

important to the survival and proliferation of each subtype. 

Based on gene expression and genomic clustering, four gene 

expression subtypes were found in the 2010 TCGA 

categorisation of GBM [11], namely, Classic (C), Mesenchymal 

(M), Proneural (P), and Neural (N). Additionally, nearly a third 

of GBM patients harbour a specific deletion known as epidermal 

growth factor receptor variant III (EGFRvIII), an independent 

poor prognostic predictor. In contrast, 50% to 60% of patients 

have overexpressed EGFR [12]. This goes to show that 

molecular analyses have further helped advance our 

understanding of the biology behind gliomas and transformed 

the way we diagnose them. There may be unique genetic and 

clinical downstream effects when a particular mutation is 

present, and these advancements have the potential to capture 

them and thus identify new treatments and strategies that target 

specific glioma subtypes [13]. 

In this study, we present a complete framework for a 

thorough understanding of gliomas, including its subtypes and 

key mutations (Figure 1). The aim of the machine learning 

pipeline is to accurately predict the subtypes and mutation status 

of the glioma-causing genes. To ensure that we can identify the 

biological underpinnings of these gliomas, we focused on a 

comprehensive analysis of the mutation and clinical data before 

the ML workflow as part of our pre-analysis. Additionally, a 

post-analysis was carried out using the extracted features to 

understand enriched pathways and processes. Further, the end-

to-end pipeline was developed to aid a pathologist in the 

diagnosis and treatment of gliomas, which can be scaled to other 

diseases as well. 
 

Fig. 1.  Overview of glioma subtypes with associated key genes. 

II. RESULTS 

A. Preliminary Analysis 

1) Mutational Landscapes in Glioma Subtypes 

Our preliminary analysis aims to investigate the implications 

of mutations and subtypes within glioma. Figure 2, 3 and 4 

presents the mutational landscape of DG, which reveals that 

IDH1, TP53, and ATRX are among the most frequently mutated 

genes, with mutation rates of 46%, 39%, and 23%, respectively. 

Co-occurrence and exclusivity patterns are also evident, 

indicating that IDH1 mutations co-occur significantly with TP53 

and ATRX mutations (p < 0.05), while IDH1 shows strong 

mutual exclusivity with EGFR and PTEN (p < 0.05). 

For LGG specifically, similar co-occurrence patterns are 

observed between IDH1, TP53, and ATRX. Other frequently 

mutated genes included oncogenes like PIK3CA, IDH2 and 

NOTCH1, as well as tumour suppressor genes such as FUBP1 

(also a known oncogene) and NF1. We also noted co-occurrence 

relationships between CIC and FUBP1. 

Among GBM-specific mutations, PTEN (30%), TP53 

(approximately 25%), TTN (25%), and EGFR (24%) are the 

most altered genes, showing significant co-occurrence (p < 

0.05). IDH1, along with EGFR and PTEN each, exhibits strong 

mutual exclusivity (p-value < 0.05), while co-occurrence is 

observed between several genes, such as PI, AHNAK, and 

PCLO (p < 0.05). 

C>T transitions are the most common type of mutation, 

constituting nearly 60% of all DG mutations. T>C changes 

follow, as seen in the Ti-Tv plot. We also see comparable trends 

in GBM and LGG. The Ti/Tv ratio reveals that transitions are 

much greater than transversions. Supplementary file 1 provides 

the complete mutational landscape for each glioma subtype. 

2) Survival Impact 

Each subtype and the significant mutations within them were 

then investigated using clinical data to determine whether they 

had an advantageous or detrimental effect on the survival of an 

individual with glioma. Figure 5 illustrates, for DG and LGG, 

respectively, the survival probability within subtypes (Refer to 

supplementary file 2 for a complete analysis). 

In diffuse gliomas, the co-occurrence of mutations showed 

striking survival patterns. IDH-mutants with ATRX co-

occurrence demonstrated significantly better survival than cases 

without co-occurrence (p<0.0001). Similarly, IDH-mutant cases 

with TP53 co-occurrence exhibited markedly improved survival 

outcomes compared to non-co-occurring cases (p<0.0001). The 

survival curves for both molecular combinations showed clear 

separation, with co-occurring mutations maintaining higher 

survival probabilities over time. We also noted that IDH 

mutations generally gave a survival advantage, but their 

influences increased when co-occurring with TP53 or ATRX. 

This suggests the possibility that these molecular changes could 

improve patient outcomes together. 

On the other hand, GBM demonstrated no significant 

differences in survival between molecular subtypes (p = 0.93) or 
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significant mutations such as PTEN (p = 0.74), indicating that 

this tumour type (stage IV) is a highly aggressive subtype. 

Fig. 2.  Mutational Landscape of DG: Onco-plot for the top ten mutated 

genes. 

Fig. 3.  Mutational Landscape of DG: Transition and Transversion (Ti-

Tv) profile in the mutation landscape 

 

 

 

Fig. 4.   Mutational Landscape of DG: Pairwise exclusivity or co-

occurrence analysis among frequently mutated genes. 

The survival time is specified in days till the last day of follow-up or death. 

Fig. 5.  Survival Analysis: Subtypes of DG: LGG and GBM. 

B. Machine Learning Model Performance 

Each of our six ML models was trained on each feature set 

for every subtype and mutation. XGBoost and LASSO methods 
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were used for feature selection, which allowed us to identify 

prognostic genes for the majority of models. The union of 

feature sets from these two approaches was used selectively in 

two models. A full breakdown of each model’s performance 

with all feature sets across the three glioma types is available in 

the metrics folder in our GitHub repository. Finally, we 

leveraged MCC to identify the best model for binary 

classification, and in other cases, the model with the highest 

accuracy was considered. 

We achieved high performance for DG. As shown in Table 

1, the MCC values were between 0.70 and 1.00, and AUROC 

between 0.90 and 1.00. The Random Forest classifier, along 

with XGBoost-based feature selection, achieved perfect 

classification for LGG/GBM subtypes, with AUROC, F1-Score, 

MCC, Precision, Recall, and Specificity all scoring 1.00. For 

IDH mutation prediction, the Gaussian Naive Bayes (GNB) 

classifier using the union of feature sets performed exceptionally 

well, achieving an AUROC of 0.98 and an F1-Score of 0.99. 

Predictions when using co-occurring mutations (IDH + TP53, 

IDH + ATRX, IDH + TP53 + ATRX) also showed good results, 

with AUROC values ranging from 0.89 to 0.95. 

LGG subtype classification (Table 2) into O/OA/OD was 

moderate, with an accuracy of 65% using the Random Forest 

classifier with the union of the two feature sets. However, 

mutation predictions, especially for IDH mutation and 1p/19q 

codeletion, achieved perfect scores across all metrics, thus 

emphasising the high reliability in identifying these key 

biomarkers. 

The performance of the models for the GBM subtype is 

summarised in Table 3. The Nearest shrunken centroids (NSC) 

classifier using XGBoost-based feature selection achieved 83% 

accuracy for GBM subtype classification (C/M/N/P) (AUROC: 

1.00). However, performance for the mutation prediction task 

within this subtype was lower due to high-class imbalance, with 

the AUROC values ranging from 0.72 to 0.76 for EGFR and 

PTEN mutations. 

TABLE I.  BEST PERFORMING MODELS FOR DG WITH THE FEATURE 

SELECTION ALGORITHM 

Subtype Classification 

Subtypes Classifier 

Feature 

Sel. 

AUR

OC 

F1-

Score 

MC

C* 

Precisio

n 

Reca

ll 

LGG/GBM RF XGBoost 1 1 1 1 1 

Mutation Prediction 

Mutation Classifier 

Feature 

Sel. 

AUR

OC 

F1-

Score 

MC

C* 

Precisio

n 

Reca

ll 

IDH G-NB Union 0.98 0.99 0.97 0.99 0.99 

TP53 RF XGBoost 0.9 0.89 0.81 0.91 0.88 

ATRX LogReg XGBoost 0.91 0.85 0.79 0.79 0.92 

IDH + TP53 LogReg XGBoost 0.95 0.93 0.9 0.91 0.96 

IDH + ATRX NSC XGBoost 0.93 0.85 0.8 0.75 0.97 

IDH + TP53 + 

ATRX NSC Lasso 0.89 0.77 0.7 0.65 0.93 

*represents the metric used for evaluating the models 

 

 

 

 

 

TABLE II.  BEST PERFORMING MODELS FOR LGG WITH THE FEATURE 

SELECTION ALGORITHM 

Subtype Classification 

Subtypes Classifier 

Feature 

Sel. AUROC Accuracy* 

F1-

Score MCC Precision 

O/OA/OD RF Union 0.99 0.65 0.7 0.47 0.77 

Mutation Prediction 

Mutation Classifier 

Feature 

Sel. AUROC Accuracy* 

F1-

Score MCC Precision 

IDH + 

1p/19q 

codel RF Lasso 1 1 1 1 1 

*represents the metric used for evaluating the models 

TABLE III.  BEST PERFORMING MODELS FOR GBM WITH THE FEATURE 

SELECTION ALGORITHM 

Subtype Classification 

Subtypes 

Classifie

r 

Feature 

Sel. 

AURO

C 

Accuracy

* 

F1-

Score MCC 

Precisio

n 

C/M/N/

P NSC 

XGBoos

t 1 0.83 0.83 0.77 0.84 

Mutation Prediction 

Mutatio

n 

Classifie

r 

Feature 

Sel. 

AURO

C F1-Score 

MCC

* 

Precisio

n Recall 

EGFR SGD Lasso 0.72 0,60 0.42 0.55 0.67 

PTEN SGD Lasso 0.76 0,67 0.48 0.57 0.8 

*represents the metric used for evaluating the models 

C. Functional Enrichment Analysis 

Supplementary File 3 summarises the main findings of this 

analysis, which was carried out using Enrichr and DAVID’s 

functional annotation clustering. We identified key pathways 

and significant gene ontology (GO) terms related to the 

important mutations and observed a general similarity between 

the two, thus confirming biological relevance. 

IDH mutations in DG are mostly associated with metabolic 

pathways and activities, such as folate biosynthesis and carbon 

dioxide transport. TP53 mutations have been linked to immune 

and cell cycle processes, including death receptor activity and 

mast cell activation, and they are more common in pathways 

associated with cancer. TP53 was linked to both the 

immunological response and the cell cycle. Mutations involving 

TERT along with IDH and ATRX highlighted the cellular 

structure and transport functions, especially plasma membrane 

composition and amine transport. We observed a repetition of 

vision-related terms and other similar keywords related to IDH, 

TP53, and ATRX independently were enriched when co-

occurring mutations of IDH + TP53, IDH + ATRX, and IDH + 

TP53 + ATRX were considered. Similar pathways and clusters 
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of annotations, such as phagolysosome and cortical actin 

cytoskeleton, were highlighted in the cases of PTEN and EGFR. 

III. METHODS 

A. Data pre-processing 

We obtained RNA sequencing (RNA-seq), mutation and clinical 

data of GBM and LGG from the TCGA Pan-Cancer project [14] 

using the TCGAbiolinks package [15] in R. For the RNA-seq 

data, we considered only those primary tumour samples with 

corresponding somatic mutation data. This resulted in a matrix 

of 667 samples (LGG = 511 and GBM = 156), each with 56603 

genes (Table 4 and 5). The variance-stabilising transformation 

(VST) was applied across each of the raw RNA-seq matrices to 

account for the difference in variances contributed by individual 

genes. Finally, each transformed RNA-seq matrix and mutation 

data were integrated to create the final dataset for the ML 

pipeline (Figure 6), where the labels corresponding to each 

sample’s subtype and mutation status were derived from the 

mutation data. Additionally, we performed preliminary analysis 

independently using the clinical and mutation data 

independently for each subtype. 

TABLE IV.  SAMPLE DISTRIBUTION ACROSS THE SUBTYPES 

Diffuse Glioma (n = 667) 

Low-Grade Glioma (LGG) 511 

Glioblastoma Multiforme (GBM) 156 

Low-Grade Glioma (n = 510) 

Astrocytoma (A) 192 

Oligoastrocytoma (OA) 129 

Oligodendroglioma (OD) 189 

Glioblastoma Multiforme (n = 145) 

Classical (C) 39 

Mesenchymal (M) 50 

Neural (N) 26 

Proneural (P) 30 

TABLE V.  SAMPLE DISTRIBUTION ACROSS THE SUBTYPES 

Diffuse Glioma (n = 667) 

IDH [0/1] [239/415] 

TP53 [0/1] [375/279] 

ATRX [0/1] [475/179] 

IDH + TP53 [0/1] [431/223] 

IDH + ATRX [0/1] [486/168] 

IDH + TP53 + ATRX [0/1] [505/149] 

Low-Grade Glioma (n = 508) 

IDHmut + 1p/19q codel 94 

IDHmut + non-codel 246 

IDH Wildtype (IDHwt) 168 

Glioblastoma Multiforme (n = 151) 

EGFR [0/1] [109/42] 

PTEN [0/1] [103/48] 

*0 indicates the absence of the mutation, whereas 1 indicates its presence. 

B. Preliminary Analysis 

To identify the key mutations for each main glioma, we 

began by generating a mutational landscape for each subtype 

using only mutation data. The analysis included creating onco-

plots to highlight the top most mutated genes, analysing 

significant pairwise exclusivity or co-occurrence events, 

exploring the occurrence and patterns within Ti-Tv mutations, 

as well as identifying highly affected oncogenic pathways for 

the top ten mutated genes in each subtype. Following this, we 

conducted a survival analysis for each subtype, and each 

identified mutation from the first step was leveraged only from 

clinical data. This ensured that specific subtypes or the selected 

mutations had a significant impact, whether advantageous or 

detrimental to a patient’s survival. The Kaplan-Meier method 

was applied to estimate the survival probability at different time 

intervals. We considered the length of time from the date of 

metastatic lung cancer diagnosis to the date of death or last 

follow-up as the overall survival time. Patients still alive at the 

time of analysis were censored at the most recent assessment 

date. 
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Fig. 6. ML pipeline for feature extraction and model building to 

classify cancer subtypes and predict mutations. 

 

C. ML Pipeline 

Our pipeline began by performing a stratified train and test 

split on the VST transformed matrix by holding out 20% of 

samples for testing purposes, and the remaining were used for 

training. Within the training set, we filtered the top 10,000 most 

variable genes selected using mean absolute deviation (MAD) 

from the initial 56603 genes. This resulted in our input matrix 

having the dimensions (n,10000), where n is the number of 

samples in the glioma under consideration. We extracted 

prognostic genes from these 10,000 nominated genes by 

applying the XGBoost and LASSO feature selection methods. 

In both methods, the genes with feature importance less than 0 

were eliminated, and the ranked lists were saved for further post-

analysis. 

The XGBoost feature selection approach was taken into 

consideration since we had a large number of genes, and this 

number was significantly greater than the number of samples. 

The motivation for using LASSO regression as the alternate 

technique was eliminating irrelevant genes from a large set of 

10,000. This method shrinks coefficients to zero, therefore 

making it easier to eliminate features that do not contribute to 

the output. Additionally, to combine complementary features, a 

union of the two feature sets from the XGBoost and LASSO 

methods was also used. This was done in cases when the two 

feature selection algorithms, individually, could not extract 

features that predicted labels with reasonable accuracy. 

Using these feature sets, we then trained six machine 

learning models using supervised learning methods: Random 

Forests (RF), Nearest Shrunken Centroid (NSC), Gaussian 

Naive Bayes (G-NB), Logistic Regression (LogReg), and 

Stochastic Gradient Descent (SGD). A randomised search was 

used to perform five-fold cross-validation over a 

hyperparameter grid for each algorithm. Following this, the test 

set was used to evaluate each model with each feature set. This 

was done for each subtype and mutation considered in this work. 

Model performance was measured using metrics including 

Accuracy, Area Under the Receiver Operating Characteristics 

(AUROC), F1-Score, Matthews Correlation Coefficient (MCC), 

Precision, Recall, and Specificity. 

Owing to the significant class imbalance in our dataset, we 

used MCC to determine the model for tasks requiring binary 

classification, such as predicting mutation status, and accuracy 

was selected as the metric for ranking models in other situations. 

Our public GitHub repository 

(https://github.com/SP9144/GliomaMLClassifier) contains all 

implementation code, including trained models and their 

weights. 

D. Post Analysis 

We performed gene set enrichment analysis (GSEA) and 

pathway analysis on the feature set corresponding to the best 

model for each case using Enrichr [16]. This enabled us to find 

novel or unique pathways and gene ontology terms that may be 

related to gliomas, as well as to confirm the biological relevance 

of the shortlisted genes against prior literature. To further 

investigate the association between each subtype or mutation 

and the prognostic group of list genes, we also carried out 

functional annotation clustering using Database for Annotation, 

Visualisation and Integrated Discovery (DAVID) [17]. This 

approach had a two-fold advantage. First, it verified that the 

genes we selected matched those previously discovered by other 

researchers and also assisted us in identifying previously 

unknown gene interactions. 

IV. DISCUSSION 

The currency study presents a machine learning pipeline that 

applies a two-step feature extraction process and thorough 

training of the six supervised ML models using fivefold cross-

validation over a hyperparameter grid. The goal is to classify a 

sample into subtypes of glioma and predict the mutation status 

of key genes of the assigned glioma subtype. Based on several 

performance metrics like MCC and accuracy, the optimal model 

is selected. We used MCC to handle a class imbalance in binary 

tasks as it considers all confusion matrix elements, offering a 

balanced metric for imbalanced data [18]. Additionally, 

Additionally, before determining significant mutations within 

each glioma subtype, a thorough analysis was conducted to 

obtain the important mutations present within glioblastoma 

subtypes. It included exploring each glioma’s mutational 

landscape and performing survival analyses across the subtypes 

and selected genes. The feature sets corresponding to each best 

model were then used in enrichment analysis to verify biological 

relevance with previous findings. 

Among the most altered genes in DG are IDH, TP53 and 

ATRX, with significant co-occurrence present among them (p < 

0.05). The role of IDH as a key player in gliomas is confirmed 

by survival analysis, where the presence of a mutation in this 

gene led to prolonged survival. This also held for cases with co-

occurrence of mutations of IDH, with TP53 and ATRX. We 

observed a survival advantage when the IDH mutation is present 

over the IDH wild-type irrespective of treatment received [19]. 

Patients with co-occurring mutations were observed to have 

higher survival rates, as per our findings. In particular, patients 

who had IDH mutations along with either TP53 or ATRX had 

much higher survival chances (p < 0.0001) than those who did 

not, implying that mutations that occur in conjunction 

demonstrate the potential to cooperate and improve a patient’s 

survival outcomes. In the case of LGG, IDH mutation in the 

presence of 1p/19q codeletion has significantly longer survival 

than the LGG samples without these alterations. Most frequently 

found in oligodendrogliomas, the IDH mutations and codeletion 

are known to improve responsiveness to radiochemotherapy 

https://github.com/SP9144/GliomaMLClassifier
https://github.com/SP9144/GliomaMLClassifier
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[20]. The absence of samples with IDH wildtype and 1p/19q 

codeletion is explained by Labussi`ere et al. [21]. Survival 

analysis in EGFR and PTEN does not provide conclusive 

results. This is because GBM is a grade IV glioma, and the 

likelihood of survival is known to be exceedingly low, with less 

than 5% of patients surviving five years following diagnosis 

[22]. In addition to identifying key prognostic genes within each 

subtype, important transition and transversion trends, T>C 

changes and C>T transitions, which accounted for 

approximately 60% of the DG mutations. These mutational 

signatures confirm the validity of our classification method and 

add to the characteristics of the molecular features of gliomas. 

Our models could accurately classify most samples using the 

ML models trained for DG, predicting outcomes with high 

values for all evaluation metrics. While one model found IDH 

mutations 98% of the time, the Random Forest model accurately 

classified samples into LGG and GBM groups. This 

demonstrates the accuracy of our approach in identifying 

significant genomic alterations and various glioma subtypes and 

also validates the strength of our feature sets. Despite the high 

performance in DG classification and mutation prediction, we 

observed an average performance (Accuracy: 65%) in the LGG 

subtype classification. This can be attributed to the historical 

challenges in the histopathological classification of these 

tumours. Additionally, since the classifier performed poorly in 

identifying samples as OA, accuracy in classifying the LGG 

subtype lowered. OA is also known as mixed glioma and 

develops from OD or A. This can be the underlying cause behind 

incorrect labelling of OA samples as A or OD. Adding to the 

challenges among subtypes is the poor prognosis of GBM [20]. 

Further, there was also a class imbalance caused by the lack of 

mutated samples (ranging from 27% to 30%) for EGFR and 

PTEN mutations. These challenges could be a possible 

explanation for the moderate performance of GBM when 

compared to DG. 

Our findings from the enrichment and pathway analysis are 

consistent with those of earlier studies, indicating that the feature 

sets corresponding to the best-performing models had both 

significant biological relevance and predictive value. IDH, 

which is associated with oxidoreductase and upon mutation, 

isocitrate is first converted to α-KG, which is subsequently 

transformed to d-2-hydroxy-glutarate (d-2HG), or 

oxidoreductase [23]. Another prognostic gene is TP53, known 

as the guardian of the genome and a widely known tumour 

suppressor. Its loss can cause evasion of the cell’s immune 

response [24] and prevent apoptosis [25]. ATRX was recently 

reported to be present in corticotroph macroadenomas and 

carcinomas [26], and corticotroph tumours cause Cushing’s 

disease. Given that related terms recur, there may be an overlap 

in the prognostic feature sets of the co-occurring mutations and 

the individual mutations. Mutations in TERT, one of the top 

prognostic genes in DG, are common in gliomas and are 

exclusive to ATRX [27]. IDH, ATRX, and TERT promoter 

mutations in gliomas are correlated, according to a study by 

Ohba et al . [28], and there is a significant association between 

the lipid metabolism gene set and clinical features such as IDH 

mutation and 1p/19q codeletion [29]. A potential association 

between EGFR and cell adhesion has been identified [30], while 

PTEN controls glucose uptake and glucose transporter one 

expression in thyroid cancer cell s [31]. However, it is unclear if 

this is also true for gliomas. The enrichment of the HIF-1 

signalling pathway is explained by the facilitation of HIF-1-

mediated gene expression that results from PTEN loss [32]. 

Although the models presented in this study can make 

predictions with reasonable accuracy, there is always a concern 

associated with gene expression-based subtyping of 

heterogeneity over time and space. For instance, recent research 

has found that several GBM tumour subtypes can have distinct 

transcriptional subtypes [33]. The links between LGGs and 

GBMs that share genetic features like IDH mutation, or TERT 

promoter mutation status are still unclear based on current 

investigations. We can move toward an objective genome-based 

clinical classification, given that we have further explored these 

unknown links. By acquiring a thorough grasp of the subtype 

and mutations present in a patient using only the expression data 

of a select few genes, the current pipeline can also be used as a 

medical tool for prognosis. A patient’s targeted therapy or 

personalised medicine can subsequently be designed using the 

information from our pipeline. It can be improved by 

incorporating additional data modalities, such as imaging data, 

clinical data, etc., for prediction and can also be extended to treat 

other diseases. 

V. CONCLUSION 

The study presents an end-to-end pipeline for a detailed 

understanding of gliomas, including their subtypes and key 

mutations. Using both mutational patterns and patient clinical 

data, our models can identify the existence of key prognostic 

mutations and classify samples into their corresponding 

subtypes. Our pipeline, which combines mutation analysis, 

survival studies, and machine learning, provides a reliable tool 

for glioma classification. While performing well for most 

predictions, especially in distinguishing between LGG and 

GBM, the models show some limitations in classifying mixed 

gliomas. Adding more data modalities could improve the 

model’s performance and deepen our understanding of glioma 

biology. This work offers a practical and scalable tool for 

pathologists using precision medicine to treat glioma patients, 

with potential applications for other types of diseases. 
 

Supplementary Information. The following supplementary files are 

provided with this study: 
1  Supplementary File 1: Complete mutational landscape analysis for 

each glioma subtype, including detailed co-occurrence patterns and Ti-Tv 
profiles. 

2  Supplementary File 2: Comprehensive survival analysis results of 
each glioma subtype and key mutation. 

3  Supplementary File 3: GO terms, KEGG pathways, and DAVID 
functional annotations enriched in prognostic genes across key glioma 

mutations. 
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