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Abstract—Parkinson’s Disease (PD) is a severe 

neurodegenerative disorder which lacks reliable early diagnostic 

tests. In this study, we present a method for PD prediction that 

uses multimodal data from the Parkinson Progression Marker 

Initiative (PPMI), specifically clinico-demographic, biospecimen, 

and genetic data, to improve predictive accuracy and facilitate 

timely interventions via a multimodal machine learning approach. 

We evaluated data obtained from 598 participants (171 healthy 

controls and 427 PD patients) in three different modalities: 29 

clinical features, five cerebrospinal fluid biomarkers, and 154 

SNPs (single nucleotide polymorphisms), which were selected 

through a biology-driven feature selection method. We utilized 

three multimodal integration strategies—early, intermediate, and 

late—and trained various machine learning models, including 

LightGBM and Multilayer Perceptron (MLP), each of which was 

optimized by hyperparameter tuning and cross-validation. In 

early integration, we combined feature sets from all modalities 

into a single set, leveraging complementary information to 

increase predictive power. The intermediate integration method 

made use of autoencoders to encode features into a single 12-

dimensional vector as the input into a Neural Network classifier. 

Late integration combined outputs from the top-performing 

models for each modality using ensemble techniques such as 

Voting Classifier and Stacking. We found that early integration 

achieved the highest performance, with Support Vector Machines 

with 90% accuracy, 0.98 AUC-ROC, 0.99 precision, and 0.93 F1-

score. Intermediate integration with the Neural Network classifier 

followed with an AUC-ROC of 0.84 and an F1-score of 0.85. Our 

feature importance analysis identified two clinical scores, namely 

UPSIT (related to sensory decline) and SCOPA (measuring 

autonomic dysfunction), along with two SNPs (chr4 90755939 A G 

and chr4 90646886 G A, both previously linked to PD 

susceptibility) as crucial predictors, emphasizing their well-

established relevance in PD diagnosis. Early diagnosis and 

treatment of PD patients are facilitated by the integration of 

multiple data modalities, which also greatly increases the 

predicted accuracy for the disease while also providing us with a 

thorough understanding of its complexity. 

Index Terms—Parkinson’s Disease prediction, Multimodal 

data, Machine Learning 

I. INTRODUCTION 

Parkinson’s disease (PD) is a dopamine-receptor-based 

neurological disorder resulting from the loss of dopaminergic 

neurons in the substantia nigra pars compacta (SNpc) [1]. 

Common symptoms and indicators of Parkinson’s disease are 

bradykinesia (slow movement), hypokinesia, rigidity, and rest 

tremor [1, 2]. However, each individual has their own unique 

experience with the disease. Patients’ initial symptoms, such as 

tremor dominant (TD) or postural instability and gait 

disturbance (PIGD) [3, 4], have been used to categorize patients 

and predict their long-term clinical outcomes. PIGD-dominant 

patients exhibit more rapid illness progression and more non-

motor symptoms, but their interpretation is difficult owing to 

long-term clinical outcomes instability. [3, 5, 6]. 

PD presents itself with substantial diagnostic challenges 

owing to its heterogeneity, and this is more prominent in its early 

stages. As the diagnosis of PD is typically based on the patient’s 

medical history and physical examination [7], currently, there 

are no reliable tests that can differentiate between Parkinson’s 

disease and other conditions with similar manifestations. Delay 

in the onset of motor symptoms that leads to PD diagnosis, as 

well as the associated neurodegeneration, represents a missed 

opportunity for early therapeutic intervention [8]. The potential 

for increased diagnostic accuracy has been highlighted by recent 

developments in multimodal evaluation techniques. The PD 

inpatient multidisciplinary treatment concept (Parkinson disease 

Multimodal Complex Treatment (PD-MCT)) [9] includes motor 

and physical activity as crucial treatment components and is 

found to have a critical positive treatment on motor function in 

PD patients [10]. Additionally, initiatives such as the Parkinson 

Progression Marker Initiative (PPMI) [11] have produced 

extensive datasets that integrate many modalities, allowing 

predictive models to become more accurate and reliable. 

Clinical assessments [12] include the Movement Disorders 

Society Unified Parkinson Disease Rating Scale (MDS-

UPDRS) and Hoehn and Yahr scales [13]. Montreal Cognitive 
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Assessment (MoCA) may be a useful screening tool for 

cognitive function in PD with numerous advantages [14, 15] and 

can be used to evaluate global cognition [14, 16]. Other 

cognitive tests include the Hopkins Verbal Learning Test-

Revised (HVLT-R) to evaluate memory, the Benton Judgment 

of Line Orientation (BJLO) for visuospatial function, the 

Symbol-Digit Modalities Test (SDMT) for processing speed and 

attention, the Letter-Number Sequencing (LNS), and semantic 

(animal) fluency to evaluate working memory and executive 

abilities [17–21]. Neurobehavioral testing includes the Geriatric 

Depression Scale (GDS), State-Trait Anxiety Inventory (STAI), 

and Questionnaire for Impulsive-Compulsive Disorders (QUIP) 

[22–24]. Additional assessments like the Epworth Sleepiness 

Scale and REM sleep behaviour disorder (RBD) questionnaire 

assess sleep behaviour, Scales for Outcomes in Parkinson’s 

Disease-Autonomic (SCOPA-AUT) is used to assess autonomic 

function, and the University of Pennsylvania Smell 

Identification Test (UPSIT) evaluates olfactory function [25–

27]. 

There has also been a lot of work to understand the 

differential presence of biospecimen markers obtained from the 

cerebrospinal fluid in Healthy Controls (HC) and PD patients. 

The concentrations of α-syn, t-tau, and p-tau in the cerebrospinal 

fluid have been found to be lower in PD than in HC. However, 

there is a substantial overlap between the two groups [28]. 

Research suggests that PD patients may have α-syn aggregation 

in their central nervous systems, which could reduce CSF α-syn 

levels similar to how Alzheimer’s disease lowers Aβ1-42. CSF 

tau and α-syn proteins exhibited a strong connection in both PD 

patients and healthy controls, suggesting complex protein 

interactions that may not be unique to PD [28]. 

Genetic factors, notably variations in PARK loci and 

adjacent areas, have also been increasingly identified as 

significant markers [29–31]. A study of SNPs in the SNCA and 

MAPT regions revealed that they are common risk factors for 

PD [32]. Interesting associations have also been found in the 

CAST and GAPDH genes [33, 34]. In the MIHG analysis [32], 

SNCA had the strongest relationship, and both SNCA and 

MAPT were discovered to be genome-wide important. SNPs in 

the CAST gene and the single rs1136666 SNP in the GAPDH 

gene, a high-risk marker of PD, are significantly associated with 

PD [33]. According to studies, several SNPs in the SNCA 

region, specifically rs2736990 and rs356219, consistently 

correlate with the risk of Parkinson’s disease [34]. 

Current research on Parkinson’s disease (PD) diagnosis 

relies on a single modality function, but different modalities can 

supplement knowledge from various angles [35, 36]. A 

significant amount of effort has been put into the development 

of machine learning-based predictive modelling of Parkinson’s 

disease diagnosis and severity [2, 3, 8, 36–45]. Deep learning 

has been used to evaluate unstructured data, such as speech and 

audio signals, as well as to diagnose and predict the severity of 

Parkinson’s disease using voice data [37–41]. A study showed 

how incorporating multiple data modalities into modelling 

efforts can boost prediction efficiency thus better assessing the 

risk of Parkinson’s disease [44]. This paper aims to combine the 

predictive power of individual data modalities, including 

clinico-demographic, cerebrospinal fluid, and genetic (SNP) 

data, using different integration approaches to aid the early 

diagnosis of PD. 

II. RESULTS 

Across all three different data modalities, we had 598 

participants in our analysis (171 healthy controls and 427 PD 

patients). The final dataset included 154 genetically relevant 

SNPs, five cerebrospinal fluid biomarkers, and 29 clinical 

features that were found using a biology-driven approach. 

We explored the three integration approaches—early, 

intermediate, and late—to take advantage of the complementary 

information from clinical, biospecimen, and genetic sources 

from the consolidated dataset. While each strategy had specific 

advantages in terms of performance, early integration revealed 

itself to be the most effective method. The superior performance 

of the early integration method indicates that direct feature 

interactions between modalities, as opposed to those of learned 

representations or ensemble predictions, can significantly 

impact model performance. 

A. Single-Modality Performance Analysis 

To assess baseline performance and to understand the 

predictive potential of each modality independently, we first 

evaluated various machine learning models for each data 

modality. The results provided us with expectations for our 

following integration efforts and offered key insights into the 

predictive power of each data. 

Models consistently achieved high-performance metrics, 

with clinical data exhibiting the strongest independent 

prediction power (Table 1). Combining several base models, the 

Voting Classifier produced the best overall results (AUC-ROC: 

0.939, F1-score: 0.922). Logistic Regression followed (AUC-

ROC: 0.942, F1-score: 0.904), indicating that even linear 

models can successfully represent PD-related clinical trends. 

Notably, the MLP demonstrated its strength in detecting 

possible PD cases by achieving the highest recall (0.979) while 

maintaining reasonable precision (0.826). 

Although biomarkers contain pertinent diagnostic 

information, models trained on just the biospecimen data 

suggested that they might not be enough independently to 

provide a reliable diagnosis of Parkinson’s disease. The best 

recall (0.904) and balanced performance (F1-score: 0.813) were 

attained by the Gaussian Naive Bayes classifier. 

Models trained solely with genetic data gave overall poor 

performance metrics when compared to other modalities. The 

MLP had the highest F1-score (0.759) along with balanced 

precision-recall values (Precision: 0.774, Recall: 0.746). These 

results suggest that while genetic markers can help diagnose 

Parkinson’s disease (PD), their high dimensionality and intricate 

interactions make it particularly challenging to use them 

individually. 



                                        International Journal Of Public Mental Health And Neurosciences   

ISSN: 2394-4668  

(An Official publication of Sarvasumana Association)  

 

© IJPMN, Volume 12, Issue 1, April-2025 

(This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution License citing the 

original author and source)  

16 

 

B. Early Integration Performance 

The early integration strategy gave the best overall 

performance among the various machine learning techniques 

employed while taking the unified feature set across all three 

modalities as input. A summary of the outcomes is given in 

Table 2. The Voting Classifier obtained the highest AUC-ROC 

of 0.942 (F1-score: 0.89), while Logistic Regression showed 

low recall and good precision. This trade-off suggests that while 

some models perform well in eliminating false positives, others 

maintain a better balance between precision and recall, as 

demonstrated by the Random Forest model’s high F1-score of 

0.905. 

Key hyperparameters for the best-performing models are 

detailed in Table 3. Details about model parameters are also 

mentioned in Supplementary Table 4. 

C. Intermediate Integration Analysis 

The performance of the autoencoder-based intermediate 

integration strategy was moderate but consistent. The 

autoencoder architecture’s dimensionality reduction (Table 4) 

shows that we were able to capture essential patterns (Table 5) 

while drastically decreasing the feature space from 188 to 12 

dimensions. Interestingly, the base autoencoder configuration 

without SMOTE (synthetic samples for minority class to 

account for imbalance) maintained competitive performance 

across other metrics and achieved the highest recall (0.872), 

indicating that simpler architectures might be more resilient for 

this specific integration task. 

D. Late Integration Results 

Table 6 shows that the late integration ensemble approaches 

performed well across the various metrics, complementing our 

earlier integration approaches. The best performance in the 

present case was the XGBoost Classifier, which achieved 

balanced values of precision (0.856) and recall (0.895) by 

ranking the highest on the majority of criteria. This suggests that 

model-level integration can effectively capture complex patterns 

while still maintaining generalisability. 

TABLE I.  BEST PERFORMING MODELS FOR EACH DATA MODALITY 

Modality Best Model AUC-ROC F1-Score Precision Recall 

Clinical Voting Classifier 0.939 0.922 0.936 0.907 

Biospecimen Gaussian NB 0.634 0.813 0.739 0.904 

Genetic MLP 0.533 0.759 0.774 0.746 

TABLE II.  PERFORMANCE METRICS FOR EARLY INTEGRATION MODELS 

Model AUC-ROC AUC-PR F1 Score Precision Recall 

Random Forest 0.923 0.97 0.905 0.938 0.874 

MLP 0.929 0.971 0.894 0.973 0.828 

Voting Classifier 0.942 0.978 0.888 0.973 0.816 

SVC 0.872 0.959 0.881 0.972 0.805 

LightGBM 0.707 0.843 0.84 0.782 0.908 

Gaussian NB 0.868 0.949 0.838 0.918 0.77 

Logistic Regression 0.94 0.979 0.783 1 0.644 

*Bold values indicate the best performance for each metric 

TABLE III.  OPTIMAL HYPERPARAMETERS FOR TOP EARLY INTEGRATION 

MODELS 

Model Key Hyperparameters 

Random 
Forest 

class weight={0: 0.986, 1: 0.013}, max depth=19, n 
estimators=250 

MLP hidden layer sizes=(87, 87, 87), activation=’tanh’, learning 

rate=’invscaling’ 

Voting 
Classifier 

voting=’soft’, combination of RF, GNB, SVC, LR, 
LightGBM, and MLP 

TABLE IV.  PERFORMANCE METRICS FOR EARLY INTEGRATION MODELS 

Modality Input Dimensions Compressed Dimensions 

Clinical 29 4 

Biospecimen 5 4 

Genetic 154 4 

TABLE V.  PERFORMANCE METRICS FOR INTERMEDIATE INTEGRATION 

MODELS 

Model 

Configuration 

AUC-

ROC 

AUC-

PR 

F1 

Score 

Precision Recall 

Base Autoencoder 0.837 0.934 0.852 0.833 0.872 

With SMOTE 0.843 0.933 0.828 0.915 0.756 

*Bold values indicate the best performance for each metric. 

TABLE VI.  BEST PERFORMING MODELS FOR EACH DATA MODALITY 

Model AUC-ROC AUC-PR F1 Score Precision Recall 

XGBoost 0.892 0.961 0.875 0.856 0.895 

Random Forest 0.891 0.959 0.874 0.864 0.884 

Stacking Classifier 0.872 0.955 0.862 0.852 0.872 

Voting Classifier 0.866 0.953 0.843 0.918 0.779 

*Bold values indicate the best performance for each metric. 

E. Feature Importance Analysis 

As observed in Table 7, feature importance analysis using 

XGBoost across modalities identified several important 

determinants for diagnosing Parkinson’s disease. The two most 

important clinical features, UPSIT and SCOPA-Total, indicate 

the critical roles of olfactory function and autonomic 

dysfunction in the diagnosis of Parkinson’s disease. In the 

Biospecimen data, we observe α-synuclein and the P TAU/T 

TAU ratio were the most significant predictors, as well as T 

TAU, URATE, and Aβ42 all contributing significantly. Among 

the many SNPs, ones on chromosome 4 were found to be the top 

predictors, highlighting their potential role in the early detection 

of Parkinson’s disease. 

TABLE VII.  KEY FEATURES IDENTIFIED THROUGH XGBOOST ANALYSIS 

ACROSS MODALITIES 
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Data Modality Important Features 

Clinical 
Features 

UPSIT, First Fam PD, SCOPA GASTRO, SCOPA 
TOTAL, Other Fam PD 

Biospecimen 

Features 

P TAU/T TAU, α-SYN, T TAU, URATE, Aβ42 

Genetic 
Markers 

chr4 90645671 T A, chr4 90697157 T C, chr4 90635338 
G C, chr4 90668614 T C, chr4 90754292 T C 

III. METHODS 

A. Study Data 

Data across all three different modalities, namely, Clinico-

demographic, Biospecimen, and Genetic, from the Parkinson 

Progression Marker Initiative (PPMI) [11] was used for this 

study. The detailed workflow used can be found in Figure 1. 

For the clinical modality, a total of 682 participants were 

analyzed, containing 196 control cases and 486 PD patients. The 

mean age for the participants was 60.9 years, with a standard 

deviation of 10.2. The following features were considered for 

clinico-demographic analysis: features encompassing family 

history parameters (First Fam Num, First Fam PD, Other Fam 

Num, Other Fam PD, AGE, Socio Score), cognitive assessments 

(BJLO, HVLT measures, LNS), behavioural indices (ESS, 

GDS, QUIP sections), and autonomic function measures 

(SCOPA components). Common diagnostic indicators like 

MDS-UPDRS scores, Tremor scores, PIGD scores, and MoCA 

scores were not included in the analysis to prevent diagnostic 

circularity. Supplementary Table 1 provides a thorough 

explanation of the different parameters and how they are 

calculated. 

Similarly, for the biospecimen modality, 641 participants 

were analyzed, with 185 HC and 456 PD cases. The features 

considered were Aβ42 (958.9 ± 384.5), α-synuclein (1614.2 ± 

623.4), p-tau (15.7 ± 6.6), t-tau (182.2 ± 65.0), and urate (312.3 

± 73.5) obtained from the cerebrospinal fluid of the participant. 

The detailed methodology used to extract these features can be 

found in Supplementary Table 2. 

Finally, for the genetic biomarkers modality, we considered 

733 participants, with 217 belonging to HC and 516 to PD. 

Variant Calling Format (VCF) files containing SNPs (hg19) of 

each participant were analysed to give a total of 6899 unique 

SNPs in the PPMI data. A biology-based approach was applied 

to shortlist prognostic SNPs. To do this, a detailed survey of 

SNPs majorly lying in PD-related gene regions was done, and 

88 prognostic SNPs were identified and annotated to hg19 

reference. 51 of these 88 biologically relevant SNPs overlapped 

with our genetic dataset. Using these 51 SNPs, a correlation 

analysis was performed with the 6899 and top 20 of the most 

correlated SNPs (Chi-Squared test, p-value < 0.05) for each 

prognostic SNP, were selected. This resulted in a set of 335 

biologically relevant SNPs, following which the XGBoost 

feature selection method was used to rank the SNPs by feature 

importance and a final set of 154 prognostic SNPs were obtained 

(Figure 2). These 154 SNPs, mentioned in Supplementary Table 

3, were used for further genetic analysis. 

 

 
Fig. 1.  Workflow for Genetic Data Feature Selection. 

 

 

Fig. 2.  Overview of the multimodal workflow used in the study. 

B. Data Preprocessing and Integration 

The first step was to go over multiple time points for which 

participant data was collected in each dataset and take an 

average over them. For each modality, only those participants 

who did not have missing data for any of the features were 

considered. Additionally, we perform a dimensionality analysis 

using Principal Component Analysis (PCA) using Eigenvalue 

Decomposition and Singular Value Decomposition (SVD). 

Based on the correlation between features, PCA assisted in 

identifying trends in data. Finally, for the multimodal dataset, 

participants with information across all three individual 

modalities were considered (n = 598). 

C. Machine Learning Framework 

We built predictive models using supervised machine 

learning for PD diagnosis using each of the three data modalities 

individually to get baseline models and then applied the different 

integration approaches for multimodal data. 

To leverage the complementary information provided by 

various modalities, we implemented three different integration 

approaches. We created a single dataset with 598 participants 

and 188 features (29 clinical, five biospecimen, and 154 genetic 

markers) by concatenating features from all modalities in the 

early integration phase. This combined dataset was used to train 
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six machine learning models: Random Forest, Gaussian Naive 

Bayes, Support Vector Machines (SVM), Logistic Regression, 

LightGBM, and Multilayer Perceptron (MLP), all implemented 

using Python Scikit-learn. 

For intermediate integration, we developed separate 

autoencoder networks for each modality to learn compressed 

representations. Biospecimen autoencoders compressed five 

dimensions to four, clinical autoencoders lowered 29 

dimensions to four, and genetic autoencoders brought down 154 

dimensions to four. The Adam optimizer with learning rate 

decay was used to optimize each autoencoder, which used 

LeakyReLU activation functions. A neural network classifier 

with batch normalization and dropout layers was fed the 

concatenated compressed features. Binary cross-entropy loss 

and sigmoid activation were used for the final prediction. To 

address the class imbalance, we also applied SMOTE within our 

five-fold cross-validation framework to generate synthetic 

minority class samples, followed by StandardScaler 

normalization. 

The late integration strategy involved training separate 

models for each modality and combining their predictions 

through ensemble methods. Based on validation performance, 

we first determined which model performed best for each 

modality (single-modality). Four ensemble methods—Random 

Forest, Voting Classifier, Stacking Classifier, and XGBoost—

were then used to integrate these predictions. This method 

enabled distinct features of the data to be captured by each 

modality-specific model before we integrated them. 

D. Model Training and Evaluation 

To preserve class distribution for the standard machine 

learning models, we used an 80:20 train-test split with 

stratification. Five-fold cross-validation and randomized search 

were used to optimize across the hyperparameter grid. To 

prevent overfitting, we included early stopping based on 

validation loss for neural network components in the 

intermediate integration strategy, along with a 60:20:20 train-

validation-test split. Since accuracy alone can be deceptive in 

class-imbalanced datasets like ours, the F1-score was the 

primary metric used to assess model performance. 

The Keras framework was used to train the neural network 

classifier, which used ReLU and sigmoid activation functions. 

Hyperparameters were tuned using the Adam optimizer and 

binary cross-entropy loss. We used dropout and batch 

normalization for regularisation, setting the dropout rate at 0.3. 

Our public GitHub repository 

(https://github.com/SP9144/MutliModal Prediction_NLD) 

contains all implementation code, including trained models and 

their weights. 

IV. DISCUSSION 

In this study, we demonstrate that the diagnostic accuracy of 

Parkinson’s disease can be considerably improved by combining 

various data modalities using machine learning techniques. We 

observe that our early integration strategy performs more 

accurately (AUC-ROC: 0.92, F1-score: 0.90) than intermediate 

(AUC-ROC: 0.83, F1-score: 0.85) and late integration (AUC-

ROC: 0.89, F1-score: 0.86) approaches. Thus, we emphasize the 

idea that maintaining original feature associations across the 

data modalities allows us to capture complex disease patterns 

much better. One of the key findings was the complementary 

effect brought in by combining the different modalities. Genetic 

data on its own had a low performance of AUC-ROC = 0.65 (F1-

score: 0.76). However, upon combining with clinical and 

biospecimen data, it contributed two SNPs (chr4 90727088 C T 

and chr4 90637010 A G) among the top predictive features in 

the integrated model. This suggests that there may be linked 

effects that only show up when other biological markers are 

present [44]. 

Our feature importance analysis confirmed the diagnostic 

relevance of established clinical markers while revealing novel 

insights. UPSIT scores emerged as a top predictor, aligning with 

evidence of olfactory dysfunction as an early PD indicator [46]. 

Similarly, the importance of autonomic dysfunction assessment 

in the diagnosis of PD was confirmed by the presence of 

SCOPA-Total and SCOPA-Gastro scores as one of the top 

predictive characteristics. [23]. These findings support the 

clinical utility of these measures while suggesting their 

enhanced value when considered alongside genetic and 

biospecimen data. 

Compared to previous studies, our approach demonstrates 

several advantages. While earlier work using speech signals 

achieved accuracies of 85-95% [2], and studies focusing on non-

motor symptoms reported accuracies of 72-92% [47], our 

multimodal approach achieved 90% accuracy without relying on 

traditional clinical markers like MDS-UPDRS scores, thus 

avoiding diagnostic circularity. The effectiveness of the 

integration approaches employed was also highlighted when 

compared to the recent multimodal models using PPMI data, 

which reported lower performance (accuracy: 75%, AUC: 0.85) 

[11]. 

Our innovative, biology-driven feature selection approach 

for genetic data reduces the dimensionality and solidifies our 

understanding of the disease by ensuring that biological 

relevance is maintained. Combined with our thorough analysis 

of integration techniques, it allowed us to provide valuable 

insights for future multimodal studies in PD and other complex 

diseases. The accuracy of our approach can be further improved 

by augmenting it with other modalities like speech data or 

neuroimaging of patients, among other attributes. Our 

multimodal approach’s high-performance points to its potential 

clinical relevance for early PD diagnosis, especially when 

single-modality examinations yield conflicting results. 

Identifying important predictive characteristics across 

modalities also offers possible targets for future research and 

targeted clinical assessments. 

https://github.com/SP9144/MutliModal_Prediction_NLD
https://github.com/SP9144/MutliModal_Prediction_NLD
https://github.com/SP9144/MutliModal_Prediction_NLD
https://github.com/SP9144/MutliModal_Prediction_NLD
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V. CONCLUSION 

In this paper, we propose a multimodal machine-learning 

model that can help diagnose Parkinson’s disease. Our proposed 

model produces more accurate results (AUC-ROC: 0.92, F1-

score: 0.91) as compared to existing methods. It was observed 

that the model trained on multimodal data shows better 

performance than those trained on single data modalities and 

highlights unexpected features that could be prognostic 

biomarkers of Parkinson’s Disease. The multimodality also adds 

to the robustness as well as generalizability of the model with 

the various data sources compensating and supplementing each 

other, giving us a more comprehensive and holistic view. This 

paper tries to provide insight into the broader application of 

machine learning models on multimodal data sources to improve 

disease diagnosis in the domain of healthcare. This is especially 

crucial for diseases like cancer because of their complicated and 

heterogeneous patient manifestations. An integrated 

heterogeneous data source could further leverage machine 

learning techniques’ ability to capture intricate correlations 

between characteristics in order to create predictive models that 

are even more accurate. 
 

Supplementary Information. The following supplementary files are 
provided with this study: 

1  Supplementary File 1: Detailed description of the various clinical 
parameters and their computations. 

2  Supplementary File 2: Detailed methodology used to extract 
biospecimen features. 

3  Supplementary File 3: List of the final 154 prognostic SNPs 
shortlisted using genetic data. 

4  Supplementary File 4: Details of each model and corresponding 
hyperparameters. 
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