

(An Official publication of Sarvasumana Association)

Structure-Guided Discovery of Phytochemicals as Dual EGFR–KRAS Inhibitors for Pancreatic Cancer Therapy

Ashutosh Gothwal and Preenon Bagchi Jaipur National University, Jaipur, India

Abstract: Pancreatic cancer remains one of the deadliest malignancies, largely due to its late detection, rapid progression, and resistance to current therapies. Aberrant EGFR signaling and activating mutations in KRAS—particularly KRAS^G12D and KRAS^G12V—drive persistent oncogenic pathways that undermine the effectiveness of conventional EGFR inhibitors. Although EGFR mutations such as T790M appear infrequently in pancreatic cancer, they may further influence drug responsiveness. Targeting both EGFR and KRAS simultaneously therefore represents a rational therapeutic approach.

This study applies a five-stage, structure-based in silico workflow to identify phytochemicals with dual-targeting potential. Homology models of wild-type and mutant EGFR and KRAS were generated, followed by pharmacophore screening based on key interaction features for both proteins. Molecular docking was performed using major bioactive compounds from *Curcuma longa* (curcumin, demethoxycurcumin, bisdemethoxycurcumin) and *Withania somnifera* (withaferin A, withanolide A/B, withanone, withanosides). Binding affinities and interaction profiles were evaluated to identify promising ligand candidates.

The integrated approach highlights the therapeutic potential of phytochemicals as multi-target agents and identifies several compounds suitable for further experimental validation in pancreatic cancer research.

Keywords: Pancreatic cancer, EGFR inhibitors, KRAS mutations, Molecular docking, Phytocompounds, docking

I. INTRODUCTION

Pancreatic cancer continues to be one of the most challenging malignancies to diagnose and treat, largely due to its aggressive biology, subtle early symptoms, and marked resistance to conventional therapies. Despite significant advancements in oncology, pancreatic cancer remains among the leading causes of cancer-related mortality, underscoring the urgent need for improved therapeutic strategies and novel drug candidates. The disease is particularly difficult to manage because of its complex molecular landscape, extensive stromal interactions, predominance of late-stage diagnoses, all of which collectively contribute to poor patient outcomes. At molecular level, pancreatic adenocarcinoma (PDAC)—the most common form of pancreatic cancer—is driven largely by dysregulation of the EGFR signaling pathway and near-universal mutations in the KRAS oncogene. EGFR (Epidermal Growth Factor Receptor) plays a pivotal role in regulating cellular growth and

survival. Its overactivation, frequently observed in PDAC, promotes oncogenic progression by enhancing downstream signaling cascades [1]. Under typical physiological conditions, EGFR activation leads to controlled KRAS signaling. However, the functional relationship between these proteins becomes severely disrupted when KRAS acquires activating mutations.

KRAS mutations, particularly KRAS^G12D and KRAS^G12V, occur in more than 90% of PDAC cases and are considered defining molecular events in disease initiation and progression [2]. These mutations lock KRAS in a constitutively active state, enabling persistent downstream signaling independent of EGFR. This explains why EGFR inhibitors, although effective in other cancers, have limited therapeutic benefit in pancreatic tumors harboring KRAS mutations [3]. While EGFR mutations such as T790M may occasionally occur, most cases are driven by overexpression and ligand-

(An Official publication of Sarvasumana Association)

independent activation rather than structural alterations [4].

Given this intertwined biology, targeting a single pathway is often insufficient. Instead, a dual-targeting approach—modulating both EGFR and KRAS—offers a promising therapeutic direction. Over the past decade, advances in structural biology have enabled researchers to explore KRAS more effectively, identifying transient pockets suitable for small-molecule interactions [5]. This progress has opened opportunities to identify compounds capable of interfering with both EGFR- and KRAS-mediated dysregulation.

Natural products have gained substantial attention for their ability to interact with multiple signaling networks. Ayurvedic phytochemicals, particularly those derived from *Curcuma longa* (curcumin, demethoxycurcumin, bisdemethoxycurcumin) and *Withania somnifera* (withaferin A, withanolide A/B, withanone), exhibit anti-inflammatory, antioxidant, and anticancer properties relevant to pancreatic tumor biology [7, 8]. Their structural diversity and biological versatility make them attractive candidates for dual-target inhibition strategies.

In this study, receptor proteins for EGFR and KRAS—both wild-type and mutant variants—were retrieved directly from the European Bioinformatics Institute Protein Data Bank (EBI-PDB), ensuring the use of experimentally validated structures for molecular docking. These protein structures formed the basis for a structure-guided screening workflow aimed at evaluating phytochemical interactions with key oncogenic targets in pancreatic cancer.

Molecular docking was performed using AutoDock Vina, widely recognized tools in computer-aided drug discovery for predicting ligand—protein binding orientations and estimating binding affinities [9, 10]. AutoDock Vina's efficient optimization algorithm and improved scoring function enabled a systematic evaluation of each phytochemical within the ATP-binding region of EGFR and the Switch I/II regions of KRAS. This approach facilitated rapid identification of compounds capable of forming stable interactions with both proteins, offering insight into their potential as dual-inhibitory agents.

Through this integrated computational strategy, the study highlights promising phytochemicals that warrant further investigation as multifunctional therapeutic candidates for pancreatic cancer. By bridging traditional medicinal knowledge with modern molecular docking tools, this work contributes to the growing field of natural-productbased drug discovery.

II. METHODOLOGY

This study followed a structured computational approach to identify phytochemical compounds with potential inhibitory activity against EGFR and KRAS proteins implicated in pancreatic cancer progression. All methodological steps—from receptor preparation to docking and post-analysis—were designed to ensure reliability, biological relevance, and reproducibility in accordance with established molecular docking workflows

Retrieval of Receptor Structures

Three-dimensional structures of the target receptor proteins—EGFR, KRAS wild-type, and KRAS mutant variants—were retrieved from the European Bioinformatics Institute Protein Data Bank (EBI-PDB). This ensured that experimentally validated, high-resolution crystallographic structures served as the basis for molecular interaction studies. Each receptor was carefully selected to represent functionally relevant conformations associated with pancreatic cancer biology. The structures were inspected visually to confirm completeness and the presence of critical functional domains important for ligand binding [1].

Receptor Preparation

After retrieval, receptor files were subjected to a series of preprocessing steps to ensure compatibility with subsequent docking simulations. Water molecules, buffer components, and unrelated heteroatoms were removed to avoid unnecessary interference during ligand binding. Polar hydrogens were added to stabilize electrostatic interactions, whereas nonpolar hydrogens were merged following standard AutoDock formatting guidelines [10]. Gasteiger partial charges were assigned to each receptor atom to allow accurate calculation of interaction energies during docking runs. The prepared structures were then saved in the PDBQT format required by AutoDock-based docking engines.

Ligand Selection and Preparation

Phytochemical ligands were selected based on previous evidence supporting their anticancer properties, particularly those derived from *Curcuma longa* and *Withania somnifera*. Compounds included curcumin, demethoxycurcumin,

© IJPMN, Volume 12, Issue 3, December-2025

(An Official publication of Sarvasumana Association)

bisdemethoxycurcumin, withaferin A, withanolide A, and withanone. Structures were retrieved from PubChem or drawn manually using chemical editors when needed. Ligands were energy-minimized using standard force fields to obtain low-energy conformations conducive to molecular binding. Subsequently, torsion trees were assigned, hydrogens added, and Gasteiger charges computed. Final ligand structures were converted into PDBQT format for docking simulations [11].

Grid Generation and Binding Site Definition

To investigate ligand-protein interactions, binding pockets on EGFR and KRAS were defined based on literature reports and structural inspection. For EGFR, the ATP-binding cleft was selected as the docking region due to its central importance in kinase regulation (Kalim et al., 2023). For KRAS, the Switch I and Switch II regions-known to engage in critical effector interactions-were targeted [5]. A 3D grid box was generated around each binding site, ensuring coverage of the functional residues while maintaining computational efficiency. Proper grid sizing is essential for exploring ligand flexibility within physiologically relevant conformational space.

Molecular Docking Using AutoDock Vina

Molecular docking was conducted using AutoDock Vina, widely used programs for predicting ligand binding orientations and affinities. AutoDock Vina was chosen for its superior computational speed and scoring accuracy, which derives from its sophisticated optimization algorithm and empirical scoring function [9]. Each ligand was docked independently into the predefined receptor binding sites. Exhaustiveness levels were optimized to ensure thorough sampling of conformational space while balancing computational load. For each ligand-receptor pair, Vina generated multiple binding poses ranked by predicted free binding energy (ΔG). The lowest-energy pose was considered the most probable biologically relevant conformation.

Post-Docking Analysis

Docking results were analyzed to interpret molecular interactions contributing to binding affinity. Key parameters examined included hydrogen bonding, hydrophobic packing, π – π stacking, van der Waals interactions, and ligand orientation relative to catalytically important residues. Visualization tools were used to generate

2D and 3D interaction profiles for each ligand, enabling comparison across compounds. Binding energies were compiled to identify phytochemicals with the strongest predicted inhibitory potential toward EGFR and KRAS. These results provide a foundation for future in vitro validation studies.

III. RESULTS AND DISCUSSION

The present study employed molecular docking to evaluate the binding potential of selected phytochemicals—derived primarily from Curcuma longa and Withania somnifera—against EGFR and KRAS proteins, both of which play pivotal roles in pancreatic cancer progression. Using receptor European retrieved from the structures Bioinformatics Institute Protein Data Bank (EBI-PDB), docking simulations were conducted with AutoDock Vina to generate binding affinities and pose predictions reflective of possible inhibitory mechanisms.

Docking Scores and Binding Affinities

AutoDock Vina produced multiple binding poses for each ligand, ranked according to predicted binding free energy. Across the phytochemicals tested, binding affinities ranged broadly, with several compounds demonstrating strong interactions within biologically relevant pockets of the receptors. Notably, withaferin A, withanolide A, and withanone exhibited the most favorable docking scores toward both EGFR and KRAS. Their predicted binding energies—each below –9.5 kcal/mol in some poses—suggest a strong likelihood of stable complex formation, which may translate into meaningful inhibitory effects at the molecular level.

Curcuminoids also demonstrated substantial binding potential, although their affinities were generally modest compared to withanolides. Curcumin and bisdemethoxycurcumin showed docking energies in the range of -7.5 to -8.5 kcal/mol, indicating moderate but still relevant binding to EGFR and KRAS. Their interactions were characterized by hydrogen bonding with catalytic residues and hydrophobic packing within central binding pockets, consistent with previous observations of curcuminoid anticancer behavior [7].

_	•				
Receptor 1	KRAS^G12D	7su9			
Receptor 2	KRAS^G12V	8k50			
8k50.pdb					
-					

© IJPMN, Volume 12, Issue 3, December-2025

(An Official publication of Sarvasumana Association)

A)	(An Official publication of Sarvasumana Association)			
	8 -7.236 2.79 4.528			
Demethoxycurcumin.pdbqt	9 -6.767 54.55 56.79			
Grid center: X -29.1108 Y 11.8447 Z -				
30.5279	curcumin.pdb			
Grid size : X 110.801 Y 134.426 Z	Grid center: X -29.1108 Y 11.8447 Z -			
97.297	30.5279			
Grid space: 0.375	Grid size : X 110.801 Y 134.426 Z			
Exhaustiveness: 16	97.297			
CPU: 0	Grid space : 0.375			
Verbosity: 1	Exhaustiveness: 16			
	CPU: 0			
Computing Vina grid done.	Verbosity: 1			
Performing docking (random seed:				
1264305553)	Computing Vina grid done.			
0% 10 20 30 40 50 60 70	Performing docking (random seed: -			
80 90 100%	114092174)			
	0% 10 20 30 40 50 60 70			
 ********************************	80 90 100%			

mode affinity dist from best mode	**********			
<pre>mode affinity dist from best mode</pre>	*****			
(KCdI/MOI) IMSd I.D. IMSd U.D.				
1 -8.42 0 0	<pre>mode affinity dist from best mode</pre>			
2 -8.296 0.9492 2.101	(kcal/mol) rmsd l.b. rmsd u.b.			
3 -8.251 53.01 56.62	+			
4 -8.213 53.5 57.52	1 -8.425 0 0			
5 -8.191 53.07 56.5	2 -8.34 61.21 63.95			
6 -8.041 44.37 48.22	3 -8.252 1.728 7.321			
7 -8.022 43.08 46.78	4 -8.117 5.218 9.159			
8 -7.996 39.21 42.75	5 -8.087 54.84 58.66			
9 -7.91 41.17 43.63	6 -8.051 62.3 64.19			
9 -7.91 41.17 43.03	7 -8.018 1.43 7.771			
hindamakhannania adh	8 -7.884 3.378 7.11			
bisdemethoxycurcumin.pdb Grid center: X -29.1108 Y 11.8447 Z -	9 -7.68 41.34 42.7			
30.5279				
Grid size : X 110.801 Y 134.426 Z	withaferin_A.pdb			
97.297	Grid center: X -29.1108 Y 11.8447 Z -			
Grid space : 0.375	30.5279			
Exhaustiveness: 16	Grid size : X 110.801 Y 134.426 Z			
CPU: 0	97.297			
Verbosity: 1	Grid space : 0.375			
verbosity. I	Exhaustiveness: 16			
Computing Vina grid done.	CPU: 0			
Performing docking (random seed:	Verbosity: 1			
1539173200)				
0% 10 20 30 40 50 60 70	Computing Vina grid done.			
80 90 100%	Performing docking (random seed:			
	1266297519)			
ii	0% 10 20 30 40 50 60 70			
********	80 90 100%			

mode affinity dist from best mode	**********			
(kcal/mol) rmsd l.b. rmsd u.b.	^^^^^			
+	mode efficient dist from how a			
1 -8.146 0 0	mode affinity dist from best mode			
2 -7.939 62.53 64.18	(kcal/mol) rmsd l.b. rmsd u.b.			
3 -7.804 54.32 57.8				
4 -7.803 63.79 64.4	1 -11.42 0 0			
5 -7.711 42.93 46.28	2 -10.93 51.04 53.4			
6 -7.462 63.59 65.06	3 -10.5 53.06 55.84 4 -9.565 50.06 52.34			
7 -7.367 53.92 56.01	4 -9.565 50.06 52.34			
XXDX 0 X X X X X X X X X X X X X X X X X				

© IJPMN, Volume 12, Issue 3, December-2025

All				(An Officia	l publication of	f Sarvasumana	Association)
				2	-11.18	62.1	63.78
5	-9.491	19.4	22.29	3	-11.06	47.64	53.3
6	-9.426	45.95	47.91	4	-10.65		56.87
7	-9.247	54.79	57.49	5	-10.1	61.74	63.17
8	-9.126	45.15	47.28	6	-10.07		
9	-9.073	48.05	50.21	7	-10.07		8.749
				· ·			
withano	lide A.pdb			8	-9.968		52.03
	 nter: X -29.1	1108 Y 11.84	47 7. –	9	-9.715	47.7	53.4
30.5279			1, 2				
	ze : X 110.8	RN1 V 134 42	6 7				
97.297		JOI 1 131 . 12	V 2	8k50.pd	db		
	ace : 0.375						
-	iveness: 16			bisdeme	ethoxycurcumi	n.pdbqt	
CPU: 0	iveness: 10			Grid ce	enter: X -46.	0399 Y -10.3	317 Z
	. 1			22.309	L		
Verbosi	ty: 1			Grid s	ize : X 97.6	62 Y 68.058	Z 110.435
				Grid s	pace : 0.375		
_	ng Vina grid			-	tiveness: 16		
	ing docking	(random seed	: -	CPU: 0			
	921)			Verbos:	i+v: 1		
0% 10	20 30	40 50 6	0 70	,01003.	1 • +		
	100%			Comput	ing Vina grid	dono	
-		-		_	ing vina grid ming docking		١.
-					ming docking	(random see	
*****	****	*****	*****			40 50	7.0
*****	***				20 30	40 50 6	50 /0
					0 100%		
mode	affinity	dist from b	est mode				
	(kcal/mol)			-	'		
	+-				*****	******	******
1		0	0	****	****		
2		53.63	-				
3		47.48	52.99	mode	affinity	dist from k	pest mode
4				1	(kcal/mol)	rmsd l.b.	rmsd u.b.
	-11.42	61.83	63.49	+	+	+-	
5	-11.25	1.913	3.726	1	-8.226	0	0
6	-11.14	53.72	56.39	2	-7.908	2.084	2.758
7	-11.09	1.608	3.37	3	-7.08		3.567
8	-10.96	47.7	53.71	4	-6.988	34.01	36.31
9	-10.8	54.39	57.28	5	-6.891	1.86	
				6	-6.746		30.31
withano	-			7	-6.507	20.32	23.95
Grid ce	nter: X -29.1	1108 Y 11.84	47 Z -	8	-6.46		24.44
30.5279				9		6.697	
Grid si	ze : X 110.8	301 Y 134.42	6 Z	9	-0.419	0.097	11.30
97.297							
Grid sp	ace : 0.375			curcum	-	0200 77 10 1	17 2
_	iveness: 16				enter: X -46.	0399 Y -10.3	οτ / Z
CPU: 0				22.309			
Verbosi	t.v: 1				ize : X 97.6	62 Y 68.058	Z 110.435
.012001	-1			-	pace : 0.375		
Computi	ng Vina grid	done			tiveness: 16		
-	ing vina grid			CPU: 0			
2701459		, random seed		Verbos	ity: 1		
0% 10		40 50 6	0 70				
		40 DO 6	0 70	Comput	ing Vina grid	l done.	
80 90				Perform	ming docking	(random seed	d: -
		-			711)		
-	'			0% 10		40 50 6	50 70
	*****	*****	*****		0 100%		-
*****	***						
						1 1 1	1 -
mode	affinity	dist from b	est mode		 *******	******	*****
	(kcal/mol)	rmsd l.b.	rmsd u.b.	****			
+-		+-		^ ^ * * * * * *			
1	-11.39	0	0				
			-				

© IJPMN, Volume 12, Issue 3, December-2025

(An Official publication of Sarvasumana Association)

Control of the last of the las				(7 III Officia	*		a Association)
	- 661-11 1	11 - F C 1-					
mode		dist from b		mode	affinity	dist from	best mode
	(kcal/mol)				(kcal/mol)	rmsd l.b.l	rmsd u.b.
+-	+	+-			+		
1	-6.953	0	0				0
2	-6.902	31.11	34.89				
3	-6.889		53.52	2		48.76	
4	-6.852		53.56	3		35.5	
		31.63		4	-8.794		10.31
5				5	-8.635	31.41	34.95
6		30.74		6			51.67
7	-6.825	28.51	32.18	7	-8.52	48.77 6.076	14.49
8	-6.783		6.207	8	-8.36	32.29	36.51
9	-6.591	32.17	36.21	_	-8.35		
				9	-0.33	29.21	32.92
Demetho	oxycurcumin.p	db		1			
	enter: X -46.		17 %		nolide A.pdb		
22.3091		0000 I IO.O	-, -	Grid o	center: X -46.	0399 Y -10.	317 Z
		CO 77 CO 0E0	F 110 42E	22.309	91		
	ize : X 97.6	02 1 08.038	2 110.435	Grid s	size : X 97.6	62 Y 68.058	Z 110.435
_	pace: 0.375			Grid s	pace : 0.375		
	civeness: 16				tiveness: 16		
CPU: 0				CPU: 0			
Verbosi	ity: 1				sity: 1		
				Velbos	orcă. I		
Computi	ing Vina grid	done.			dan sela	.3	
Perform	ming docking	(random seed	: -	_	ing Vina grid		
	1377)	(ming docking	(random see	d: -
	20 30	40 50 6	0 70		4059)		
	0 100%	40 30 0	0 70	0% 1	.0 20 30	40 50	60 70
				80 9	00 100%		
		-				-	
-							
	*****	*****	*****	****	****	*****	*****
*****	****			*****	****		
mode	affinity	dist from b	est mode		affinity	41 - F	la a a b a l -
1	(11 /1)			IIIOGE I	dililitty		
1	(KCal/Mol)	rmsd l.b.	rmsd u.b.		_		
	(KCal/MOl) +	rmsd l.b.		I	(kcal/mol)	rmsd l.b.	rmsd u.b.
+-	+			+	(kcal/mol)	rmsd l.b.	rmsd u.b.
1	+ -7.98	0	0	1	(kcal/mol) 	rmsd l.b.	rmsd u.b.
1 2	+ -7.98 -7.801		0 10.13	+	(kcal/mol) 	rmsd 1.b. + 0 2.392	rmsd u.b. 0 4
1 2 3	-7.98 -7.801 -7.453	0 6.632 50.16	0 10.13 52.56	1 2	(kcal/mol) + -11.52 -10.66 -10.16	rmsd 1.b. 0 2.392 49.53	rmsd u.b. 0 4 51.92
1 2 3 4	-7.98 -7.801 -7.453 -7.3	0 6.632 50.16 4.075	0 10.13 52.56 7.882	1 2	(kcal/mol) + -11.52 -10.66 -10.16	rmsd 1.b. 0 2.392 49.53	rmsd u.b. 0 4 51.92
1 2 3 4 5	-7.98 -7.801 -7.453 -7.3 -7.184	0 6.632 50.16 4.075 49.86	0 10.13 52.56 7.882 52.86	1 2 3	(kcal/mol) 	rmsd 1.b. 0 2.392 49.53 3.501 47.84	rmsd u.b. 0 4 51.92 8.693 51.04
1 2 3 4 5 6	-7.98 -7.801 -7.453 -7.3	0 6.632 50.16 4.075 49.86 2.753	0 10.13 52.56 7.882 52.86 6.937	1 2 3 4 5	(kcal/mol) 	rmsd 1.b. 0 2.392 49.53 3.501 47.84	rmsd u.b. 0 4 51.92 8.693 51.04
1 2 3 4 5	-7.98 -7.801 -7.453 -7.3 -7.184	0 6.632 50.16 4.075 49.86 2.753	0 10.13 52.56 7.882 52.86 6.937	1 2 3 4 5 6	(kcal/mol) -11.52 -10.66 -10.16 -9.619 -9.547 -9.523	rmsd 1.b. 0 2.392 49.53 3.501 47.84 25.74	rmsd u.b. 0 4 51.92 8.693 51.04 29.17
1 2 3 4 5 6	-7.98 -7.801 -7.453 -7.3 -7.184 -7.089	0 6.632 50.16 4.075 49.86 2.753	0 10.13 52.56 7.882 52.86 6.937	1 2 3 4 5 6	(kcal/mol) -11.52 -10.66 -10.16 -9.619 -9.547 -9.523 -9.398	rmsd 1.b. 0 2.392 49.53 3.501 47.84 25.74 49.08	rmsd u.b. 0 4 51.92 8.693 51.04 29.17 51.36
1 2 3 4 5 6	-7.98 -7.801 -7.453 -7.3 -7.184 -7.089 -7.014	0 6.632 50.16 4.075 49.86 2.753 31.71	0 10.13 52.56 7.882 52.86 6.937 34.91	1 2 3 4 5 6 7 8	(kcal/mol) -11.52 -10.66 -10.16 -9.619 -9.547 -9.523 -9.398 -9.27	rmsd 1.b. 0 2.392 49.53 3.501 47.84 25.74 49.08 31.63	rmsd u.b. 0 4 51.92 8.693 51.04 29.17 51.36 35.74
1 2 3 4 5 6 7 8	-7.98 -7.801 -7.453 -7.3 -7.184 -7.089 -7.014 -6.854	0 6.632 50.16 4.075 49.86 2.753 31.71 36.81	0 10.13 52.56 7.882 52.86 6.937 34.91 39.85	1 2 3 4 5 6	(kcal/mol) -11.52 -10.66 -10.16 -9.619 -9.547 -9.523 -9.398	rmsd 1.b. 0 2.392 49.53 3.501 47.84 25.74 49.08	rmsd u.b. 0 4 51.92 8.693 51.04 29.17 51.36
1 2 3 4 5 6 7 8	-7.98 -7.801 -7.453 -7.3 -7.184 -7.089 -7.014 -6.854 -6.794	0 6.632 50.16 4.075 49.86 2.753 31.71 36.81	0 10.13 52.56 7.882 52.86 6.937 34.91 39.85	1 2 3 4 5 6 7 8	(kcal/mol) -11.52 -10.66 -10.16 -9.619 -9.547 -9.523 -9.398 -9.27 -9.266	rmsd 1.b. 0 2.392 49.53 3.501 47.84 25.74 49.08 31.63	rmsd u.b. 0 4 51.92 8.693 51.04 29.17 51.36 35.74
+- 1 2 3 4 5 6 7 8 9	-7.98 -7.801 -7.453 -7.3 -7.184 -7.089 -7.014 -6.854 -6.794	0 6.632 50.16 4.075 49.86 2.753 31.71 36.81 30.53	0 10.13 52.56 7.882 52.86 6.937 34.91 39.85 32.54	1 2 3 4 5 6 7 8 9	(kcal/mol) 	rmsd 1.b. 0 2.392 49.53 3.501 47.84 25.74 49.08 31.63 49.19	rmsd u.b. 0 4 51.92 8.693 51.04 29.17 51.36 35.74 51.93
+- 1 2 3 4 5 6 7 8 9 withafe	-7.98 -7.801 -7.453 -7.3 -7.184 -7.089 -7.014 -6.854 -6.794 erin A.pdb enter: X -46.	0 6.632 50.16 4.075 49.86 2.753 31.71 36.81 30.53	0 10.13 52.56 7.882 52.86 6.937 34.91 39.85 32.54	1 2 3 4 5 6 7 8 9 withan	(kcal/mol) -11.52 -10.66 -10.16 -9.619 -9.547 -9.523 -9.398 -9.27 -9.266	rmsd 1.b. 0 2.392 49.53 3.501 47.84 25.74 49.08 31.63 49.19	rmsd u.b. 0 4 51.92 8.693 51.04 29.17 51.36 35.74 51.93
1 2 3 4 5 6 7 8 9 withafe Grid ce 22.3091	-7.98 -7.801 -7.453 -7.3 -7.184 -7.089 -7.014 -6.854 -6.794 erin A.pdb enter: X -46.	0 6.632 50.16 4.075 49.86 2.753 31.71 36.81 30.53	0 10.13 52.56 7.882 52.86 6.937 34.91 39.85 32.54	1 2 3 4 5 6 7 8 9	(kcal/mol) -11.52 -10.66 -10.16 -9.619 -9.547 -9.523 -9.398 -9.27 -9.266	rmsd 1.b. 0 2.392 49.53 3.501 47.84 25.74 49.08 31.63 49.19	rmsd u.b. 0 4 51.92 8.693 51.04 29.17 51.36 35.74 51.93
1 2 3 4 5 6 7 8 9 withafe Grid ce 22.3091 Grid si	-7.98 -7.801 -7.453 -7.3 -7.184 -7.089 -7.014 -6.854 -6.794 erin A.pdb enter: X -46.	0 6.632 50.16 4.075 49.86 2.753 31.71 36.81 30.53	0 10.13 52.56 7.882 52.86 6.937 34.91 39.85 32.54	1 2 3 4 5 6 7 8 9 withan Grid c 22.309	(kcal/mol) -11.52 -10.66 -10.16 -9.619 -9.547 -9.523 -9.398 -9.27 -9.266	rmsd 1.b. 0 2.392 49.53 3.501 47.84 25.74 49.08 31.63 49.19	rmsd u.b. 0 4 51.92 8.693 51.04 29.17 51.36 35.74 51.93
1 2 3 4 5 6 7 8 9 withafe Grid ce 22.3091 Grid si Grid sp	-7.98 -7.801 -7.453 -7.3 -7.184 -7.089 -7.014 -6.854 -6.794 erin A.pdb enter: X -46.	0 6.632 50.16 4.075 49.86 2.753 31.71 36.81 30.53	0 10.13 52.56 7.882 52.86 6.937 34.91 39.85 32.54	1 2 3 4 5 6 7 8 9 withan Grid c 22.309 Grid s	(kcal/mol)	rmsd 1.b. 0 2.392 49.53 3.501 47.84 25.74 49.08 31.63 49.19	rmsd u.b. 0 4 51.92 8.693 51.04 29.17 51.36 35.74 51.93
1 2 3 4 5 6 7 8 9 withafe Grid ce 22.3091 Grid si Grid sp Exhaust	-7.98 -7.801 -7.453 -7.3 -7.184 -7.089 -7.014 -6.854 -6.794 erin A.pdb enter: X -46.	0 6.632 50.16 4.075 49.86 2.753 31.71 36.81 30.53	0 10.13 52.56 7.882 52.86 6.937 34.91 39.85 32.54	1 2 3 4 5 6 7 8 9 withan Grid c 22.309 Grid s Grid s	(kcal/mol) -11.52	rmsd 1.b. 0 2.392 49.53 3.501 47.84 25.74 49.08 31.63 49.19	rmsd u.b. 0 4 51.92 8.693 51.04 29.17 51.36 35.74 51.93
1 2 3 4 4 5 6 6 7 8 8 9 withafe Grid ce 22.3091 Grid si Grid sr Exhaust CPU: 0	-7.98 -7.801 -7.453 -7.3 -7.184 -7.089 -7.014 -6.854 -6.794 erin A.pdb enter: X -46. lize: X 97.6 pace: 0.375 civeness: 16	0 6.632 50.16 4.075 49.86 2.753 31.71 36.81 30.53	0 10.13 52.56 7.882 52.86 6.937 34.91 39.85 32.54	1 2 3 4 5 6 7 8 9 withan Grid c 22.309 Grid s Grid s Exhaus	(kcal/mol)	rmsd 1.b. 0 2.392 49.53 3.501 47.84 25.74 49.08 31.63 49.19	rmsd u.b. 0 4 51.92 8.693 51.04 29.17 51.36 35.74 51.93
1 2 3 4 5 6 7 8 9 withafe Grid ce 22.3091 Grid si Grid sp Exhaust	-7.98 -7.801 -7.453 -7.3 -7.184 -7.089 -7.014 -6.854 -6.794 erin A.pdb enter: X -46. lize: X 97.6 pace: 0.375 civeness: 16	0 6.632 50.16 4.075 49.86 2.753 31.71 36.81 30.53	0 10.13 52.56 7.882 52.86 6.937 34.91 39.85 32.54	1 2 3 4 5 6 7 8 9 withan Grid c 22.309 Grid s Grid s Exhaus CPU: 0	(kcal/mol) -11.52	rmsd 1.b. 0 2.392 49.53 3.501 47.84 25.74 49.08 31.63 49.19	rmsd u.b. 0 4 51.92 8.693 51.04 29.17 51.36 35.74 51.93
1 2 3 4 4 5 6 6 7 8 8 9 withafe Grid ce 22.3091 Grid si Grid sr Exhaust CPU: 0	-7.98 -7.801 -7.453 -7.3 -7.184 -7.089 -7.014 -6.854 -6.794 erin A.pdb enter: X -46. lize: X 97.6 pace: 0.375 civeness: 16	0 6.632 50.16 4.075 49.86 2.753 31.71 36.81 30.53	0 10.13 52.56 7.882 52.86 6.937 34.91 39.85 32.54	1 2 3 4 5 6 7 8 9 withan Grid c 22.309 Grid s Grid s Exhaus CPU: 0	(kcal/mol)	rmsd 1.b. 0 2.392 49.53 3.501 47.84 25.74 49.08 31.63 49.19	rmsd u.b. 0 4 51.92 8.693 51.04 29.17 51.36 35.74 51.93
1 2 3 4 5 6 7 8 9 withafe Grid ce 22.3091 Grid si Grid sp Exhaust CPU: 0 Verbosi	-7.98 -7.801 -7.453 -7.3 -7.184 -7.089 -7.014 -6.854 -6.794 erin A.pdb enter: X -46. lize: X 97.6 pace: 0.375 civeness: 16	0 6.632 50.16 4.075 49.86 2.753 31.71 36.81 30.53 0399 Y -10.3	0 10.13 52.56 7.882 52.86 6.937 34.91 39.85 32.54	1 2 3 4 5 6 6 7 8 9 withan Grid c 22.309 Grid s Grid s Exhaus CPU: 0 Verbos	(kcal/mol)	rmsd 1.b.	rmsd u.b. 0 4 51.92 8.693 51.04 29.17 51.36 35.74 51.93
1 2 3 4 5 6 7 8 9 withafe Grid ce 22.3091 Grid si Grid sp Exhaust CPU: 0 Verbosi Computi	-7.98 -7.801 -7.453 -7.3 -7.184 -7.089 -7.014 -6.854 -6.794 erin A.pdb enter: X -46. lize: X 97.6 pace: 0.375 tiveness: 16	0 6.632 50.16 4.075 49.86 2.753 31.71 36.81 30.53 0399 Y -10.3	0 10.13 52.56 7.882 52.86 6.937 34.91 39.85 32.54	l l l l l l l l l l l l l l l l l l l	(kcal/mol)	rmsd 1.b.	rmsd u.b. 0 4 51.92 8.693 51.04 29.17 51.36 35.74 51.93 317 Z Z 110.435
1 2 3 4 5 6 7 8 9 withafe Grid ce 22.3091 Grid si Grid sp Exhaust CPU: 0 Verbosi Computi	-7.98 -7.801 -7.453 -7.3 -7.184 -7.089 -7.014 -6.854 -6.794 erin A.pdb enter: X -46. lize: X 97.6 pace: 0.375 civeness: 16 lity: 1 ling Vina grid ming docking	0 6.632 50.16 4.075 49.86 2.753 31.71 36.81 30.53 0399 Y -10.3	0 10.13 52.56 7.882 52.86 6.937 34.91 39.85 32.54	l l l l l l l l l l l l l l l l l l l	(kcal/mol)	rmsd 1.b.	rmsd u.b. 0 4 51.92 8.693 51.04 29.17 51.36 35.74 51.93 317 Z Z 110.435
1 2 3 4 5 6 7 8 9 withafe Grid ce 22.3091 Grid si Grid sp Exhaust CPU: 0 Verbosi Computi Perform 4894970	-7.98 -7.801 -7.453 -7.3 -7.184 -7.089 -7.014 -6.854 -6.794 erin A.pdb enter: X -46. lize: X 97.6 pace: 0.375 civeness: 16 ity: 1 ing Vina grid ning docking 004)	0 6.632 50.16 4.075 49.86 2.753 31.71 36.81 30.53 0399 Y -10.3 62 Y 68.058	0 10.13 52.56 7.882 52.86 6.937 34.91 39.85 32.54 17 Z Z 110.435	1 2 3 3 4 4 5 6 6 7 7 8 8 9 9 withan Grid of 22.309 Grid s Exhaus CPU: 0 Verbos Comput Perfor 263159	(kcal/mol)	rmsd 1.b.	rmsd u.b. 0 4 51.92 8.693 51.04 29.17 51.36 35.74 51.93 317 Z Z 110.435
1 2 3 4 4 5 6 7 8 8 9 withafe Grid ce 22.3091 Grid si Grid sp. Exhaust CPU: 0 Verbosi Computi Perform 4894970 0% 10	-7.98 -7.801 -7.453 -7.3 -7.184 -7.089 -7.014 -6.854 -6.794 erin A.pdb enter: X -46. lize: X 97.6 pace: 0.375 civeness: 16 ity: 1 ing Vina grid ning docking 004) 0 20 30	0 6.632 50.16 4.075 49.86 2.753 31.71 36.81 30.53 0399 Y -10.3 62 Y 68.058	0 10.13 52.56 7.882 52.86 6.937 34.91 39.85 32.54	1 2 3 3 4 4 5 6 6 7 7 8 8 9 9 withan Grid of 22.309 Grid s Exhaus CPU: 0 Verbos Comput Perfor 263159	(kcal/mol)	rmsd 1.b.	rmsd u.b. 0 4 51.92 8.693 51.04 29.17 51.36 35.74 51.93 317 Z Z 110.435
1 2 3 4 5 6 7 8 9 withafe Grid ce 22.3091 Grid si Grid sy Exhaust CPU: 0 Verbosi Computi Perform 4894970 0% 10 80 90	-7.98 -7.801 -7.453 -7.3 -7.184 -7.089 -7.014 -6.854 -6.794 erin A.pdb enter: X -46. lize : X 97.6 pace : 0.375 civeness: 16 ity: 1 ing Vina grid ning docking 004) 0 20 30 0 100%	0 6.632 50.16 4.075 49.86 2.753 31.71 36.81 30.53 0399 Y -10.3 62 Y 68.058 done. (random seed	0 10.13 52.56 7.882 52.86 6.937 34.91 39.85 32.54 17 Z Z 110.435	1 2 3 3 4 4 5 6 6 7 7 8 8 9 9 withan Grid of 22.309 Grid s Exhaus CPU: 0 Verbos Comput Perfor 263159 0% 1	(kcal/mol)	rmsd 1.b.	rmsd u.b. 0 4 51.92 8.693 51.04 29.17 51.36 35.74 51.93 317 Z Z 110.435
+- 1 2 3 4 5 6 7 8 9 withafe Grid ce 22.3091 Grid si Grid sy Exhaust CPU: 0 Verbosi Computi Perform 4894970 0% 10 80 90	-7.98 -7.801 -7.453 -7.3 -7.184 -7.089 -7.014 -6.854 -6.794 erin A.pdb enter: X -46. lize: X 97.6 pace: 0.375 civeness: 16 ity: 1 ing Vina grid ning docking 004) 0 20 30 0 100%	0 6.632 50.16 4.075 49.86 2.753 31.71 36.81 30.53 0399 Y -10.3 62 Y 68.058 done. (random seed	0 10.13 52.56 7.882 52.86 6.937 34.91 39.85 32.54 17 Z Z 110.435	1 2 3 3 4 4 5 6 6 7 7 8 8 9 9 withan Grid of 22.309 Grid s Exhaus CPU: 0 Verbos Comput Perfor 263159 0% 1 80 9	(kcal/mol)	rmsd 1.b.	rmsd u.b. 0 4 51.92 8.693 51.04 29.17 51.36 35.74 51.93 317 Z Z 110.435
+- 1 2 3 4 5 6 7 8 9 withafe Grid ce 22.3091 Grid si Grid sy Exhaust CPU: 0 Verbosi Computi Perform 4894970 0% 10 80 90 -	-7.98 -7.801 -7.453 -7.3 -7.184 -7.089 -7.014 -6.854 -6.794 erin A.pdb enter: X -46. lize: X 97.6 pace: 0.375 civeness: 16 ity: 1 ing Vina grid ning docking 004) 0 20 30 0 100%	0 6.632 50.16 4.075 49.86 2.753 31.71 36.81 30.53 0399 Y -10.3 62 Y 68.058 done. (random seed 40 50 6	0 10.13 52.56 7.882 52.86 6.937 34.91 39.85 32.54 17 Z Z 110.435	1 2 3 3 4 4 5 6 6 7 7 8 8 9 9 withan Grid of 22.309 Grid s Exhaus CPU: 0 Verbos Comput Perfor 263159 0% 1 80 9	(kcal/mol)	rmsd 1.b.	rmsd u.b. 0 4 51.92 8.693 51.04 29.17 51.36 35.74 51.93 317 Z Z 110.435 d: 60 70
+- 1 2 3 4 5 6 7 8 9 withafe Grid ce 22.3091 Grid si Grid sy Exhaust CPU: 0 Verbosi Computi Perform 4894970 0% 10 80 90 -	-7.98 -7.801 -7.453 -7.3 -7.184 -7.089 -7.014 -6.854 -6.794 erin A.pdb enter: X -46. lize : X 97.6 pace : 0.375 civeness: 16 ity: 1 ing Vina grid ning docking 004) 0 20 30 0 100%	0 6.632 50.16 4.075 49.86 2.753 31.71 36.81 30.53 0399 Y -10.3 62 Y 68.058 done. (random seed 40 50 6	0 10.13 52.56 7.882 52.86 6.937 34.91 39.85 32.54 17 Z Z 110.435	1	(kcal/mol)	rmsd 1.b.	rmsd u.b. 0 4 51.92 8.693 51.04 29.17 51.36 35.74 51.93 317 Z Z 110.435

© IJPMN, Volume 12, Issue 3, December-2025

(An Official publication of Sarvasumana Association)

form extended hydrogen-bonding networks, although their flexibility and susceptibility to tautomerism may limit binding stability.

Biological Implications

Collectively, these results support the hypothesis that selected phytochemicals can bind effectively to EGFR and KRAS, potentially modulating the dysregulated signaling pathways that characterize pancreatic cancer. High-affinity binding, particularly by withanolides, suggests a dual-inhibitory mechanism capable of influencing both receptor-mediated signaling and downstream oncogenic activation.

It is important to acknowledge the limitations inherent to docking studies. Binding affinities are computational predictions and do not fully account for in vivo factors such as metabolism, cellular uptake, or bioavailability. Nonetheless, these findings provide a strong foundation for follow-up biochemical assays, molecular dynamics simulations, and eventual preclinical evaluation.

IV. CONCLUSION

Pancreatic cancer remains one of the most formidable challenges in oncology, marked by late progression, detection, rapid and limited responsiveness to existing therapies. As highlighted in this study, the complex molecular landscape of pancreatic cancer-with its dependence on dysregulated EGFR signaling and near-ubiquitous KRAS mutations—demands innovative strategies that can modulate multiple pathways simultaneously. The integration of computational docking approaches with naturally derived phytochemicals offers a promising entry point into such therapeutic exploration. This work sought to evaluate the potential of selected phytochemicals from Curcuma longa and Withania somnifera to interact with EGFR and KRAS proteins, two critical molecular drivers of pancreatic tumor initiation and maintenance. By utilizing receptor structures obtained directly from the European Bioinformatics Institute Protein Data Bank (EBI-PDB), the study ensured that all simulations were grounded in three-dimensional experimentally validated conformations. The decision to employ AutoDock and AutoDock Vina—recognized for their reliable functions and rapid optimization algorithms—enabled a systematic and reproducible evaluation of ligand-protein interactions [9, 10].

*****	*****	*****	*****
*****	****		
mode	affinity	dist from b	est mode
	(kcal/mol)	rmsd l.b.	rmsd u.b.
+-	+	+-	
1	-10.54	0	0
2	-10.32	1.857	3.137
3	-9.377	2.723	8.783
4	-9.255	49.58	52.28
5	-8.891	50.1	52.21
6	-8.872	31.27	35.31
7	-8.667	1.938	3.393
8	-8.628	31.9	36.62
9	-8.46	31.4	35.61

Interaction Patterns and Binding Modes

Detailed interaction analysis revealed notable patterns. In EGFR, ligands frequently interacted with residues in the ATP-binding cleft—especially Lys745, Met793, and Thr854—sites known to influence kinase activity [4]. Withaferin A formed strong hydrogen bonds and van der Waals interactions within this region, suggesting the potential to disrupt EGFR's catalytic cycle. Curcumin and its derivatives also fit into the ATP pocket, though their elongated planar structures resulted in variable orientation stability.

KRAS interactions were more complex due to its shallow and dynamic binding surfaces. Nonetheless, several phytochemicals successfully engaged the Switch I and Switch II regions, particularly near Asp30, Glu31, and Tyr71, which are critical to effector binding and GTP hydrolysis [5]. Withanolide A displayed a favorable binding pose that appeared to anchor into the Switch II groove, a region increasingly targeted in modern KRAS inhibitor design.

Comparative Analysis of Phytochemicals

Among all compounds tested, withaferin A consistently showed the strongest interactions with both EGFR and KRAS. Its rigid steroidal framework, combined with reactive functional groups, likely contributes to its superior binding characteristics. Withanolide A and withanone also revealed noteworthy dual-targeting potential, reinforcing the therapeutic relevance of *Withania somnifera* constituents in cancer research [8].

Curcuminoids ranked slightly lower but still demonstrated meaningful interactions consistent with documented anti-inflammatory and antitumor effects. Their polyphenolic structures allow them to

(An Official publication of Sarvasumana Association)

suited for diseases driven by multiple dysregulated pathways.

In conclusion, this study demonstrates that phytochemicals from *Curcuma longa* and *Withania somnifera* possess considerable potential as dual inhibitors of EGFR and KRAS. The strong predicted binding affinities and favorable interaction patterns observed through AutoDock Vina suggest meaningful therapeutic promise. Although further biochemical and pharmacological studies are necessary, the findings lay an important foundation for translational research aimed at developing plant-derived, multi-targeted agents for pancreatic cancer. By bridging computational drug discovery with natural product chemistry, this work contributes to a growing paradigm shift toward holistic, pathway-integrated approaches to cancer treatment.

References

- 1. Yuan, C., Duan, Z., & Xiao, Y. (2022). EGFR in pancreatic cancer: Mechanisms and therapeutic targeting. *Frontiers in Oncology*, *12*, 876543. https://doi.org/10.3389/fonc.2022.876543
- 2. Waters, A. M., & Der, C. J. (2021). KRAS as a critical driver of pancreatic cancer. *Cold Spring Harbor Perspectives in Medicine*, *11*(6), a037218.
- 3. Moore, M. J., Goldstein, D., Hamm, J., et al. (2007). Erlotinib plus gemcitabine for pancreatic cancer. *Journal of Clinical Oncology*, 25(15), 1960–1966.
- 4. Kalim, K. W., Sharma, A., & Kumar, R. (2023). EGFR mutations and their therapeutic relevance in solid tumors. *Journal of Oncology Research*, *16*(2), 55–68.
- 5. Ostrem, J. M., Peters, U., Sos, M. L., et al. (2013). K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions. *Nature*, *503*(7477), 548–551.
- 6. Burley, S. K., Bhikadiya, C., Bi, C., et al. (2022). RCSB Protein Data Bank: Celebrating 50 years of open access to PDB data. *Nucleic Acids Research*, *50*(D1), D458–D469.
- 7. Kunnumakkara, A. B., Bordoloi, D., Harsha, C., et al. (2017). Curcumin mediates anticancer effects by modulating multiple cell signaling pathways. *Critical Reviews in Biotechnology*, *37*(2), 1–22.
- 8. Vanden Berghe, W., Sabbe, L., Kaileh, M., et al. (2012). Molecular insight into the multifunctional activities of withaferin A. *Biochemical Pharmacology*, 84(10), 1282–1291.

The findings indicate that particularly phytochemicals, withaferin withanolide A, and withanone, demonstrate strong predicted affinity toward the ATP-binding pocket of EGFR and the Switch regions of KRAS. These interactions are noteworthy, as the EGFR catalytic cleft and KRAS effector interface are both recognized as high-value therapeutic targets [1, 5]. By forming stable hydrogen bonds, hydrophobic contacts, and other noncovalent interactions, the withanolides exhibited binding energies suggestive of biologically meaningful inhibition. Their dualtargeting potential is especially important in pancreatic cancer, where EGFR inhibition alone often fails due to persistent KRAS activation. Identifying compounds capable of modulating both pathways therefore represents a particularly compelling avenue for future drug development.

Curcuminoids, though slightly less potent in docking scores, also revealed notable interactions with both receptors. Curcumin and its derivatives have long been studied for their anti-inflammatory and anticancer properties, and the present results reinforce their relevance in modulating kinase activity and GTPase-driven signaling events (Kunnumakkara et al., 2017). Their structural versatility, polyphenolic functional groups, and established safety profiles further support their potential as complementary therapeutic candidates. While docking studies are inherently predictive and

established safety profiles further support their potential as complementary therapeutic candidates. While docking studies are inherently predictive and cannot fully replicate the complexity of biological systems, they offer an invaluable foundation for prioritizing compounds for experimental validation. The docking results generated in this study provide a clear framework for subsequent in vitro and in vivo studies, including kinase inhibition assays, cell viability studies, molecular dynamics simulations, and eventually, animal models of pancreatic cancer. The ability of withanolides to interact robustly with both EGFR and KRAS highlights a particularly promising direction for future combination therapies or multifunctional drug design.

Additionally, this research underscores therapeutic relevance of integrating traditional medicinal knowledge—particularly Ayurvedic phytochemistry—with modern computational tools. screening Natural compounds historically served as the basis for many successful cancer therapeutics, and the growing interest in polypharmacology makes phytochemicals uniquely

© IJPMN, Volume 12, Issue 3, December-2025

International Journal Of Public Mental Health And Neurosciences

ISSN: 2394-4668

(An Official publication of Sarvasumana Association)

9.Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking. *Journal of Computational Chemistry*, 31(2), 455–461.

10. Morris, G. M., Huey, R., Lindstrom, W., et al. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor

flexibility. *Journal of Computational Chemistry*, 30(16), 2785–2791.

11. O'Boyle, N. M., Banck, M., James, C. A., et al. (2011). Open Babel: An open chemical toolbox. *Journal of Cheminformatics*, *3*(1), 33. https://doi.org/10.1186/1758-2946-3-33