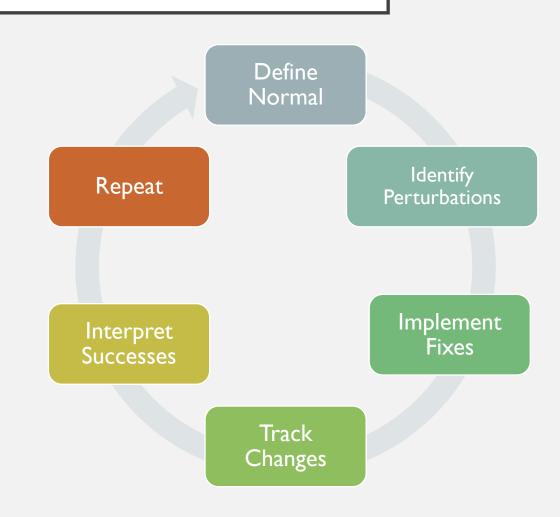
ROBINSON POND MID SEASON UPDATE

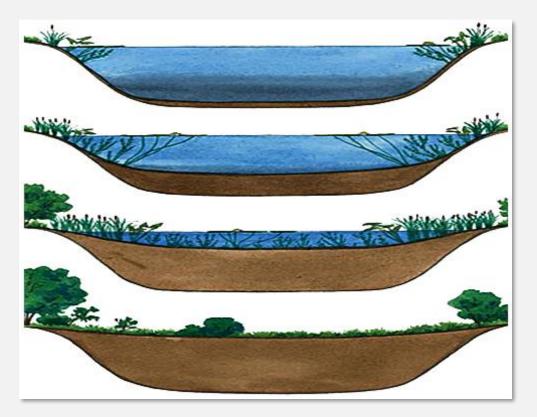
Alejandro Reyes

Aquatic Ecologist and Certified Lake Manager

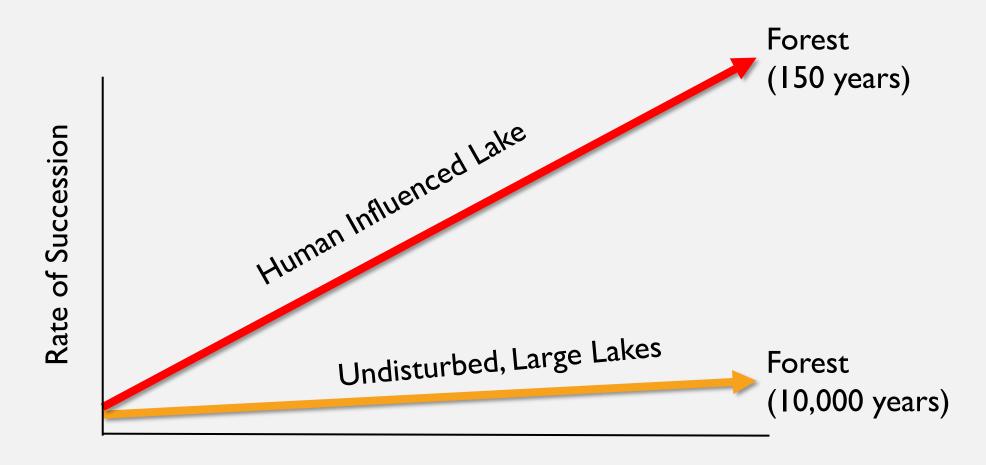
Northeast Aquatic Research


OUTLINE

- Lake Ecology Primer
- Problem Plants and Recommendations
- Circulation Observations
- Watershed and the Roe-Jan
- 2021 Report components


LAKE SCIENCE (LIMNOLOGY) VS. LAKE MANAGEMENT

- Lakes are large complicated ecological systems, many variables
- Monitoring defines what is "normal"
- Lake management = manipulating nature to suit human uses
 - Requires scientific data, can get messy, expensive
 - As long as humans and lakes coexist, there will need to be ongoing management



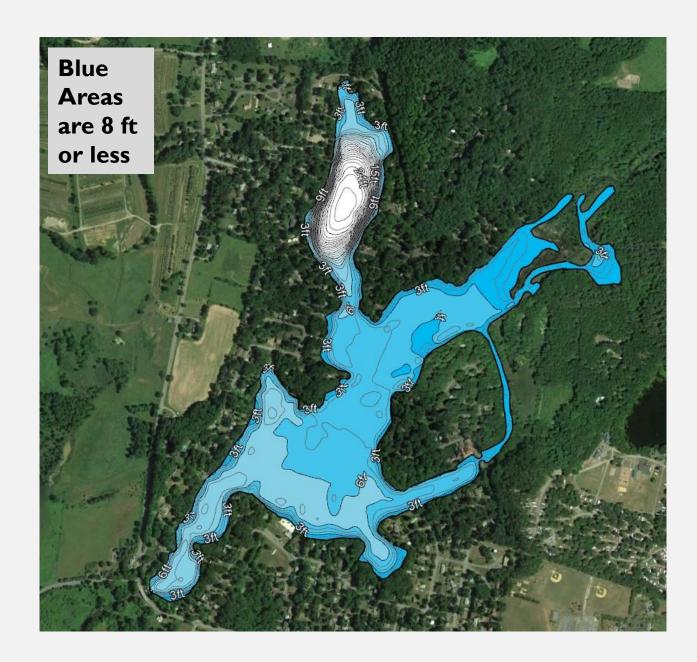
LIMNOLOGY AND ONTOLOGY

• All lakes are on a trajectory of increasing production that began with the last glacier and will end with a forest

Humans have inadvertently greatly accelerated the rate of "filling in".

Think of this progression as a train ride

You can stand in front of the train and wave you hands with Alum, aeration, herbicides, 9point plans, harvesting, dredging — what ever - its not going to stop the train, let alone make it reverse, however, it may, if done correctly, slow it down for a time.


WHAT WE TRY TO ACHIEVE WITH LAKE MANAGEMENT

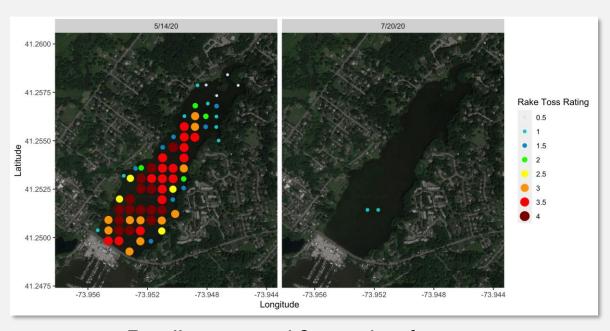
- Slowing down the train is the long term goal
 - Limiting production in lakes via limiting the amount of phosphorus, nitrogen, sediments and organic material that enter and cycle in the system.
- As the train speeds up, the ride becomes increasingly uncomfortable for its patrons
 - Decreased lake depths, reduced clarity, increased incidence of harmful algae blooms, increased aquatic plant growth.
- Needs to be a combination of short term remedies to keep desired uses in tact and long term management to slow the rate of succession.

ROBINSON POND

- 115 Acres
- Manmade reservoir
 - Dendritic shoreline
- Extremely shallow
 - Most of the lake is less than 8 feet.
- Bays are different in terms of local land use and depth.
- Low water retention time (high flow through).

PROBLEM PLANT: EURASIAN WATERMILFOIL

- One of the most ubiquitous invasive species in New York
- Adapted to shoot straight to the surface, and branch out horizontally
- Spreads via fragmentation, only need a few inches of stem to recolonize.
- Distributed throughout the pond, with late season growth reaching the surface



PLANT CONTROL OPTIONS

EURASIAN WATERMILFOIL

- Integration of multiple strategies for best control
- Use harvester to continue to manage boating access.
 - Winter: examine harvesting practices/efficiency
- Use of EPA registered herbicides for lakewide control
 - Specific treatment areas to follow this winter
 - ProcellaCOR would be first recommendation.
 - ProcellaCOR has had an excellent track record for milfoil control

Excellent control 2 months after treatment with ProcellaCOR

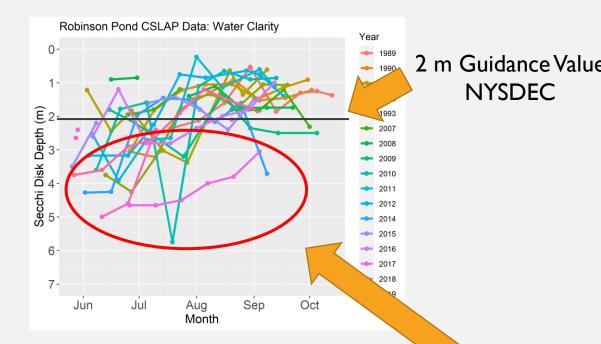
PROBLEM PLANT: DUCKWEED/WATERMEAL

- Native, but often a nuisance
- Watermeal is the smallest vascular plant in the world!
- Used as a remediation tool in wastewater
- Thrives in high nitrogen environments
- Very difficult to control

PLANT CONTROL RECOMMENDATIONS

DUCKWEED/WATERMEAL

- Evaluate effectiveness of skimmer
 - How much can it remove and for how long?
 - Drawbacks?
- EPA registered herbicides for short term control
 - Flumioxazin after milfoil treatment
 - Longevity of control unknown due to treatment complications
 - Long term control requires management of nutrients



CONSIDERATIONS FOR PLANT CONTROL

- Understanding nature of Robinson Pond
 - Shallow, impacted lake
 - Plants will grow!
 - Diverse shoreline plays a role.
 - Need a balance, lakes with no plants can have other, more severe issues.
 - Clear vs turbid state

High plant coverage, excellent clarity

Excellent clarity on multiple occasions, related to plant coverage?

NYSDEC

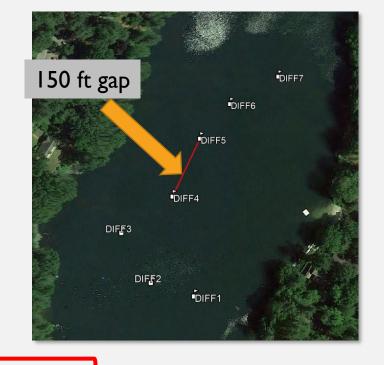
Plants eradicated, shift to algae-dominated system

CIRCULATION SYSTEM

Depth

bottom

9.4


8.8

- Circulation system in northern, deep arm.
- Purpose is unclear
- Does not effectively mix water column consistently throughout summer
 - Most likely due to diffuser spacing

Greater than 3 °C difference top to bottom

Temperature Profiles 2021

<u>4/27/21</u>	<u>5/26/21</u>	<u>6/29/21</u>	<u>7/20/21</u>	<u>8/31/2021</u>
13.9	21.1	29.5	24.8	25.0
13.1	20.3	27.1	22.4	24.6
12.4	19.7	26.3	21.8	24.3
12	18.8	25.8	21.3	24.2
11.8	17.3	25.3	20.9	24.1
11.4	16	24.6	20.2	24.1
10.4	14.4	24.1	19.7	24.0

22.9

21.4

11.6

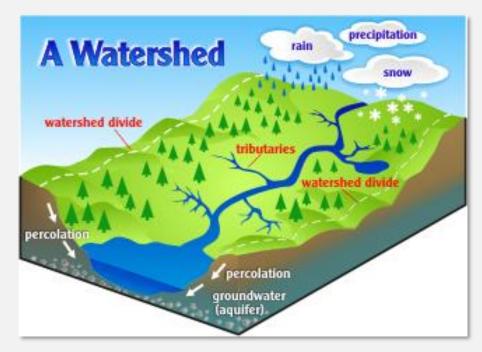
10.6

19.2

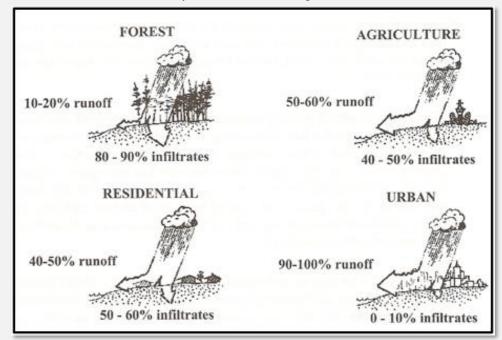
18.6

23.8

23.2


LAKES REFLECT THEIR WATERSHEDS

- Watershed: All of the area that drains to a particular waterbody.
- Lakes get their water from the surrounding land.
- Land use greatly affects the quality of this water.
 - Forested watersheds usually have low export of nutrients
 - Urban and Agricultural watersheds have high export of nutrients


Increase in Watershed Development

Decrease in Quality Water Entering Lake

Source: https://www.delcocd.org/watersheds/

ROBINSON POND WATERSHED

- Extremely large watershed relative to lake
 - It would take ~190 Robinson pond sized areas to fill the entire watershed!

Watershed Characteristics				
Watershed Size	21632 Acres			
Lake to Watershed Size Ratio	188:1			
% of Agriculture in Watershed	31			
% of Forest in Watershed	56			

ROELIFF-JANSEN KILL

- Source stream for Robinson Pond.
- Accounts for over 95% of the total watershed draining to Robinson Pond.
- High Phosphorus and Nitrogen on multiple occasions.

Station	Sampling Date	TP (ug/l)	TN (ug/l)
Twin Bridges Road	4/27/21	22.1	1117
Twin Bridges Road	5/26/21	20.4	<u>1178</u>
Twin Bridges Road	6/29/21	47.3	<u>1618</u>

April 27th, 2021

July 20th, 2021

Roeliff-Jansen Kill nutrient inputs need to be managed

2021 REPORT COMPONENTS

- Compile and analyze all data collected during 2021 season
 - As of now, we only have early July nutrient data
- Examination of past and current management practices
- Short and long term water quality recommendations
 - Both in-lake and watershed
- Strategies for individual homeowner lake smart living
- Timeline of proposed activities and future monitoring
- Funding opportunities

QUESTIONS?