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STRUCTURAL EQUATIONS, TREATMENT EFFECTS, AND 
ECONOMETRIC POLICY EVALUATION' 

BY JAMES J. HECKMAN AND EDWARD VYTLACIL 

This paper uses the marginal treatment effect (MTE) to unify the nonparametric 
literature on treatment effects with the econometric literature on structural estimation 
using a nonparametric analog of a policy invariant parameter; to generate a variety of 
treatment effects from a common semiparametric functional form; to organize the lit- 
erature on alternative estimators; and to explore what policy questions commonly used 
estimators in the treatment effect literature answer. A fundamental asymmetry intrinsic 
to the method of instrumental variables (IV) is noted. Recent advances in IV estima- 
tion allow for heterogeneity in responses but not in choices, and the method breaks 
down when both choice and response equations are heterogeneous in a general way. 

KEYWORDS: Instrumental variables, selection models, program evaluation. 

EVALUATING THE IMPACTS OF PUBLIC POLICIES, forecasting their effects in new 
environments, and predicting the effects of policies never tried are three cen- 
tral tasks of economics. The structural approach and the treatment effect ap- 
proach are two competing paradigms of policy evaluation. 

The structural approach emphasizes clearly articulated economic models 
that can be used to accomplish all three tasks under the exogeneity and 
parameter policy invariance assumptions presented in that literature (see 
Hansen and Sargent (1981), Hendry (1995)). Economic theory is used to guide 
the construction of models and to suggest included and excluded variables. 
The functional form and exogeneity assumptions invoked in this literature 
are sometimes controversial (see, e.g., Angrist and Krueger (1999)) and the 
sources of identification of parameters of these models are often not clearly 
articulated. 

1This paper was presented by Heckman as the Fisher-Schultz Lecture at the Eighth World 
Meetings of the Econometric Society, Seattle, Washington, August 13, 2000. Because of its co- 
authorship, this lecture was subject to the usual refereeing practices of Econometrica and has been 
through two rounds of reviews. This paper was also presented at the seminar on Applied Price 
Theory at the Graduate School of Business, University of Chicago in October 2000, at a seminar 
at Uppsala University in December 2000, at Harvard University in April 2001, and at the Mon- 
treal Econometrics Seminar in September 2003. We thank Jaap Abbring, Richard Blundell, and 
two anonymous referees for helpful comments on the first round reports. We benefited from the 
close reading by Ricardo Avelino, Jean-Marc Robin, Sergio Urzua, and Weerachart Kilenthong 
on the second draft. We have benefited from a close reading by Jora Stixrud and Sergio Urzua on 
the third draft. We have also benefited from comments by an anonymous referee on the second 
draft of this paper. Sergio Urzua provided valuable research assistance in programming the simu- 
lations reported in this paper and was assisted by Hanna Lee. Urzua made valuable contributions 
to our understanding of the random coefficient case and cases with negative weights, and made 
numerous valuable comments on this draft, as did Weerachart Kilenthong. See our companion 
paper (Heckman, Urzua, and Vytlacil (2004)), where these topics are developed further. This 
research was supported by NSF 97-09-873, NSF 00-99195, NSF SES-0241858, and NICHD-40- 
403-000-85-261, and the American Bar Foundation. 
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The treatment effect literature as currently developed focuses on the first 
task-evaluating the impact of a policy in place-in the special case where 
there is a "treatment group" and a "comparison group," i.e., a group of 
nonparticipants. In the language of that literature, "internal validity" is the 
primary goal and issues of forecasting out of sample or of evaluating new poli- 
cies receive little attention.2 Because of its more limited goals, fewer explicit 
functional form and exogeneity assumptions are invoked. The literature on 
treatment effects has given rise to a new language of economic policy analysis 
where the link to economic theory is often obscure and the economic policy 
questions being addressed are not always clearly stated. Different instruments 
answer different economic questions that typically are not clearly stated. Rela- 
tionships among the policy parameters implicitly defined by alternative choices 
of instruments are not articulated. 

This paper unites the two approaches to policy evaluation using the mar- 
ginal treatment effect (MTE) under the assumption that analysts have access to 
treatment and comparison groups. The MTE is the mean response of persons 
to treatment at a margin that is precisely defined in this paper. It is a willing- 
ness to pay measure when outcomes are values under alternative treatment 
regimes. 

Under the conditions specified in this paper, the MTE can be used to con- 
struct and compare alternative conventional treatment effects, a new class of 
policy relevant treatment effects, and the probability limits produced from in- 
strumental variable estimators and matching estimators. Using the MTE, this 
paper unites the selection (control function) approach, defined in a nonpara- 
metric setting, with the recent literature on instrumental variables. 

A major focus in the recent microeconomic policy evaluation literature, 
and a major theme of this paper, is on constructing and estimating models 
with heterogeneity in responses to treatment among otherwise observationally 
identical people. This literature emphasizes that responses to treatment vary 
among observationally identical people and, crucially, that agents select (or 
are selected) into treatment at least in part based on their own idiosyncratic 
response to it. This emphasis is in marked contrast to the emphasis in the con- 
ventional representative-agent macro-time-series literature that ignores such 
heterogeneity despite ample microeconometric evidence on it.3 

Entire classes of econometric evaluation estimators can be organized by 
whether or not they allow for the possibility of selection based on unobserved 
components of heterogeneous responses to treatment. In the presence of such 
heterogeneity, a variety of different mean treatment effects can be defined for 

2Internal validity means that a treatment parameter defined in a specified environment is free 
of selection bias. It is defined more precisely below. 

3Heckman (2001) summarizes the evidence on heterogeneity in responses to treatment on 
which agents select into treatment. 
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different instruments and conditioning sets. In the absence of such heterogene- 
ity, these different treatment effects collapse to the same parameter.4 

The dependence of estimated treatment parameters on instruments is an 
important and not widely understood feature of models with heterogeneous 
responses on which people act.5 Instrument-dependent parameters arise in 
this class of models, something excluded by assumption in conventional struc- 
tural econometric models that emphasize the estimation of invariant para- 
meters. Two economists analyzing the same dataset but using different valid 
instruments will estimate different parameters that have different economic 
interpretations. Even more remarkably, two economists using the same instru- 
ment but with different notions about what variables belong in choice equa- 
tions will interpret the output of an instrumental variable analysis differently. 
Intuitions about "identifying strategies" acquired from analyzing conventional 
models where responses to treatment do not vary among persons are not valid 
in the more general setting analyzed in this paper. The choice of an instru- 
ment defines the treatment parameter being estimated. The relevant question 
regarding the choice of instrumental variables in the general class of models 
studied in this paper is "What parameter is being identified by the instrument?" 
rather than the traditional question of "What is the efficient combination of 
instruments for a fixed parameter?"-the question that has traditionally occu- 
pied the attention of econometricians who study instrumental variables (IV). 
Even in the presence of least squares bias, and even assuming large samples, 
IV based on classical assumptions may be more biased for a given policy pa- 
rameter than ordinary least squares (OLS). The cure may be worse than the 
disease. 

We extend the method of instrumental variables to estimate economically 
interpretable parameters in models with heterogeneous treatment outcomes. 
We note a fundamental asymmetry intrinsic to the method of instrumental 
variables. Treatment outcomes can be heterogeneous in a general way that we 
make precise in this paper. Choice equations cannot be heterogeneous in the 
same general way. When choices and treatment outcomes are analyzed sym- 
metrically, the method of instrumental variables and our extension of it breaks 
down, and more explicit structural approaches are necessary to solve policy 
evaluation problems. 

The plan of this paper is as follows. Section 1 presents a prototypical mi- 
croeconometric structural model as a benchmark to define and motivate the 
various treatment parameters used in the literature and to compare and con- 
trast structural estimation approaches with those used in the literature on 
treatment effects. We then define our general model and assumptions in Sec- 
tion 2. Our model extends the treatment effect literature by introducing choice 

4See Heckman (1997), Heckman and Robb (1985, 1986 (reprinted 2000)), and Heckman and 
Vytlacil (1999). 

5This dependence was first noted by Heckman and Robb (1985, p. 196). See also Angrist, 
Graddy, and Imbens (2000). 
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theory into it and by using a weaker set of assumptions than those used in 
the structural literature to define and identify the marginal treatment effect. 
This section shows how the MTE can be used to generate and unify the var- 
ious treatment parameters advocated in the recent literature and provides an 
economic foundation for the treatment effect literature. We derive a set of 
testable restrictions implied by our model, and we apply the general analysis to 
the special case of a parametric generalized Roy model. 

The conventional treatment parameters do not, in general, answer questions 
of economic or policy interest. Section 3 shows how to use the MTE to define 
policy relevant parameters that answer well-posed economic questions. Eval- 
uation of different policies requires different weights for the MTE. The MTE 
plays the role of a policy invariant structural parameter in conventional econo- 
metrics for a class of policy interventions defined in this paper.6 

Section 4 organizes entire classes of econometric estimators on the basis of 
what they assume about the role of unobservables in the MTE function, con- 
ditional on X. Our analysis shows that traditional instrumental variables pro- 
cedures require that the marginal treatment effect is the same for all persons 
of given X characteristics. When the marginal treatment effect varies over in- 
dividuals with the same X, we show how the instrumental variables estimand 
(the probability limit of the instrumental variables estimator) can be written 
as a weighted average of MTE, where our general expressions nest previous 
results in the literature as special cases. The interpretation of the IV estimand 
depends not only on the choice of instrument used, but also on what other vari- 
ables are included in the choice model even if they are not used as instruments. 
We show that it is not always possible to pick an instrument that answers a par- 
ticular policy problem of interest, and we show that not all instruments answer 
well defined policy questions. We present necessary and sufficient conditions 
to construct an instrument to produce a particular policy counterfactual, and 
show how to construct the instrument when the conditions are satisfied. We de- 
velop necessary and sufficient conditions for a particular instrument to answer 
some well defined policy question, and show how to construct the policy coun- 
terfactual when the conditions are satisfied. We focus on instrumental variables 
in this paper, but also consider matching and ordinary least squares as special 
cases of our general model for IV. 

Section 5 returns to the policy evaluation problem. The treatment effect 
literature can be used to answer certain narrowly focused questions under 
weaker assumptions than are required to recover conventional structural 
parameters that answer a broad range of questions. When we attempt to 
address the broader set of questions entertained in the structural econo- 
metrics literature, additional conditions are required to extrapolate existing 
policies to new environments and to provide accurate forecasts of new policies 

6Hendry (1995) discusses the role of policy invariant parameters in macro-forecasting and 
policy evaluation. 



ECONOMETRIC POLICY EVALUATION 673 

never previously experienced. The weaker identifying assumptions invoked in 
the treatment effect literature are possible because of the narrower set of 
questions addressed by that literature. In the language of the treatment effect 
literature, internal validity (absence of selection bias) does not imply external 
validity (the ability to generalize). When the same policy forecasting ques- 
tions addressed by the structural literature are asked of the treatment effect 
literature, the assumption sets used in the two literatures look very similar, 
especially for nonparametric versions of structural models. External validity 
requires stronger conditions. 

Section 6 discusses the fundamental role played by the assumed absence of 
general forms of heterogeneity in choice equations invoked in the recent liter- 
ature under the rubric of "monotonicity" assumptions. When both choices and 
treatment outcomes are modeled symmetrically, the method of instrumental 
variables breaks down, and a different approach to policy analysis is required. 
Section 7 concludes. 

1. A LATENT VARIABLE FRAMEWORK 

The treatment effect literature investigates a class of policies that have 
partial participation at a point in time so there is a "treatment" group and a 
"comparison" group. It is not helpful in evaluating policies that have universal 
participation. In contrast, the structural econometrics literature can evaluate 
policies with universal participation by using functional form and support con- 
ditions to substitute for lack of a comparison group (see Heckman and Vytlacil 
(2005)). Throughout this paper we follow the conventional practice in the lit- 
erature and ignore general equilibrium effects.7 

To link our discussion to the literature on structural econometrics, it is fruit- 
ful to compare how the two different approaches analyze a generalized Roy 
model for two potential outcomes (Yo, Y1). This model is widely used in ap- 
plied econometrics (see Amemiya (1985), Heckman (2001)). 

Write potential outcomes (Yo, Y1) for conditioning variables X as 

(la) Yo = to(X) + Uo 

and 

(lb) Yi = A,(X) + Uj, 

where Y1 is the outcome if treated and Yo is the outcome if not treated.8 In 
a model of educational attainment, Y1 is the present value of college earn- 

7See, however, the studies by Heckman, Lochner, and Taber (1998), who demonstrate the 
empirical importance of investigating general equilibrium effects in the context of evaluating the 
returns to schooling. 

8Throughout this paper, we denote random variables/random vectors by capital letters and 
potential realizations by the corresponding lowercase letter. For example, X denotes the random 
vector and x denotes a potential realization of the random vector X. 
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ings and Yo is the present value of earnings in the benchmark no-treatment 
state (e.g., high school). Let D = 1 denote receipt of treatment so that Y1 is 
observed, while D = 0 denotes that treatment was not received so that Yo is 
observed. In the educational attainment example, D = 1 if the individual se- 
lects into college; D = 0 otherwise. The observed outcome Y is given by 

(1c) Y = DY, + (1 - D)Yo. 

Let 

(id) C = tpc(Z) + Uc 

denote the cost of receiving treatment. Net utility is D* = Y, - YO - C and 
the agent selects into treatment if the net utility from doing so is positive, 
D = 1[D* > 0]. 

The original Roy (1951) model is a special case of this framework when 
there are zero costs of treatment, luc(Z) = 0 and Uc = 0. The generalized 
Roy model allows for costs of treatment, both driven by observable deter- 
minants of the cost of treatment, Z, and unobservable determinants of the 
cost of treatment, Uc. For example, in the educational attainment example, 
tuition and family income operate through direct costs btc(Z) to determine 
college attendance, while Uc might include disutility from studying. The model 
can be generalized to incorporate uncertainty about the benefits and costs 
of treatment and to allow for more general decision rules. Let I denote the 
information set available to the agent at the time when the agent is decid- 
ing whether to select into treatment. If, for example, the agent selects into 
treatment when the expected benefit exceeds the expected cost, then the in- 
dex is D* = E(YI - Yo - C1I). The decision to participate is based on I and 
D = 1I[D* > 0], where D* is a random variable measurable with respect to 1.9 

Conventional approaches used in the structural econometrics literature 
assume that (X, Z) iL (Uo, U1, Uc), where iL denotes independence. In 
addition, they adopt parametric assumptions about the distributions of the 
error terms and functional forms of the estimating equations, and identify the 
full model that can then be used to construct a variety of policy counterfactu- 
als. The most commonly used specification of this model writes Ato(X) = X3o, 
pI(X) = X38, I1c(Z) = Z/3c and assumes (Uo, U1, Uc) - N(0, ). This is the 
normal selection model (Heckman (1976)). 

The parametric normal framework can be used to answer all three policy 
evaluation questions. First, it can be used to evaluate existing policies by ask- 
ing how policy-induced changes in X or Z affect (Y, D). Second, it can be used 
to extrapolate old policies to new environments by computing outcomes for the 
values of X, Z that characterize the new environment. Linearity and distribu- 
tional assumptions make extrapolation straightforward. Third, this framework 

9See Cunha, Heckman, and Navarro (2005) for a version of this model. 
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can be used to evaluate new policies if they can be expressed as some known 
functions of (X, Z). For example, consider the effect of charging tuition in an 
environment where tuition has never before been charged. If tuition can be put 
on the same footing as (made comparable with) another measure of cost that 
is measured and varies, or with returns that can be measured and vary, then we 
can use the estimated response to the variation in observed costs or returns to 
estimate the response to the new tuition policy.10 

This paper relaxes the functional form and distributional assumptions used 
in the structural literature and still identifies an economically interpretable 
model that can be used for policy analysis. Recent semiparametric approaches 
relax both distributional and functional form assumptions of selection mod- 
els, but typically assume exogeneity of X (see, e.g., Powell (1994)) and do not 
estimate treatment effects except through limit arguments (Heckman (1990), 
Andrews and Schafgans (1998)).11 The treatment effect literature seeks to by- 
pass the ad hoc assumptions used in the structural literature and estimate 
treatment effects under weaker conditions. The goal of this literature is to 
examine the effects of policies in place (i.e., to produce internally valid estima- 
tors) rather than to forecast new policies or old policies on new populations. 

2. TREATMENT EFFECTS 

We now present the model of treatment effects developed in Heckman and 
Vytlacil (1999, 2001a), which relaxes most of the controversial assumptions 
discussed in Section 1. It is a nonparametric selection model with testable 
restrictions that can be used to unify the treatment effect literature, iden- 
tify different treatment effects, link the literature on treatment effects to 
the literature in structural econometrics, and interpret the implicit economic 
assumptions underlying instrumental variables and matching methods. We fol- 
low Heckman and Vytlacil (1999, 2001a) in considering binary treatments. 
Heckman and Vytlacil (2005) and Heckman, Urzua, and Vytlacil (2004) extend 
this analysis to the case of a discrete, multivalued treatment, for both ordered 
and unordered models, while Florens, Heckman, Meghir, and Vytlacil (2004) 
develop a related model with a continuum of treatments. 

We use the general framework of Section 1, Equations (la)-(ld), and de- 
fine Y as the measured outcome variable. We do not impose any assumption 
on the support of the distribution of Y. We use the more general nonlinear 

10For example, in a present value income maximizing model of schooling, costs and returns are 
on the same footing, so knowledge of how schooling responds to returns is enough to determine 
how schooling responds to costs. See Section 5.1. 

'1A large part of the literature is concerned with estimation of slope coefficients (e.g., Ahn and 
Powell (1993)) and not the counterfactuals needed for policy analysis. Heckman (1990) develops 
the more demanding conditions required to identify policy counterfactuals. 
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and nonseparable outcome model 

(2a) Y = A, (X, UI), 

(2b) Yo = 
0to(X, 

Uo). 

Examples include conventional latent variable models: Y, = 1 if Yi* = 1i(X) + 
Ui > 0 and Y, = 0 otherwise; i = 0, 1. Notice that in the general case, 
LPi(X, U,) -E(Y IX) : U,, i = 0, 1, so even if the /, are structural, the E(YIX) 
are not.12 

The individual treatment effect associated with moving an otherwise iden- 
tical person from 0 to 1 is Y1 - Yo = A and is defined as the effect on Y of a 
ceteris paribus move from 0 to 1. These ceteris paribus effects are called causal 
effects. To link this framework to the literature on structural econometrics, we 
characterize the decision rule for program participation by an index model 

(3) D* = AD(Z) - UD, D = 1 if D*>0, D = 0 otherwise, 

where (Z, X) is observed and (U1, Uo, UD) is unobserved. The random vari- 
able UD may be a function of (Uo, UI). For example, in the Roy model, 
UD = U1 - Uo, and in the generalized Roy model, UD = U, - Uo - Uc. Without 
loss of generality, Z includes all of the elements of X. However, our analysis 
requires that Z contain at least one element not in X. The following assump- 
tions are weaker than those used in the conventional literature on structural 
econometrics or the recent literature on semiparametric selection models and 
at the same time can be used both to define and to identify different treatment 
parameters.13 The assumptions are the following: 

(A-1) The term AD(Z) is a nondegenerate random variable conditional 
on X. 

(A-2) The random vectors (U,, UD) and (Uo, UD) are independent of Z 
conditional on X. 

(A-3) The distribution of UD is absolutely continuous with respect to 
Lebesgue measure. 

(A-4) The values of Ej Y1 I and El Yoj are finite. 
(A-5) 1 > Pr(D = 1IX) > 0. 

Assumptions (A-1) and (A-2) are "instrumental variable" assumptions that 
there is at least one variable that determines participation in the program that 
is not in X and that is independent of potential outcomes (Yo, YI) given X. 
These are the assumptions used in the natural and social experiment liter- 
atures where randomization or pseudorandomization generates instruments. 

12See Heckman and Vytlacil (2005) for alternative definitions of structure. 
13As noted in Section 2.1 and Heckman and Vytlacil (2001a), a much weaker set of conditions 

is required to define the parameters than is required to identify them. As noted in Section 5, 
stronger conditions are required for policy forecasting. 
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Assumption (A-2) also assumes that UD is independent of Z given X and 
is used below to generate counterfactuals. Assumption (A-3) is a technical 
assumption made primarily for expositional convenience. Assumption (A-4) 
guarantees that the conventional treatment parameters are well defined. As- 
sumption (A-5) is the assumption in the population of both a treatment and 
a control group for each X. Observe that there are no exogeneity require- 
ments for X. This is in contrast to the assumptions commonly made in the 
conventional structural literature and the semiparametric selection literature 
(see, e.g., Powell (1994)). A counterfactual "no feedback" condition facilitates 
interpretability so that conditioning on X does not mask the effects of D. Let- 
ting Xd denote a value of X if D is set to d, leads to a sufficient condition that 
rules out feedback from D to X: 

(A-6) X1 = Xo almost everywhere. 

Condition (A-6) is not strictly required to formulate an evaluation model, but 
it enables an analyst who conditions on X to capture the "total" or "full effect" 
of D on Y (see Pearl (2000)). This assumption imposes the requirement that 
X is an external variable determined outside the model and is not affected by 
counterfactual manipulations of D. However, the assumption allows for X to 
be freely correlated with U1, U0, and UD so it can be endogenous in this sense. 
In this paper, we examine treatment effects conditional on X and we maintain 
assumption (A-6). 

Define P(Z) as the probability of receiving treatment given Z: P(Z) 
Pr(D = 11Z) = FUDIX( D(Z)D), where FuD,x(-) denotes the distribution of UD 

conditional on X.14 We often denote P(Z) by P, suppressing the Z argument. 
As a normalization, we impose UD ~ Unif[0, 1] and AD(Z) = P(Z). This nor- 
malization is innocuous given our assumptions, because if the latent variable 
generating choices is D* = v(Z) - V, where V is a general continuous random 
variable, we can apply a probability transform to reparameterize the model so 
that ,AD(Z) = Fvx(v(Z)) and UD = FVIX().15 

Vytlacil (2002) establishes that assumptions (A-1)-(A-5) for selection model 
(2a), (2b), and (3) are equivalent to the assumptions used to generate the lo- 
cal average treatment effects (LATE) model of Imbens and Angrist (1994). 
Thus the nonparametric selection model for treatment effects developed in 

14Throughout this paper, we will refer to the cumulative distribution function of a random vec- 
tor A by FA (.) and to the cumulative distribution function of a random vector A conditional on 
random vector B by FAIB('). We will write the cumulative distribution function of A conditional 
on B = b by FAIB(-lb). 

15This representation is valid whether or not (A-2) is true. However, (A-2) imposes restrictions 
on counterfactual choices. For example, if a change in government policy changes the distribution 
of Z by an external manipulation, under (A-2) the model can be used to generate the choice 
probability from P(z) evaluated at the new arguments, i.e., the model is invariant with respect to 
the distribution Z. 
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this paper is equivalent to an influential instrumental variable model for treat- 
ment effects. Our latent variable model satisfies their assumptions and their 
assumptions generate our latent variable model. Our latent variable model is 
a version of the standard sample selection bias model. 

Our model and assumptions (A-1)-(A-5) impose two testable restrictions on 
the distribution of (Y, D, Z, X). First it imposes an index sufficiency restric- 
tion: for any measurable set A and for j = 0, 1, 

Pr(Yj E AIX, Z, D = j) = Pr(Yj EAIX, P(Z), D = j). 

This restriction has empirical content when Z contains two or more variables 
not in X. Second, the model also imposes a testable monotonicity restriction 
in P = p for E(YDIX = x, P = p) and E(Y(1 - D)IX = x, P = p) which we 
develop in Appendix A. 

Even though the model of treatment effects developed in this paper is not 
the most general possible model, it has testable implications and hence empiri- 
cal content. It unites various literatures and produces a nonparametric version 
of the widely used selection model, and links the treatment literature to eco- 
nomic choice theory. 

2.1. Definitions of Treatment Effects 
The difficulty of observing the same individual in both treated and un- 

treated states leads to the use of various population level treatment effects 
widely used in the biostatistics literature and applied in economics.16 The most 
commonly invoked treatment effect is the average treatment effect (ATE) 
YATE(x) 

- 
E(AIX = x), where A = Yj - Yo. This is the effect of assigning 

treatment randomly to everyone of type X, assuming full compliance, and 
ignoring general equilibrium effects. The average impact of treatment on 
persons who actually take the treatment is treatment on the treated (TT): 
Ar(x) 

- 
E(AIX = x, D = 1). This parameter can also be defined conditional 

on P(Z): AT(x, p) = E(AIX = x, P(Z) = p, D = 1).17 
The mean effect of treatment on those for whom X = x and UD = UD, the 

marginal treatment effect, plays a fundamental role in our analysis: 

(4) AMTE(x, UD) = E(AIX = x, UD = UD). 

The MTE is the expected effect of treatment conditional on observed charac- 
teristics X and conditional on UD, the unobservables froni the first stage deci- 
sion rule. For uD evaluation points close to zero, AMTE(X, UD) is the expected 

16Heckman, LaLonde, and Smith (1999) discussed panel data cases where it is possible to 
observe both Yo and Y1 for the same person. 

'7These two definitions of treatment on the treated are related by integrating out the corldi- 
tioning p variable: Art(x) = foI AT(x, p) dF(z)IX,D(pix, 1), where FP(Z)IX,D(.IX, 1) is the distri- 
bution of P(Z) given X = x and D = 1. 
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effect of treatment on individuals with the value of unobservables that make 
them most likely to participate in treatment and who would participate even if 
the mean scale utility AD(Z) were small. If UD is large, AtD(Z) would have to 
be large to induce people to participate. 

One can also interpret E(AIX = x, UD = UD) as the mean gain in terms of 
Y, - Yo for persons with observed characteristics X who would be indifferent 
between treatment or not if they were exogenously assigned a value of Z, say z, 
such that ALD(Z) = Ud. When Y1 and Yo are value outcomes, MTE is a mean 
willingness to pay measure. The MTE is a choice-theoretic building block that 
unites the treatment effect, selection, and matching literatures. 

A third interpretation is that MTE conditions on X and the residual de- 
fined by subtracting the expectation of D* from D*: UD = D* - E(D*IZ, X). 
These three interpretations are equivalent under separability in D*, i.e., when 
(3) characterizes the choice equation, but lead to three different definitions 
of MTE when a more general nonseparable model is developed. This point is 
developed further in Section 6. 

The LATE parameter of Imbens and Angrist (1994) is a version of MTE. 
Define D, as a counterfactual choice variable with Dz = 1 if D would have been 
chosen if Z had been set to z and with Dz = 0 otherwise. Let Z(x) denote the 
support of the distribution of Z conditional on X = x. For any (z, z') e Z(x) x 
Z(x) such that P(z) > P(z'), LATE is E(AIX = x, Dz = 1, Dz, = 0) = E(Y1 - 

YoIX = x, D, = 1, Dz, = 0), the mean gain to persons who would be induced 
to switch from D = 0 to D = 1 if Z were manipulated externally from z' to z. 
From the latent index model, it follows that LATE can be written as 

E(Y1 - Yo X = x, Dz = 1, DZI = 0) 

= E(Y - YoIX = x, u'< UD < UD) 

= ,LATE(X, UD, UD) 

for UD = Pr(Dz = 1) = P(z), uD = Pr(Dz, = 1) = P(z'), where assump- 
tion (A-2) implies that Pr(Dz = 1) = Pr(D = IIZ = z) and Pr(Dz, = 1) = 
Pr(D = IZ = z'). Imbens and Angrist define the LATE parameter as the 
probability limit of an estimator. Their analysis conflates issues of definition 
of parameters with issues of identification. Our representation of LATE allows 
us to separate these two conceptually distinct matters and to define the LATE 
parameter more generally. One can imagine evaluating the right-hand side of 
this equation at any uD, uD points in the unit interval and not only at points 
in the support of the distribution of the propensity score P(Z) conditional on 
X = x where it is identified. From assumptions (A-2)-(A-4), ALATE(x, UD, U') 

is continuous in uD and uD, and lim u - UDALATE(X U, UD ) = AMTE(x, UD).18 

18This follows from Lebesgue's theorem for the derivative of an integral and holds almost 
everywhere with respect to Lebesgue measure. The ideas of the marginal treatment effect and 
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TABLE IA 

TREATMENT EFFECTS AND ESTIMANDS AS WEIGHTED 
AVERAGES OF THE MARGINAL TREATMENT EFFECT 

ATE(x) = fAMTE(X, (UD)dUD 

TT(x) =j AMTE(X, UD)hTr(X, UD) duD 
1 

[f""•M~e~xTu) du] LATE(x, UD, uD)= 
UD 

[UD AMTE(x, u)du] 

TUT(x) = 
AMTE(x, UD)hTUT(X, uD)dUD 

PRTE(x) = MTE(x, UD)hPRTE(X, UD) duD 

IV(x) = 
jAMTE(x, uD)hlv(x, UD)dUD 

OLS(x) = AMTE(x, UD)hOLS(X, D) duD 

Heckman and Vytlacil (1999) use assumptions (A-1)-(A-5) and the latent in- 
dex structure to develop the relationship between MTE and the various treat- 
ment effect parameters shown in the first three lines of Table IA. For example, 
in that table A'T(x) is a weighted average of AMTE, 

Ar(x) 
= fAMTE(X, UD)hTT(X, UD) duD, 

where 

1 - 
FtPIX(UD 

X) SPIX(UDIX) (5) 
hTT(X, UD)= fo (1 - Fpix(tlx)) dt E(P(Z)IX = x) ' 

and SpIx(UDIX) is Pr(P(Z) > uDIX = x) and 
hnr(x, 

UD) is a weighted distri- 
bution (see Heckman and Vytlacil (2001a)). The parameter A'T(x) oversam- 
ples AMTE(x, UD) for those individuals with low values of UD that make them 
more likely to participate in the program being evaluated. Treatment on the 
untreated (TUT) is defined symmetrically with TT and oversamples those least 
likely to participate. The various weights are displayed in Table LB. The other 

the limit form of LATE were first introduced in the context of a parametric normal generalized 
Roy model by Bj6rklund and Moffitt (1987), and were analyzed more generally by Heckman 
(1997). Angrist, Graddy, and Imbens (2000) also define and develop a limit form of LATE. 
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TABLE IB 

WEIGHTS 

hATE(X, UD) = 1 

hTr(x, 
UD) = 

ff(pIX 
= x) dp IX = x) 

hTUT(X, UD) = f[(pX = x)dp E((1-P)IX=x) 

hPRTE(X, UD) = 
[FP,X(UDIX) - 

FPX(UDIX ) , where AP(x)= E(PX = x) - E(P*IX = x) 
L AP(x) 

hlv(x, UD)= 
(p - E(PX = x))f(pIX =x)dp Var(P = x) for P(Z) as an instrument 

E(UIIX 
= x, UD = UD)hl(X, UD) - E(UoIX = x, UD = UD)ho(X, UD) 

hoLs(X, uD)=l+ 
AMT(X, UD) 

if AMTE(x, UD) : 0, 
= 0 otherwise 

hi(x, uD) = [ f(plX = x)dP E(PIX = x) 

ho(x, UD) = f(pIX = x) dp E((1 [ fuI E((1 - P)IX = x) 

weights, treatment effects, and estimands shown in this table are discussed 
later. A central theme of this paper is that under our assumptions all estimators 
and estimands can be written as weighted averages of MTE. 

Observe that if E(AIX = x, UD = UD) = E(AlX = x), so A is mean indepen- 
dent of UD given X = x, then AMTE = AATE = ATT = ALATE. Therefore, in cases 
where there is no heterogeneity in terms of unobservables in MTE (A constant 
conditional on X = x) or agents do not act on it so that UD drops out of the 
conditioning set, marginal treatment effects are average treatment effects, so 
that all of the evaluation parameters are the same. Otherwise, they are dif- 
ferent. Only in the case where the marginal treatment effect is the average 
treatment effect will the "effect" of treatment be uniquely defined. 

Figure 1A plots weights for a parametric normal generalized Roy model gen- 
erated from the parameters shown at the base of Figure 1B. We discuss the 
contents of Figure 1B in Section 4. A high uD is associated with higher cost, 
relative to return, and less likelihood of choosing D = 1. The decline of MTE 
in terms of higher values of UD means that people with higher uD have lower 
gross returns. TT overweights low values of UD (i.e., it oversamples UD that 
make it likely to have D = 1). ATE samples UD uniformly. Treatment on the 
untreated (E(YI - YoIX = x, D = 0)) oversamples the values of UD unlikely to 
have D = 1. 
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FIGURE 1A.-Weights for the marginal treatment effect for different parameters. 

Table II shows the treatment parameters produced from the different 
weighting schemes. Given the decline of the MTE in uD, it is not surprising 
that TT > ATE > TUT. The difference between TT and ATE is a sorting gain: 
E(Y1 - YolX, D = 1) - E(Y1 - YoIX), the average gain experienced by people 
who sort into treatment compared to what the average person would experi- 
ence. Purposive selection on the basis of gains should lead to positive sorting 
gains of the sort found in the table. We return to this table to discuss the other 
numbers in it. 

Heckman (2001) presents evidence on the nonconstancy of the MTE drawn 
from a variety of studies of schooling, job training, migration, and unionism. 
With the exception of studies of unionism, a common finding in the empirical 
literature is the nonconstancy of MTE given X.19 The evidence from the lit- 
erature suggests that different treatment parameters measure different effects 
and that persons participate in programs based on heterogeneity in responses 
to the program being studied. The phenomenon of nonconstancy of the MTE 
that we analyze in this paper is of substantial empirical interest. 

The additively separable latent index model for D (Equation (3)) and 
assumptions (A-1)-(A-5) are far stronger than what is required to define the 
parameters in terms of the MTE. The representations of treatment effects de- 
fined in Table IA remain valid even if Z is not independent of UD, if there 

19However, most of the empirical evidence is based on parametric models. 
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FIGURE 1B.-Marginal treatment effect vs. linear instrumental variables and ordinary least 
squares weights. Model used to generate Figures 1A and 1B: 

Y, = y + c + U1, U1 = o' e, y = 0.67, o1 = 0.012, 
Yo = Y + Uo, Uo = o0e, a = 0.2, o0 = -0.050, 
D = 1 if Z- V > 0, V = ov e, e 

1 N(0, 1), av = -1.000, 

UD = ( 
, Z - N(-0.0026, 0.2700). 

TABLE II 

TREATMENT PARAMETERS AND ESTIMANDS IN THE 
GENERALIZED ROY EXAMPLE 

Treatment on the treated 0.2353 
Treatment on the untreated 0.1574 
Average treatment effect 0.2000 
Sorting gaina 0.0353 
Policy relevant treatment effect (PRTE) 0.1549 
Selection biasb -0.0628 
Linear instrumental variablesc 0.2013 
Ordinary least squares 0.1725 

a TT - ATE = E(Y1 - Y ID = 1) - E(Y1 - YO). 
b OLS - IT = E(Y ID = 1) - E(YID = 0). 

c Using propensity score P(Z) as the instrument. 
Note: The model used to create Table II is the same as those used to create Figures 

1A and lB. The PRTE is computed using a policy t characterized as follows: 
If Z > 0 then D = 1 if Z(1 + t) - V > 0. 
If Z < t then D = 1 if Z - V > 0. 
For this example t is set equal to .2. 



684 J. J. HECKMAN AND E. VYTLACIL 

are no variables in Z that are not also contained in X, or if a more general 
nonseparable choice model generates D (so D* = ID (Z, UD)). No instrument 
is needed to define the parameters. These issues are discussed further in Sec- 
tion 6. 

Assumptions (A-1)-(A-5) will be used to interpret what instrumental 
variables estimate and to relate instrumental variables to the policy relevant 
treatment effects. They are sufficient to identify AMTE(x, UD) at any uD eval- 
uation point that is a limit point of the support of the distribution of P(Z) 
conditional on X = x.20 As developed in Section 6, without these assumptions 
and representations (in particular Equation (3)) for the choice equations, the 
IV method and our extension of it does not identify any economically inter- 
pretable parameters. 

The literature on structural econometrics is clear about the basic parame- 
ters of interest although it is not always clear about the exact combinations 
of parameters needed to answer specific policy problems.2" The literature on 
treatment effects offers a variety of evaluation parameters. Missing from that 
literature is an algorithm for defining treatment effects that answer precisely 
formulated policy questions. The MTE provides a framework for developing 
such an algorithm, which we now develop. 

3. POLICY RELEVANT TREATMENT PARAMETERS 

The conventional treatment parameters do not always answer economically 
interesting questions. Their link to cost-benefit analysis and interpretable eco- 
nomic frameworks is often obscure.22 Each answers a different question. Ignor- 
ing general equilibrium effects, A'T is one ingredient for determining whether 
or not a given program should be shut down or retained. It is informative on 
the question of whether the persons participating in a program benefit from 
it in gross terms.23 The parameter AMTE estimates the gross gain from a mar- 
ginal expansion of a program. Many investigators estimate a treatment effect 
and hope that it answers an interesting question. A more promising approach 
to defining parameters is to postulate a policy question or decision problem 

20For example, if we additionally impose that the distribution of P(Z) conditional on X has a 
density with respect to Lebesgue measure, then (A-1)-(A-5) enable us to identify AMTE(X, UD) at 
all (x, UD) evaluation points in the support of the distribution of (X, P(Z)). 

21 In a fundamental paper, Marschak (1953) shows how different combinations of structural 
parameters are required to forecast the impacts of different policies. It is possible to answer many 
policy questions without identifying any of the structural parameters individually. The treatment 
effect literature partially embodies this vision, but typically does not define the economic question 
being answered, in contrast to Marschak's approach. See Heckman (2001) and Heckman and 
Vytlacil (2005). 

22Heckman and Vytlacil (2005) develop the relationship between these parameters and the 
requirements of cost-benefit analysis. 

23It is necessary to account for costs to conduct a proper cost-benefit analysis. See the discus- 
sion in Heckman and Vytlacil (2005) for nonparametric cost-benefit analysis. 
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of interest and to derive the treatment parameter that answers it. Taking this 
approach does not in general produce the conventional treatment parameters 
or the estimands produced from instrumental variables. 

We consider a class of policies that affect P, the probability of participation 
in a program, but do not affect AMTE. The policies analyzed in the treatment ef- 
fect literature that change the Z not in X are more restrictive than the general 
policies that shift X and Z analyzed in the structural literature. An example 
from the schooling literature would be policies that change tuition or distance 
to school but do not directly affect the gross returns to schooling. Since we 
ignore general equilibrium effects in this paper, the effects on (Yo, Y,) from 
changes in the overall level of education are assumed to be negligible. 

Let a and a' denote two potential policies, and let Da and Da, denote the 
choices that would be made under policies a and a'. Let the corresponding 
decision rules be Da = 

-[Pa(Za) > UD] and Da, = 1-[Pa,(Za,) > UD], where 
Pa(Za) = Pr(Da = lZa) and Pa,(Zal) = Pr(Da' = 1Za,). To simplify the ex- 
position, we will suppress the arguments of these functions and write Pa and 
Pa, for Pa(Za) and Pa,(Za,). Define (Yo,a, Yt,a, UD,a) as (Y0, Y1, UD) under 
policy a, and define (Yo,a', Yi,a', UD,a') correspondingly under policy a'. We as- 
sume that Za and Za, are independent, respectively, of (Yo,a, Yl,a, UD,a) and 

(Yo,a', Yi,al, UD,a') conditional on Xa and Xa,. Let Ya = Da Yi,a + (1 - Da)Yo,a 
and Ya, = Da, Yi,a' + (1 - Da,) Yo,a denote the outcomes that would be observed 
under policies a and a', respectively. 

We define AMTE as policy invariant if 

Policy Invariance: E(Yi,aIUD,a = u, Xa = x) and E(Yo,alUD,a = u, X = x), 
are invariant to the choice of policy a. 

Policy invariance can be justified by the strong assumption that the policy 
change does not change the counterfactual outcomes, covariates, or unob- 
servables, i.e., (Yo,a, Yl,a, Xa, UD,a) = (Yo,a, Yi,a, Xa,, UD,a'). However, AMTE is 
policy invariant if this assumption is relaxed to the weaker assumption that the 
policy change does not affect the distribution of these variables conditional 
on X: 

(A-7) The distribution of (Yo,a, Yi,a, UD,a) conditional on Xa = x is the same 
as the distribution of (Yo,a,, 

Yl,a,, 
UD,a') conditional on Xa, = x. 

We assume (A-7) holds and discuss invariance further in Appendix B. 
For the widely used Benthamite social welfare criterion V(Y), comparing 

policies using mean outcomes and considering the effect for individuals with 
a given level of X = x, we obtain the policy relevant treatment effect (PRTE) 
denoted APRTE(X): 

(6) E(V(Ya)IX = x) - E(V(Ya,)IX = x) 

= 
a~T(x UD){FpI,tX(UDIX) - FPaIX(UDlx))} duD, 

OI 
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where 
Fpex('lx) 

and 
Fpeax(l|x) 

are the distributions of Pa and Pa, condi- 
tional on X = x, respectively, defined for the different policy regimes and 
AMTE = E(V(Yi,a) - V(Yo,a)|IUD,a = u, Xa = x).24'25 The weights are derived 
in Appendix B under the assumption that the policy does not change the joint 
distribution of outcomes. To simplify the notation, throughout the rest of this 
paper, we assume that V(Y) = Y. Modifications of our analysis for the more 
general case are straightforward. 

Define AP(x) = E(PaIX = x) - E(Pa,IX = x), the change in the propor- 
tion of people induced into the program due to the intervention. Assuming 
AP(x) is positive, we may define per person affected weights as hPRTE(X, UD) = 

(FPlx(UDIX) 
- Fpe, x(uDIx))/(AP(x)). These are the weights displayed in Ta- 

ble IB. As demonstrated in the next section, in general, conventional IV 
weights AMTE differently than either the conventional treatment parameters 
(AATE or ATT) or the policy relevant parameters, and so does not recover these 
parameters. 

Instead of hoping that conventional treatment parameters or favorite es- 
timators answer interesting economic questions, one approach developed in 
this paper is to estimate AMTE and weight it by the appropriate weight deter- 
mined by how the policy changes the distribution of P to construct APRTE. An 
alternative approach produces a policy weighted instrument to identify APRTE 

by standard instrumental variables. We develop both approaches in the next 
section. Before doing so, we first consider what conventional IV estimates and 
conditions for identifying AMTE. We also consider matching methods and OLS. 

4. INSTRUMENTAL VARIABLES, LOCAL INSTRUMENTAL VARIABLES, OLS, 
AND MATCHING 

In this section, we use AMTE to organize the literature on econometric eval- 
uation estimators. We assume (A-7), but for simplicity suppress the a and a' 
subscripts. We focus primarily on instrumental variable estimators, but also 
briefly consider the method of matching. We present the method of local 
instrumental variables. Well established intuitions about instrumental vari- 
able identification strategies break down when AMTE is nonconstant in uD 

24We could define policy invariance for AMTE in terms of expectations of V(Yi,a) and V(Yo,,). 
25If we assume that the marginal distributions of X, and Xa, are the same as the marginal 

distribution of a benchmark X, the weights can be integrated against the distribution of X to 
obtain the total effect of the policy in the population: 

E(V(Y,)) - E(V(Y0,)) 

= Ex E(V(Y,,)IX) - E(V(Ya,)IX)} 

f= f 
AMTE(, UD){Fp x(UD X) 

- 
FpX x(uDlx)} duD dFx(x). 
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given X. Two sets of instrumental variable conditions are presented in the cur- 
rent literature for this more general case: those associated with conventional 
instrumental variable assumptions which are implied by the assumption of "no 
selection on heterogenous gains" and those which permit selection on hetero- 
geneous gains. Neither set implies the other, nor does either identify the policy 
relevant treatment effect in the general case. Each set of conditions identifies 
different treatment parameters. 

In place of standard instrumental variables methods, we advocate a new ap- 
proach to estimating policy impacts by estimating AMTE using local instrumental 
variables (LIV) to identify all of the treatment parameters from a genera- 
tor AMTE. The AMTE can be weighted in different ways to answer different pol- 
icy questions. For certain classes of policy interventions discussed in Section 5, 
AMTE possesses an invariance property analogous to the invariant parameters 
of traditional structural econometrics. 

We also consider whether it is possible to construct an instrument such that 
instrumental variables directly estimate APRTE. We establish necessary and suf- 
ficient conditions for the existence of such an instrument. We also address the 
inverse question of whether instrumental variable estimators always answer 
well-posed policy questions. In general, they do not. We present necessary and 
sufficient conditions for a particular instrument to answer some policy coun- 
terfactual and characterize what question is answered when an answer exists. 

4.1. Conventional Instrumental Variables 

In the general case with AMTE(X, UD) nonconstant in UD, linear IV does 
not estimate any of the treatment effects previously defined. Let J(Z) de- 
note an instrument written as a function of Z. We sometimes denote J(Z) 
by J, leaving implicit that J is a function of Z. The standard conditions 
J(Z) ,1 (U1, Uo) and Cov(J(Z), D) 

- 
0 do not, by themselves, imply that in- 

strumental variables using J(Z) as the instrument will identify conventional or 
policy relevant treatment effects. We must supplement the standard conditions 
to identify interpretable parameters. To link our analysis to conventional analy- 
ses of IV, we invoke familiar-looking representations of additive separability of 
outcomes in terms of (U1, U0) so YI = p (X) + U1 and Yo = /o(X) + U0, but 
this is not strictly required. All derivations and results in this section hold with- 
out any additive separability assumption if I(x) and t0o(x) are replaced by 
E(Y1IX = x) and E(YoJX = x), respectively, and U1 and Uo are replaced by 
Yj - E(Y1IX) and Yo - E(YolX), respectively. 

Two distinct sets of instrumental variable conditions in the literature are 
those due to Heckman and Robb (1985, 1986) and Heckman (1997), and 
those due to Imbens and Angrist (1994). In the case where AMTE is noncon- 
stant in UD, linear IV estimates different parameters depending on which 
assumptions are maintained. To establish this point, it is useful to briefly 
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review the IV method in the case of a common treatment effect defined con- 
ditional on X, where Y1 - Yo = A, with A a deterministic function of X, and 
where additive separability in outcomes is assumed, as in conventional mod- 
els. Using (la) and (ib) with U1 = Uo = U, and assuming E(UIX) = 0, we 

may write Y = ,-Lo(X) + DA + U, where A = pl(X) - ,to(X). By the law of 
iterated expectations, E(UIX) = 0 and Z IL UIX imply E(UJ(Z)IX) = 0. 
The standard instrumental variables intuition is that when E(UJIX) = 0 and 
Cov(J, DIX) O, linear IV identifies A: 

Cov(J, Y(X) Cov(J, DAIX) Cov(J, DIX) 
(IV) =A Cov(J, DIX) Cov(J, DIX) Cov(J, DIX) 

= A = ,cI(X) - wo(X), 
where the second equality follows from the assumption that A is a deterministic 
function of X. This intuition breaks down in the heterogeneous response case 
where the outcomes are generated by different unobservables (Uo0 : U1) so 
Y = -to(X) + DA + Uo, where A = 

-k 
(X) - /to(X) + U1 - Uo. This is a variable 

response model. 
There are two important cases of the variable response model. The first case 

arises when responses are heterogeneous, but conditional on X: people do not 
base their participation on these responses. In this case, the following condition 
holds: 

(C-1) D AL AIX == E(AIX, UD) = E(AIX), AMTE(x, lID) is constant in uD 

and AMTE = AATE = ATT _ ALATE. 

The second case arises when the following condition holds: 

(C-2) D 1 AIX and E(AIX, UD)) E(AIX). 

In this case AMTE is nonconstant and the treatment parameters differ among 
each other. 

Application of the standard IV equation to the general variable coefficient 
model produces the first equality in IV above. Now, however, A is not a de- 
terministic function of X and thus we cannot simply take A outside of the 
covariance term as in the third term of (IV). Plugging in A = 

p•l(X) 
- 10o(X) + 

U1 - Uo, we obtain 

Cov(J, DAIX) Cov(J, D(U1 - Uo)IX) 
= 1I(X) - Eto(X) + 

Cov(J, DIX) Cov(J, DIX) 
Our independence assumptions imply that J is independent of U, - U0 con- 
ditional on X, but do not imply that J is uncorrelated with D(U1 - Uo) 
conditional on X. Thus, in general, the covariance in the numerator of the 
second term is not zero. Knowledge of (X, Z, D) and (X, Z, (U0, U1)) depen- 
dencies is not enough to determine the covariance in the second term. We need 
to know joint (X, Z, D, U0, U1) dependencies. 
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A sufficient condition for producing (C-1) is the strong information condi- 
tion that decisions to participate in the program are not made on the basis 
of U1 - Uo: 

(I-1) Pr(D = lZ, X, U1 - Uo) = Pr(D = 1iZ, X). 

Given our assumption that (U1 - Uo) is independent of Z given X, one can 
use Bayes' theorem to show that (I-1) implies the weaker mean independence 
condition: 

(1-2) E(U1 - Uo0Z, X, D = 1) = E(U1 - UoIX, D = 1) 

which is generically necessary and sufficient for linear IV to identify 
A'T and AATE 

Case (C-2) is inconsistent with (1-2). IV estimates 
ALATE 

under the conditions 
of Imbens and Angrist (1994). ALATE, selection models, and LIV, introduced 
below, analyze the more general case covered by (C-2). Different assumptions 
define different parameters. In addition, as we establish in Section 4.3, even 
under the same assumptions, different instruments define different parameters 
and traditional intuitions about instrumental variables break down. 

4.2. Estimating the MTE Using Local Instrumental Variables 

Heckman and Vytlacil (1999, 2001a) resolve this confusion using the lo- 
cal instrumental variable estimator to recover AMTE pointwise. Conditional 
on X = x, LIV is the derivative of the conditional expectation of Y with re- 
spect to P(Z) = p: 

LI(X, P) E( YX = x, P(Z) = p) 
(7) AL(x, p) = Sp 
The expectation E(Y1 - YoIX, P(Z)) exists (almost everywhere) by assump- 
tion (A-4), and E(YIX, P(Z)) can be recovered over the support of (X, P(Z)). 
Assumptions (A-2)-(A-4) jointly allow one to use Lebesgue's theorem for the 
derivative of an integral to show that E(Y1 - YolX = x, P(Z) = p) is differen- 
tiable in p. Thus we can recover 'E(YIX = x, P(Z) = p) for almost all p that 
are limit points of the support of distribution of P(Z) conditional on X = x.26 
Under our assumptions, LIV identifies MTE for all limit points in the support 
of the distribution of P(Z) conditional on X. This expression does not require 
additive separability of pcti(X, U1) or pto(X, U0).27 

"26For example, if the distribution of P(Z) conditional on X has a density with respect to 
Lebesgue measure, then all points in the support of the distribution of P(Z) conditional on X 
are limit points of that support and we can identify ALIV(x, p) = (8E(YIX = x, P(Z) = p))/rp 
for p (almost everywhere). 

27Note, however, it does require our model and assumptions, including the assumption of ad- 
ditive separability between UD and Z in the latent index, for selection into treatment. See the 
discussion in Section 6. 
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Under standard regularity conditions, a variety of nonparametric methods 
can be used to estimate the derivative of E(YIX, P(Z)) and thus to esti- 
mate AMTE. With AMTE in hand, if the support of the distribution of P(Z) 
conditional on X is the full unit interval, one can generate all the treatment 
parameters defined in Section 2 as well as the policy relevant treatment para- 
meter presented in Section 3 as weighted versions of AMTE. When the support 
of the distribution of P(Z) conditional on X is not full, it is still possible to 
identify some parameters. For example, Heckman and Vytlacil (2001a) show 
that to identify ATE under our assumptions, it is necessary and sufficient that 
the support of the distribution of P(Z) conditional on X includes 0 and 1. 
Thus, identification of ATE does not require that the distribution of P(Z) 
conditional on X be the full unit interval or that the distribution of P(Z) con- 
ditional on X contain any limit points. Sharp bounds on the treatment para- 
meters can be constructed under the same assumptions imposed in this paper 
without imposing full support conditions. The resulting bounds are simple and 
easy to apply compared with those presented in the previous literature.21 

To establish the relationship between LIV and ordinary IV based on P(Z) 
and to motivate how LIV identifies AMTE, notice from the definition of Y that 
the conditional expectation of Y given P(Z) is 

E(YIP(Z) = p) = E(YoP(Z) = p) + E(AlP(Z) = p, D = l)p, 

where we keep the conditioning on X implicit. Our model and conditional 
independence assumption (A-2) imply 

E(YIP(Z) = p) = E(Yo) + E(Ajp > UD)p. 

Applying the IV or Wald estimator for two different values of P(Z), p and p', 
for p : p', we obtain 

E(YIP(Z) = p) - E(YIP(Z) = p') (8) 
p- p 

ATE E(U - Uolp UD)p -E(U1 - Uolp' UD)p' 
p - p' 

where the expression is obtained under the assumption of additive separability 
in the outcomes so (la) and (Ib) apply. Note that exactly the same equation 
holds without additive separability if one replaces U1 and U0 with Y1 - E( Y IX) 
and Yo - E( Yo1X). 

2"For example, see Heckman and Vytlacil (2001b) for a comparison of sharp bounds under 
the nonparametric selection model with the Manski (1990) sharp bounds under a weaker mean 
independence condition. Heckman and Vytlacil (2005) survey and synthesize this literature and 
Heckman and Vytlacil (2001a) develop the bounds. 
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When U1 - U0 or (U1 - Uo) AL UD (case (C-1)), IV based on P(Z) esti- 
mates AATE because the second term on the right-hand side of the expres- 
sion (8) vanishes. Otherwise, IV estimates a difficult-to-interpret combination 
of MTE parameters which we analyze further below. 

Another representation of E(YIP(Z) = p) that reveals the index structure 
under additive separability more explicitly writes (keeping the conditioning 
on X implicit) that 

(9) E(YIP(Z) 
= p) = E(Yo) + AATEp + f E(UI 

- UOIUD = UD) duD. 

We can differentiate with respect to p and use LIV to identify AMTE: 

8E(YIP(Z) = p) = ZATE + E(U1 
- 

UoIUD 
= P) = MTE(p). 

dp 

Notice that IV estimates AATE when E(YIP(Z) = p) is a linear function of p. 
Thus a test of the linearity of E(YIP(Z) = p) in p is a test of the validity of 
linear IV for AATE, i.e., it is a test of whether or not the data are consistent with 
a correlated random coefficient model. The nonlinearity of E(YIP(Z) = p) 
in p provides a way to distinguish whether case (C-1) or case (C-2) describes 
the data. It is also a test of whether or not agents can at least partially anticipate 
future unobserved (by the econometrician) gains (the Y1 - Yo given X) at the 
time they make their participation decisions. This analysis generalizes to the 
nonseparable outcomes case. We use separability in outcomes only to simplify 
the exposition and link to more traditional models. In particular, exactly the 
same expression holds with exactly the same derivation for the nonseparable 
case if we replace U1 and U0 with 

Yl 
- E(Y1IX) and Yo - E(YolX), respec- 

tively.29 
Figure 2A plots two cases of E(YIP(Z) = p) based on the generalized Roy 

model used to generate the example in Figures 1A and lB. When AMTE does 
not depend on uD, the expectation is a straight line. Figure 2B plots the deriv- 
atives of the two curves in Figure 2A. When AMTE depends on uD, people 
sort into the program being studied positively on the basis of gains from the 

program, and one gets the curved line depicted in Figure 2A. The levels and 
derivatives of E(YIP(Z) = p) and standard errors can be estimated using a 

variety of semiparametric methods. The derivative estimator of AMTE is the 
local instrumental variable estimator of Heckman and Vytlacil (1999, 2001a). 
Thus it is possible to test condition (C-l) using simple econometric methods. 

29Making the conditioning on X explicit, we obtain that E(YIX = x, P(Z) = p) = E( YoX = 
x) + AATE(x)p fop E(U1 - UoIX = x, Ud = UD) dUD, with the derivative with respect to p given 
by AMTE(x, p). 
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25 I 
- E[YIP(Z)=p] When C2 Holds (Agents Act on Heterogeneity) 

. E[YIP(Z)=p] When C1 Holds (Agents Do Not Act on Heterogeneity) 

20 --- 

,15 

10 

p 

FIGURE 2A.-Plot of the E(YIP(Z) = p). 

In the case without regressors, X, the null hypothesis is the parametric null of 
linearity.30 

4.3. What Does Linear IV Estimate? 

It is instructive to consider what linear IV estimates when AMTE is noncon- 
stant and conditions (A-1)-(A-5) hold. We consider the general nonseparable 
case. We consider instrumental variables conditional on X = x using a general 
function of Z as an instrument and then specialize our result using P(Z) as the 
instrument. Let J(Z) be any function of Z such that Cov(J(Z), DIX = x) = 0. 
Define 

Piv(X; J) - [Cov(J(Z), YIX = x)]/[Cov(J(Z), DIX = x)]. 

30Thus, one can apply any one of the large number of available tests for a parametric null 
versus a nonparametric alternative (see, e.g., Ellison and Ellison (2000), Zheng (1996)). With 
regressors, the null is nonparametric, leaving E(YIX = x, P(Z) = p) unspecified except for re- 
strictions on the partial derivatives with respect to p. In this case, the formal test is a test of a 
nonparametric null versus a nonparametric alternative, and a formal test of the null hypothesis 
can be implemented using the methodology of Chen and Fan (1999). 
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FIGURE 2B.-Plot of the identified marginal treatment effect from Figure 2A (the derivative). 
Note: Parameters for the general heterogeneous case are the same as those used in Figures 
1A and 1B. For the homogeneous case we impose U1 = Uo (o-1 = ao = 0.012). 

Appendix B derives an expression for the numerator of this expression, using 
(1c) and (A-2) and letting J(Z) - J(Z) - E(J(Z)IX): 

(10) Cov(J(Z), YIX) 

=I AMT(X, uD)E(J(Z)IX, P(Z) 
> UD) Pr(P(Z) 

> uDIX) duD. 

The denominator follows by a similar argument. By iterated expectations, 
Cov(J(Z), DIX) = Cov(J(Z), P(Z)IX). Thus 

iv(x; J) =f AMTE(x, UD)hIv(UDIX; J) dUD, 

where 

E(J(Z)IX = x, P(Z) > uD) Pr(P(Z) > UDIX = x) 

Cov(J(Z), P(Z)IX = x) 
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assuming the standard rank condition Cov(J(Z), P(Z)IX = x) O0. The 
weights integrate to unity, 

f hiv(uDjIx; 
J) duD 

1 

and can be constructed from the data on X, P(Z), J(Z), and D. Assumptions 
about the properties of the weights are testable.31 

We first discuss additional properties of the weights for the special case 
where J(Z) = P(Z) (the propensity score is the instrument), and then analyze 
the properties of the weights for a general instrument J(Z). From Equa- 
tion (11), 

hiv(uDIx; P(Z)) 

[E(P(Z)IX = x, P(Z) > uD) - E(P(Z)IX = x)] 

Var(P(Z)IX = x) 
x Pr(P(Z) > UD IX = x). 

Figure 1B plots the IV weight for J(Z) = P(Z) and the MTE for our gener- 
alized Roy model example (see also Table IB). Let pMin and pM" denote the 
minimum and maximum points in the support of the distribution of P(Z) con- 
ditional on X = x. The weights on MTE corresponding to the use of P(Z) as 
the instrument are nonnegative for all evaluation points, are strictly positive 
for UD (pMiin, pMax), and are zero for uD < p'Min and for uD > pMax 32 

Our expression for the weights does not impose any support conditions on 
the distribution of P(Z) conditional on X, and thus does not require that P(Z) 
be either continuous or discrete. To demonstrate this, consider two extreme 
special cases: (i) when P(Z) is a continuous random variable and (ii) when 
P(Z) is a discrete random variable. 

31Expressions for IV and OLS as weighted averages of marginal response functions, and the 
properties and construction of the weights were first derived by Yitzhaki in 1989 in a paper that 
was eventually published in 1996 (see Yitzhaki (1996)). He does not use the MTE, however. 

32For UD evaluation points between pMin and pMx, uD e (pin, pMa), we have that 

E(P(Z)IP(Z) > uD, X = x) > E(P(Z)IX = x) and Pr(P(Z) > uDIX = X) > 0, 

so that hIv(uDIx; P(Z)) > 0 for any uD E (pM= , in,Max). For uD < pMiin 

E(P(Z)IP(Z) > UD, X = x) = E(P(Z)JX = x). 

For any uD > pM"a, Pr(P(Z) > uDIX = x) = 0. Thus, hiv(uDIx; P(Z)) = 0 for any UD < pMin 
and for any uD > pMax, hlv(uDIx; P(Z)) is strictly positive for uD c (PM"i, pM), and is zero for 
all UD < PMin and all uD > pMax. Whether the weights are nonzero at the endpoints depends on 
the distribution of P(Z). However, since the weights are defined for integration with respect to 
Lebesgue measure, the value taken by the weights at pMin and pMax does not affect the value of 
the integral. 
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First consider the case where the distribution of P(Z) conditional on X 
has a density with respect to Lebesgue measure with nonnegative density on 
the interval (pmi, Pxax). In this case, ALIV(X, U) is well defined for all UD E 

(pxin, PMa) such that hIv(uDIx; P(Z)) > 0. Using the fact that ALIV(x, UD) = 

AMTE(x, UD) at evaluation points where LIV is well defined, we can rewrite the 
expression for the IV estimator as 

Max PX 

/irv(x; P(Z)) = I ALIV(, UD)hIv(UDIx; P(Z)) dUD.33 
J in 

Next consider the case where the distribution of P(Z) conditional on X 
has density with respect to counting measure. For simplicity, assume that the 
support of the distribution of P(Z) conditional on X contains a finite num- 
ber of values, {Pl, ..., PK with pl< <P2< ... < PK. Then E(P(Z)IX = x, 
P(Z) > UD) is constant in UD for UD within any (pj,pj+,) interval, and 
Pr(P(Z) > UD) is constant in UD for UD within any (pj, pj?I) interval, and 
thus hlv(uDIx; P(Z)) is constant in uD over any (pj, pj+,) interval. Let qj de- 
note the value taken by hIv(uDIx; P(Z)) for UD E (pj, pj + 1). Then, letting 
qj = qj(pj+1 - pj), 

/3v(x; P(Z)) 

Sf E(AIX = x, UD = 
UD)hlv(UDIX; 

P(Z)) duD 

K-1f Pj+1 

K-1 Pj+1 
= qj(pj+i - pj) E(AIX =x, UD UD) du 

j=1 P j+ j 

K-1 

= • LATE(x, Pj,j+l)qj*34 
j=1 

The properties of the weights for general J(Z) depend critically on the re- 
lationship between J(Z) and P(Z). Defining T(plx; J) = E(JIP(Z) = p, 
X = x) - E(JIX = x), 

J, (T(t x; J) dFpIx(t x) 

Cov(J, PIX = x) 

33Angrist, Graddy, and Imbens (2000) develop a special case of this expression for a scalar 
instrument. 

34In this special case, our analysis is a latent variable version of the formula in Imbens and 
Angrist (1994). 



696 J. J. HECKMAN AND E. VYTLACIL 

From this expression, we learn that the IV estimator with J(Z) as an instru- 
ment satisfies the following properties: 

(i) Two instruments J and J* weight MTE equally at all uD evalua- 
tion points if and only if E(JIX = x, P(Z) = p) - E(JIX = x) = E(J*IX = 

x, P(Z) = p) - E(J*IX = x) for all p in the support of the distribution of 
P(Z) conditional on X = x. 

(ii) The support of hiv(uDlx; J) is contained in (pMinfl, pMax). Therefore, 
hiv(tlx; J) = 0 for t < pMin and for t > pMax. Using any instrument other than 
P(Z) leads to nonzero weights only on a subset of (M, 

in 
Max), and using the 

propensity score as an instrument leads to nonnegative weights on a larger 
range of evaluation points than using any other instrument. 

(iii) For all UD, hIv(uDIX; J) is nonnegative if E(JIX = x, P(Z) > p) is 
weakly monotonic in p. Using J as an instrument yields nonnegative weights 
on ZAMTE if E(JIX = x, P(Z) > p) is weakly monotonic in p. This condition 
is satisfied when J(Z) = P(Z). More generally, if J is a monotonic function 
of P(Z), then using J as the instrument will lead to nonnegative weights 
on AMTE. There is no guarantee that the weights for a general J(Z) will be 
nonnegative for all uD, although the weights integrate to unity and thus must 
be positive over some range of evaluation points. We produce examples below 
where the instrument leads to negative weights for some evaluation points. 

The propensity score plays a central role in determining the properties of the 
weights. The IV weighting formula critically depends on T(plx; J) and hence 
on the relationship between the instrument J(Z) and the propensity score. For 
example, whether two instruments provide the same weights on MTE depends 
on their relationship with P(Z) (item (i) above), the possible support of the IV 
weights depends on the support of P(Z) (item (ii)), and whether an instrument 
will provide positive weights on MTE depends on the instrument's relationship 
with P(Z) (item (iii)). 

The interpretation placed on the IV estimand depends on the specification 
of P(Z) even if only Z1 (e.g., a coordinate of Z) is used as the instrument. This 
drives home the point about the difference between IV in the traditional model 
and IV in the more general model with heterogeneous responses analyzed in 
this paper. In the traditional model, the choice of any valid instrument and 
the specification of instruments in P(Z) not used to construct a particular IV 
estimator does not affect the IV estimand. In the more general model analyzed 
in this paper, these choices matter. Two economists, using the same J(Z) = ZI, 
will obtain the same IV point estimate, but the interpretation placed on that 
estimate will depend on the specification of the Z in P(Z) even if P(Z) is 
not used as an instrument. The weights can be positive for one instrument and 
negative for another. 

Table II gives the IV estimand for the generalized Roy model used to gener- 
ate Figures 1A and 1B using P(Z) as the instrument. The model that generates 
D = 1[P3'Z > V] is given at the base of Figure 1B (Z is a scalar, /3 is 1, V is 
normal, UD = I(V/crEov)). We compare the IV estimand with the policy rel- 
evant treatment effect for a policy defined at the base of Table II. If Z > 0, 
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FIGURE 3A.-Marginal treatment effect vs. linear instrumental variables, ordinary least 
squares, and policy relevant treatment effect weights when P(Z) is the instrument for the policy 
given at the base of Table II. 

persons get a bonus Zt. Their decision rule for Z > 0 is D = 1[Z(1 + t) > V]. 
People are not forced into participation in the program. Given the assumed 
distribution of Z, and the other parameters of the model, we obtain hPRTE(UD) 
as plotted in Figures 3A-3C (the scales differ across the graphs). We use the 
per capita PRTE and consider three instruments. Table III presents estimands 
for three instruments in the generalized Roy models for three environments. 

The first instrument we consider is P(Z), which ignores the policy (t) effect 
on choices. It is estimated on a sample with no policy in place. Its weight is 
plotted in Figure 3A, which also displays the OLS weight (discussed later). 

TABLE III 
LINEAR INSTRUMENTAL VARIABLE ESTIMANDS AND THE POLICY 

RELEVANT TREATMENT EFFECT 

Using propensity score P(Z) as the instrument 0.2013 
Using propensity score P(Z(1 + t(1i[Z > 0]))) as the instrument 0.1859 
Using a dummy B as an instrumenta 0.1549 
Policy relevant treatment effect (PRTE) 0.1549 

aThe dummy B is such that B = 1 if an individual belongs to a randomly assigned eligible population and 0 other- 
wise. 



698 J. J. HECKMAN AND E. VYTLACIL 

0.041 
- MTE 

0.035 h 

V(•) 
hIv(P(z.t)) 

h 
PRTE 

0.03 

0.025 

u 0.02 
- 

IOf 

-U 0.015 - 

0.01 

0.05. 

0.005 
- . 

-0.01 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

UD 

FIGURE 3B.-Marginal treatment effect vs. linear IV with Z as an instrument, linear IV with 
P(Z(1 + t(1[Z > 0]))) = P(Z, t) as an instrument, and policy relevant treatment effect weights 
for the policy defined at the base of Table II. 

The IV weights for P(Z) and the weights for APRTE differ. This is as it should 
be because APRTE is making a comparison across regimes but IV in this case is 
making a comparison within a no-policy regime. Given the shape of AMTE(uD), 
it is not surprising that the estimand for IV based on P(Z) is so much above 
the APRTE, which weights a lower valued segment of AMTE(UD) more heavily. 

The second instrument we consider exploits the variation induced by the 
policy in place and fits it on samples where the policy is in place. On intu- 
itive grounds, this instrument might be thought to work well for identifying the 
PRTE, but in fact it does not. The instrument is P(Z, t) = P(Z(1 + tl[Z > 0])), 
which jumps in value when Z > 0. This is the choice probability in the regime 
with the policy in place. Figure 3B plots the weight for this IV along with the 
weight for P(Z) as an IV (repeated from Figure 3A). While this weight looks 
a bit more like the weight for APRTE, it is clearly different. 

Figure 3C plots the weight for an ideal instrument for PRTE: a randomiza- 
tion of eligibility. This compares the outcomes in a population with the policy 
in place with outcomes where it is not. We use an instrument B such that 

B= 1, 
if a person is eligible to participate in the program, 

0, otherwise. 
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FIGURE 3C.-Marginal treatment effect vs. IV policy and policy relevant treatment effect 
weights for the policy defined at the base of Table II. 

Persons for whom B = 1 make their participation choices under the policy with 
a jump in Z, tl(Z > 0) in their choice sets. If B = 0, persons are embargoed 
from the policy and there is no bonus. This is a prepolicy regime. We assume 
Pr[B = 11Yo0, Y1, V, Z] = Pr[B = 1] = 0.5, so all persons are equally likely to 
receive or not receive eligibility for the bonus and assignment does not depend 
on model unobservables in the outcome equation. The Wald estimator in this 
case is 

E(YIB = 1) - E(YIB = 0) 
Pr(D = 1iB = 1) - Pr(D = 1IB = 0) 

The IV weight for this estimator is a special case of Equation (11): 

hiv(uDIB) - 
E(B - E(B)IP(Z) > uD) Pr(P(Z) > UD) 

Cov(B, P(Z)) 

where P(Z) = P(Z(1 + tl[Z > 0]))BP(Z)(1-B). Here, the IV is eligibility for 
a policy and IV is equivalent to a social experiment that identifies the mean 
gain per participant who switches to participation in the program. It is to be 
expected that this IV weight and hpRTE are identical. 
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Monotonicity 

Monotonicity property (iii) is strong. For a general J(Z), there is no guaran- 
tee that it will be satisfied even if J(Z) is independent of (Yo, YI) given X and 
if J(Z) is correlated with D given X = x so that standard IV conditions are sat- 
isfied. Thus if Z is a K-dimensional vector and J(Z) = Z1, even if conditional 
on Z2 = z2, ..., ZK = ZK, P(Z) is monotonic in Z1, there is no guarantee that 
Z1 used as an instrument for D has positive weights on the MTE. 

If we redefine IV for Z1 to be conditional on Z2 = Z2,..., ZK = ZK, the 
weights are positive. Conditioning on instruments not used to form the pri- 
mary covariance relationship is a new concept that does not appear in the con- 
ventional IV literature. In conventional cases governed by condition (C-1), any 
valid instrument identifies the same parameter. In the general case analyzed in 
this paper, different choices of instruments and the conditioning sets of other 
Z variables define different parameters. 

Figure 4 demonstrates the possibility of negative weights for the model given 
at its base. In this figure, we use V rather than normalized Fv(V) = UD in 
order to use familiar normal algebra. This simulation is generated from a 
classical normal error term selection model with nonnormal instruments. The 
instruments are generated as mixtures of normals from two underlying popu- 
lations. One can think of this example as a two-component ecological model 
with different J(Z), P(Z) covariance relationships in the two components. An 
alternative way to say the same thing is that there are different (J(Z), P'Z) co- 
variance relationships in the two subpopulations generating D = 1(p'Z > V). 
In the first component, the covariance between J(Z) and p'Z is 0.98. In the 
second, the covariance varies as shown in Table IV, where the IV is Z1 but 
the choice probability depends on ZI and Z2 (AD(Z) = p'Z). Ceteris paribus, 
increasing Z1 increases the probability that D = 1. Symmetrically, increasing 
Z2 and holding Z1 constant also increases this probability. Yet, since Z, and 
Z2 covary, varying Z, implicitly varies Z2, which may offset the ceteris paribus 
effect of Z1 and produce nonmonotonicity and negative weights. In this exam- 
ple there are different covariance relationships in different normal subcom- 
ponents of the data. As Z1 increases, P(Z) increases for some people and 
decreases for other people, leading to two-way flows into and out of treatment 
for different people. IV estimates the effect of Z1 on outcomes not control- 
ling for the other elements of Z. For the configuration of parameters shown 
there (and for numerous other configurations), the IV weight is negative over 
a substantial range of values. 

The negativity of the weights over certain regions exhibited in Figure 4 
makes it clear that ZI (and more generally J(Z)) fails the monotonicity condi- 
tion (iii) and does not estimate a gross treatment effect. Some agents withdraw 
from participation in the program when Z1 is raised (not holding constant Z2), 
while others enter, even though ceteris paribus a higher Z1 raises participa- 
tion (D). Thus the widely held view that IV estimates some treatment effect 
of a change in D induced by a change in Z1 is in general false. It estimates a 
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Y1 = Y + a + U1 U1 = o1 e, e " N(0, 1), 

Yo = y + Uo U0 = 0oe, o1 = 0.012, 
ro 

= -0.05, rv = -1, 

I = f'Z - V, V= ve, y = 0.67, a =0.2, 

D= 1, 
if I > 0, 

0, 
if/I<0, 

Z ~ 

piN(-t1, 
X1) + p2N(,A2, 92), 

A l 
[0 

- 1 
], 

2 = 
[0 

1_X1 [1.4= 
0.5 1 4 1 0.5 1.4 

p1=0.45, P2=0.55, 0=[0.2 1.4], 

Cov(Z1, P'Z) = fP'I = 0.98 (Group 1), 

TE [ Cov(U1 
- Uo, V) 1 

AMTE(v) = a + ,Var(V) 
, 

E(Z11fp'Z > v) Pr(P3'Z > v)fv(v) 
hlv(v) = 

Cov(Z1, D) 

av = j AMTE(v)hIv(v) dv. 

net effect and not a treatment effect, because monotonicity may be violated. 
Heckman, Urzua, and Vytlacil (2004) present stark examples where MTE is 
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TABLE IV 

THE IV ESTIMATOR AND Cov(ZI, 3'Z) ASSOCIATED WITH EACH VALUE OF 12 
(GROUP 2 COVARIANCE) 

Weights 12 IV Cov(Z1, P'Z) = 3' 2 

hi[ 
0.6 -0.3 0.133 -0.30 [-0.3 0.6 

h20.6 
0.1 0.177 -0.02 

h2 -0.1 0.6 

h3 [0.6 0.1] 0.194 0.26 

.0.1 

0.6 

Weights for mixture of normals IV: 

h-V 
(3 )i13)l/2 

CXP[ 2 1 
2 ( i 

/3)1 (+ 3 23)1/2 2(/3 2/3) 1/2 
1 exp 

- 2 + exP 
2 0 x[(l- 

2 

hiv(v) = 

(' 1 /2 
exp+'21 

2 1 )1/2 ) 2 
(2/3+• 

2 )1/2 exp 
23+2/2 

) 

where 11 and .1 are the first rows of I1 and Y2, respectively. Clearly, hlV(-oc) = 0 and hIV(oc) = 0. The weights 
clearly integrate to 1 over the support of V = (-oc, oo). Observe that if P2 = 0, the weights must be positive. Thus the 
structure of the covariances of the instruments is a key determinant of the positivity of the weights for any instrument. 
It has nothing to do with the ceteris paribus effect of Z1 on P(Z) in the general case (changing Z1 holding all other 
components of Z fixed). Now observe that a necessary condition for hlv < 0 is that sign(p3'j) = - sign(P3'2), i.e., 
that the covariance between Z1 and p'Z be of opposite signs in the two populations. Without loss of generality 
assume that P'5" > 0. If it equals zero, we fail the rank condition. fv(v) is the density of V. 

negative, the weights are negative, and instrumental variable estimates of treat- 
ment effects are positive. Table IV shows how the IV estimand changes with 
the weights even though the treatment parameters are the same in all three 
examples. 

Monotonicity condition (iii) is testable. Whether condition (iii) corresponds 
to positive weights on MTE depends on whether all of our assumptions hold, 
particularly (A-2) and representation (3). If the weights are negative, the 
change in J(Z) induces two-way flows into and out of treatment. Since it is pos- 
sible to estimate the joint density of (J(Z), P(Z)) given X nonparametrically, 
under our assumptions it is possible to test for the positivity of the weights 
which under our assumptions is also a test for monotonicity condition (iii). 
However (A-2) itself is not testable. Monotonicity condition (iii) is distinct 
from the condition termed "monotonicity" by Imbens and Angrist (1994). We 
discuss their condition in Section 6. 

4.4. Policy Relevant Instrumental Variables 

We have just analyzed what IV estimates in terms of weighting MTE. Instead 
of picking an instrument and hoping that it estimates something interesting, it 
is more natural to define an economically interesting parameter and see if in- 
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strumental variables identify it. Suppose that there is a parameter defined as a 
weighted average of AMTE conditional on X = x. Can we construct a function 
of Z to use as an ordinary instrument so that the resulting estimand corre- 
sponds to the desired weighted average of AMTE? This question is especially 
interesting if the estimand is a policy counterfactual. We also consider whether 
there is any policy counterfactual estimated by a given instrument. We initially 
consider the case where P(Z) is a continuous random variable. We return at 
the end of this section to consider the case where the distribution of P(Z) is 
discrete. 

Suppose that we seek to recover a parameter defined by f AMTE(X, U) X 
w(uIx) du by the method of linear instrumental variables. We know from 
Equation (12) the form of the weights corresponding to the IV estimator for 
any particular instrument J(Z). We seek an instrument J(Z) that has associ- 
ated weights on MTE given by Equation (12) that are the same as those on the 
desired parameter 

f/1 T(tlx; J) dFpix(tlx) 
w(uDIX)= 

UD 
hiv(uDIX, J). Cov(J, PIX = x) 

Assuming that Fpix has a density with respect to Lebesgue measure, the sec- 
ond term in this expression is differentiable in u (almost everywhere). Assum- 
ing that W(UD X) is also differentiable at all points of evaluation, it follows 
that 

T(UDIX; J)fP x(uDlx) 
Cov(J, PIX = x) 

The following proposition provides conditions under which an instrument ex- 
ists with the desired properties. 

PROPOSITION 1: Under the conditions 
(i) Fpx (') has a density with respect to Lebesgue measure, 

(ii) w(-|x) satisfies the properties W(UDIx) differentiable in UD for all UD 

[0, 1], fo W(UDIx) dUD = 1, and w(llx) = w(0lx) = 0, 
(iii) fplx (t Ix) = 0 implies w'(t lx) = 0, 

there exists an instrument J,(Z) such that Cov(Jx, DIX = x) 0 0 and 
W(uDIX) = 

hiv( uD Ix, J). An instrument that satisfies these conditions is35 

I w'(P(Z)Ix) if fpix(P(Z)lx) > 0, 
Ji(Z) = 

fpix(P(Z)Ix)' 
0, if fpix(P(Z)lx) = 0.36 

35When such an instrument exists, it will not be unique, since the IV estimand will be invariant 
to rescaling or location shifts for the instrument. 

36Note that fp1x(P(Z)lx) > 0 with probability 1 so that Jx(Z) = w'(P(Z)lx)/fpix(P(Z)lx) 
with probability 1. 
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Under (i), conditions (ii) and (iii) are necessary and sufficient for the existence of 
such an instrument. 

PROOF: See Appendix C. 

Condition (i) is a regularity condition requiring that P(Z) be a continuous 
random variable. We examine the case where P(Z) is discrete at the end of 
this section. Condition (ii) requires that the desired weights on MTE be proper 
weights in the sense of integrating up to 1, and also that the weights satisfy the 
regularity conditions that the weights are differentiable and that the weights 
are zero when evaluated at the uD values of 0 and 1. The first and third of 
these conditions mimic the properties of any IV weights, and the second condi- 
tion mimics the property of any IV weights when the instrument is continuous. 
Condition (iii) is a strong, but natural, condition. It requires that the support 
of the propensity score includes the support of w'(.Ix). Thus, the density of 
the propensity score has to be positive at any evaluation point where w'(. Ix) is 
nonzero. This condition will always be satisfied if fprx(tIx) > 0 for all t e [0, 1]. 
Given (i), if (ii) or (iii) fails, then no instrument exists that provides the desired 
weights. If the desired weights do not integrate to 1 or are not differentiable, 
then as long as P(Z) is continuous (has a distribution that is absolutely con- 
tinuous with respect to Lebesgue measure), there will not exist any instrument 
that provides the desired weights. If the weights are nonconstant over an inter- 
val outside of the support of the propensity score, then no such instrument can 
be constructed that would provide the desired weights. 

One implication of Proposition 1 is that if P(Z) is continuous, when the 
MTE depends on uD in a nontrivial way, there does not exist any instrument 
that provides the weights corresponding to ATE or TT. To see this, recall that 
the weights for ATE and TT do not satisfy w(llx) = w(Olx) = 0, so that the 
weights for ATE and TT do not satisfy condition (ii) of the proposition. Thus, 
under assumptions (A-1)-(A-5) and under the additional assumptions of the 
proposition, no instrument exists that gives the weights for ATE or TT if P(Z) 
is a continuous random variable. This statement leaves open the question of 
whether instruments will exist that answer policy counterfactuals. We now spe- 
cialize the previous proposition for the special case of policy weights, using the 
notation for policy counterfactuals from Section 3. 

PROPOSITION 2: Assume the following: 
(i) Fp x(-), FPa,,X(-), 

and Fpilx(-) have densities with respect to Lebesgue 
measure, where P is the initial (benchmark) probability, and Pa' and Pa are the 
probabilities associated with two policies (possibly) distinct from the benchmark 
policy. 

(ii) E(P, IX = x) # E(Pa, IX = x). 
(iii) For any t, fprix(tlx) = 0 implies fpr1x(tlx) - fp,, x(tIx) = 0. 
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Define Jx to be a policy relevant instrument if it satisfies Cov(Jx, D IX = x) #: 0 
and 

f T(tIx; Jx) dFpx(tIx) 

hiv(uDx, Jx) = Cov(Jx, PIX = x) 

Fpax(tJx) - Fpalx(tlx) 
E(PaIX = x) - E(PaIX = x) 

Given conditions (i) and (ii), condition (iii) is necessary and sufficient for the 
existence of such an instrument. If the instrument exists, it can be constructed as37 

I fpalx(P(Z)lx) 
- fpaix(P(Z)Ix) 

Jx((Z) 

= fp1x(P(Z)1x) 
0, if fpx(P(Z)lx) = 0.38 

PROOF: The proof follows by verifying the conditions of Proposition 1. See 
Appendix C. Q.E.D. 

Condition (i) requires that the propensity score be a continuous random 
variable in a benchmark regime and under both alternative regimes. Condi- 
tion (ii) requires that the fraction of individuals selecting into treatment under 
regime a is different than the fraction under regime a'. Condition (iii) imposes 
the requirement that the densities of the propensity score in the two regimes 
only differ at evaluation points in the support of the benchmark propensity 
score. If (iii) fails, then no policy relevant instrument can be constructed. 

An immediate corollary of the proposition is that IV using the propensity 
score as the instrument recovers the policy relevant parameter if 

(13) P(Z) = a(X) + 13(X)[ fpa'x(P(Z)) 
- 

Ifp, x(j (Z)) ] 
fpIx (P(Z)) 

where a(X) = E(P(Z)IX) and P(X) = -Var(P(Z)IX), i.e., only if the 
propensity score is linear in {fp,j x(P(Z)) - fPaix(P(Z))1/fpix(P(Z)). A related question asks whether, given an instrument, there exists a policy 
counterfactual such that the given instrument is the policy relevant instrument 
for that counterfactual. We investigate this question for policy counterfactuals 
starting from a benchmark distribution of P(Z) (the benchmark policy is a, so 
Pa(Za) = P(Z)) to some new policy characterized by Pa,(Za,). We first answer 

371f such a Jx(Z) exists, then any linear function of Jx(Z) will also produce the desired set of 
weights. 

38Note that fplx(P(Z)lx) > 0 with probability 1 so that Jx(Z)= (fpa, i(P(Z)jx) - 

fpex(P(Z) x))/(fpx (P(Z)Ix) with probability 1. 
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the question for the special case where the propensity score is the instrument. 
Solving for 

fpaoI x(P(Z)) in (13), the propensity score will be the policy relevant 
instrument for a policy characterized by 

(14) 
kfPx(UD) 

= 
fPx(UD)(1 

UD 
- 

E(P(Z)IX) 
Var(P(Z) X) 

If 
fP,,Ix given by Equation (14) is a proper density, then instrumental variables 

using the propensity score directly estimate the effect of a policy intervention 
that changes the density of the propensity score from fplx to fp, lx, where 

fPaolx 
is given by Equation (14). To be a proper density, fPa,lx must integrate 

to 1 and be nonnegative for all evaluation points. fp, lx (.) integrates to 1.39 
Hence, 

fpda,x(.) 
will be nonnegative and thus a proper density if and only if 

uD - E(P(Z)IX) < Var(P(Z)) for all UD such that fPIX(UD) > 0. If we let 
pMax denote the maximum of the support of P(Z) conditional on X, we can 
rewrite this condition as pMax 

- E(P(Z)IX = x) < Var(P(Z)IX = x). Noth- 
ing guarantees that this condition holds, so one cannot guarantee that an 
instrument produces any policy counterfactual. Not all instruments answer 
well-posed policy questions. 

We next consider the question of whether a general instrument is the policy 
relevant instrument for some policy. Following the same series of steps used to 
establish (14), if the instrument J(Z) answers a corresponding policy question, 
then the policy imposes the restriction that 

falx (uD fPIX (U E(J(Z)(X, P(Z) = UD)- E(J(Z)IX)\ 
() 

Cov(J, P(Z)IX) 

The implied fpa, (.) integrates to 1. It is nonnegative for all evaluation points if 
and only if 

E(J(Z)IX, P(Z) = UD) - E(J(Z)IX) 
<1 

Cov(J, P(Z)IX) 

for all UD such that fPx (UD) > 0. If this condition fails, the instrument is not 
the policy relevant instrument for any policy. Nothing in the structure of the 
problem imposes this requirement. 

The preceding analysis conditions on X. Suppose that we wish to recover 
unconditional parameters, e.g., those defined by f[f AMTE(x, U)w(ujx) du] x 

dFx (x). If the conditions of Proposition 1 hold for X = x (almost everywhere), 
then one solution would be to construct J,(Z) for each x, estimate the para- 
meter conditional on X for each x, and then average over x values. However, 

39f fpix(UD)( - (U - E(P(Z)IX))/(Var(P(Z)IX))) dUD = 1 since fuDfPIX(UD) dUD 
E(P(Z)IX). 
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from the construction of J,(Z), one can use instrumental variables uncondi- 
tional on X with the constructed J(Z) as the instrument to obtain the desired 
parameter in one step. 

PROPOSITION 3: Assume that the conditions of Proposition 1 hold for almost 
all X. Construct 

I w'(P(Z) IX) 
J(Z) fpx(P(Z))' 

if 
fpx(P(Z)) 

> 0, 
frix(P(Z)) 

O, if 
fpvx(P(Z)) 

= 0.40 

Then 

Cov(J(Z), 
Y) ff= AMTE(x uD)w(UD Ix) du dFx(x). 

PROOF: See Appendix C. 

Thus far we have considered the case where P(Z) is a continuous random 
variable. Is it possible to construct an instrument that produces the desired 
weights if P(Z) is discrete? The following proposition shows that instrumental 
variables estimators are only able to produce a very narrow range of weights if 
P(Z) is discrete. In particular, they only produce weights given by step func- 
tions with the jumps in the weight function occurring only at the support points 
of P(Z). 

PROPOSITION 4: Under the conditions 
(i) The support of the distribution of P(Z) conditional on X is a finite set, 

{p, ...-, PK} with P1 < 2 < ... < PK and with Pr[P(Z)= pjIX = x] > 0 for 
each j= 1, . .., K, 

(ii) w(.Ix) satisfies the properties fo w(uDIx) du = 1, and w(uDlx) = 0 for 
uD < Pi and for uD > PK, 

(iii) w(uD X) is constant in u over the interval (pi, pj+l] for j = 1, . . . , K; 
there exists an instrument Jx(Z) such that Cov(Jx, DIX = x) # 0 and 

fw) D T(tlx; J) dFpix(tlx) 
Cov(Jx, PIX = x) 

An instrument that satisfies these conditions is 

K 1 
Jx(Z)=E1\(I 

- 
wi+i)1[P(Z) = pi], 

(Z)= • Pr[P(Z) = pplX = x] (w - w )[P(Z) = j= 1 

40Note that fpix(P(Z) X) > 0 with probability 1 so that J(Z) = w'(P(Z)IX)ifpix(P(Z)IX) with probability 1. 
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where wj denotes the (constant) value of W(UD IX) over the interval (pj_1, pj] for 
j = 2,..., K - 1 and where w = WK+1 = 0.41 Given condition (i), conditions 
(ii) and (iii) are necessary and sufficient for the existence of such an instrument. 

PROOF: See Appendix C. 

Thus, if P(Z) is a discrete random variable, only a very limited set of possible 
weights on P(Z) can be captured through proper choice of the instrument, so 
the class of policies that can be generated by IV is very limited. We next use 
our framework to analyze the OLS estimator and the assumptions about AMTE 

imposed in one widely used version of the method of matching. 

4.5. OLS Weights and Matching 

The OLS estimator can also be represented as a weighted average of AMTE 
The weight is given in Table IB, where U1 and U0 are defined as deviations 
from conditional expectations, U1 = Y - E(Y1IX) and Uo = Yo - E(YoJX). 
Unlike the weights for Arr and AATE, these weights do not necessarily inte- 
grate to 1 and they are not necessarily nonnegative. The OLS weights for the 
generalized Roy model are plotted in Figure 1B. The negative component of 
the OLS weight leads to a smaller OLS treatment estimate compared to the 
other treatment effects in Table II. 

Table II shows the estimated OLS treatment effect for the generalized Roy 
example. For a binary regressor D, OLS conditional on X identifies 

AOLS(X) = E(Y1IX, D = 1) - E(YoIX, D = 0) 

= E(Y - Yo0X, D= 1) 

+ {E(Yo IX, D = 1) - E(YoIX, D = 0)), 

where the term in braces is the "selection bias" term-the difference in pre- 
treatment outcomes between treated and untreated individuals. It is also the 
bias for AT'. The large negative selection bias in this example is consistent 
with comparative advantage as emphasized by Roy (1951). People who are 
good in sector 1 (i.e., treatment) may be very poor in sector 0 (no treatment). 
The differences among the policy relevant treatment effects, the conventional 
treatment effects, and the OLS estimand are illustrated in Figure 3A and 
Tables II and III. As is evident from Table II, it is not at all clear that the 
instrumental variable estimator, with instruments that satisfy classical prop- 
erties, performs better than OLS in identifying the policy relevant treatment 
effect. 

41When such an instrument exists, it will not be unique, since the IV estimand will be invariant 
to rescaling or location shifts for the instrument. 
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If there is no selection conditional on covariates, UD i_ (Y1, Yo)IX, then 
E(UIIX, UD) = E(UI0X) = 0 and E(UolX, UD) = E(UoIX) = 0 so that the 
OLS weights are unity and OLS identifies ATE. OLS is a form of matching. 
Furthermore, UD AL (Y1, Yo)IX implies that AMTE(x, UD) does not vary with 
UD, i.e., AMTE(X, UD) = AMTE(X, UD) for UD, u' (almost everywhere), so all 
treatment effects are the same. Observe that given the assumed conditional 
independence in terms of X, we can identify ATE and TT without requiring 
a Z that satisfies (A-2). If there is such a Z, the conditional independence con- 
dition implies under (A-1)-(A-5) that E(YIX, P(Z) = p) is linear in p. This 
conditional independence assumption is invoked in the method of matching 
and has come into widespread use. The method is based on the assumption 
that there is no purposeful selection into the program based on unmeasured 
(by the econometrician) components of gain.42 

One can weaken the assumption that UD iL (Y1, Y0)IX to the condition that 
Y1 and Yo are mean independent of D conditional on X.43 However, D will be 
mean independent of Y1, Yo conditional on X without UD being independent 
of Y,, Yo conditional on X only if fortuitous balancing occurs with regions of 
positive Y1, Yo dependence on UD and regions of negative Y1, Yo dependence 
on UD that just exactly offset each other. Such balancing is ruled out in the Roy 
model and in the generalized Roy model.44'45 We next apply our framework to 
analyze policy forecasting problems. 

5. OUT OF SAMPLE POLICY FORECASTING, FORECASTING THE EFFECTS OF 
NEW POLICIES AND STRUCTURAL MODELS BASED ON THE MTE 

Section 3 introduced the concept of the Policy Relevant Treatment Effect 
and invoked a policy invariance assumption. In this section, we present condi- 

42See Heckman and Navarro-Lozano (2004) and Heckman and Vytlacil (2005) for a more 
extensive discussion of matching estimators. 

43See Heckman, Ichimura, Smith, and Todd (1998) and Heckman, Ichimura, and Todd (1997). 
If the goal of the analysis is to estimate ATT, one can get by with the weaker assumption that 
only Yo is mean independent of D conditional on X since E(Y ID = 1, X = x) is identified from 
observational data so there can be selection arising from dependence between Y1 and D. 

44In particular, assume Yj = pj(X) + Uj for j = 0, 1, assume D = 11[Y1 - Yo > C(Z) + Uc], 
and let UD = Uc - (U1 - Uo). Then if Uc iL (U1 - Uo) and Uc has a log concave density, then 
E(Y1 - YolX, UD = UD) is decreasing in uD, zr(x) > AATE(X), and the matching conditions do 
not hold. If Uc 1L (U1 - Uo) but Uc does not have a log concave density, then it is still the case 
that (U1 - U0, UD) is negative quadrant dependent. One can show that (U1 - Uo, UD) being 
negative quadrant dependent implies that At'(x) > AATE(x) and thus again that the matching 
conditions cannot hold. See Heckman and Vytlacil (2005) for further discussion. 

45It is sometimes said that the matching assumptions are "for free" (see Gill and Robins 
(2001)) because one can always replace unobserved F(YI1X = x, D = 0) with F(Y1IX = x, 
D = 1) and unobserved F(YojX = x, D = 1) with F(YoIX = x, D = 0). This ignores the coun- 
terfactual states generated under the matching assumptions that (C-1) is true in the population. 
The assumed absence of selection is not a "for free" assumption, and produces fundamentally 
different counterfactual states for the same model under matching and selection assumptions. 
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tions for consttucting PRTE for new environments and for new programs using 
historical data. 

Using the terminology of Campbell and Stanley (1966), estimating the 
impact of a program in place in a particular environment is the problem of "in- 
ternal validity." Extrapolating internally valid estimates to new environments, 
"external validity," or forecasting the effects of new policies are also important 
problems which we now address. 

Let a E A denote a policy characterized by random vector Za. Let e E ? 
denote an environment characterized by random vector Xe. A history, N, is a 
collection of policy-environment (a, e) pairs that have been experienced and 
documented. We assume that the environment is autonomous, so the choice 
of a does not affect Xe. Letting Xe,a denote the value of Xe under policy a, 
autonomy requires the following statement: 

(A-8) For all a, e, Xe,a = Xe (autonomy). 

Autonomy is a more general notion than the concept introduced in (A-6). The 
concepts are the same when the policy is a treatment. General equilibrium 
feedback effects can cause a failure of autonomy. In this section we will assume 
autonomy, in accordance with the partial equilibrium tradition in the treatment 
effect literature.46 

Evaluating a particular policy a' in environment e' is straightforward if 
(a', e') E N. One simply looks at the associated outcomes and treatment ef- 
fects formed in that policy environment and applies the methods previously 
discussed to obtain internally valid estimates. The challenge comes in forecast- 
ing the impacts of policies (a') in environments (e') for (a', e') not in N. 

We show how AMTE plays the role of a policy invariant functional that aids 
in creating counterfactual states never previously experienced. We focus on 
the problem of constructing the policy relevant treatment effect APRTE, but our 
discussion applies more generally to the other treatment parameters. 

Given the assumptions invoked in Section 3, AMTE can be used to evaluate 
a whole menu of policies characterized by different conditional distributions 
of Pa'. In addition, given our assumptions, we can focus on how policy a', which 
is characterized by Za,, produces the distribution FPa, x, which weights an in- 
variant AMTE without having to conduct a new investigation of (Y, X, Z) rela- 
tionships for each proposed policy.47 

5.1. Constructing Weights for New Policies in a Common Environment 

The problem of constructing APRTE for policy a' (compared to ii) in envi- 
ronment e when (a', e) 4 N entails constructing E(V(Ya,)). We maintain the 

46However, see Heckman, Lochner, and Taber (1998) for an example of a nonautonomous 
treatment model. 

47Ichimura and Taber (2002) present a discussion of local policy analysis in a more general 
framework without the MTE structure, using a framework developed by Hurwicz (1962). 
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assumption that the baseline policy is observed, so (ai, e) e H. We assume 
(A-1)-(A-5), (A-7), and (A-8), and use (3) to characterize choices. The pol- 
icy does not change the distribution of (Yo, YI, UD) conditional on X. Under 
these conditions, Equation (6) is a valid expression for PRTE, and construct- 
ing PRTE only requires identification of AMTE and constructing FP, Xe from 
the policy histories He, defined as the elements of H for a particular environ- 
ment e, He = {a: (a, e) E )}. 

Associated with the policy histories a E -e is a collection of policy variables 
{Za: a E Ne)}. Suppose that a new policy a' can be written as Za, = Ta,,j(Zj) for 
some j E Ne, where Ta,,j is a known deterministic transformation and Za, has 
the same list of variables as Zj. Examples of policies that can be characterized 
in this way are tax and subsidy policies on wages, prices, and incomes that af- 
fect unit costs (wages or prices) and transfers. Tuition might be shifted upward 
for everyone by the same amount or tuition might be shifted according to a 
nonlinear function of current tuition, parents' income, and other observable 
characteristics in Zj. 

Constructing Fp,, xe from data in the policy history entails two distinct steps. 
From the definitions, Pr(Pa, < tlXe) = Pr(Za, :Pr(Da, = liZa,, Xe)< tlXe). If 
(i) we know the distribution of Za, and (ii) we know the function Pr(Da, = 
11 Za' = Z, Xe = x) over the appropriate support, we can then recover the distri- 
bution of Pa' conditional on X,. Given that Za, = Ta,,j(Zj) for a known function 

Ta,,j(-), step (i) is straightforward since we recover the distribution of Za, from 
the distribution of Zj by using the fact that Pr(Za, < tlXe) = Pr(Zj: Ta,,j(Zj) < 
tlXe). Alternatively, part of the specification of the policy a' might be the distri- 
bution Pr(Za, < tlXe). We now turn to the second step, recovering the function 
Pr(Da, = llZa, = z, Xe = x) over the appropriate support. 

If Za, and Zj contain the same elements, though possibly with different dis- 
tributions, then a natural approach to forecasting the new policy is to postulate 
that 

(15) Pj(z) = Pr(Dj = 11Zj = z, Xe) 

= Pr(Da, = 11Za, = z, Xe) = Pa,(z), 

i.e., that over a common support for Zj and Za, the known conditional 
probability function and the desired conditional probability function agree. 
Condition (15) will hold, for example, if Dj 

= 
l[LD(Zj) 

- UD > 0], Da, = 
1[LLD(Za') - UD > 0], Zj IL UDIXe, and Za, IL UDIXe. Even if condition (15) 
is satisfied on a common support, the support of Zj and Za, may not be the 
same. If the support of the distribution of Za, is not contained in the support 
of the distribution of Z7, then some form of extrapolation is needed. Alterna- 
tively, if we strengthen our assumptions so that (15) holds for all j E 

-Ne, we 
can identify Pa'(z) for all z in 

U1_-r Supp(Zj). 
However, there is no guarantee 

that the support of the distribution of Za, will be contained in Uj1en Supp(Z1), 
in which case some form of extrapolation is needed. 
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If extrapolation is required, then one approach is to assume a parametric 
functional form for Pj(.). Given a parametric functional form, one can use the 
joint distribution of (Dj, Zj) to identify the unknown parameters of Pj(.) and 
then extrapolate the parametric functional form to evaluate Pj(.) for all evalu- 
ation points in the support of Za,. Alternatively, if there is overlap between the 
support of Za, and Zj,48 so there is some overlap in the historical and policy 
a' supports of Z, we may use nonparametric methods presented in Matzkin 
(1994) with functional restrictions (e.g., homogeneity) to construct the desired 
probabilities on new supports or to bound them. Under the appropriate con- 
ditions, we may use analytic continuation to extend Pr(Dj = 1IZj = z, Xe = x) 
to a new support for each X, = x (Rudin (1974)). 

The approach just presented is based on the assumption stated in Equa- 
tion (15). That assumption is quite natural when Za, and Zj both contain the 
same elements, say they both contain tuition and parents' income. However, 
in some cases Za, might contain additional elements not contained in Zp. As 
an example, Za, might include new user fees, while ZJ consists of taxes and 
subsidies but does not include user fees. In this case, the assumption stated in 
Equation (15) is not expected to hold and is not even well defined if Za, and Zj 
contain a different number of elements. 

A more basic approach analyzes a class of policies that operate on con- 
straints, prices, and endowments arrayed in vector C. Given the preferences 
and technology of the agent, a given C = c, however arrived at, generates the 
same choices for the agent. Thus a wage tax offset by a wage subsidy of the 
same amount produces a wage that has the same effect on choices as a no- 
policy wage. Policy j affects C (e.g., it affects prices paid, endowments, and 
constraints). Define a map k1j: Zj --+ Cj which maps a policy j, described by Zj, 
into its consequences (Cj) for the baseline, fixed-dimensional vector C. A new 
policy a', characterized by Za,, produces Ca, that is possibly different from Cj 
for all previous policies j] e ,. 

To construct the random variable Pa' = Pr(Da, = llZa,, Xe), we postulate 
that 

Pr(Dj = 1IZj E 0l'(c), Xe = 
x) 

= Pr(Dj = 1 Cj = c, X,= x) 
= Pr(Da, = IICa = c, Xe = x) 

= Pr(Dal- = lZa , E 
aj(c), 

Xe = X), 

where P-1(c) = 
{z:"j(z) 

= c} and 
/2(c) 

= {z:Ia,(z) = c}. Given these as- 
sumptions, our ability to recover Pr(Da, = IIZa, = z, Xe = x) for all (z, x) in 
the support of (Za,, Xe) depends on what #1 functions have been historically 

48If we strengthen condition (15) to hold for all j c :e,, then the condition becomes that 

Supp(Za,) n 
,Supp(Z)upp(Z) 

is not empty. 
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observed and how rich the histories of Cj, j e "e are. For each z,, evalua- 
tion point in the support of the distribution of Za,, there is a corresponding 
c = :,a (za) evaluation point in the support of the distribution of Cj = Pji(Z1). 
If, in the policy histories, there is at least one j E N such that Pj(zj) = c for 
a zj with (zj, x) in the support of the distribution of (Zj, Xe), then we can con- 
struct the probability of the new policy from data in the policy histories. The 
methods used to extrapolate Pa,(.) over new regions, discussed previously, ap- 
ply here. If the distribution of Ca, (or a,, and the distribution of Za,) is known 
as part of the specification of the proposed policy, the distribution of 

FP,IXe 
can be constructed using the constructed Pa,. Alternatively, if we can relate Ca' 
to Cj by Ca, = 

'a,,j(Cj) 
for a known function 

/a',j 
or if we can relate Za, to 

Zj 
by Za,, = Ta,,j(Zj) for a known function Ta,,j, and the distributions of Cj and/or 

Zi are known for some j E 7-,, we can apply the method previously discussed 
to derive Fp,,Ix, and hence the policy weights for the new policy. 

This approach assumes that a new policy acts on components of C like a 
policy in e,, so it is possible to forecast the effect of a policy with nominally 
new aspects. The essential idea is to recast the new aspects of policy in terms 
of old aspects previously measured. Thus in a model of schooling, let D = 
1[Y1 - Yo - B > 0], where Y, - Yo is the discounted gain in earnings from going 
to school and B is the tuition cost. Here the effect of cost is just the negative 
of the effect of return. Historically, we might only observe variation in Y, - Yo 
(say tuition has never previously been charged), but B is on the same footing 
(has the same effect on choice, except for sign) as Y1 - Yo. This identified 
historical variation in Y1 - Yo can be used to nonparametrically forecast the 
effect of introducing B, provided that the support of Pa, is in the historical 
support generated by the policy histories in Ne. Otherwise, some functional 
structure (parametric or semiparametric) must be imposed to solve the support 
problem for Pa'. 

As another example, following Marschak (1953), consider the introduction 
of wage taxes in a world where there has never before been a tax. Let Zj be the 
wage without taxes. We seek to forecast a posttax net wage Za, = (1 - 7)Zj + b, 
where T is the tax rate and b is a constant shifter. Thus Za, is a known linear 
transformation of policy Zj. We can construct Za, from Zj. We can forecast 
under (A-2) using Pr(Dj = l1Zj = z) = Pr(Da, = 11Za, = z). This assumes that 
the response to after tax wages is the same as the response to wages at the after 
tax level. The issue is whether Pa'lx, lies in the historical support or whether 
extrapolation is needed. Nonlinear versions of this example can be constructed. 

As a final example, environmental economists use variation in one compo- 
nent of cost (e.g., travel cost) to estimate the effect of a new cost (e.g., a park 
registration fee). See Smith and Banzhaf (2004). Relating the costs and char- 
acteristics of new policies to the costs and characteristics of old policies is a 
standard, but sometimes controversial, method for forecasting the effects of 
new policies. 
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In the context of our model, extrapolation and forecasting are confined to 
constructing Pa, and its distribution. If policy a', characterized by vector Za, 
consists of new components that cannot be related to Zj, j E H,, or a base set 
of characteristics whose variation can be identified, the problem is intractable. 
Then Pa, and its distribution cannot be formed using econometric methods 
applied to historical data. 

When it can be applied, our approach allows us to simplify the policy fore- 
casting problem and concentrate our attention on forecasting choice probabili- 
ties and their distribution in solving the policy forecasting problem. We can use 
choice theory and choice data to construct these objects to forecast the impacts 
of new policies by relating new policies to previously experienced policies. 

5.2. Forecasting the Effects of Policies in New Environments 

When the effects of policy a are forecast for a new environment e' from 
baseline environment e, and when Xe # Xe,, in general both AMTE(x, UD) and 
FPalXe will change. In general, neither object is environment invariant.49 The 
new Xe, may have a different support than Xe or any other environment in R. 
In addition, the new (Xe,, UD) stochastic relationship may be different from the 
historical (Xe, UD) stochastic relationship. Constructing 

FPaIX, 
from Fa, Xe and 

FzaIXe, from 
FzaXe 

can be done using (i) functional form (including semipara- 
metric functional restrictions) or (ii) analytic continuation methods. Notice 
that the maps Ta,j and (Pa may depend on Xe, and so the induced changes 
in these transformations must also be modeled. There is a parallel discussion 
for AMTE(x, UD). The stochastic dependence between Xe, and (U1, Uo, UD) may 
be different from the stochastic dependence between Xe and (U1, Uo, UD). We 
suppress the dependence of Uo and U, on e and a only for convenience of 
exposition and make it explicit in the next paragraph. 

Forecasting new stochastic relationships between Xe, and (U1, Uo, UD) is a 
difficult task. It can be avoided if we invoke the traditional exogeneity assump- 
tions of classical econometrics: 

(A-9) For all e, a, (Ui,e,a, Uo,e,a, UD,e,a) IL (Xe, Za). 

Under (A-9), we only encounter the support problems for both AMTE and the 
distribution of Pr(Da = 1lZa, Xe) in constructing policy counterfactuals. 

Conditions (A-7)-(A-9) are unnecessary if the only goal of the analysis is 
to establish internal validity, the standard objective of the treatment effect lit- 
erature. Autonomy and exogeneity conditions become important issues if we 
seek external validity. An important lesson from this analysis is that as we try 
to make the treatment effect literature do the tasks of structural economet- 
rics (i.e., make out of sample forecasts), the assumptions invoked in the two 
literatures come together. 

49We suppress the dependence of UD on a for notational convenience. 
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5.3. A Comparison of Three Approaches 

Table V compares the strengths and limitations of the three approaches to 
policy evaluation that we have discussed: the structural approach, the con- 
ventional treatment effect approach, and the recently developed approach to 
treatment effects based on the MTE function developed in this paper. 

The approach based on the MTE function and the structural approach share 
interpretability of parameters. Like the structural approach, it addresses a 
range of policy evaluation questions. The MTE parameter is less comparable 
and less easily extrapolated across environments than are structural parame- 
ters, unless nonparametric versions of invariance and exogeneity assumptions 
are made. However, AMTE is comparable across populations with different dis- 
tributions of P (conditional on Xe) and results from one population can be 
applied to another population under the conditions presented in this section. 
Analysts can use AMTE to forecast a variety of policies. This invariance prop- 
erty is shared with conventional structural parameters. Our framework solves 
the problem of external validity which is ignored in the standard treatment ef- 
fect approach. The price of these advantages of the structural approach is the 
greater range of econometric problems that must be solved. They are avoided 
in the conventional treatment approach at the cost of producing parameters 
that cannot be linked to well-posed economic models and hence do not pro- 
vide building blocks for an empirically motivated general equilibrium analysis 
or for investigation of the impacts of new public policies. The AMTE estimates 
the preferences of the agents being studied and provides a basis for integra- 
tion with well-posed economic models. If the goal of a study is to examine 
one policy in place (the problem of internal validity), the stronger assumptions 
invoked in this section of the paper, and in structural econometrics, are un- 
necessary. Even if this is the only goal of the analysis, however, our approach 
allows the analyst to generate all treatment effects and IV estimands from a 
common parameter and provides a basis for unification of the treatment effect 
literature. 

6. MONOTONICITY, UNIFORMITY, NONSEPARABILITY, INDEPENDENCE, AND 
POLICY INVARIANCE: THE LIMITS OF INSTRUMENTAL VARIABLES 

The analysis of this paper and the entire recent literature on instrumental 
variables estimators for models with heterogeneous responses (i.e., models 
with outcomes of the form (2a) and (2b)) relies critically on the assumption 
that the treatment choice equation has a representation in the additively sep- 
arable form (3). From Vytlacil (2002), we know that, under our assumptions, 
this assumption is equivalent to the assumption of monotonicity as defined 
by Imbens and Angrist (1994). Using the notation of Section 2.1, Imbens and 
Angrist define monotonicity as the following condition: if the Z are changed 
for everyone from Z = z to Z = z', D~ > Dz, or Dz < Dz, for all UD condi- 
tional on X. A better name for this condition would be "uniformity," since it 
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TABLE V 

COMPARISON OF ALTERNATIVE APPROACHES TO PROGRAM EVALUATION 

Structural Econometric Treatment Effect Approach Based 

Approach Approach on MTE 

Interpretability Well defined eco- Link to economics Interpretable in terms 
nomic parameters and welfare compar- of willingness to pay; 
and welfare compar- isons obscure weighted averages of 
isons the MTE answer well- 

posed economic ques- 
tions 

Range of questions Answers many coun- Focuses on one treat- With support condi- 
addressed terfactual questions ment effect or narrow tions, generates all 

range of effects treatment parameters 
Extrapolation to Provides ingredients Evaluates one pro- Can be partially 
new environments for extrapolation gram in one environ- extrapolated; extrap- 

ment olates to new policy 
environments with 
different distributions 
of the probability 
of participation due 
solely to differences 
in distributions of Z 

Comparability Policy invariant pa- Not generally compa- Partially comparable; 
across studies rameters comparable rable comparable across en- 

across studies vironments with dif- 
ferent distributions of 
the probability of par- 
ticipation due solely 
to differences in dis- 
tributions of Z 

Key econometric Exogeneity, policy in- Selection bias Selection bias: exo- 
problems variance, and selec- geneity and policy in- 

tion bias variance if used for 
forecasting 

Range of policies Programs with either Programs with partial Programs with partial 
that can be evalu- partial or universal coverage (treatment coverage (treatment 
ated coverage, depending and control groups) and control groups) 

on variation in data 
(prices/endowments) 

Extension to gen- Need to link to time Difficult because link Can be linked to non- 
eral equilibrium series data; parame- to economics is not parametric general 
evaluation ters compatible with precisely specified equilibrium models 

general equilibrium under exogeneity and 
theory policy invariance 

describes a condition across people rather than the shape of a function for a 
particular person. 
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This uniformity condition imparts an asymmetry to the entire instrumental 
variable enterprise. Responses are permitted to be heterogeneous in a general 
way, but choices of treatment are not. In this section, we relax the assumption 
of additive separability in (3). We establish that in the absence of additive sep- 
arability or uniformity, the entire instrumental variable identification strategy 
in this paper and the entire recent literature collapses. Parameters can be de- 
fined as weighted averages of an MTE, but MTE and the derived parameters 
cannot be identified using any instrumental variable strategy. 

One natural benchmark nonseparable model is a random coefficient model 
of choice D = 1[Zp > 0], where 3 is a random coefficient vector and p IL 
(Z, U0, U1). If p is a random coefficient with a nondegenerate distribution 
and with components that take both positive and negative values, uniformity 
is clearly violated. However, it can be violated even when all components of / 
are of the same sign if Z is a vector. 

To consider a more general case, relax the assumption of Equation (3) 

(16a) D* 
-= D(Z, UD), 

where ID(Z, UD) is not necessarily additively separable in Z and UD, and UD is 
not necessarily a scalar.50 In the random coefficient example, UD = 3. 

(16b) D= 1 [D* > 0]. 

We maintain assumptions (A-1)-(A-5) and (A-8). 
In special cases, (16a) can be expressed in an additively separable form. 

For example, if D* is weakly separable in Z and UD, D* = D(O(Z), UD) for 
any UD, where 0(Z) is a scalar function, AD is increasing in 0(Z), and UD is a 
scalar, then we can write (16b) in the same form as (3): 

D = 1[O(Z) > U], 

where U = UgD(0; UD) and U 1 ZIX, and the inverse function is expressed 
with respect to the first argument. Vytlacil (2002) shows that any model that 
does not satisfy uniformity (or "monotonicity") will not have a representation 
in this form.5' 

In the additively separable case, the MTE (4) has three equivalent interpre- 
tations. (i) The term UD is the only unobservable in the first stage decision 

5OThe additively separable latent index model is more general than it may at first appear. It 
is shown in Vytlacil (2004) that a wide class of threshold crossing models without the additive 
structure on the latent index will have a representation with the additively separable structure on 
the latent index. 

51In the random coefficient case where Z = (1, Z1), where Z1 is a scalar, and p = (/3o, 1) 
if p1 > 0 for all realizations, we can write the choice rule in the form of (3): Z1 81 > -/0o 
Z > -3o0/13 and UD = --o0/131. This trick does not work in the general case. 
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rule, and MTE is the average effect of treatment given the unobserved charac- 
teristics in the decision rule (UD = UD). (ii) A person with UD = uD would be 
indifferent between treatment or not if P(Z) = UD, where P(Z) is a mean scale 
utility function. Thus, the MTE is the average effect of treatment given that 
the individual would be indifferent between treatment or not if P(Z) = UD. 
(iii) One can also view the additively separable form (3) as intrinsic in the way 
we are defining the parameter and interpret the MTE (4) as an average effect 
conditional on the additive error term from the first stage choice model. Under 
all interpretations of the MTE and under the assumptions used in the preced- 
ing sections of this paper, MTE can be identified by LIV; the MTE does not 
depend on Z, and hence it is policy invariant and the MTE integrates up to 
generate all treatment effects, all policy effects, and all IV estimands. 

The three definitions are not the same in the general nonseparable 
case (16a). Heckman and Vytlacil (2001a) extend MTE in the nonseparable 
case using interpretation (i). The MTE defined this way is policy invariant to 
changes in Z. They show that LIV is a weighted average of the MTE with 
possibly negative weights and does not identify MTE. If uniformity does not 
hold, the definition of MTE allows one to integrate MTE to obtain all of the 
treatment effects, but the instrumental variables estimator breaks down. 

Alternatively, one could define MTE based on (ii): 

BATE(X, Z) E(Y - 
YolX 

= x, UD E UD LLD(Z, UD) = 0}). 

This is the average treatment effect for individuals who would be indifferent 
between treatment or not at a given value of z. Heckman and Vytlacil (2001a) 
show that in the nonseparable case LIV does not identify this MTE and that 
MTE does not change when the distribution of Z changes, provided the sup- 
port of MTE does not change."2 In general, this definition of MTE does not 
allow one to integrate up MTE to obtain the treatment parameters. 

A third possibility is to force the index rule into an additive form by taking 

/-t*D(Z) 
= E(SLLD(Z, UD)IZ), defining UL = ILD(Z, U) - E(LLD(Z, U)IZ), and 

define MTE as E(Y1 - YoIX = x, UL - Us ). Note that UL is not independent 
of Z, is not policy invariant, and is not structural. LIV does not estimate MTE. 
With this definition of the MTE, it is not possible in general to integrate up 
MTE to obtain the various treatment effects. 

For any version of the nonseparable model except those that can be 
transformed to separability, index sufficiency fails. To see this most directly, 
assume that ALLD(Z, UD) is absolutely continuous with respect to Lebesgue 
measure. Define f2(z) = {uID :LD(Z, UD) > 01. In the additively separable case, 
P(z) - Pr(D = lZ = z) = Pr(uD E 0(z)) and P(z) = P(z') + 92(z) = 92(z'). 
This produces index sufficiency. In the more general case of (16a) it is possible 
to have (z, z') such that P(z) = P(z') and 9(z) -4 9(z'), so index sufficiency 
does not hold. 

52If the support of Z changes, then the MTE must be extended to a new support. 
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6.1. Implications of Nonseparability 
In this section, we develop generalization (i), leaving development of the 

other interpretations for another occasion. We focus on PRTE. The analysis of 
the other treatment parameters follows by parallel arguments. 

For any uD in the support of the distribution of UD, define 9,D 
= {z. DD(Z, 

UD) > 0). For example, in the random coefficient case, with UD -- /3 and 
D = 1[ZP3 > 0], we have 2b = {z: zb > 01, where b is a realization of 3. De- 
fine 1A(t) to be the indicator function for the event t e A. Then Appendix B 
shows that 

(17) E(Ya) - E(Yai) 

= E[E(YaIX) - E(Ya, IX)] 

=1 [f fE(A|X = UD) 

( Pr[Z, E n, X = x] 
x 

-Pr[Za, 

G uD 

- 
xUdFuDIX(uDIx) dFx(x). 

( - Pr[Za', E uD IX = x] D 

Thus, without additive separability, we can still derive an expression for PRTE 
and by similar reasoning the other treatment parameters. However, to evalu- 
ate the expression requires knowledge of MTE, of Pr[Za e ,uDIX = x] and 
Pr[Za, E 2uD X = x] for every (UD, x) in the support of the distribution of 
(UD, X), and of the distribution of UD. In general, if no structure is placed 
on the ID function, one can normalize UD to be unit uniform (or a vector 
of unit uniform random variables) so that FUDlx will be known. However, in 
this case the ,uDD = ({z: D(Z, UD) > 01 sets will not in general be identified. 
If structure is placed on the ALD function, one might be able to identify the 
DMD = 

(Z:" 
D(Z, UD) > 01 sets, but then one needs to identify the distribution 

of UD conditional on X. If structure is placed on LD, one cannot in general nor- 
malize the distribution of UD to be unit uniform without undoing the structure 
being imposed on AD. 

In particular, consider the random coefficient model D = 1[ZP > 0], where 
UD = 0 is a random vector, so that Q2p = {z: zp > 01. In this case, if all of the 
other assumptions hold, including Z II LPIX, and the policy change does not 
affect 

(Y1, 
Yo, X, 3p), the PRTE is given by 

E(Ya) - E(Ya,) 

= E[E(YaIX) - E(Ya, X)] 

= f E([ x, 
=x b) 

SPr[Za 
c 

QblX 
= x] 

X(- Pr[Za, E bI |X = x d ]Fxb x)J dFx(x). 
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Because structure has been placed on the AD(Z, p) function, the sets f2p are 
known. However, evaluating the function requires knowledge of the distribu- 
tion of p which will not in general be identified without further assumptions.53 
Normalizing the distribution of /3 to be a vector of unit uniform random vari- 
ables produces the distribution of /3, but eliminates the assumed linear index 
structure on ID and results in Df2 sets that are not identified. 

Even if the weights are identified, Heckman and Vytlacil (2001a) show that 
it is not possible to use LIV to identify MTE without additive separability be- 
tween Z and UD in the selection rule index. Appendix D develops this point for 
the random coefficient model. Thus, without additive separability in the latent 
index for the selection rule, we can still create an expression for PRTE (and 
the other treatment parameters), but both the weights and the MTE function 
are no longer identified using instrumental variables. 

One superficially plausible way to avoid these problems would be to define 

ALD(Z) = E(4D(Z, UD)IZ) and UD = ACD(Z, UD) - E(lD(Z, UD)IZ), produc- 
ing the model D = 1[AD(Z) - UD > 0]. We keep the conditioning on X 

implicit. One could redefine MTE using UD and proceed as if the true model 
possessed additive separability between observables and unobservables in the 
latent index. This is the method pursued in approach (iii). 

For two reasons, this approach does not solve the problem of providing an 

adequate generalization of MTE. First, with this definition, UD is a function of 
(Z, UD), and a policy that changes Z will then also change UD. Thus, policy 
invariance of the MTE no longer holds. Second, this approach generates a UD 
that is no longer statistically independent of Z, so that assumption (A-2) no 

longer holds when UD is substituted for UD even when (A-2) is true for UD. 
Lack of independence between observables and unobservables in the latent 
index both invalidates our expression for PRTE (and the expressions for the 
other treatment effects) and causes LIV to no longer identify MTE. 

The nonseparable model can also restrict the support of P(Z). For example, 
consider a standard normal random coefficient model with a scalar regressor 
(Z= (1, Z1)). Assume /3 •N(0, 

o), /31 N(/1, o-2), and/30 11/3,. Then 

P(zi)=eP( P3'z, 22)' 

where in this usage P is the standard cumulative normal distribution. If the 
support of z, is t1', then in the standard additive model o-2 = 0 and P(z,) has 
support [0, 1]. When 0-2 > 0, the support is strictly within the unit interval.54 
In the special case when o-2 0, the support is one point (P(z) 

=-I(PPI/o0)). 

53See, e.g., Ichimura and Thompson (1998) for conditions for identifying the distribution of 3 
in a random coefficient discrete choice model when Z i /P3. 

54The interval is [ 1(-1/31 pl/), 0(Ip11/O-)]. 
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We cannot, in general, identify ATE, TT, or any treatment effect requiring the 
endpoints 0 or 1. 

Thus the more general case model of nonuniformity presented in this sec- 
tion does not satisfy the index sufficiency property, and the support of the 
treatment effects and estimators is, in general, less than full. The random coef- 
ficient model for choice may explain the empirical support problems for P(Z) 
found in Heckman, Ichimura, Smith, and Todd (1998). 

6.2. Implications of Dependence 
We next consider relaxing the independence assumption (A-2) to allow 

Z 711 UDIX while maintaining the assumption that Z 
_L (Y1, Yo)I(X, UD). 

We maintain the other assumptions, including additive separability between 
Z and UD in the latent index for the selection rule (Equation (3)) and the as- 
sumption that the policy changes Z but does not change (UD, Yo, Y1, X). Thus 
we assume that the policy change does not change the MTE function (policy 
invariance). Given these assumptions, we derive in Appendix B the following 
expression for PRTE in the nonindependent case: 

(18) E(Ya) - E(Ya,) 
= E[E(YaJX) - E(Ya, X)] 

= [E(AX = x, UD=UD) 

( Pr[D (Za,) < UD IX = x, UD = 
UD] - Pr[AtD(Za) < UD IX = X, UD = UD 

x 
dFuDIx(UD 

x)] dFx(x). 

Although we can derive an expression for PRTE without requiring indepen- 
dence between Z and UD, to evaluate this expression requires knowledge 
of MTE, of Pr[ tD(Za) < uDIX = x, UD = UD], and of Pr[AD(Za) < uDIX 

= 

x, UD = uD] for every (x, uD) in the support of the distribution of (X, UD). This 
requirement is stronger than in the case of independence, since the weights 
no longer depend only on the distribution of Pa(Za) and Pa, (Za,) conditional 
on X. To evaluate these weights requires knowledge of the function 

/xD 
and of 

the joint distribution of (UD, Za) and (UD, Za,) conditional on X, and these 
will in general not be identified without further assumptions. 

Even if the weights are identified, Heckman and Vytlacil (2001a) show that 
it is not possible to use LIV to identify MTE without independence between 
Z and UD conditional on X. Thus, without conditional independence between 
Z and UD in the latent index for the decision rule, we can still create an ex- 
pression for PRTE, but both the weights and the MTE function are no longer 
identified without invoking further assumptions. 
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One superficially appealing way to avoid these problems is to define 
UD = 

FU•Ix,z(UD) 
and ILD (Z) = Fuolx,z(AD(Z)), so D = 

1[/LD(Z) 
- UD 

>_ 
0] = 

1[AID(Z) - UD > 0] with UD " Unif[O, 1] conditional on X and Z, and so UD is 
independent of X and Z. It might seem that the previous analysis would carry 
over. However, by defining UI = FuDIx,z(UD), we have defined UID in a way 
that depends functionally on Z and X, and hence we violate invariance of the 
MTE with respect to the shifts in the distribution of Z given X. 

6.3. Do We Need Uniformity? 
The monotonicity or uniformity condition and the additional condition of 

positive weights for MTE are both required to obtain gross treatment effects 
using IV. If these conditions are violated, changes in Z induce two-way flows, 
with some people changing into treatment and others leaving it. Thus IV does 
not identify the "gross effect" of treatment. Recall from our discussion in Sec- 
tion 4.3 that even if we have monotonicity or uniformity as defined in this 
section (a necessary and sufficient condition for the existence of representa- 
tion (4)), the discussion in Section 4.3 reveals that in a model with multiple 
instruments we may still obtain negative IV weights unless we condition on the 
other instruments. 

Monotonicity and independence are invoked when the treatment (indicated 
by D) is the policy being evaluated. However, treatments are only a subset of 
all possible policies of interest, and if the goal is to evaluate the effects of a 
policy on aggregate outcomes, as in APRTE, the monotonicity requirement may 
not be needed. In that case, one is interested in the net impact of the policy 
and not the impact of treatment operating through a particular mechanism or 
treatment. The policy of interest may entail two-way flows. 

Consider the case where D indicates schooling, which is the treatment. De- 
fine D = 1 if the person goes to college and D = 0 otherwise. Suppose that the 
policy being studied is the introduction of a physical education (PE) require- 
ment in colleges along with mandatory augmented athletics facilities. The pol- 
icy has no effect on 

(Y1, 
YO) (e.g., potential earnings), but it affects the choice 

of college, so it is a valid Z. Some people hate PE while others love it and 
are attracted by colleges with good gyms, so monotonicity (uniformity) is vi- 
olated. If Za = z is the policy with PE and Z,, = z' is the policy without PE, 
E(YIZa = z) - E(YIZa, = z') is a perfectly valid policy parameter-the ef- 
fect of the policy on aggregate outcomes-even if uniformity is violated and 
AMTE is not policy invariant. One only needs uniformity, policy invariance, and 
the other assumptions only when the policy is a treatment. 

6.4. The Limits of Instrumental Variable Estimators 

The treatment effect literature focuses on a class of policies that move treat- 
ment choices in the same direction for everyone. General instruments do not 
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have universally positive weights on AMTE. They are not guaranteed to shift 
everyone in the same direction. They do not necessarily estimate gross treat- 
ment effects. However, the effect of treatment is not always the parameter of 
policy interest. Thus, in the example just presented, schooling is the vehicle 
through which policy operates. One might be interested in the effect of school- 
ing (the treatment effect) or the effect of the policy. These are separate issues 
unless the policy is the treatment. 

Generalizing the MTE to the case of a nonseparable choice equation that vi- 
olates the monotonicity condition, we can define but cannot identify the policy 
parameters of interest. If we make the model symmetrically heterogeneous in 
outcome and choice equations, the method of instrumental variables and our 
extensions of it break down in terms of estimating economically interpretable 
parameters. This case is beyond the outer limits of an entire literature, al- 
though it captures intuitively plausible phenomena. More general structural 
methods are required.5 

7. SUMMARY AND PROPOSED EXTENSIONS 

This paper develops an approach to policy evaluation based on the mar- 
ginal treatment effect (AMTE), which provides a choice-theoretic foundation for 
organizing the treatment effect literature. All of the conventional treatment 
effect parameters can be expressed as different weighted averages of AMTE 
These conventional treatment effect parameters do not, in general, answer 
economically interesting questions. We define the policy relevant treatment 
effect as the solution to a Benthamite policy criterion for policies operating 
on decisions to participate, but not on potential outcomes. The policy relevant 
treatment effect can be represented as a weighted average of AMTE, where the 
weights differ in general from the weights used to generate conventional treat- 
ment effects. Thus the conventional treatment effects are not guaranteed to 
answer policy relevant questions. 

Instrumental variable estimators and OLS estimators converge to expres- 
sions that can be represented as weighted averages of AMTE parameters, with 
the weights in general different from those used to define the various treat- 
ment effects and the weights not necessarily positive, so they do not identify 
a gross treatment effect. We show how to check whether the weights are posi- 
tive. Conventional IV and matching assumptions impose a strong condition on 
the AMTE-that selection into programs is not made in terms of any unobserv- 
able gain from program participation. 

We present methods for estimating AMTE based on local instrumental vari- 
ables and we develop a new instrumental variable for recovering policy relevant 

55The framework of Carneiro, Hansen, and Heckman (2003) can be generalized to allow for 
random coefficients models in choice equations and lack of policy invariance in the sense of (A-7). 
However, a fully semiparametric analysis does not appear to be possible. This generalization is 
being prepared for publication. 
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treatment effects using standard instrumental variable methods. We present 
conditions for using IV to estimate well-posed policy questions. We show that 
IV need not generate any interesting policy counterfactual and that there are 
policy counterfactuals for which no IV can be generated. In a model of hetero- 
geneous responses, there is no natural superiority of conventional IV over OLS 
in estimating policy relevant parameters. We develop the conditions required 
to forecast the effects of old policies on new environments and the effects of 
new policies. These issues are typically ignored in the treatment effect litera- 
ture, but are central to the structural policy evaluation literature. 

The model presented in this paper and the models presented in the re- 
cent literature on instrumental variables in heterogeneous response models are 
fundamentally asymmetric. Responses to treatment are allowed to be hetero- 
geneous in a general way, but choices of treatment are not. When we develop 
a symmetrically heterogeneous model, the method of instrumental variables 
breaks down entirely and a different approach to econometric policy analysis 
is required. 
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APPENDIX A: TESTABLE MONOTONICITY IN P RESTRICTION 

THEOREM 1: Assume Yo, Y1, and D are determined by Equations (2a), (2b), 
and (3), respectively. Assume conditions (A-1) through (A-5) hold. 

(i) Let go, g, be any real valued functions such that go(Yo, X), gi(Y1, X) > 0 
with probability 1. Then E((1 - D)go(Y, X)IX, P(Z) = p) is weakly decreasing 
in p and E(Dg, (Y, X)IX, P(Z) = p) is weakly increasing in p. 

(ii) Let go, g1 be any real valued functions such that go (Yo, X), gl(YI, X) > 0 
with probability 1. Then E((1 - D)go(Y, X)IX, P(Z) = p) is strictly decreasing 
in p and E(Dg, (Y, X)IX, P(Z) = p) is strictly increasing in p. 

PROOF: Consider assertion (i). Consider E(Dgl(Y, X)IX = x, P(Z) = p) 
for some x. Let pI, po denote any two points in the support of the distribution 
of P(Z) conditional on X = x such that p, > po. Then 

E(Dgi(Y, X)IX = x, P(Z) = pi) 

- E(Dg1(Y, X)IX = x, P(Z) = Po) 

= E(I[UD < P(Z)]g1(Y,,X)IX 
= x, P(Z) = pi) 

- E(1[UD < 
P(Z)]g1(Y,, X)jX = x, P(Z) = po) 
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= E(1I[UD 1 pt1]g(Y1, X)IX = x) 

- E(1[UD < pogl1(Y1, X)IX = x) 

= E({J[UD < Po0 + J[po < UD 
_ 

pIJgl(Y1, X)JX = x) 

- E(1[UD < po]g1(Y1, X)IX = x) 

= E(1l[po < UD < plg (YI1, X)IX = x) 

>0, 

where the first equality follows from the definition of D and uses the fact 
that Dg,(Y, X) = Dg,(YI, X); the second equality uses independence con- 
dition (A-2); the third equality uses the fact that po < pi and thus that 
1[UD Pil = 1[UD < Po] + [Po < UD 5 p1]; the fourth equality follows from 
linearity of expectations; and the final inequality follows from gi(Y1, X) > 0 
with probability 1. The proof that E((1 -D)go(Y, X)IX, P(Z) = p) is decreas- 
ing in p follows from a similar argument. Assertion (ii) follows from a trivial 
modification of the last line of the above proof. Q.E.D. 

Consider the following examples of go and gl: 
(i) If Y1, Yo are known to be nonnegative (for example, Y1, Yo are indi- 

cator variables or Y1, Yo are wages), then we may choose gj(Y, X) = Y. In 
this example, Theorem 1 implies that E((1 - D)YIX, P(Z) = p) is weakly 
decreasing in p and E(DYIX, P(Z) = p) is weakly increasing in p. More gen- 
erally, if Y1, Yo are known to be bounded from below by a function of X so 
that Y1 > 11(X), Yo > lo(X) with probability 1, then we may choose g1(Y, X) = 
Y -i (X) so that Theorem 1 implies that E((1- D)(Y - lo(X))IX, P(Z) = p) 
is weakly decreasing in p and E(D(Y - 11(X))IX, P(Z) = p) is weakly increas- 
ing in p. 

(ii) Without any assumptions on the support of the distribution of Y1, Yo, 
let t denote a real number and take g1(Y, X) = 1[Y < t] for j = 0, 1. Then 
Theorem 1 implies that Pr(D = 0, Y < tIX, P(Z) = p) is weakly decreas- 
ing in p and Pr(D = 1, Y < tIX, P(Z) = p) is weakly increasing in p. More 
generally, let A denote any measurable subset of the real line and take 
gj(Y, X) = 1[Y E A] for j = 0, 1. Then the conclusion of the proposition can 
be rewritten as Pr(D = 0, Y E AIX, P(Z) = p) is weakly decreasing in p and 
Pr(D = 1, Y E AIX, P(Z) = p) is weakly increasing in p. 

For any choice of go, gj, the restriction of Theorem 1 leads to the prediction 
that regression functions E((1 -D)go(Y, X)IX, P(Z) = p) and E(Dg,(Y, X)I 
X, P(Z) = p) satisfy the monotonicity conditions. This is an example of a 
nonparametric null with shape restrictions versus a nonparametric alternative. 
A formal test of the null hypothesis can be implemented using the methodol- 
ogy of Ghosal, Sen, and van der Vaart (2000). 

The restrictions of Theorem 1 nest the Imbens-Rubin (1997) restrictions 
on IV as a special case. They assume a binary Z, and obtain the density of 
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Y1 and Yo from the observed data and derive the testable restriction that these 
densities be nonnegative.56 Our analysis is more general.57 

APPENDIX B: DERIVATION OF PRTE AND IV WEIGHTS 

PROOF OF EQUATION (6): To simplify the notation, assume that V(Y) = Y. 
Modifications required for the more general case are obvious. Define A (t) to 
be the indicator function for the event t A. Then 

E(Ya X) = E(Ya X, Pa(Za) = p) dFPaix(p) 

= 
1flO[0,pj](UD)E(Yl,atX, UD =ID) 

+ 
11(p,1(UD)E(Yo,aX, 

UD = D) du] dFpalx(p) 

= 
f [1UD,1I(p)E(Yi,aIX, 

UD = 
uD) 

+ 
1(O,uDI(p)E(Yo,aX, 

UD = uD)] 
dFpaix(p)] 

duD 

= f(1 - 

FPa•i(UD))E(Yi,a 

X, UD = uD) 

+ 
FPaIX(uD)E(Yo,alX, UD = uD)] duD. 

This derivation involves changing the order of integration. Note that 
from (A-4), 

El1[0,p](UD)E(Yl,alX, UD = 
UD) + 1(p,l](UD)E(YO,a(X, UD = UD)j 

<_E(IYI 
+ IYol) < c, 

56See also Heckman, Smith, and Taber (1998) for a closely related test. 
57For ease of exposition, suppress conditioning on X. Take the case where Z = 0, 1 and 

P(1) > P(0). Consider the Y1 outcome; the analysis for Yo is completely symmetric. For binary 
Z with P(1) > P(0), our restriction can be rewritten as E(Dgl(Y)IZ = 1) > E(Dgi(Y)IZ = 0). 
Take gi(Y) = l[Y E A] for any prespecified set A, for example, the intervals examined in the 
histogram analyzed in the Imbens-Rubin paper. In this special case, our monotonicity restriction 
is that Pr(D = 1, Y E AIZ = 1) - Pr(D = 0, Y e AIZ = 0) > 0, and the restriction is the same as 
the Imbens and Rubin restriction of a nonnegative density. Our analysis replaces their densities 
with the probability that Y lies in any given set. Thus, their restriction is a very special case of the 
general monotonicity restriction developed in this paper. 
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so the change in the order of integration is valid by Fubini's theorem. Compar- 
ing policy a to policy a', 

E(Ya X) - E(Ya,IX) 

= fE(AIX, UD = 
D)(FppaX(UD)- FPaIX(UD)) duD, 

which gives the required weights. (Recall A = Yj - Yo and from (A-7) we can 
drop the a, a' subscripts on outcomes and errors.) Q.E.D. 

Relaxing (A-7): Implications of Noninvariance for PRTE 

Suppose that all of the assumptions invoked up to Section 3 are satisfied, 
including additive separability in the latent index choice Equation (3) (equiv- 
alently, the monotonicity or uniformity condition). Impose the normalization 
that the distribution of UD is unit uniform. Suppose however, contrary to (A-7), 
that the distribution of (Y1, Yo, UD, X) is different under the two regimes 
a and a'. Thus, let (YI,a, Yo,a, UD,a, Xa) and (Yl,a', Yo,,, UD,a', Xa,) denote the 
random vectors under regimes a and a', respectively. Following the same analy- 
sis used to derive Equation (6), the PRTE conditional on X is given by 

E(YaJXa = x) - E(Ya,IXa, = x) 

(I) = E(Yi,a - 
Yo,aIXa 

= 
x, UD,a' lU) 

x [FP, lX,a(UIX) - FpaiXa (UIX)] d 

(II) +f [E(Yo,aIXa = x, UD,a ) 
- E(Yo,alXa, = x, UD,a' = u)] du 

(III) + [(1 - FE ,x(u1x)) 

x (E(Yi,a - Y,aIXa = x, UD,a = u) 
- 

E(Yl,a, - Yo,a jXa,, UD,a' = u))] du. 

Thus, when the policy affects the distribution of (Y1, Yo, UD, X), the PRTE 
is given by the sum of three terms: (I) the value of PRTE if the policy did 
not affect (Y1, Yo, X, UD), (II) the weighted effect of the policy change on 
E(Yo IX, UD), and (III) the weighted effect of the policy change on MTE. Eval- 
uating the PRTE requires knowledge of the MTE function in both regimes and 
knowledge of E(YoIX = x, UD = u) in both regimes, as well as knowledge of 
the distribution of P(Z) in both regimes. Note, however, that if we assume 
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that the distribution of (Yi,a, Yo,a, UD,a) conditional on Xa = x equals the dis- 
tribution of (Yi,a,, Yo,a', UD,a') conditional on Xa, = x, then E(Y1,a UD,a = U, 

Xa = x) = E(Yi,aIUD,a' = u, Xa, = x), E(Yo,aIUD,a = u, Xa = x) = E(Yo,aI 
UD,a' = U, Xa, = x), and thus terms (II) and (III) are zero and the expression 
for PRTE simplifies to the expression of Equation (6). 

PROOF OF EQUATION (10): We have 

Cov(J(Z), YIX) 

= E([J(Z) - E(J(Z)IX)]YIX) 
= E((J(Z) - E(J(Z)IX))(Yo + D(Y, - Yo))IX) 

= E((J(Z) - E(J(Z)IX))D(YI - Yo)IX) 

= E(f(Z)1[UD < P(Z)](Y, - Yo)IX) 

= E(f(Z)1[UD < P(Z)]E(Y1 - YoIX, Z, UD)IX) 

= E(J(Z)4[UD < P(Z)]E(Y, - YoIX, UD)IX) 

= E(E[J(Z)?[UD < P(Z)](X = x, UD]E(YI - YojX, UD)IX) 

= 

o[E(f(Z)X, 
P(Z) uD) 

x Pr(P(Z) > UD)E(Yl - YojX, UD = UD)] duD 

= AMTE(X, uD)E(f(Z)IX, P(Z) > 
UD) Pr(P(Z) > uD) duD. 

The third equality follows from (3); the fourth equality follows from the law 
of iterated expectations with the inside expectation conditional on (X, Z, UD); 
the fifth equality follows from assumption (A-2); the sixth equality follows 
from the law of iterated expectations with the inside expectation conditional 
on (X = x, UD); the seventh equality follows from Fubini's Theorem and the 
normalization that UD is distributed unit uniform conditional on X; and the 
final equality follows from plugging in the definition of AMTE. Yitzhaki (1996, 
1999) was the first to develop the interpretation of IV as a weighted average, 
although he did not develop the MTE. Q.E.D. 

PROOF OF EQUATION (17): We have 

E(YaIX) 

= E(YaIX, UD = UD, Za = z) 
dFUD,ZaiX(UD, z) 
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= 
[1nf D (z)E(YIX, UD= UD, Za = z) 

+ 
1•nD (z)E(YoIX, UD = UD, Za = z)] dFUD,ZaX(D, z) 

f [In"D 
(z)E(Y IX, UD = UD) 

+ 1nD (z)E(YoIX, UD UD)] dFUD,ZaX,(uD, z) 

= f [1nuD (Z)E(YX, UD = UD) 

+ 
D 

(z)E(YoIX, UD = 
UD)]dFZaX(Z)] dFuDx(UD) 

= [Pr[Za E 2U, X]E(YIlX, UD = UD) 

+ (1 - Pr[Za E uD IX])E(YolIX, UD = UD)] dFUD,,(uD), 

where 
ncD 

denotes the complement of n,, and where the first equality follows 
from the law of iterated expectations; the second equality follows by plugging 
in our threshold crossing model for D; the third equality follows from inde- 
pendence Z IL (Y1, Yo, UD) IX; and the fourth and fifth equalities follow by an 
application of Fubini's Theorem and a rearrangement of terms. Fubini's Theo- 
rem may be applied by assumption (A-4). Thus comparing policy a to policy a', 
we obtain (17): 

E(Ya IX) - E(Y, IX) 

f E(IIX, UD = UD) 

x (Pr[Za E DuD IX] - Pr[Za, E UD |X]) dFUDIX(UD). Q.E.D. 

PROOF OF EQUATION (18): We have 

E(YaIX) 

= J E(YaIX, UD = UD, Za = z) dFUD,ZaIX(UD, Z) 

[ 11,PD~cl(z D)E( Ya|X, Z = z, UD = UD) 

I j(,D(z),ll(UD)E(Yo IX, Z = z, UD = uD) 

_-f[ ,O'D(z)](UD)E(YiIX, 

UD 
- 

UD) 

+ 
1(•D(z),] 

(UD)E(YolX, UD UD) 
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- 

f[f( 10,D(z)](UD)E(YYI X, UD =D) ) dFIUD(ZIUD)] 
+ 1 

(,D(,z)I(UD)E(YoIX, UD = UD) 

x dFUDIx(UD) 

[ (1 - Pr[D(Z) < uD I UD = UD])E(YIIX, UD = UD) 

+ Pr[ILD(Za) < UDIUD - UD]E(YoIX, UD = UD) 

x dFUDIX(UD), 

where the first equality follows from the law of iterated expectations; the sec- 
ond equality follows by plugging in our model for D; the third equality follows 
from independence Z IL (Y1, Yo) IX, UD; the fourth equality follows by an ap- 
plication of Fubini's Theorem; and the final equality follows immediately. Thus 
comparing policy a to policy a', we obtain (18) in the text. Q.E.D. 

APPENDIX C: PROOFS OF PROPOSITIONS 

PROOF OF PROPOSITION 1: We first show that, given (i), conditions (ii) 
and (iii) are sufficient for the instrument Jx(Z) defined in the proposition to 
have the desired properties. As a preliminary step, note that 

E(JIX = x) = fl[fplx(p Ix) > O]w'(plx)dp=f w'(pIx) dp=0, 

where the first equality comes from plugging in the proposed Jx and using con- 
dition (i); the second equality follows from condition (iii); and the final equality 
follows from condition (ii). We now check that the proposed Jx is correlated 
with D under conditions (i)-(iii): 

Cov(Jx (Z), DIX = x) = Cov(Jx(Z), P(Z)IX = x) 

= f [ lfpix(plx) 
> 0]w'(plx)pdp 

0 

o 

= jw'(plx)pdp = -1, 

where the first equality follows from the law of iterated expectations; the 
second equality comes from plugging in the proposed Jx and using E(Jx 
X = x) = 0; and the third equality uses condition (iii) and the final equality 
follows from integration by parts using condition (ii). We now check that the 
proposed instrument Jx implies the desired weights on AMTE. With the pro- 
posed Jx, for u such that fPix(ulx) > 0, 

T(ulx; Jx)fPIx(u IX) - = w'(ulx), 
Cov(Jx, PIX = x) 
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where the equality comes from plugging in the proposed Jx and using E(JxI 
X = x) = 0 and Cov(Jx, PIX = x) = -1. Thus, for u such that fplx(ulx) > 0, 
we have that -T(u x; J)fplx(ulx)/l Cov(Jx, PIX = x) = w'(ulx) as desired. 
For u such that fplx(ulx) = 0, condition (iii) implies that w'(ulx) = 0 and 
thus trivially -T(uIx;Jx)fpix(uIx)/Cov(Jx,PIX = x) = w'(ulx) for u such 
that fpix(u x) = 0. 

We now show that, given condition (i), conditions (ii) and (iii) are necessary. 
First, consider condition (ii). We have previously established that the weights 
corresponding to any instrument must integrate to 1, and that the weights cor- 
responding to any instrument must satisfy w(0 x) = 0. One can also directly 
verify that w(llx) = 0 unless the conditional distribution of P(Z) has a mass 
point at 1. The conditional distribution of P(Z) does not have a mass point 
at 1 by condition (i). Using condition (i), one can apply Lebesgue's theorem 
for the derivative of an integral to show that the weights corresponding to any 
instrument will be differentiable. Thus, given condition (i), the weights corre- 
sponding to any instrument will satisfy condition (ii), and thus condition (ii) 
is a necessary condition for there to exist an instrument that corresponds to 
the desired weights. Now assume conditions (i) and (ii), and consider condi- 
tion (iii). Suppose that (iii) does not hold, so that there exists a set of t values 
such that fplx(tlx) = 0 but w'(tlx) > 0. Then, for such values of t, 

T(tlx; Jx)fPx(tlx) =0 
Cov(Jx, PIX = x) 

for any potential instrument Jx while w'(tjx) > 0, and thus trivially there can- 
not exist an instrument Jx such that 

T(t x; Jx)fPix(tlx) ( P x= w'(tix) for all t. 
Cov(Jx, PIX = x) 

Thus, given condition (i), conditions (ii) and (iii) are necessary for the existence 
of an instrument with the desired properties. Q.E.D. 

PROOF OF PROPOSITION 2: Define 

F)Fp,,iX('x) - Fpi x(Ix) 
E(PaIX = x) - E(Pa X = x) 

We now show that conditions (i) and (ii) of Proposition 2 imply conditions (i) 
and (ii) of Proposition 1 when w(.Ix) is defined in this manner. Note that condi- 
tion (i) of Proposition 2 immediately implies that condition (i) of Proposition 1 
holds. Condition (i) of Proposition 2 implies that w(.Ix) is differentiable for all 
evaluation points with 

fP,Ix('Ix) - 
fpowx('Ix) w'( E-x) 

= 
E(Pa IX = x) - E(Pa'IX = x) 
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Since FP x (.) and 
Fp,,x (.) 

are distribution functions, one can directly ver- 

ify that 
fo w(ulx) du = 1. Since the propensity score is always bounded by 

0 and 1, using condition (i), FpaIx(1x) = Fp ,lx(lx) = 1 and Fpjx(OIx) = 

Fa,,x(OIx) 
= 0, and thus w(llx) = w(Olx) = 0. Defining w(.Ix) in this man- 

ner, we have that conditions (i) and (ii) of Proposition 2 imply conditions (i) 
and (ii) of Proposition 1. Given 

(.Paf1,l(I(x) 
- fpaIX(' X) 

w'(lx) = 
E(PaIX = x) - E(Pa, X = x)' 

we have that condition (iii) of Proposition 2 is equivalent to condition (iii) of 
Proposition 1 for this choice of w(.lx). The result now follows directly from 
Proposition 1. Q.E.D. 

PROOF OF PROPOSITION 3: Assume that the conditions of Proposition 1 
hold almost everywhere with respect to X. From the proof of Proposition 1, 
under the stated conditions, E(J(Z)IX) = 0, Cov(J(Z), DIX) = -1, and 

Cov(J(Z), YIX) _ M 
Cov(J(Z), DIX)-= 

AMTE(X, u)w(ulIX) du. 
Cov(J(Z), DIX) 

It follows that Cov(J(Z), DIx) = Cov(J(Z), DIX) = -1, that Cov(J(Z), Y) = 
E(J(Z)Y) = E[E(J(Z)YIX)], and thus that 

Cov(J(Z),Y)= E[-E(J(Z)Y X)] Cov(J(Z), D) 

E[Cov(J(Z), YIX) 
[Cov(J(Z), DIX)J 

= ['AMTE(x, u)w(u x) du] dFx (x). Q.E.D. 

PROOF OF PROPOSITION 4: We first show that, given condition (i), con- 
ditions (ii) and (iii) are sufficient for the instrument J,(Z) defined by the 
proposition to have the desired properties. For notational convenience, de- 
fine -ir = Pr[P(Z) = pt], for = 1, ..., K. As a preliminary step, note that with 
this definition of Jx(Z), 

K 

E(JxIX = x) = E [wt - 
w1I+Iit 1=1 7il 

K 

= 

[wUl- 
W+11] = 

-- WK+-= 
0, 

/=1 
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where we use the fact that w1 = WK+1 = 0. We now check that the proposed 
Jx(Z) is correlated with D under conditions (i) to (iii): 

Cov(Jx (Z), DIX = x) = Cov(Jx(Z), P(Z)IX = x) 
K K 

= [l - 
Wl+l]pIiTI 

= 

KP 

- 

Pl-1Wi 
l= 1 "l1=2 

K 
Pl 1 

= 
w(tlx) 

dt = 
w(tlx) 

dt = 1, 
P=1 l-1 

where the first equality follows from the law of iterated expectations; the 
second equality comes from E(Jx(Z)IX = x) = 0 and plugging in the pro- 
posed Jx(Z); the third equality rearranges terms in the sum using w = 

WK+1 = 0; the fourth equality uses condition (iii) and the definition of wt; 
the fifth equality uses linearity of integration; and the final equality uses con- 
dition (ii). We now check that the proposed instrument Jx implies the de- 
sired weights on AMTE. Using Cov(Jx(Z), DIX = x) = 1 and that E(Jx(Z)I 
X = x) = 0, the IV weights corresponding to the proposed Jx(Z) as given 
by hiv(u) = E(Jx(Z)1[P(Z) > u]). We immediately have hiv(u) = w(ulx) = 0 
for u E (PK, 1] and for u E [0, p,]. For u E (pj-, pj], j = 2, ..., K, we have 

E(Jx(Z)1[P(Z) > u]) = L 
[w, 

- w1+1]1[p u]i 
/=1 

K 

L Z[WI - 
W/+1] 

= Wj - WK+1 = Wj = W(UIX), 
1=j 

where the first equality comes from plugging in the proposed Jx(Z); the second 
equality follows from u e 

(pj-1, 
pj]; the third equality follows by rearranging 

terms; the fourth equality follows from wK+1 = 0; and the final equality follows 
by the definition of wj and the fact that u E (pj-1, pj]. 

We now show that, given condition (i), conditions (ii) and (iii) are necessary. 
First, consider condition (ii). One can verify that the weights corresponding 
to any instrument must integrate to 1. One can also verify that the weights 
corresponding to any instrument must satisfy w(ulx) = 0 for u< pain and 
for u > pMax, where pMin and pmax are the minimum and maximum values 
in the support of the conditional distribution of P(Z). Given condition (i), 
one can immediately verify that the IV weights for any instrument must sat- 
isfy condition (iii). Thus, given condition (i), the weights corresponding to any 
instrument will satisfy conditions (ii) and (iii), and thus, given condition (i), 
conditions (ii) and (iii) are necessary conditions for there to exist an instru- 
ment that corresponds to the desired weights. Q.E.D. 
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APPENDIX D: LOCAL INSTRUMENTAL VARIABLES FOR 
THE RANDOM COEFFICIENT MODEL 

Consider the model 

D = [Z3p > 0], 

where p is a random variable. For ease of exposition, we leave implicit the con- 
ditioning on X covariates. Assume that (Yo, Y1, p) iL Z. Assume that 3 has a 
density that is absolutely continuous with respect to Lebesgue measure on T'K 
We have 

E(YIZ = z) = E(DY, Z = z) + E((1 - D)YoIZ = z). 

To simplify the exposition, first consider the first term, E(DY IZ = z). Using 
the model, the independence assumption, and the law of iterated expectations, 
we have 

E(DYIZ = z) = E(n[zp/ > 0]Y1) = E(n[z/ > O]E(Y11/)) 

= 
E(I{zK[K][K]> -ZI-K]i3[K]JE(Y p3)), 

where the final outer expectation is over /. Consider taking the derivative 
with respect to the Kth element of Z assumed to be continuous. Let Z[K] de- 
note the Kth element of Z and let Z[-K] denote all other elements of Z, and 
write Z = (Z[-K], Z[K]). Likewise, partition z, P, and b as z = (z[-K], z[K), 

P/ = (p[-K] /3[K]), 
and b = (b[-KI, b[KI), where z is a realization of Z and b is a 

realization of p. For simplicity, suppose that the Kth element of z is positive, 
z[K] > 0. We obtain 

E(DYIZ = z) = 
E[E(l{zlK]3[K] > -z[-K] 13-K]}E(Yjli3)I/[-KI)] 

EE I[K _Z[K] E ( Yj18 ) p[ 
-K 

where the inside expectation is over p[K] conditional on p[-K], i.e., is over the 
Kth element of P conditional on all other components of P. Thus, 

zKd 
E(DYIZ = z) = E(Y10 -= M(b[-K])) W(b[-K]) db[-K] 

where 

M(b[-KI) = ((b[-K)', zK] 
and 

b ) Z[-K]b[-K] ( _Z[-K]-K] 
(zKIK)2 

f~, 
ZiKI 
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with f(.) the density of P (with respect to Lebesgue measure), and where for 
notational simplicity we suppress the dependence of the function M(.) and 
the weights w(.) on the z evaluation point. In this expression, we are averag- 
ing over E(Y1IP/ = b), but only over b evaluation points such that zb = 0. In 
particular, the expression averages over the K - 1 space of b[-K], while for 
each potential realization of b[-K] it is filling in the value of b[K] such that 

z[K]b[K] 
= -Z[-K]b[-K], SO that z[K]b[K] + z[-K]b[-K] 

= 0. Note that the weights 
?i(b[-K]) will be zero for any b[-K] such that f(b[-K], (-Z[-K]b[-K])/Z[K]) = 0, 
i.e., the weights will be zero for any b[-K] such that there does not exist b[K] in 
the conditional support of p[K] with z[Kb[K] = Z[-K]b[-K]. 

Following the same logic for E((1 - D)YolZ = z) we obtain 

E((1- D)YIZ= z) - E(Y013 
-= 

M(b[-K]))io(b[-K]) db[-K] 
cdZ[K] J 

and likewise have 

d Pr(D = 1lZ = z) (b[-K]) db[-K] 
dZ[K]J 

so that 

(8/azi[K)E(YIZ = z) 
(8/dZ[K]) Pr(D = 1iZ = z) 

Sf E(Y1 
- 

Yo0p 

= M(b[-K]))w(b[-K]) db-K] 

where 

w(b[-K]) = v(b[-KI)/ f t(b[-K]) db[-K]. 

Now consider the question of whether this expression will include both pos- 
itive and negative weights. Recall that 

-K][-K]b[-K] -( _Z[-K]b[-K]) 
(Z[K])2 f b[-K]' [K] 

Thus, 

w(b[-K] J 0, if z[-K]b[-K] > 0, 
( 0, if z[[-K] < 0, 

and will be nonzero if z[-K]b[-K] 0 and there exists b[K] in the conditional sup- 
port of p3[K] with z[K]b[K] = Z[-K]b[-K], i.e., with zb = O. We thus have that there 
will be both positive and negative weights on the MTE if there exist values of b 
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in the support of 3 with both z[-K]b[-K1 > 0 and zb = 0, and there exist other 
values of b in the support of /3 with z[-K]b[-Ki < 0 and zb = 0. 
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