APPENDIX E

Traffic Impact Study and Correspondence

TRAFFIC IMPACT STUDY

By: SRF Associates

September 2011
Updated June 2014

Traffic Impact Study

for the proposed

Carroll Landfill Expansion

Townof Carroll
Chautauqua County, New York

Project No. 3403I
September 201I
Updated: June 2014

Prepared For:
Daigler Engineering, P.C.
2620 Grand Island Boulevard Grand Island, NY 14072

Prepared By:

3495 Winton Place
Building E, Suite IIO
Rochester, New York 14623

TABLE OF CONTENTS

LIST OF TABLES ii
LIST OF FIGURES ii
LIST OF APPENDICES ii
LIST OF REFERENCES iii
EXECUTIVE SUMMARY iv
I. INTRODUCTION I
II. LOCATION
III. EXISTING HIGHWAY SYSTEM 1
IV. EXISTING TRAFFIC CONDITIONS 2
A. Peak Intervals for Analysis2
B. Existing Traffic Volume Data 3
C. Field Observation 3
D. Average Daily Traffic 3
E. Accident Investigation5
V. FUTURE AREA DEVELOPMENT AND LOCAL GROWTH 6
VI. PROPOSED DEVELOPMENT 7
A. Description 7
B. Site Traffic Generation7
C. Site Traffic Distribution 8
VII. FULL DEVELOPMENT VOLUMES 8
VIII. CAPACITY ANALYSIS 9
IX. SIGHT DISTANCE ANALYSIS II
X. SIMTRAFFIC TRAFFIC SIMULATION MODELING 12
XI. LINK EVALUATION 13
XII. CONCLUSIONS \& RECOMMENDATIONS 13
XIII. FIGURES 13

LIST OF TABLES

TABLE I SUMMARY OF ACCIDENTS AND COMPARISON OF RATES 6
TABLE II SITE GENERATED TRIPS ... 8
TABLE III CAPACITY ANALYSIS RESULTS ... I0
TABLE IV SIGHT DISTANCE REQUIREMENT AND MEASUREMENTS I2

LIST OF FIGURES

FIGURE I SITE LOCATION \& STUDY AREA
FIGURE 2 LANE GEOMETRY \& AVERAGE DAILY TRAFFIC
FIGURE 3 PEAK HOUR VOLUMES - EXISTING CONDITIONS
FIGURE 4A PEAK HOUR VOLUMES - 2015 BACKGROUND CONDITIONS
FIGURE 4B PEAK HOUR VOLUMES - 2030 BACKGROUND CONDITIONS
FIGURE 5 PEAK HOUR TRIP DISTRIBUTION
FIGURE 6 PEAK HOUR SITE GENERATED TRIPS
FIGURE 7A PEAK HOUR VOLUMES - 2015 FULL DEVELOPMENT CONDITIONS
FIGURE 7B PEAK HOUR VOLUMES - 2030 FULL DEVELOPMENT CONDITIONS

LIST OF APPENDICES

AI. COLLECTED TRAFFIC VOLUME DATA
A2. MISCELLANEOUS TRAFFIC DATA AND CALCULATIONS
A3. LOS CRITERIA/DEFINITIONS
A4. LEVEL OF SERVICE CALCULATIONS - EXISTING CONDITIONS
A5. LEVEL OF SERVICE CALCULATIONS - 2015 BACKGROUND CONDITIONS
A6. LEVEL OF SERVICE CALCULATIONS - 2015 FULL BUILD CONDITIONS
A7. LEVEL OF SERVICE CALCULATIONS - 2030 BACKGROUND CONDITIONS
A8. LEVEL OF SERVICE CALCULATIONS - 2030 FULL BUILD CONDITIONS

LIST OF REFERENCES

I. Special Report 209: Highway Capacity Manual. Transportation Research Board. National Research Council, Washington, DC. 2000.
2. HCM 2010 Highway Capacity Manual. Transportation Research Board. The National Academies, Washington, DC: 2010.
3. NCHRP Report 279, Intersection Channelization Design Guide. Transportation Research Board. 1985.
4. Manual on Uniform Traffic Control Devices for Street and Highways (MUTCD). Federal Highway Administration. 2009.
5. Traffic Volume Report. NYSDOT. Albany, New York. 2012.
6. New York State Department of Transportation Traffic Data Viewer. 2012. Retrieved from https://www.dot.ny.gov/tdv
7. A Policy on Geometric Design of Highways and Streets, The American Association of State Highway and Transportation Officials (AASHTO), 2004.

EXECUTIVE SUMMARY

OVERVIEW

The purpose of this report update is to identify the potential traffic impact associated with the proposed Carroll Landfill Expansion project located in the Town of Carroll, Chautauqua County, New York.

The proposed landfill expansion site is located along the south side of Dodge Road between Wiltsie Road and Anderson Road/Sandberg Road. The proposed landfill expansion construction is anticipated to begin during the summer of 2015, and the life of the facility is approximately 15 years. The expansion will correspond to a maximum average waste acceptance rate of 1,000 tons per day. Access to the proposed landfill is proposed via one existing full access driveway on Dodge Road located approximately 8,000 feet southeast of Wiltsie Road. The study area consists of four (4) existing intersections. A comprehensive inventory of the existing roadway network operations was developed and peak period traffic volume data were obtained by SRF \& Associates (SRF).

Town of Carroll officials were contacted in an effort to include traffic generated from other developments in the area that are currently approved or under construction. No nearby developments were identified. A growth rate of I.0\% per year, used to project 2015 and 2030 background traffic conditions, was derived by considering historical traffic growth near the proposed landfill site.

Site generated traffic volumes for the proposed landfill expansion are projected and distributed to the network based on specified truck routes. Existing, background (2015 and 2030 future nobuild) and full development (2015 and 2030 future build) traffic conditions were evaluated at each study area intersection for the proposed landfill expansion. The operating characteristics of the access drives and impacts to safety and the adjacent roadway network are identified and mitigating measures are provided to minimize any capacity or safety concerns.

CONCLUSIONS AND RECOMMENDATIONS

This study addresses the traffic impact that can be expected from the proposed Carroll Landfill Expansion project in the Town of Carroll, Chautauqua County as described in this Report. It indicates that the existing driveways can adequately accommodate the projected traffic volumes and resulting impacts to study area intersections. The following list summarizes conclusions and recommendations to be considered as a result of this proposed landfill expansion:
I. The proposed landfill expansion is expected to generate approximately 34 total trips with 30 trucks during the AM peak hour, and 27 trips with 25 trucks during the PM peak hour.
2. The proposed site driveway on Dodge Road should be constructed with one exiting and one entering lane and should be stop sign controlled.
3. An engineering assessment of the roadways, including Dodge Road, (performed by C\&S Companies and Daigler Engineering) and bridges (performed by the NYSDOT) to be used by the facility has been undertaken and is included in the DEIS report.
4. Sight distance measurements indicate that minimum requirements are exceeded at all four study intersections and the proposed site driveway.
5. Based upon the accident analyses and projected traffic volumes for both trucks and passenger vehicles, the proposed Landfill expansion will not have a significant adverse impact on safety at any of the study area intersections and there are no existing apparent traffic safety deficiencies within the study area.

I. INTRODUCTION

The purpose of this report update is to identify the potential traffic impacts associated with the proposed Carroll Landfill Expansion project located in the Town of Carroll, Chautauqua County, New York. The operating characteristics of the proposed access points and impacts to the adjacent roadway network are identified.

In an effort to define traffic impact, this analysis determines the extent of existing traffic conditions, projects background traffic flow including area growth, and projects changes in traffic flow due to operation of the proposed landfill expansion.

II. LOCATION

The proposed site is bounded by Dodge Road to the north and east, single family residential uses to the east and south, Sandberg Road to the south and vacant lands to the west and north in the Town of Carroll, Chautauqua County, New York. The site is currently mostly vacant. The site location and study area are illustrated in Figure I - Site Location and Study Area (all figures are included at the end of this report).

III. EXISTING HIGHWAY SYSTEM

The study area roadway system identified for investigation includes portions of Frew Run Road (County Road 34), NY Route 62, Wiltsie Road and Dodge Road. Four (4) existing intersections are studied in detail in this report as follows:
I. Route 62/CR 34/Institute Street
2. CR 317-Falconer Street/Route 62
3. CR 34/Wiltsie Road
4. Wiltsie Road/Dodge Road

NY Route 62 (Main Street/lvory St.) is a north/south highway and is owned and maintained by the New York State Department of Transportation (NYSDOT). The highway is functionally classified as a rural arterial type highway with a posted speed limit of 35 mph in the Village of Frewsburg. The highway consists of one lane in each direction with a center turn lane in the vicinity of Frew Run Road between Institute and Falconer Streets. According to the most recent traffic volume data collected by the New York State Department of
 Transportation (NYSDOT) in 2012, the annual average daily traffic (AADT) along Route 62 approximately 50 ' north of Falconer St is 3,840 vehicles per day (vpd). The roadway section features 12 feet travel lanes, 10 feet on-street parking, 5 feet sidewalk, and a 10 feet two way left turn lane.

Frew Run Road (CR 34) is owned and maintained by Chautauqua County with a posted speed limit of 35 mph closer to NY Route 62 and 55 mph to the south. Frew Run Road is generally an east-west highway that extends from US 62 \& CR 55/CH 3I7, Frewsburg to the Cattaraugus Co. line. The highway consists of one travel lane in each direction. According to the most recent traffic volume data collected by SRF \& Associates (SRF) in 201I, the AADT along Route 34 approximately 2 miles northwest of Wiltsie Road is
 I,379 vpd.

Wiltsie Road is a north/south local roadway under the jurisdiction of the Town of Carroll with a posted speed limit of 45 mph . The highway consists of one travel lane in each direction. According to the most recent traffic volume data collected by SRF in 201I, the AADT along Wiltsie Road between Route 34 and Dodge Road is 496 vpd.

Dodge Road is generally an east-west local roadway under the jurisdiction of the Town of Carroll with a posted speed limit of 45 mph . The highway
 consists of one travel lane in each direction. According to the most recent traffic volume data collected by SRF in 201I, the AADT along Dodge Road, 1.6 miles east of Wiltsie Road is 134 vpd .

Existing Average Daily Traffic (ADT) information was recently collected by SRF and was also obtained from the New York State Department of Transportation (NYSDOT) Traffic Volume Report 2012 and NYSDOT Traffic Data Viewer Website. Figure 2 illustrates the roadway geometry at each of the study intersections and the ADT volumes on the study roadways.

IV. EXISTING TRAFFIC CONDITIONS

A. Peak Intervals for Analysis

Given the functional characteristics of the corridor and the land use proposed for the site (Carroll Landfill Expansion), the peak hours selected for analysis are the weekday commuter AM and PM peaks. The combination of site traffic and adjacent through traffic produces the greatest demand during these time periods.

B. Existing Traffic Volume Data

Weekday AM (6:30am-9:00am) peak hour volumes were collected by Daigler Engineering and the Weekday PM (2:30pm-5:30pm) peak hour volumes were collected by SRF \& Associates (SRF) at the study area intersections identified above on June 14, 201I. The 2011 existing counts were compared with the historical counts from NYSDOT in 2012 on Route 62 approximately 50 ' north of Falconer Street.

The peak hour traffic periods generally occurred between 7:00 to 8:00 AM and 4:15 to $5: 15$ PM on weekdays. All traffic volumes were reviewed to confirm the accuracy and relative balance of the collective traffic counts. Volumes on Route 62 and Wiltsie Road were balanced to account for the differences between the intersections. All traffic volumes were found to balance within the network within reasonable and expected variations.

Historical counts between 2011 and 2014 were reviewed. No growth in traffic has occurred since the 2011 data collection and in many cases traffic volumes have actually decreased in the study area. Therefore no adjustments were made to the 2011 traffic volumes. These volumes are now considered the 2014 existing base volumes for analysis purposes in this report. The 2014 existing base conditions are reflected in Figure 3.

C. Field Observations

All intersections included in the project area were observed during peak intervals to assess existing traffic operating conditions at each intersection. Windshield and travel surveys were performed on the identified truck routes to ascertain any apparent physical, safety, or operational deficiencies associated with these corridors. No deficiencies or areas of concern were noted. It is noted that the trucks will travel through intersections where school children cross. Truck traffic related to the proposed landfill will be infrequent during times when school children are crossing based upon the trip generation provided in Section VI.B. of this report.

D. Average Daily Traffic

SRF \& Associates (SRF) collected 24-hour machine count data on County Road 34 (Frew Run Road), Wiltsie Road and Dodge Road on Thursday, June 23rd, 2011. Figures A, B and C graphically illustrate the Average Daily Traffic (ADT) at the three locations.

Figure A. Average Daily Traffic - County Touring Route 34

Figure B. Average Daily Traffic - Wiltsie Road

Dodge Road, 1.6 miles SE of Wiltsie Road (June 23rd, 2011)

Time
----Northbound Southbound
Figure C. Average Daily Traffic - Dodge Road

E. Existing Accident Investigation

Accident reports for the intersections along Route 62, CR 34 (Frew Run Street) and Wiltsie Road were investigated to assess the safety history. The accidents included in the current review occurred during a three-year time period from January 2008 through December 2010. This is the most recent accident data available, as provided by NYSDOT. During this period, six reportable accidents were documented at the intersections and segments along Route 62 and CR 34 (Frew Run Street) included in the study area.

Table I summarizes accidents occurring at each intersection and the segments within the study area. Based on the number of accidents at each intersection and the segments, accident rates were calculated and compared to the statewide average for similar facilities. The calculated rates and comparison to statewide averages are also summarized in Table I. Accident rate calculations are included in the Appendix. Intersection rates are listed as accidents per million entering vehicles (ACC/MEV).

TABLEI
SUMMARYOF ACCIDENTSAND COMPARISON OF RATES

Intersection	Number of Accidents	Actual Rate	Statewide Average Rate
Route 62/CR 34/Institute Street	I	0.11	0.19
CR 317-Falconer Street/Route 62	I	0.14	0.19
CR 34/Wiltsie Road	0	0	0.10
Wiltsie Road/Dodge Road	1	0.38	2.14
US Route 62 between Frew Run St and Mattison St.	1	2.10	2.14
US Route 62 between Frew Run St and Hazzard Road	2	0.42	2.14
Frew Run Street between Route 62 and Wiltsie Road	0	0	2.14
Wiltsie Road between Frew Run Street and Dodge Road		0.10	

Calculated accident rates at all of the intersections included in the accident investigation are below the state wide average accident rates for similar facilities published by NYSDOT. Given that there were only six collisions in the entire study area for the last three years with no identifiable accident patterns, no further investigation is necessary. There are no apparent traffic safety deficiencies within the study area.

V. FUTURE AREA DEVELOPMENT AND LOCAL GROWTH

The proposed landfill expansion construction is anticipated to begin in the summer of 2015 with operations beginning at the end of 2015 ; it is estimated that the useable life of the expansion is approximately 15 years. As such, for purposes of this analysis, traffic projections within the study area have been generated to determine 2015 and 2030 conditions. Town of Carroll officials were contacted to discuss current projects within the project study area that are currently under construction and/or have been accepted for final approval. No nearby developments were identified.

Review of NYSDOT historical Average Daily Traffic (ADT) volumes along Route 62 indicates fluctuations in traffic volumes between 1999 and 2012. The segment of Route 62 approximately 50 feet north of Falconer Street has decreased 0.7% over the past 13 years. To account for normal increases in background traffic growth, including any unforeseen developments in the project study area, a conservative growth rate of 1% per year for one year (2015) and 15 years (2030) was used for purposes of this analysis. The 2015 and 2030 background traffic volumes are depicted in Figure 4A and 4B. All supporting documentation is included in the appendix of this report.

VI. PROPOSED DEVELOPMENT

A. Description

The proposed landfill expansion site is located along the south side of Dodge Road between Wiltsie Road and Anderson Road/Sandberg Road in the Town of Carroll, Chautauqua County, New York. The proposed landfill expansion construction is anticipated to begin in the summer of 2015 with operations beginning at the end of 2015 ; it is estimated that the useable life of the expansion is approximately 15 years. The expansion will correspond to a maximum average waste acceptance rate of I,000 tons per day. Access to the landfill gate will be on Dodge Road through an improved driveway located approximately 8,000 feet southeast of Wiltsie Road.

B. Site Traffic Generation

The next step in the evaluation is to determine the additional traffic attributable to the proposed landfill expansion. The expansion will correspond to a maximum average waste acceptance rate of 1,000 tons per day. This, combined with normal landfill operations, will generate various site traffic including waste haul trucks, leachate hauling trucks, operation employees, construction worker's vehicles, recycle trucks, oil and fuel delivery, soil material trucks and other operational and construction vehicles. Information provided by Daigler Engineering and Sealand Waste LLC, found in the DEIS, regarding the projected trip data from the Carroll landfill site, as well as historical trip data from other landfill sites in western New York obtained by SRF were used for estimating trips regarding the number of employees, landfill trucks, construction related vehicles, and delivery/sales trucks during the peak hours.

When a new section of the landfill is being constructed, materials are brought on site, such as processed stone and geosynthetics. Additional traffic associated with these construction activities is not a year round occurrence; only on an as-needed basis when a new cell is being constructed. Construction material is primarily transported to the landfill via dump trucks and flat bed trucks. Construction related trucks are assumed to take the same route as the landfill trucks provided by the developer Interstate 86, US Route 62, Frew Run Road (CR 34), Wiltsie Road and Dodge Road. Trucks entering the landfill can arrive no earlier than 5:00 AM and the last load is generally accepted at the landfill no later than 6:00 PM. Based on our experience with other similar sites, it is assumed that there will be five (5) construction related trucks entering and five (5) trucks exiting the landfill site.

The trip rate for the peak hour of the generator may or may not coincide in time or volume with the trip rate for the peak hour of adjacent street traffic. Volumes generated during the peak hour of adjacent street traffic, in this case, the weekday AM and PM peaks, represent a more critical volume when analyzing the capacity of the system; those intervals will provide the basis of this analysis. The volume of traffic generated by a site is based on the land use and size of the development. However, the proposed landfill expansion is based on the average waste acceptance rate, which in this case is a maximum average of $\mathrm{I}, 000$ tons per day. Trip generation is an estimate of the number of trips generated by a specific building or land use. These trips represent the volume of traffic entering and exiting the driveway. Trip generation estimates, based on the information obtained from the developer and SRF were used to derive trip generation estimates for the proposed landfill expansion. Table II
summarizes the volume of projected trips for the weekday AM and PM peak hour. All trip generation calculations are included in Appendix A2 of this report.

TABLE II
SITE GENERATED TRIPS

DESCRIPTION	AM PEAK		PM PEAK	
	ENTER	EXIT	ENTER	EXIT
Employee	4	0	0	2
Landfill Trucks	10	8	6	8
Delivery/Sales	1	1	0	1
Construction Related Trucks	5	5	5	5
Total	$\mathbf{2 0}$	$\mathbf{1 4}$	$\mathbf{1 I}$	16

C. Site Traffic Distribution

The cumulative effect of site traffic on the transportation network is dependent on the origins and destinations of that traffic and the location of the access drive serving the site. The information regarding the proposed arrival/departure distribution of the employees, delivery truck and the landfill truck traffic to be generated at this site was obtained from the developer. All employees, delivery and truck traffic to be generated at the proposed landfill site arriving and departing from/to the east and west will use Interstate 86 (I-86), head south on US Route 62, east on Frew Run Road(CR 34), south on Wiltsie Road and east on Dodge Road to the landfill site. The traffic from the north and south will use US Route 62.

State and Interstate highways are designed to accommodate heavy vehicles (pavement thickness, bridges, and underpasses), whereas local roadways such as Frew Run Road, Wiltsie Road and Dodge Road may not be designed to accommodate higher percentages of heavy truck traffic. An engineering assessment of the roadways, including Dodge Road, (performed by C\&S Companies and Dailger Engineering) and bridges (performed by the NYSDOT) to be used by the facility has been undertaken and is included in the DEIS.

Figure 5 shows the anticipated trip distribution pattern percentages for full build out of the proposed landfill expansion. Figure 6 shows the resulting total site generated traffic as assigned to the site driveways and study area intersections for the weekday AM and PM peak hour periods under full build out conditions.

VII. FULL DEVELOPMENT VOLUMES

The projected design hour traffic volumes were developed for the weekday AM and PM peak hours by combining the future 2015 and 2030 background traffic conditions (Figure 4A and 4B), and projected site generated volumes for the landfill expansion site (Figure 6) to yield the total traffic conditions expected at full operation. Figure 7A and 7B shows the total weekday AM and PM peak hour volumes anticipated for the proposed development under 2015 and 2030 full build out conditions.

VIII. CAPACITY ANALYSIS

Capacity analysis is a technique used for determining a measure of effectiveness for a section of roadway and/or intersection based on the number of vehicles during a specific time period. The measure of effectiveness used for the capacity analysis is referred to as a Level of Service (LOS). Levels of Service are calculated to provide an indication of the amount of delay that a motorist experiences while traveling along a roadway or through an intersection. Since the most amount of delay to motorists usually occurs at intersections, capacity analysis typically focuses on intersections, as opposed to highway segments.

Six Levels of Service are defined for analysis purposes. They are assigned letter designations, from "A" to "F", with LOS "A" representing the best conditions and LOS "F" the worst. Suggested ranges of service capacity and an explanation of Levels of Service are included in the Appendix. The standard procedure for capacity analysis of signalized and unsignalized intersections is outlined in the Highway Capacity Manual (HCM 20IO) published by the Transportation Research Board. Traffic analysis software, Synchro 7, which is based on procedures and methodologies contained in the HCM 2000, was used to analyze operating conditions at study area intersections. The procedure yields a Level of Service (LOS) based on the HCM 2000 as an indicator of how well intersections operate.

Existing operating conditions during the peak study periods are evaluated to determine a basis for comparison with the projected future conditions. The future traffic conditions generated by the landfill expansion were analyzed to assess the operations of the intersections in the study area. Capacity results for existing, background, and full development conditions are listed in Table III. The discussion following the table summarizes capacity conditions. All capacity analysis calculations are included in the Appendix.

TABLE III: CAPACITY ANALYSIS RESULTS

INTERSECTION	EXISTINGCONDITIONS		2015 CONDITIONS				2030 CONDITIONS			
			BACKGROUND CONDITIONS		FULLDEVELOPMENT CONDITIONS		BACKGROUND CONDITIONS		$\begin{gathered} \text { FULL } \\ \text { DEVELOPMENT } \\ \text { CONDITIONS } \end{gathered}$	
	AM	PM								
Institute St. / Ivory Street (Rte 62) (U)										
Eastbound - Institute Street	B(II.3)	C(16.9)	B(II.4)	C(17.6)	B(I2.I)	C(19.0)	B(I2.0)	C(20.5)	B(12.8)	C(22.5)
Westbound - CR 34 (Frew Run Street)	B(II.4)	C(16.2)	B(II.5)	C(16.7)	B(I2.1)	C(17.2)	B(I2.2)	C(19.4)	B(I2.9)	C(20.1)
Northbound Left - Main Street (Rte 62)	A(0.3)	A(0.6)	A(0.3)	A(0.6)	A(0.3)	$\mathrm{A}(0.6)$	A(0.3)	A(0.7)	A(0.3)	A(0.7)
Southbound Left - Ivory Street (Rte 62)	A(1.3)	A(1.4)	A(1.4)	A(1.4)	A(2.4)	A(1.8)	A(1.4)	A(1.5)	A(2.4)	A(1.9)
Falconer St. I Ivory Street (Rte 62) (U)										
Eastbound - Falconer Street	A(9.9)	B(11.5)	A(9.9)	B(11.7)	B(I0.I)	B(II.9)	B(10.3)	B(12.6)	B(10.5)	B(12.8)
Northbound Left - Ivory Street (Rte 62)	A(3.8)	A(2.2)	A(3.8)	A(2.3)	A(3.7)	A(2.2)	A(3.9)	A(2.4)	A(3.8)	A(2.3)
CR 34 (Frew Run) / Wiltsie Road (U)										
Westbound Left - CR 34 (Frew Run St.)	A(0.9)	A(I.I)	A(0.9)	A(I.I)	A(0.9)	A(I.I)	A(0.9)	A(1.2)	A(0.9)	A(1.2)
Northbound - Wiltsie Road	A(9.0)	A(9.1)	$\mathrm{A}(9.0)$	A(9.1)	A(9.5)	A(10.0)	A(9.1)	A(9.2)	$\mathrm{A}(9.6)$	B(10.1)
Dodge Road / Wiltsie Road (U)										
Westbound - Dodge Road	A(8.4)	A(8.6)	A(8.4)	A(8.6)	A(8.9)	A(9.4)	A(8.4)	A(8.6)	A(8.8)	A(9.4)
Southbound Left - Wiltsie Road	A(2.6)	A(4.5)	A(2.6)	A(4.6)	A(5.9)	A(5.6)	A(2.7)	A(4.5)	A(5.8)	A(5.4)
Dodge Road / Proposed Site Dr. (U)										
Northbound - Proposed Site Dr.	NA	NA	NA	NA	A(9.7)	A(9.9)	NA	NA	A(9.8)	A(9.9)

Notes:
(U) = Unsignalized intersection

B(II.3) = Level of Service (Delay in seconds per vehicle)

Institute St. I Ivory Street (Route 62)/ CR 34 (Frew Run Street)
All approaches at the Institute St. /Ivory Street/Frew Run Street intersection operate at an average LOS " C " or better under existing, 2015 background, 2015 future conditions, 2030 background, and 2030 future conditions. No change in level of service is expected as a result of the development. No improvements are warranted or recommended at this intersection.

Falconer St. / Ivory Street (Route 62)

All approaches at the Falconer St. /lvory Street (Route 62) intersection operate at LOS "B" or better under existing, 2015 background, 2015 future conditions, 2030 background, and 2030 future conditions. The eastbound approach (Falconer Street) is projected to decline from LOS " A " to " B " during the AM peak hour between the 2015 background and 2015 full development conditions. The decrease in the LOS is related to borderline conditions (i.e. the delay was approaching thresholds that define differences in the letter designations for level of service) and the actual change in delay is 0.2 seconds per vehicle. No improvements are warranted or recommended at this intersection.

CR 34 (Frew Run) / Wiltsie Road

All approaches at the CR 34 (Frew Run)/Wiltsie Road_intersection operate at an above average LOS "A" under existing, 2015 background, 2015 future conditions, 2030 background, and 2030 future conditions. The northbound approach decreases from LOS "A" to " B " between 2015 future conditions and 2030 future conditions during the PM peak hour. However, this condition is borderline, as the threshold between LOS " A " and " B " is 10.0 seconds; the actual increase in delay is 0.1 seconds. No improvements are warranted or recommended at this intersection.

Dodge Road /Wiltsie Road

All approaches at the Dodge Road/Wiltsie Road_intersection operate at an above average LOS " A " under existing, 2015 background, 2015 future conditions, 2030 background, and 2030 future conditions. No changes in LOS are anticipated on any of the approaches between the background and full development conditions. No improvements are warranted or recommended at this intersection.

Dodge Road / Proposed Site Dr.

The proposed site driveway on Dodge Road is projected to operate at an above average LOS "A" on all approaches during both peaks under 2015 and 2030 full development condition. The driveway should be constructed to meet the requirements of the largest design vehicle expected to use the proposed site.

IX. SIGHT DISTANCE ANALYSIS

Sight distances were investigated at all four existing study intersections and the proposed driveway on Dodge Road. Sight distance is provided at intersections to allow drivers to perceive the presence of potentially conflicting vehicles. This should occur in sufficient time for a motorist to stop or adjust their speed, as appropriate, to avoid a collision at the intersection. Sight distance is also provided at intersections to allow the drivers of stopped vehicles a sufficient view of the intersecting highway to anticipate and avoid potential incidents. If the available sight distance for an entering or crossing vehicle is at least equal to the appropriate stopping sight distance for the major road, then drivers have sufficient sight distance to anticipate and avoid collisions. To enhance traffic operations, intersection sight distances that exceed stopping sight distances are desirable along the major road.

A Policy on Geometric Design of Highways and Streets published by the American Association of State Highway and Transportation Officials (AASHTO), 2004, was used as a reference to establish the required stopping sight distance and desirable intersection sight distance for the proposed site driveway.

Required stopping distances and desirable intersection sight distances are based on the design speed for a given section of roadway; generally the design speed is the posted speed limit plus 5 mph. For example, the posted speed limit along US Route 62, Frew Run Road, Wiltsie Road and Dodge Road is $35 \mathrm{mph}, 55 \mathrm{mph}, 45 \mathrm{mph}$ and 45 mph in the vicinity of the site. Hence design speeds of $40 \mathrm{mph}, 60 \mathrm{mph}, 50 \mathrm{mph}$ and 50 mph were used. The required stopping distance and desirable intersection sight distance based on the design speed are shown in Table IV.

TABLEIV
SIGHT DISTANCE REQUIREMENT AND MEASUREMENTS

INTERSECTION	Posted Speed Limit (mph)	Design Speed (mph)	Desirable Intersection Sight Distance for Left Turn from Stop (ft)	Required Stopping Sight Distance (ft)	Available Sight Distance (ft) to the:	
					Left	Right
Falconer St. at US Route 62 Passenger Cars Combination Trucks	35	40	$\begin{aligned} & 445^{\prime} \\ & 680^{\prime} \end{aligned}$	$\begin{aligned} & 305 ’ \\ & 305 \end{aligned}$	>1,000	~650'
Frew Run Road at US Route 62 Passenger Cars Combination Trucks	35	40	$\begin{aligned} & 445 \\ & 680^{\prime} \end{aligned}$	$\begin{aligned} & 305 \\ & 305 \\ & 3 \end{aligned}$	~ 575 '	>1,000
Wiltsie Road at Frew Run Road Passenger Cars Combination Trucks	55	60	$\begin{aligned} & 665 ' \\ & 1015 \end{aligned}$	$\begin{aligned} & 570^{\prime} \\ & 570^{\prime} \end{aligned}$	>1,400	> 1,400'
Dodge Road at Wiltsie Road Passenger Cars Combination Trucks	45	50	$\begin{aligned} & 555^{\prime} \\ & 845 \\ & \hline \end{aligned}$	$\begin{aligned} & 425^{\prime} \\ & 425^{\prime} \\ & \hline \end{aligned}$	> 1,200	$\sim 800^{\prime}$
Landfill Entrance at Dodge Road Passenger Cars Combination Trucks	45	50	$\begin{aligned} & 555^{\prime} \\ & 845 \end{aligned}$	$\begin{aligned} & 425^{\prime} \\ & 425^{\prime} \end{aligned}$	$\sim 80{ }^{\prime}$	$\begin{gathered} \sim 340^{\prime} \\ \operatorname{SSD} \sim 615^{\prime} \end{gathered}$

The available sight distance exceeds the required stopping sight distance at all of the existing intersections and at the proposed site driveway location. At the Dodge Road \& Landfill Entrance the available intersection sight distance is obstructed by the horizontal and vertical curvature of Dodge Road. However the available stopping sight distance, which is measured to an object in the travel lane as opposed to a vehicle exiting the driveway, exceeds the required stopping sight distance. Desirable intersection sight distances are exceeded at most locations as indicated in the table above.

X. SIMTRAFFIC TRAFFIC SIMULATION MODELING

A SimTraffic traffic simulation model was developed for the AM and PM peak hour condition under the existing, background and full development conditions. SimTraffic is a microscopic, multi-purpose traffic simulation program which has the ability to animate the conditions and
behavior of vehicles traversing the transportation network.
This visualization was created to be used as an educational tool to demonstrate to the public and review agency officials, the expected traffic conditions showing the impact of landfill trucks at the Route 62/CR 34/Institute Street and CR 3I7-Falconer Street/Route 62 intersections from the proposed landfill expansion. The simulation may be made available for review at public hearings.

XI. LINK EVALUATION

Roadway links connecting the study intersections were evaluated in terms of capacity conditions. The segments of US Route 62 between CR 34 /Institute St. and Falconer Street and Wiltsie Road between CR 34 (Frew Run St.) and Dodge Rd are major-street approaches to their respective intersections. Through vehicles on these approaches will experience zero delay and hence will operate at LOS " A " in both directions on both segments. Other roadway links in the study area are impeded only at the intersections, which are evaluated above.

XII. CONCLUSIONS \& RECOMMENDATIONS

This study addresses the traffic impact that can be expected from the proposed Carroll Landfill Expansion project in the Town of Carroll, Chautauqua County as described in this Report. It indicates that the existing driveways can adequately accommodate the projected traffic volumes and resulting impacts to study area intersections. The following list summarizes conclusions and recommendations to be considered as a result of this proposed landfill expansion:
I. The proposed landfill expansion is expected to generate approximately 34 total trips with 30 trucks during the AM peak hour, and 27 trips with 25 trucks during the PM peak hour.
2. The proposed site driveway on Dodge Road should be constructed with one exiting and one entering lane and should be stop sign controlled.
3. An engineering assessment of the roadways, including Dodge Road, (performed by C\&S Companies and Daigler Engineering) and bridges (performed by the NYSDOT) to be used by the facility has been undertaken and is included in the DEIS report.
4. Sight distance measurements indicate that minimum requirements are exceeded at all four study intersections and the proposed site driveway.
5. Based upon the accident analyses and projected traffic volumes for both trucks and passenger vehicles, the proposed Landfill expansion will not have a significant adverse impact on safety at any of the study area intersections and there are no existing apparent traffic safety deficiencies within the study area.

XIII. FIGURES

Figures I through 7B are included on the following pages.

FIGURE 1 - SITE LOCATION AND STUDY AREA

A1

Collected Traffic Volume Data

Groups Printed- Cars - Trucks - School Buses																	Tht Total
	IVORY RD MAIN ST Southbound				INSTITUTE ST Westbound				IVORY RD MAIN ST Northbound				INSTITUTE ST Eastbound				
Start Time	Right	Thru	Left	Peds													
02:30 PM	9	79	6	0	7	4	7	0	13	52	0	0	1	1	8	0	187
02:45 PM	7	50	3	0	2	1	7	0	20	69	5	0	1	4	11	0	180
Total	16	129	9	0	9	5	14	0	33	121	5	0	2	5	19	0	367
03:00 PM	2	39	8	0	2	4	9	0	15	65	3	0	3	2	10	0	162
03:15 PM	15	70	7	0	5	0	4	0	14	50	6	0	5	4	4	0	184
03:30 PM	8	55	9	0	6	2	8	0	19	49	8	0	1	4	5	0	174
03:45 PM	10	55	6	0	8	3	5	0	15	51	4	0	1	2	10	0	170
Total	35	219	30	0	21	9	26	0	63	215	21	0	10	12	29	0	690
04:00 PM	8	54	7	0	10	2	9	0	19	53	11	0	3	3	7	0	186
04:15 PM	6	55	11	0	5	2	2	0	15	57	5	0	4	2	6	0	170
04:30 PM	13	51	11	0	7	5	8	0	21	58	8	0	4	3	5	0	194
04:45 PM	12	51	8	0	7	2	9	0	25	66	5	0	0	2	8	0	195
Total	39	211	37	0	29	11	28	0	80	234	29	0	11	10	26	0	745
05:00 PM	13	54	10	0	4	4	6	0	27	63	3	0	3	1	9	0	197
05:15 PM	10	48	11	0	5	6	10	0	22	49	5	0	1	1	4	0	172
Grand Total	113	661	97	0	68	35	84	0	225	682	63	0	27	29	87	0	2171
Apprch \%	13	75.9	11.1	0	36.4	18.7	44.9	0	23.2	70.3	6.5	0	18.9	20.3	60.8	0	
Total \%	5.2	30.4	4.5	0	3.1	1.6	3.9	0	10.4	31.4	2.9	0	1.2	1.3	4	0	
Cars	111	639	95	0	64	35	82	0	222	650	62	0	27	29	87	0	2103
\% Cars	98.2	96.7	97.9	0	94.1	100	97.6	0	98.7	95.3	98.4	0	100	100	100	0	96.9
Trucks	1	18	0	0	0	0	2	0	1	23	0	0	0	0	0	0	45
\% Trucks	0.9	2.7	0	0	0	0	2.4	0	0.4	3.4	0	0	0	0	0	0	2.1
School Buses	1	4	2	0	4	0	0	0	2	9	1	0	0	0	0	0	23
\% School Buses	0.9	0.6	2.1	0	5.9	0	0	0	0.9	1.3	1.6	0	0	0	0	0	1.1

File Name : InstituteSt.IvorySt.PM
Site Code : 00000000
Start Date : 6/14/2011
Page No : 2

Peak Hour Analysis From 02:30 PM to 05:15 PM - Peak 1 of 1
Peak Hour for Entire Intersection Begins at 04:30 PM

04:30 PM	13	51	11	0	75	7	5	8	0	20	21	58	8	0	87	4	3	5	0	12	194
04:45 PM	12	51	8	0	71	7	2	9	0	18	25	66	5	0	96	0	2	8	0	10	195
05:00 PM	13	54	10	0	77	4	4	6	0	14	27	63	3	0	93	3	1	9	0	13	197
05:15 PM	10	48	11	0	69	5	6	10	0	21	22	49	5	0	76	1	1	4	0	6	172
Total Volume	48	204	40	0	292	23	17	33	0	73	95	236	21	0	352	8	7	26	0	41	758
\% App. Total	16.4	69.9	13.7	0		31.5	23.3	45.2	0		27	67	6	0		19.5	17.1	63.4	0		
PHF	. 923	. 944	. 909	. 000	. 948	. 821	. 708	. 825	. 000	. 869	. 880	. 894	.656	. 000	. 917	. 500	. 583	. 722	. 000	. 788	. 962
Cars	48	201	40	0	289	23	17	33	0	73	95	230	21	0	346	8	7	26	0	41	749
\% Cars	100	98.5	100	0	99.0	100	100	100	0	100	100	97.5	100	0	98.3	100	100	100	0	100	98.8
Trucks	0	3	0	0	3	0	0	0	0	0	0	6	0	0	6	0	0	0	0	0	9
\% Trucks	0		0	0	1.0	0	0	0	0	0	0	2.5	0	0	1.7	0	0	0	0	0	1.2
School Buses	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Groups Printed- Cars - Trucks - School Buses

	Falconer Street Southbound				Route 62 Westbound				Northbound				Route 62 Eastbound				
Start Time	Right	Thru	Left	Peds	Int. Total												
02:30 PM	42	0	2	0	1	31	0	0	0	0	0	0	0	36	17	0	129
02:45 PM	30	0	9	0	4	26	0	0	0	0	0	0	0	53	24	0	146
Total	72	0	11	0	5	57	0	0	0	0	0	0	0	89	41	0	275
03:00 PM	29	0	7	0	0	16	1	0	0	0	0	0	0	57	15	0	125
03:15 PM	23	0	7	0	9	50	0	0	0	0	0	0	0	27	12	0	128
03:30 PM	29	0	14	0	4	35	0	0	0	0	0	0	0	37	19	0	138
03:45 PM	26	0	14	0	1	22	0	0	0	0	0	0	0	33	16	0	112
Total	107	0	42	0	14	123	1	0	0	0	0	0	0	154	62	0	503
04:00 PM	25	0	6	0	5	39	0	0	0	0	0	0	0	42	20	0	137
04:15 PM	41	0	3	0	5	32	0	0	0	0	0	0	0	51	19	0	151
04:30 PM	38	0	9	0	5	24	1	0	0	0	0	0	0	38	18	0	133
04:45 PM	31	0	10	0	4	34	0	0	0	0	0	0	0	61	17	0	157
Total	135	0	28	0	19	129	1	0	0	0	0	0	0	192	74	0	578
05:00 PM	30	0	8	0	3	37	0	0	0	0	0	0	0	50	14	0	142
Grand Total	344	0	89	0	41	346	2	0	0	0	0	0	0	485	191	0	1498
Apprch \%	79.4	0	20.6	0	10.5	88.9	0.5	0	0	0	0	0	0	71.7	28.3	0	
Total \%	23	0	5.9	0	2.7	23.1	0.1	0	0	0	0	0	0	32.4	12.8	0	
Cars	341	0	84	0	33	336	2	0	0	0	0	0	0	475	183	0	1454
\% Cars	99.1	0	94.4	0	80.5	97.1	100	0	0	0	0	0	0	97.9	95.8	0	97.1
Trucks	0	0	2	0	2	8	0	0	0	0	0	0	0	5	0	0	17
\% Trucks	0	0	2.2	0	4.9	2.3	0	0	0	0	0	0	0	1	0	0	1.1
School Buses	3	0	3	0	6	2	0	0	0	0	0	0	0	5	8	0	27
\% School Buses	0.9	0	3.4	0	14.6	0.6	0	0	0	0	0	0	0	1	4.2	0	1.8

	Falconer Street Southbound					Route 62 Westbound					Northbound					Route 62 Eastbound					
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Toal	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour Analysis From 02:30 PM to 05:00 PM - Peak 1 of 1																					
Peak Hour for Entire Intersection Begins at 04:15 PM																					
04:15 PM	41	0	3	0	44	5	32	0	0	37	0	0	0	0	0	0	51	19	0	70	151
04:30 PM	38	0	9	0	47	5	24	1	0	30	0	0	0	0	0	0	38	18	0	56	133
04:45 PM	31	0	10	0	41	4	34	0	0	38	0	0	0	0	0	0	61	17	0	78	157
05:00 PM	30	0	8	0	38	3	37	0	0	40	0	0	0	0	0	0	50	14	0	64	142
Total Volume	140	0	30	0	170	17	127	1	0	145	0	0	0	0	0	0	200	68	0	268	583
\% App. Total	82.4	0	17.6	0		11.7	87.6	0.7	0		0	0	0	0		0	74.6	25.4	0		
PHF	. 854	. 000	. 750	. 000	. 904	. 850	. 858	. 250	. 000	. 906	. 000	. 000	. 000	. 000	. 000	. 000	. 820	. 895	. 000	. 859	. 928
Cars	140	0	28	0	168	15	124	1	0	140	0	0	0	0	0	0	199	67	0	266	574
\% Cars	100	0	93.3	0	98.8	88.2	97.6	100	0	96.6	0	0	0	0	0	0	99.5	98.5	0	99.3	98.5
Trucks	0	0	2	0	2	1	2	0	0	3	0	0	0	0	0	0	1	0	0	1	6
\% Trucks	0	0	6.7	0	1.2	5.9	1.6	0	0	2.1	0	0	0	0	0	0	0.5	0	0	0.4	1.0
School Buses	0	0	0	0	0	1	1	0	0	2	0	0	0	0	0	0	0	1	0	1	3
\% School Buses																					

File Name: CR34.Wiltsie Road.PM Site Code : 55555555
Start Date : 6/14/2011
Page No : 1

Groups Printed- Cars - Trucks - School Buses

Groups Printed- Cars - Trucks - School Buses																	ht. Total
	Southbound				County Road 34 Westbound				Wiltsie Road Northbound				County Road 34 Eastbound				
Start Time	Right	Thru	Left	Peds													
02:45 PM	0	0	0	0	0	7	1	0	0	0	0	0	4	8	0	0	20
Total	0	0	0	0	0	7	1	0	0	0	0	0	4	8	0	0	20

03:00 PM	0	0	0	0	0	5	0	0	0	0	2	0	2	10	0	0	19
03:15 PM	0	0	0	0	0	4	1	0	0	0	1	0	2	15	0	0	23
03:30 PM	0	0	0	0	0	8	1	0	2	0	4	0	4	7	0	0	26
03:45 PM	0	0	0	0	0	2	0	0	1	0	2	0	3	7	0	0	15
Total	0	0	0	0	0	19	2	0	3	0	9	0	11	39	0	0	83

$04: 00$	PM																
04:15 PM	0	0	0	0	0	4	1	0	2	0	3	0	7	8	0	0	25
$04: 30 \mathrm{PM}$	0	0	0	0	0	4	1	0	1	0	2	0	4	9	0	0	21
$04: 45 \mathrm{PM}$	0	0	0	0	0	10	1	0	0	0	4	0	11	11	0	0	37
Total	0	0	0	0	0	3	1	0	2	0	1	0	2	10	0	0	19

05:00 PM	0	0	0	0	0	7	1	0	1	0	3	0	5	12	0	0	29
05:15 PM	0	0	0	0	0	4	1	0	1	0	1	0	2	7	0	0	16
05:30 PM	0	0	0	0	0	1	0	0	1	0	4	0	2	10	0	0	18
Grand Total	0	0	0	0	0	59	9	0	11	0	27	0	48	114	0	0	268
Apprch \%	0	0	0	0	0	86.8	13.2	0	28.9	0	71.1	0	29.6	70.4	0	0	
Total \%	0	0	0	0	0	22	3.4	0	4.1	0	10.1	0	17.9	42.5	0	0	
Cars	0	0	0	0	0	57	9	0	11	0	27	0	47	113	0	0	264
\% Cars	0	0	0	0	0	96.6	100	0	100	0	100	0	97.9	99.1	0	0	98.5
Trucks	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
\% Trucks	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
School Buses	0	0	0	0	0	2	0	0	0	0	0	0	1	1	0	0	4
\% School Buses	0	0	0	0	0	3.4	0	0	0	0	0	0	2.1	0.9	0	0	1.5

File Name : CR34.Wiltsie Road.PM Site Code : 55555555
Start Date : 6/14/2011
Page No : 2

Peak Hour Analysis From 02:45 PM to 05:30 PM - Peak 1 of 1
Peak Hour for Entire Intersection Begins at 04:15 PM

04:15 PM	0	0	0	0	0	0	4	1	0	5	1	0	2	0	3	4	9	0	0	13	21
04:30 PM	0	0	0	0	0	0	10	1	0	11	0	0	4	0	4	11	11	0	0	22	37
04:45 PM	0	0	0	0	0	0	3	1	0	4	2	0	1	0	3	2	10	0	0	12	19
05:00 PM	0	0	0	0	0	0	7	1	0	8	1	0	3	0	4	5	12	0	0	17	29
Total Volume	0	0	0	0	0	0	24	4	0	28	4	0	10	0	14	22	42	0	0	64	106
\% App. Total	0	0	0	0		0	85.7	14.3	0		28.6	0	71.4	0		34.4	65.6	0	0		
PHF	. 000	. 000	. 000	. 000	. 000	. 000	. 600	1.000	. 000	. 636	. 500	. 000	. 625	. 000	. 875	. 500	. 875	. 000	. 000	. 727	. 716
Cars	0	0	0	0	0	0	24	4	0	28	4	0	10	0	14	22	42	0	0	64	106
\% Cars	0	0	0	0	0	0	100	100	0	100	100	0	100	0	100	100	100	0	0	100	100
Trucks	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
\% Trucks	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
School Buses \% School Buses	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Wiltsie Road Southbound				Dodge Road Westbound				Wiltsie Road Northbound				Eastbound				
Start Time	Right	Thru	Left	Peds	Int. Total												
02:45 PM	0	2	3	0	0	0	0	0	0	2	0	0	0	0	0	0	7
Total	0	2	3	0	0	0	0	0	0	2	0	0	0	0	0	0	7

| $03: 00 ~ P M$ | 0 | 0 | 2 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 |
| ---: | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | ---: | ---: |
| $03: 15 \mathrm{PM}$ | 0 | 3 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
| $03: 30 \mathrm{PM}$ | 0 | 3 | 2 | 0 | 0 | 0 | 1 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 10 |
| $03: 45 \mathrm{PM}$ | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 3 |
| Total | 0 | 7 | 4 | 0 | 3 | 0 | 1 | 0 | 0 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 20 |

$04: 00 \mathrm{PM}$	0	3	7	0	3	0	0	0	0	1	0	0	0	0	0	0	14
$04: 15 \mathrm{PM}$	0	3	2	0	0	0	0	0	0	4	0	0	0	0	0	0	9
$04: 30 \mathrm{PM}$	0	4	8	0	2	0	2	0	0	2	0	0	0	0	0	0	18
$04: 45 \mathrm{PM}$	0	2	2	0	0	0	0	0	0	3	0	0	0	0	0	0	7
Total	0	12	19	0	5	0	2	0	0	10	0	0	0	0	0	0	48

$05: 00 ~ P M$																	
$05: 15 ~ P M ~$	0	0	4	0	0	0	1	0	0	5	0	0	0	0	0	0	10
$05: 30 ~ P M ~$	0	0	2	0	1	0	0	0	0	1	0	0	0	0	0	0	4
Grand Total	0	0	2	0	2	0	0	0	0	3	0	0	0	0	0	0	7
Apprch \%	0	38.2	34	0	11	0	4.8	0	73.3	0	26.7	0	0	0	26	0	0
0	0	100	0	0	0	0	0	0	96								
Total \%	0	21.9	35.4	0	11.5	0	4.2	0	0	27.1	0	0	0	0	0	0	
Cars	0	20	34	0	11	0	4	0	0	26	0	0	0	0	0	0	95
\%Cars	0	95.2	100	0	100	0	100	0	0	100	0	0	0	0	0	0	99
Trucks	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
\% Trucks	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Schol Buses	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
\% School Buses	0	4.8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1

File Name : Wiltsie.Dodge.PM
Site Code : 11111111
Start Date : 6/14/2011
Page No : 2

Peak Hour Analysis From 02:45 PM to 05:30 PM - Peak 1 of 1
Peak Hour for Entire Intersection Begins at 04:00 PM

04:00 PM	0	3	7	0	10	3	0	0	0	3	0	1	0	0	1	0	0	0	0	0	14
04:15 PM	0	3	2	0	5	0	0	0	0	0	0	4	0	0	4	0	0	0	0	0	9
04:30 PM	0	4	8	0	12	2	0	2	0	4	0	2	0	0	2	0	0	0	0	0	18
04:45 PM	0	2	2	0	4	0	0	0	0	0	0	3	0	0	3	0	0	0	0	0	7
Total Volume	0	12	19	0	31	5	0	2	0	7	0	10	0	0	10	0	0	0	0	0	48
\% App. Total	0	38.7	61.3	0		71.4	0	28.6	0		0	100	0	0		0	0	0	0		
PHF	. 000	. 750	. 594	. 000	. 646	. 417	. 000	. 250	. 000	. 438	. 000	. 625	. 000	. 000	. 625	. 000	. 000	. 000	. 000	. 000	. 667
Cars	0	12	19	0	31	5	0	2	0	7	0	10	0	0	10	0	0	0	0	0	48
\% Cars	0	100	100	0	100	100	0	100	0	100	0	100	0	0	100	0	0	0	0	0	100
Trucks	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
\% Trucks	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
School Buses	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

input vvorksneet

inpur voorksneet

2. Approach pedestrian and bicycle volumes are those that conflict with right tums from the subject approach.
3. Refer to Equation 1.6-2.
women said thess saul tam (bole mini var)
(1) C $7: 42 \mathrm{am}^{\mathrm{m}}$ asked what are year doing thee -
upper "county Traffic"

Input Worksheet

A2

Miscellaneous Traffic Data and Calculations

Proposed Carroll Landfill Expansion, Carroll, NY

Documentation of Ambient Traffic Volume Growth

Roadway	Segment	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 2}$	$\mathbf{2 0 0 5}$	$\mathbf{2 0 0 8}$	$\mathbf{2 0 1 1}$	$\mathbf{2 0 1 2}$	Annual Growth
US - 62	OLD RT 62 - CR 36 IVORY RD $50 ' ~ N ~ o f ~ F a l c o n e r ~ S t ~$	4,210	4,330	4,940	4,320	3,880	3,840	-0.7%

By $\Varangle A D$ DATE $7-5-13$ DAIGLER ENGINEERING P.C.
снкD. вY BPADATE $7-9-13$
$\ldots . .$. englineering \cdot sclence \cdot design

1711 Grand Island Blvai - Grand Island, NY - 14072 Ph: (716) 773-6872 - Fax: (716) 773-6873
SUBJECT TRAFTC GENERATIM: P716) FOR CARRROLL SOLID WASTE FACULITY

WASTE DENSITY
IN-PLACE $0.75 \mathrm{ta} / \mathrm{cy}$

$$
\begin{aligned}
\text { Loose ins Truck } & \sim 0.5(750) \\
& =.375 \mathrm{tm} / \angle y \\
& =750 \mathrm{lb} / \mathrm{c}
\end{aligned}
$$

WASte hauling Vemalies:
transfer/TRailers: tate: $40,000 \mathrm{lbs}$
(45) Gross: $80,000 \mathrm{lbs} \max$ Mo R-Permit trailer Volume: : 100 cy

$$
\begin{aligned}
\text { AVG LOAD } & =70 \text { y e } 750^{\mathrm{lb} / \mathrm{ly}}=52,500 \mathrm{lbs} \\
& \text { Ner 20tau. }
\end{aligned}
$$

TANDEM/TriAXLE DUMP TRUCKS: TARE: $26,000 \mathrm{lbs}$
(15). Gross: $80,000 \mathrm{lbs}$ BOX VOLUME $=25 \mathrm{cy}$ LOAD $=18 \mathrm{cy}$ 6.75 T
w/R-PERMits

$$
\begin{aligned}
& \text { TRANSFER/TRAMER GROSS: } 102,000 \mathrm{lbs} \\
& \text { (0) Zarre: } \frac{40,000 \mathrm{lbs}}{62,000 \mathrm{lbs}}=31 \text { Tow }
\end{aligned}
$$

Tonnage

$$
\begin{gathered}
45(20)+15(6.75) \\
900
\end{gathered}
$$

\# of Trucks $\quad \because 45+15=\quad 60^{\prime}$ trucks/day
LEACHATE HAULERS:
see engineering Report - 5^{\prime} trucks/day
Emploteen:
Assume is Employees (uf OAM manuar seetion 2.1)
by 7100

JOB NO. \qquad
SHEET NO. \qquad 2 of 4
\qquad
1711 Grand Island Blva. - Grand Island, NY - 14072
Ph: (7161 1773-6872 - Fax: (716) 773-6873
subject Traffic Generation for carroll sumf

3/4" Graver havlers =
VOLUME Reaultred

$$
\begin{aligned}
& {\left[\left(869,114 \mathrm{ft}^{2}+716,489 \mathrm{ft}^{2}\right) 2.2 \mathrm{ft}\right] / 27 \mathrm{ft} / \mathrm{y}} \\
& =129,197 \mathrm{cy} \text { use } 130,000 \mathrm{cy} \\
& \text { (6) } 1.5 \mathrm{~T} / \mathrm{cy}=195,00 \mathrm{Tm} \\
& \text { C } 20 \mathrm{~T} / \mathrm{LoAD}=9,750 \text { loads }
\end{aligned}
$$

Assime construetion aver seven taar period

$$
\begin{aligned}
& 7 \text { yrs } \times[(52 \mathrm{w} / \mathrm{gr})(5 d / \omega \mathrm{k})-6 \text { dmys holiday }]=1778 \text { days } \\
& -11 \text { days/4r misc. } \cong 1700 \text { days } \\
& 9750 / 1700 \text { days }=6 \text { truds/ day }
\end{aligned}
$$

RECYChing operation
(in) yard waste $\begin{gathered}400 \text { fons } / 4 \mathrm{rec} 375 \mathrm{lbs} / \mathrm{cy} \\ (2100 \mathrm{cy})\end{gathered}$

$$
\begin{aligned}
& \text { (2100cy) } 1875 \mathrm{~T} / \mathrm{cy} \\
& 90 \% \text { aver Marrcit } \Rightarrow \text { Novemerere } 9 / \text { morelles } \\
& 25 \text { dmys/manth }
\end{aligned}
$$

cdpo
(n)
$320 \mathrm{~T} /$ day (maxa) FROM Trucks

$$
\begin{array}{rc}
160 \text { T/day }(\text { typ. }) 7(20)+3(6.75)= & 160 \text { Tlday on } \\
140+20.25 & 10 \text { trucks }
\end{array}
$$

By DADD DATE 7-9-13 DAIGLER ENGINEERING P.C.
subject Tratrac Generation -CARROL SuMF
(out) yard waste $(z 100 \mathrm{c} / \mathrm{c} / \mathrm{r})(0.5)=1050 \mathrm{cy} / \mathrm{yr}$. of product

1/2 of that to deaw urvod gries strecpile

$$
=525<y \quad 3 / 4 \text { on site }=\because 394
$$

$$
\begin{array}{ll}
1 / 2 & \text { to } \\
=\frac{\text { quepost }}{525 c y} & \rightarrow 1 / 4 \text { offsite }
\end{array} \quad 131 c y
$$

$$
\begin{aligned}
\text { Toran offesite } & =131+13 \mid=262 \mathrm{cy} \\
\div 15 \mathrm{cy} / \mathrm{I}_{\text {oad }} & =18 \text { loads, say oremanth } \\
& =1 \text { load/day }
\end{aligned}
$$

(out) cipo Fup erscy/day
salvage coors, theninker, angregate of minter:als are ceriusable bdg materals

- primarily lagge dmusuaral lumber ldorrs ($\sim 5 \%$)
- Metal saluage (3\%)
- clean, wood arime boiler fuel (use 7%)

Torat $15 \% \quad .15(2.15)=32.25 \mathrm{cy}$ say 33 Cy
$; 2$ loods/day

$B y+A$ DATE

DAIGLER ENGINEERING prc.

1711 Grand Island Blvd. - Grand Island, NY -14072 Ph: 17716) 773-6872 - Fax: (716) 773-6873

SUBJECT TRAffic GENDOATIIN FOR CARROLC SWMF

OIL 4 Fuel Delver
(1) Diesel motor oil
(2) Aydraulir ail
(3) GASOLINE
(4) Diesel Free

JOB NO. \qquad
ster no. 4 of 4 _OF \qquad

$167,200 \mathrm{gP} /$

 LeSS THAN $1 /$ day
Miscellaneous
1500 gallon domestic wastewater
other/delivery
$\therefore 2 /$ day $t /$

COMBINE DIL\& FOEL DELVER ut Miscellaneous \& other USE 3/day

Revised Traffic Composition/Rates

hour of day	\# trips (through gate)
$5: 00 \mathrm{AM}$	7
$6: 00 \mathrm{AM}$	8
$7: 00 \mathrm{AM}$	24
$8: 00 \mathrm{AM}$	22
$9: 00 \mathrm{AM}$	22
$10: 00 \mathrm{AM}$	20
$11: 00 \mathrm{AM}$	16
$12: 00 \mathrm{PM}$	20
$1: 00 \mathrm{PM}$	19
$2: 00 \mathrm{PM}$	18
$3: 00 \mathrm{PM}$	19
$4: 00 \mathrm{PM}$	14
$5: 00 \mathrm{PM}$	5
$6: 00 \mathrm{PM}$	6

Daily Vehicle Estimates				
	Landfill trucks	Delivery \& Sales	Construction Related Employeg	Total
Waste	60			
Leachate	5			
Employee			15	
Construction Materials			6+4	
Recycle In	10	4		
Recycle Out	2	1		
Fuel/Misc.		3		
Total	77	8	$10 \quad 15$	110
				$x 2$ 220 trips

PROPOSED CARROLL LANDFILL EXPANSION
CARROLL, NY - CHAUTAUQUA COUNTY
AM PEAK

Num of yrs									
			1						
LOCATIO N NUMBER	INTERSECTION DESCRIPTION	Existing Volume	$\begin{array}{\|c\|} \hline \text { Bkgd } \\ \text { Volume } \\ 2015 \end{array}$	Proposed Carroll Landfill Expansion				$\begin{aligned} & \hline \text { Total } \\ & \text { Site } \\ & \text { Trips } \\ & \hline \end{aligned}$	
				Enter Dist. \%	Exit Dist. \%	$\begin{gathered} \hline \text { Trips IN } \\ 20 \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline \text { Trips OUT } \\ 13 \\ \hline \end{array}$		
1	Institute Street/ Frew Run St US Route 62 (Main St)								
	SR	6	6						6
	ST	117	121						121
	SL	23	24	100\%		20		20	44
	WR	45	46		100\%		13	13	59
	WT	7	7						7
	WL	46	47						47
	NR	39	40						40
	NT	136	140						140
	NL	7	7						7
	ER	9	9						9
	ET	6	6						6
	EL	12	12						12
2	Falconer St US Route 62 (Ivory St)								
	SR	49	50						50
	ST	86	89	100\%		20		20	109
	SL								
	WR								
	WT								
	WL								
	NR								
	NT	105	108		100\%		13	13	121
	NL	88	91						91
	ER	60	62						62
	ET								
	EL	15	15						15
3	CR 34(Frew Run Road)/ Wiltsie Road								
	SR								
	ST								
	SL								
	WR								
	WT	36	37						37
	WL	5	5						5
	NR								
	NT								
	NL	23	24		100\%		13	13	37
	ER	9	9	100\%		20		20	29
	ET	19	20						20
	EL								
4	Dodge Road/								
	Wiltsie Road								
	SR								
	ST	9	9						9
	SL	5	5	100\%		20		20	25
	WR	17	18		100\%		13	13	31
	WT								
	WL	1	1						1
	NR	1	1						1
	NT	6	6						6
	NL								
	ER								
	ET								
	EL								
5	Dodge Road/								
	Site Drive								
	SR								
	ST								
	SL								
	WR								
	WT	18	19						19
	WL								
	NR								
	NT								
	NL				100\%		13	13	13
	ER			100\%		20		20	20
	ET	6	6						6
	EL								

PROPOSED CARROLL LANDFILL EXPANSION
CARROLL, NY - CHAUTAUQUA COUNTY
PM PEAK

Num of yrs									
			1						
LOCATIO N NUMBER	INTERSECTION DESCRIPTION	Existing Volume	BkgdVolume2015	Proposed Carroll Landfill Expansion				$\begin{aligned} & \hline \text { Total } \\ & \text { Site } \\ & \text { Trips } \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline \text { Full } \\ \text { Build } \\ \text { Volumes } \end{array}$
				Enter Dist. \%	$\begin{gathered} \text { Exit } \\ \text { Dist. \% } \end{gathered}$	$\begin{gathered} \hline \text { Trips IN } \\ 11 \end{gathered}$	$\begin{gathered} \hline \text { Trips OUT } \\ 16 \\ \hline \end{gathered}$		
1	Institute Street/ Frew Run St US Route 62 (Main St)								
	SR	48	49						49
	ST	204	210						210
	SL	40	41	100\%		11		11	52
	WR	23	24		100\%		16	16	40
	WT	17	18						18
	WL	33	34						34
	NR	95	98						98
	NT	236	243						243
	NL	21	22						22
	ER	8	8						8
	ET	7	7						7
	EL	26	27						27
2	Falconer St US Route 62 (Ivory St)								
	SR	17	18						18
	ST	152	157	100\%		11		11	168
	SL								
	WR								
	WT								
	WL								
	NR								
	NT	217	224		100\%		16	16	240
	NL	68	70						70
	ER	140	144						144
	ET								
	EL	30	31						31
3	CR 34(Frew Run Road)/								
	SR								
	ST								
	SL								
	WR								
	WT	24	25						25
	WL	4	4						4
	NR	4	4						4
	NT								
	NL	11	11		100\%		16	16	27
	ER	27	28	100\%		11		11	39
	ET	42	43						43
	EL								
4	Dodge Road/								
	Wiltsie Road								
	SR								
	ST	12	12						12
	SL	19	20	100\%		11		11	31
	WR	5	5		100\%		16	16	21
	WT								
	WL	2	2						2
	NR	0	0						
	NT	10	10						10
	NL								
	ER								
	ET								
	EL								
5	Dodge Road/								
	Site Drive								
	SR								
	ST								
	SL								
	WR								
	WT	7	7						7
	WL								
	NR								
	NT								
	NL				100\%		16	16	16
	ER			100\%		11		11	11
	ET	19	20						20
	EL								

PROPOSED CARROLL LANDFILL EXPANSION
CARROLL, NY - CHAUTAUQUA COUNTY
AM PEAK - 20 years

Num of yrs									
			15						
LOCATIO N NUMBER	INTERSECTION DESCRIPTION	Existing Volume	Bkgd Volume 1.0\%	Proposed Carroll Landfill Expansion				$\begin{aligned} & \hline \text { Total } \\ & \text { Site } \\ & \text { Trips } \\ & \hline \end{aligned}$	
				Enter Dist. \%	$\begin{gathered} \hline \text { Exit } \\ \text { Dist. \% } \end{gathered}$	$\begin{gathered} \hline \text { Trips IN } \\ 20 \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline \text { Trips OUT } \\ 13 \\ \hline \end{array}$		
1	Institute Street/ Frew Run St US Route 62 (Main St)								
	SR	6	7						7
	ST	117	136						136
	SL	23	27	100\%		20		20	47
	WR	45	52		100\%		13	13	65
	WT	7	8						8
	WL	46	53						53
	NR	39	45						45
	NT	136	158						158
	NL	7	8						8
	ER	9	10						10
	ET	6	7						7
	EL	12	14						14
2	Falconer St US Route 62 (Ivory St)								
	SR	49	57						57
	ST	86	100	100\%		20		20	120
	SL								
	WR								
	WT								
	WL								
	NR								
	NT	105	122		100\%		13	13	135
	NL	88	102						102
	ER	60	70						70
	ET								
	EL	15	17						17
3	CR 34(Frew Run Road)/ Wiltsie Road								
	SR								
	ST								
	SL								
	WR								
	WT	36	42						42
	WL	5	6						6
	NR								
	NT								
	NL	23	27		100\%		13	13	40
	ER	9	10	100\%		20		20	30
	ET	19	22						22
	EL								
4	Dodge Road/								
	Wiltsie Road								
	SR								
	ST	9	10						10
	SL	5	6	100\%		20		20	26
	WR	17	20		100\%		13	13	33
	WT								
	WL	1	1						1
	NR	1	1						1
	NT	6	7						7
	NL								
	ER								
	ET								
	EL								
5	Dodge Road/								
	Site Drive								
	SR								
	ST								
	SL								
	WR								
	WT	18	21						21
	WL								
	NR								
	NT								
	NL				100\%		13	13	13
	ER			100\%		20		20	20
	ET	6	7						7
	EL								

PROPOSED CARROLL LANDFILL EXPANSION
CARROLL, NY - CHAUTAUQUA COUNTY
PM PEAK - 20 years

Num of yrs									
			15						
LOCATIO N NUMBER	INTERSECTION DESCRIPTION	Existing Volume	Bkgd Volume 1.0\%	Proposed Carroll Landfill Expansion				Total Site Trips	
				Enter Dist. \%	$\begin{gathered} \hline \text { Exit } \\ \text { Dist. \% } \end{gathered}$	$\begin{gathered} \hline \text { Trips IN } \\ 11 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Trips OUT } \\ 16 \\ \hline \end{array}$		
1	Institute Street/ Frew Run St US Route 62 (Main St)								
	SR	48	56						56
	ST	204	237						237
	SL	40	46	100\%		11		11	57
	WR	23	27		100\%		16	16	43
	WT	17	20						20
	WL	33	38						38
	NR	95	110						110
	NT	236	274						274
	NL	21	24						24
	ER	8	9						9
	ET	7	8						8
	EL	26	30						30
2	Falconer St US Route 62 (Ivory St)								
	SR	17	20						20
	ST	152	176	100\%		11		11	187
	SL								
	WR								
	WT								
	WL								
	NR								
	NT	217	252		100\%		16	16	268
	NL	68	79						79
	ER	140	163						163
	ET								
	EL	30	35						35
3	CR 34(Frew Run Road)/ Wiltsie Road								
	SR								
	ST								
	SL								
	WR								
	WT	24	28						28
	WL	4	5						5
	NR	4	5						5
	NT								
	NL	11	13		100\%		16	16	29
	ER	27	31	100\%		11		11	42
	ET	42	49						49
	EL								
4	Dodge Road/								
	Wiltsie Road								
	SR								
	ST	12	14						14
	SL	19	22	100\%		11		11	33
	WR	5	6		100\%		16	16	22
	WT								
	WL	2	2						2
	NR	0	0						
	NT	10	12						12
	NL								
	ER								
	ET								
	EL								
5	Dodge Road/								
	Site Drive								
	SR								
	ST								
	SL								
	WR								
	WT	7	8						8
	WL								
	NR								
	NT								
	NL				100\%		16	16	16
	ER			100\%		11		11	11
	ET	19	22						22
	EL								

Proposed Carroll Landfill Carroll, NY

INTERSECTION ACCIDENT RATE CALCULATIONS

$$
\begin{aligned}
\text { Rate per MEV } & =\frac{\# \text { of Accidents } \times 1,000,000}{\text { Total No. of Entering Vehicles }}= \\
\text { Rate } & =\frac{\# \text { of Accidents } \times 1,000,000}{\text { Veh./Day } \times \text { Duration of Study }}=
\end{aligned}
$$

Accidents per million entering vehicles (Acc / MEV)

* Accident data is from Jan 01, 2008 to Dec 31st, 2010

1 Route 62/CR 34/Institute Street

2 US Route 62/Falconer Street

ROADWAY SEGMENT (MID-BLOCK) ACCIDENT RATE CALCULATIONS

4 Route 62 (Between Frew Run St and Hazzard Road)

Section length $=$	0.100 mi
$2-$ way ADT $=$	4344

5 Frew Run Street (Between Route 62 and Wiltsie Road)

Section length $=$	3.160 mi
2 - way ADT $=$	1379

Rate $=$
 $=0.42$ Acc $/$ MVM

Co Touring Route 34, 2.0 mile NW of Wiltsie Road ((+) is NB, (-) is SB)

Date, Time

Statistics
Period:
Speed violations:
Average time interval:
Traffic in column:
ADT:
Truck Share:
Thursday, June 23, 2011, 00:00 o'clock to Thursday, June 23, 2011, 23:59 o'clock

	Count +	\%	Count -	\%	Total	\%	V15 +	$\mathrm{Va}+$	V85 +	Vmax+	V15-1	Va-	V85	Vmax -	
0% Motorcycle	31	4.4	63	9.3	94	6.8	6	31	61	70	42	51	57	64	
1.1 sec Car	190	27.2	235	34.6	425	30.8	45	52	62	76	45	51	57	71	
12 \% Truck	446	63.9	352	51.8	798	57.9	47	54	61	74	45	51	57	69	
1379 Long truck	31	4.4	30	4.4	61	4.4	39	47	56	59	41	48	53	59	
62 \% Total	698	50.7	680	49.3	1378	100	46	52	61	76	45	51	57		SIERZEGA

Dodge Road, 1.6 miles SE of Wiltsie Road ((-) is $\mathrm{SB},(+)$ is NB)

Date, Time
Statistics

Period:
Speed violations:
Average time interval:
Traffic in column:
ADT:
Truck Share:

Thursday, June 23, 2011, 00:00 o'clock to Thursday, June 23, 2011, 23:59 o'clock

	Count +	\%	Count -	\%	Total	\%	V15 +	$\mathrm{Va}+$	V85 +	Vmax+	V15-1	Va-	V85 -	Vmax -	
0% Motorcycle	18	26.1	21	32.3	39	29.1	22	29	35	40	25	31	33	49	
0.8 sec Car	50	72.5	44	67.7	94	70.1	25	29	33	38	23	27	32	35	
7 \% Truck	1	1.4	0	0	1	0.7	6	6	6	6					
134 Long truck	0	0	0	0	0	0									
1% Total	69	51.5	65	48.5	134	100	23	29	33	40	23	28	32		SIER ZEGA

Wiltsie Road between CR 34 and Dodge Road

Date, Time

Statistics

Period:
Speed violations:
Average time interval:
Traffic in column:
ADT:
Truck Share:

Thursday, June 23, 2011, 00:00 o'clock to Thursday, June 23, 2011, 23:59 o'clock

		Count +	\%	Count -	\%	Total	\%	V15 +	$\mathrm{Va}+$	V85 +	Vmax+	V15-1	Va-	V85-1	Vmax -	
0 \%	Motorcycle	186	64.1	188	91.3	374	75.4	18	24	29	36	22	25	29	35	
1.6 sec	Car	94	32.4	18	8.7	112	22.6	9	19	27	32	13	21	25	28	
7 \%	Truck	4	1.4	0	0	4	0.8	9	11	12	13					
496	Long truck	6	2.1	0	0	6	1.2	11	13	14	15					
2 \%	Total	290	58.5	206	41.5	496	100	11	22	29	36	21	25	29		SIERZEGA

A3

Level of Service: Criteria and Definitions

Level of Service Criteria

Highway Capacity Manual 2010

SIGNALIZED INTERSECTIONS

Level of Service is a qualitative measure describing operational conditions within a traffic stream, based on service measures such as speed and travel time, freedom to maneuver, traffic interruptions, comfort, and convenience. Level of Service for signalized intersections is defined in terms of delay specifically, average total delay per vehicle for a 15 minute analysis period. The ranges are as follows:

Level of Service	Control Delay per vehicle (seconds)
A	<10
B	$10-20$
C	$20-35$
D	$35-55$
E	$55-80$
F	>80

UNSIGNALIZED INTERSECTIONS

Level of Service for unsignalized intersections is also defined in terms of delay. However, the delay criteria are different from a signalized intersection. The primary reason for this is driver expectation that a signalized intersection is designed to carry higher volumes than an unsignalized intersection. The total delay threshold for any given Level of Service is less for an unsignalized intersection than for a signalized intersection. The ranges are as follows:

Level of Service	Control Delay per vehicle (seconds)
A	<10
B	$10-15$
C	$15-25$
D	$25-35$
E	$35-50$
F	>50

A4

Level of Service Calculations: Existing Conditions

Proposed Carroll Landfill Expansion
2014 Existing Conditions - AM Peak Hour 1: Institute Street \& Ivory Street

	4	\rightarrow		7		-	4		4	p	\checkmark	\downarrow	\checkmark
Movement	EBL	EBT	EBR	WBL		BT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$				¢			¢			\dagger	
Volume (verh)	12	6	9	46		7	45	7	136	39	23	117	6
Sign Control		Stop				Stop			Free			Free	
Grade		0\%				0\%			\%\%			0\%	
Peak Hour Factor	0.92	0.92	0.92	0.92		. 92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (wph)	13	7	10	50		8	49	8	148	42	25	127	7
Pedestrians													
Lane Wldth (ti)													
Walking Speed (t/s)													
Percent Blockage													
Right turn flare (veh)													
Median type									None			None	
Median storage veh)													
Upstreamsignal (t)													
pX , platoon unblocked													
vC, conflicting volume	417	386	130	378		368	169	134			190		
$\mathrm{vC1}$, stage 1 conf vol													
VC2, stage 2 conf vol													
vCu, unblocked vol	417	386	130	378		368	169	134			190		
tC , single (s)	7.1	6.5	6.2	7.1		6.5	6.2	4.1			4.1		
tC, 2 stage (s)													
tF (s)	3.5	4.0	3.3	3.5		4.0	3.3	2.2			2.2		
p0 queue free \%	97	99	99	91		99	94	99			98		
CM capacity (ver/h)	501	535	919	558		548	875	1451			1384		
Direction, Lane \#	EB1	WB1	NB1	SB1									
Volume Total	29	107	198	159									
Volume Left	13	50	8	25									
Volume Right	10	49	42	7									
CSH	601	668	1451	1384									
Volume to Capacity	0.05	0.16	0.01	0.02									
Queue Length 95th (tt)	4	14	0	1									
Control Delay (s)	11.3	11.4	0.3	1.3									
Lane LOS	B	B	A	A									
Approach Delay (s)	11.3	11.4	0.3	1.3									
Approach LOS	B	B											
Intersection Summary													
Average Delay			3.7										
Intersection Capacity Uilization			30.5\%		OULev	evel of	f Service			A			
Analysis Period (min)			15										

HCM Unsignalized Intersection Capacity Analysis	Symchro 7-Report
SRF \& Associates	Page 1

Proposed Carroll Landfill Expansion
2: Falconer Street \& Ivory Street
2014 Existing Conditions - AM Peak Hour

2: Falconer Street \& Ivory Street								6/9/2014
	\rangle	\geqslant	4	\uparrow	\downarrow	\downarrow		
Movement	EBL	EBR	NBL	NBT	SBT	SBR		
Lane Configurations	M			\uparrow	$\stackrel{\square}{1}$			
Volume (verlh)	15	60	88	105	86	49		
Sign Control	Stop			Free	Free			
Grade	0\%			0\%	0\%			
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92		
Hourly flowrate (yph)	16	65	96	114	93	53		
Pedestrians								
Lane Whath (t)								
Walking Speed (t/s)								
Percent Blockage								
Right turn flare (veh)								
Median type				None	None			
Median storage veh)								
Upstreamsignal (t)								
pX , platoon unblocked								
vC , conflicting volume	426	120	147					
$\mathrm{vC1}$, stage 1 conf vol								
vC2, stage 2 conf vol								
vcu, unblocked vol	426	120	147					
tC, single (s)	6.4	6.2	4.1					
tC, 2 stage (s)								
tF (s)	3.5	3.3	2.2					
pO queue free\%	97	93	93					
CM capacity (vel/h)	547	931	1435					
Direction, Lane\#	EB1	NB1	SB1					
Volume Total	82	210	147					
Volume Left	16	96	0					
Volume Right	65	0	53					
CSH	816	1435	1700					
Volume to Capacity	0.10	0.07	0.09					
Queue Length 95th (tt)	8	5	0					
Control Delay (s)	9.9	3.8	0.0					
Lane LOS	A	A						
Approach Delay (s)	9.9	3.8	0.0					
Approach LOS	A							
Intersection Summary								
Average Delay			3.7					
Intersection Capacity Uilization			32.4\%		CuLevel	Service	A	
Analysis Period (min)			15					

Proposed Carroll Landfill Expansion

Proposed Carroll Landfill Expansion
4: Dodge Road \& Wiltsie Road
2014 Existing Conditions - AM Peak Hou

Proposed Carroll Landfill Expansion 5: Dodge Road \& Proposed Site Drive 6/9/2014

	\rightarrow		\checkmark		4	1	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	$\stackrel{1}{ }$			$\hat{4}$	Y		
Volume (veh/h)	6	0	0	18	0	0	
Sign Control	Free			Free	Stop		
Grade	0\%			0\%	0\%		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (yph)	7	0	0	20	0	0	
Pedestrians							
Lane Wdth (ti)							
Walking Speed (t/s)							
Percent Blockage							
Right turn flare (veh)							
Median type	None			None			
Median storage veh)							
Upstreamsignal (t)							
pX, platoon unblocked							
VC, conflicting volume			7		26	7	
$\mathrm{vC1}$, stage 1 conf vol							
VC2, stage 2 conf vol							
vCu, unblocked vol			7		26	7	
tC, single (s)			4.1		6.4	6.2	
tC, 2 stage (s)							
tF(s)			2.2		3.5	3.3	
p0 queue free\%			100		100	100	
cM capacity (vel/h)			1614		989	1076	
Direction, Lane\#	EB1	WB1	NB1				
Volume Total	7	20	0				
Volume Left	0	0	0				
Volume Right	0	0	0				
CSH	1700	1614	1700				
Volume to Capacity	0.00	0.00	0.00				
Queue Length 95th (t)	o	o	o				
Control Delay (s)	0.0	0.0	0.0				
Lane LOS			A				
Approach Delay (s)	0.0	0.0	0.0				
Approach LOS			A				
Intersection Surmary							
Average Delay			0.0				
Intersection Capacity Utilization			6.7\%		CuLevel of	Senice	A
Analysis Period (min)			15				

HCM Unsignalized Intersection Capacity Analysis

Proposed Carroll Landfill Expansion
2014 Existing Conditions - PM Peak Hour 1: Institute Street \& Ivory Street

	$\stackrel{ }{*}$			\checkmark			4	4	\dagger	P	\checkmark	\downarrow	\checkmark
Movement	EBL	EBT	EBR	WBL	WBT	BT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow				A			${ }_{*}$			\dagger	
Volume (verh)	26	7	8	33		17	23	21	236	95	40	204	48
Sign Control		Stop			Stop	op			Free			Free	
Grade		0\%				\%			0\%			\%\%	
Peak Hour Factor	0.79	0.79	0.79	0.87	0.8	87	0.87	0.92	0.92	0.92	0.95	0.95	0.95
Hourly flow rate (yph)	33	9	10	38		20	26	23	257	103	42	215	51
Pedestrians													
Lane Wdth (ti)													
Walking Speed (t/s)													
Percent Blockage													
Right tum flare (veh)													
Median type									None			None	
Median storage veh)													
Upstreamsignal (t)													
pX, platoon unblocked													
vC, conflicting volume	714	730	240	693		03	308	265			360		
$\mathrm{vC1}$, stage 1 conf vol													
$\mathrm{VC2}$, stage 2 conf vol													
val, unblocked vol	714	730	240	693		03	308	265			360		
tC, single (s)	7.1	6.5	6.2	7.1		6.5	6.2	4.1			4.1		
tc, 2 stage (s)													
tF(s)	3.5	4.0	3.3	3.5		4.0	3.3	2.2			2.2		
p0 queue free \%	89	97	99	89		94	96	98			96		
CM capacity (verVh)	307	331	799	332		43	732	1299			1199		
Direction, Lane\#	EB1	WB1	NB1	SB1									
Volume Total	52	84	383	307									
Volume Left	33	38	23	42									
Volume Right	10	26	103	51									
CSH	354	405	1299	1199									
Volume to Capacity	0.15	0.21	0.02	0.04									
Queue Length 95th (tt)	13	19	1	3									
Control Delay (s)	16.9	16.2	0.6	1.4									
Lane LOS	c	c	A	A									
Approach Delay (s)	16.9	16.2	0.6	1.4									
Approach LOS	c	c											
Intersection Summary													
Average Delay			3.5										
Intersection Capacity Utilization			38.3\%		OULev	evel of	Service			A			
Analysis Period (min)			15										

Proposed Carroll Landfill Expansion 3: CR 34 (Frew Run) \& Wiltsie Road

Proposed Carroll Landfill Expansion
4: Dodge Road \& Wiltsie Road

HCM Unsignalized Intersection Capacity Analysis
SRF \& Associates
Synchro 7-Repor

Proposed Carroll Landfill Expansion 5: Dodge Road \& Proposed Site Drive 6/9/2014

	\rightarrow		\checkmark		4	1	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	\dagger			\uparrow	Y		
Volume (veh/h)	19	0	0	7	0	0	
Sign Control	Free			Free	Stop		
Grade	0\%			0\%	0\%		
Peak Hour Factor	0.59	0.59	0.44	0.44	0.92	0.92	
Hourly flow rate (yph)	32	0	0	16	0	0	
Pedestrians							
Lane Wdth (ti)							
Walking Speed (t/s)							
Percent Blockage							
Right turn flare (veh)							
Median type	None			None			
Median storage veh)							
Upstreamsignal (t)							
pX, platoon unblocked							
VC, conflicting volume			32		48	32	
$\mathrm{vC1}$, stage 1 conf vol							
VC2, stage 2 conf vol							
vCu, unblocked vol			32		48	32	
tC, single (s)			4.1		6.4	6.2	
tC, 2 stage (s)							
tF(s)			2.2		3.5	3.3	
p0 queue free\%			100		100	100	
cM capacity (vel/h)			1580		961	1042	
Direction, Lane\#	EB1	WB1	NB1				
Volume Total	32	16	0				
Volume Left	0	0	0				
Volume Right	0	0	0				
CSH	1700	1580	1700				
Volume to Capacity	0.02	0.00	0.00				
Queue Length 95th (t)	o	o	o				
Control Delay (s)	0.0	0.0	0.0				
Lane LOS			A				
Approach Delay (s)	0.0	0.0	0.0				
Approach LOS			A				
Intersection Surmary							
Average Delay			0.0				
Intersection Capacity Utilization			6.7\%		CuLevel of	Senice	A
Analysis Period (min)			15				

HCM Unsignalized Intersection Capacity Analysis

A5

Level of Service Calculations: 2015 Background Conditions

2015 Background Conditions - AM Peak Hour 1: Institute Street \& Ivory Street

	$\stackrel{ }{*}$			\checkmark		-	4		\dagger	P	\checkmark	\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL		BT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\dagger				\uparrow			${ }_{*}$			\dagger	
Volume (verh)	12	6	9	47		7	46	7	140	40	24	121	6
Sign Control		Stop				Stop			Free			Free	
Grade		0\%				0\%			0\%			0\%	
Peak Hour Factor	0.92	0.92	0.92	0.92		0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (yph)	13	7	10	51		8	50	8	152	43	26	132	
Pedestrians													
Lane Wdth (ti)													
Walking Speed (t/s)													
Percent Blockage													
Right tum flare (veh)													
Median type									None			None	
Median storage veh)													
Upstreamsignal (t)													
pX, platoon unblocked													
vC, conflicting volume	430	398	135	389		379	174	138			196		
$\mathrm{vC1}$, stage 1 conf vol													
$\mathrm{VC2}$, stage 2 conf vol													
val, unblocked vol	430	398	135	389		379	174	138			196		
tC, single (s)	7.1	6.5	6.2	7.1		6.5	6.2	4.1			4.1		
tc, 2 stage (s)													
tF(s)	3.5	4.0	3.3	3.5		4.0	3.3	2.2			2.2		
p0 queue free \%	97	99	99	91		99	94	99			98		
CM capacity (verVh)	490	527	914	548		540	870	1446			1377		
Direction, Lane\#	EB1	WB1	NB1	SB1									
Volume Total	29	109	203	164									
Volume Left	13	51	8	26									
Volume Right	10	50	43	7									
CSH	591	660	1446	1377									
Volume to Capacity	0.05	0.16	0.01	0.02									
Queue Length 95th (tt)	4	15	0	1									
Control Delay (s)	11.4	11.5	0.3	1.4									
Lane LOS	B	B	A	A									
Approach Delay (s)	11.4	11.5	0.3	1.4									
Approach LOS	B	B											
Intersection Summary													
Average Delay			3.7										
Intersection Capacity Utilization			31.4\%		CuLev	evel of	Service			A			
Analysis Period (min)			15										

2: Falconer Street \& Ivory Street								6/9/2014
	\rangle	∇	4	\uparrow	\downarrow	\downarrow		
Movement	EBL	EBR	NBL	NBT	SBT	SBR		
Lane Configurations	Y			\uparrow	$\hat{\beta}$			
Volume (vel/h)	15	62	91	108	89	50		
Sign Control	Stop			Free	Free			
Grade	0\%			0\%	0\%			
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92		
Hourly flowrate (yph)	16	67	99	117	97	54		
Pedestrians								
Lane Wath (t)								
Walking Speed (t/s)								
Percent Blockage								
Right turn flare (veh)								
Median type				None	None			
Median storage veh)								
Upstreamsignal (t)								
px , platoon unblocked								
vC , conflicing volume	439	124	151					
VCL , stage 1 conf vol								
$\mathrm{VC2}$, stage 2 conf vol								
vCu, unblocked vol	439	124	151					
tC, single (s)	6.4	6.2	4.1					
tc, 2 stage (s)								
tF (s)	3.5	3.3	2.2					
po queue free\%	97	93	93					
CM capacity (vehh)	535	927	1430					
Direction, Lane\#	EB1	NB1	SB1					
Volume Total	84	216	151					
Volume Left	16	99	0					
Volume Right	67	0	54					
cSH	811	1430	1700					
Volume to Capacity	0.10	0.07	0.09					
Queue Length 95th (tt)	9	6	0					
Control Delay (s)	9.9	3.8	0.0					
Lane LOS	A	A						
Approach Delay (s)	9.9	3.8	0.0					
Approach LOS	A							
Intersection Surmary								
Average Delay			3.7					
Intersection Capacity Utilization			33.1\%		CuLevel of	Service	A	
Analysis Period (min)			15					

Proposed Carroll Landfill Expansion
4: Dodge Road \& Wiltsie Road

Proposed Carroll Landfill Expansion 5: Dodge Road \& Proposed Site Drive 6/9/2014

	\rightarrow		\checkmark		4	1	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	$\stackrel{1}{ }$			$\hat{4}$	Y		
Volume (veh/h)	6	0	0	19	0	0	
Sign Control	Free			Free	Stop		
Grade	0\%			0\%	0\%		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (yph)	7	0	0	21	0	0	
Pedestrians							
Lane Wdth (ti)							
Walking Speed (t/s)							
Percent Blockage							
Right turn flare (veh)							
Median type	None			None			
Median storage veh)							
Upstreamsignal (t)							
pX, platoon unblocked							
VC, conflicting volume			7		27	7	
$\mathrm{vC1}$, stage 1 conf vol							
VC2, stage 2 conf vol							
vCu, unblocked vol			7		27	7	
tC, single (s)			4.1		6.4	6.2	
tC, 2 stage (s)							
tF(s)			2.2		3.5	3.3	
p0 queue free\%			100		100	100	
cM capacity (vel/h)			1614		988	1076	
Direction, Lane\#	EB1	WB1	NB1				
Volume Total	7	21	0				
Volume Left	0	0	0				
Volume Right	0	0	0				
CSH	1700	1614	1700				
Volume to Capacity	0.00	0.00	0.00				
Queue Length 95th (t)	o	o	o				
Control Delay (s)	0.0	0.0	0.0				
Lane LOS			A				
Approach Delay (s)	0.0	0.0	0.0				
Approach LOS			A				
Intersection Surmary							
Average Delay			0.0				
Intersection Capacity Utilization			6.7\%		CuLevel of	Senice	A
Analysis Period (min)			15				

HCM Unsignalized Intersection Capacity Analysis

2015 Background Conditions - PM Peak Hour 1: Institute Street \& Ivory Street

Lovene Configigraic
Volume (ivern)
Sign Control
Grate
Sign Contid
Grade
Paek Hour Factor
Hourly flow rate (vpl)
Pexess Worth (it)
Walking Speed (tIts)
Percent Blockage
Reigent tum flare (veh)
Rignt tum liae (ven)
Mediantpe
Median sporage veh)
Upstreamsignal (t)
px, platoon unblocked

pX, platoon unblocked								
vC, conflicting volume	736	752	247	713	724	317	273	371
vC1, stage 1 conf vol								

vc2, stage 2 coniv vol								
vou, unblocked vol	736	752	247	713	724	317	273	371
$\mathrm{tC}, 2^{\text {ctage }}$ (s)								
tF(s)	3.5	4.0	3.3	3.5	4.0	3.3	22	22
poqueve free\%	88	97	99	88	94	96	98	96
cm capaait (verrh)	294	32	792	321	333	723	1291	1188

Direction, Lane\#	EB1	WB1	NB1	SB1	
Volume Tota	53	87	395	316	
Volume Left	34	39	24	43	
Volume Right	10	28	107	52	
CSH	339	394	1291	1188	
Volume to Capacity	0.16	0.22	0.02	0.04	
Queue Length 95th (tr)	14	21	1	3	
Control Delay (s)	17.6	16.7	0.6	1.4	
Lane LOS	c	c	A	A	
Approach Delay (s)	17.6	16.7	0.6	1.4	
Approach LOS	c	c			
Intersection Summary					
Average Delay			3.6		
Intersection Capacity Uuilization			39.0\%	ICULevel of Service	A
Analysis Period (min)			15		

HCM Unsignalized Intersection Capacity Analysis	Synchro $7-$ Report
SRF \& Associates	Page 1

HCM Unsignalized Intersection Capacity Analysis	Synchro 7-Report
SRF \& Associates	Page 2

	\rightarrow	\geqslant	7	\leftarrow	4	p		,
Movement	EBT	EBR	WBL	WBT	NBL	NBR		
Lane Configurations	$\stackrel{1}{ }$			\uparrow	M			
Volume (verh)	43	28	4	25	11	4		
Sign Control	Free			Free	Stop			
Grade	0\%			0\%	0\%			
Peak Hour Factor	0.73	0.73	0.64	0.64	0.88	0.88		
Hourly flow rate (yph)	59	38	6	39	12	5		
Pedestrians								
Lane Wdth (ti)								
Walking Speed (t/s)								
Percent Blockage								
Right tum flare (veh)								
Median type	None			None				
Median storage veh)								
Upstreamsignal (t)								
pX , platoon unblocked								
VC, conflicting volume			97		130	78		
$\mathrm{vC1}$, stage 1 conf vol								
VC2, stage 2 conf vol								
vCu, unblocked vol			97		130	78		
tC, single (s)			4.1		6.4	6.2		
tC, 2 stage (s)								
tF (s)			2.2		3.5	3.3		
p0 queue free \%			100		99	100		
CM capacity (verVh)			1496		861	983		
Direction, Lane\#	EB1	WB1	NB1					
Volume Total	97	45	17					
Volume Left	0	6	12					
Volume Right	38	0	5					
CSH	1700	1496	890					
Volume to Capacity	0.06	0.00	0.02					
Queue Length 95th (tt)	0	0	1					
Control Delay (s)	0.0	1.1	9.1					
Lane LOS		A	A					
Approach Delay (s)	0.0	1.1	9.1					
Approach LOS			A					
Intersection Summary								
Average Delay			1.3					
Intersection Capacity Utilization			14.7\%		CuLevel	Senice	A	
Analysis Period (min)			15					

Proposed Carroll Landfill Expansion
4: Dodge Road \& Wiltsie Road

4: Dodge Road \& Wiltsie Road									69/2014
	\dagger	4	4	1			\downarrow		
Movement	WBL	WBR	NBT	NBR		SBL	SBT		
Lane Configurations	\%		t				\uparrow		
Volume (vel/h)	2	5	10	0		20	12		
Sign Control	Stop		Free				Free		
Grade	0\%		0\%				\%\%		
Peak Hour Factor	0.44	0.44	0.63	0.63		0.65	0.65		
Hourly flow rate (vph)	5	11	16	0		31	18		
Pedestrians									
Lane Whath (tt)									
Walking Speed ((t/s)									
Percent Blockage									
Right turn flare (veh)									
Mediantype			None				None		
Median storage veh)									
Upstreamsignal (t)									
pX, platoon unblocked									
vC , conflicing volume	96	16				16			
VC1, stage 1 conf vol									
VC2, stage 2 conf vol									
vCu, unblocked vol	96	16				16			
tC , single (s)	6.4	6.2				4.1			
$\mathrm{tc}, 2$ stage (s)									
tF (s)	3.5	3.3				2.2			
po queue free\%	99	99				98			
cM capacity (vehh)	886	1063				1602			
Direction, Lane\#	WB1	NB1	SB1						
Volume Total	16	16	49						
Volume Left	5	0	31						
Volume Right	11	0	0						
CSH	1006	1700	1602						
Volume to Capacity	0.02	0.01	0.02						
Queue Length 95th (tt)	1	o	1						
Control Delay (s)	8.6	0.0	4.6						
Lane LOS	A		A						
Approach Delay (s)	8.6	0.0	4.6						
Approach LOS	A								
Intersection Surmary									
Average Delay			4.5						
Intersection Capacity Utilization			18.4\%			Level of	Service	A	
Analysis Period (min)			15						

Proposed Carroll Landfill Expansion 5: Dodge Road \& Proposed Site Drive 6/9/2014

	\rightarrow		\checkmark		4	1	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	\dagger			\uparrow	Y		
Volume (veh/h)	20	0	0	7	0	0	
Sign Control	Free			Free	Stop		
Grade	0\%			0\%	0\%		
Peak Hour Factor	0.59	0.59	0.44	0.44	0.92	0.92	
Hourly flow rate (yph)	34	0	0	16	0	0	
Pedestrians							
Lane Wdth (ti)							
Walking Speed (t/s)							
Percent Blockage							
Right turn flare (veh)							
Median type	None			None			
Median storage veh)							
Upstreamsignal (t)							
pX, platoon unblocked							
VC, conflicting volume			34		50	34	
$\mathrm{vC1}$, stage 1 conf vol							
VC2, stage 2 conf vol							
vCu, unblocked vol			34		50	34	
tC, single (s)			4.1		6.4	6.2	
tC, 2 stage (s)							
tF(s)			2.2		3.5	3.3	
p0 queue free\%			100		100	100	
cM capacity (vel/h)			1578		959	1039	
Direction, Lane\#	EB1	WB1	NB1				
Volume Total	34	16	0				
Volume Left	0	0	0				
Volume Right	0	0	0				
CSH	1700	1578	1700				
Volume to Capacity	0.02	0.00	0.00				
Queue Length 95th (t)	o	o	o				
Control Delay (s)	0.0	0.0	0.0				
Lane LOS			A				
Approach Delay (s)	0.0	0.0	0.0				
Approach LOS			A				
Intersection Surmary							
Average Delay			0.0				
Intersection Capacity Utilization			6.7\%		CuLevel of	Senice	A
Analysis Period (min)			15				

HCM Unsignalized Intersection Capacity Analysis

A6

Level of Service Calculations: 2015 Full Development Conditions

Proposed Carroll Landfill Expansion 2015 Full Development Conditions - AM Peak Hour 1: Institute Street \& Ivory Street 61012014

HCM Unsignalized Intersection Capacity Analysis	Symchro $7-$ Report SRF \& Associates

HCM Unsignalized Intersection Capacity Analysis	Synchro $7-$ Report SRF \& Associates

Proposed Carroll Landfill Expansion 2015 Full Development Conditions - AM Peak Hou 3: CR 34 (Frew Run) \& Wiltsie Road 6/10/2014

HCM Unsignalized Intersection Capacity Analysis	Synchro 7-Report
SRF \& Associates	Page 3

Proposed Carroll Landfill Expansion 2015 Full Development Conditions - AM Peak Hour 4: Dodge Road \& Wiltsie Road 6/10/2014

Pedestrians
Wane Mathing (tt)
Wercent Blockage
Percent Blockage
$\begin{array}{ll}\text { Right turn flare (veh) None } \\ \text { Median type } & \\ \end{array}$
Median storage veh)
Upstream signal (It)
px, platoon unblocked
$\begin{array}{llll}\mathrm{vC}, \text { conflicting volume } & 71 & 7 & 8\end{array}$
CL, stage 1 conf vol

	71	
vC2, stage 2 conf vol		
	71	7

$\mathrm{VC2}$, stage 2 conf vol			
vCu , unblocked vol	71	7	8
tC, single (s)	6.4	6.6	4.9
$\mathrm{tC}, 2$ stage (s)	3.5	3.7	2.9
$\mathrm{tF}(\mathrm{s})$	100	97	98
pO queue free $\%$	912	970	1224
CM capacity $(\mathrm{ver} / \mathrm{h})$			

Direction, Lane \#	WB1	NB1	SB1		
Volume Total	35	8	37		
Volume Left	1	0	27		
Volume Right	34	1	0		
CSH	968	1700	1224		
Volume to Capacity	0.04	0.00	0.02		
Queue Length 95th (tt)	3	0	2		
Control Delay (s)	8.9	0.0	5.9		
Lane LOS	A		A		
Approach Delay (s)	8.9	0.0	5.9		
Approach LOS	A				
Intersection Summay					
Average Delay			6.6		
Intersection Capacity Utilization			18.5\%	ICULevel of Service	A
Analysis Period (min)			15		

HCM Unsignalized Intersection Capacity Analysis	Synchro $7-$ Report
SRF \& Associates	Page 4

Proposed Carroll Landfill Expansion 2015 Full Development Conditions - AM Peak Hou 5: Dodge Road \& Proposed Site Drive 6/10/2014

HCM Unsignalized Intersection Capacity Analysis
Synchro 7-Report

2015 Full Development Conditions - PM Peak Hour 1: Institute Street \& Ivory Street

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
Lane Configurations		\dagger			\dagger			\dagger			¢	
Volume (vehh)	27	7	8	34	18	40	22	243	98	52	210	
Sign Control		Stop			Stop			Free			Free	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.79	0.79	0.79	0.87	0.87	0.87	0.92	0.92	0.92	0.95	0.95	0.95

Peak Hour Factor	0.79	0.79	0.79	0.87	0.87	0.87	0.92	0.92	0.92	0.95	0.95	0.95
Hourly flow rate (Vph)	34	9	10	39	21	46	24	264	107	55	221	52

ane WICth (ft)
Percent Blockage
Percent Blockage
Right turn flare (veh)
Right turn flare (veh)
Median type
Median storage veh)
Upstream signal (tt)
px, platoon unblocked

| pX, platoon unblocked | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| vC, conflicting volume | 778 | 775 | 247 | 736 | 747 | 317 | 273 | 371 |
| vC1, stage 1 conf vol | | | | | | | | |
| VC, | | | | | | | | |

HCM Unsignalized Intersection Capacity Analysis	Synchro 7-Report
SRF \& Associates	Page 1

Proposed Carroll Landfill 2015 Full Development Conditions - PM Peak Hour								
	\Rightarrow		4	\uparrow		\downarrow		
Movement	EBL	EBR	NBL	NBT	SBT	SBR		
Lane Configurations	Y			\uparrow	$\hat{\square}$			
Volume (veh/h)	31	144	70	240	168	18		
Sign Control	Stop			Free	Free			
Grade	0\%			0\%	\%\%			
Peak Hour Factor	0.90	0.90	0.86	0.86	0.91	0.91		
Hourly flow rate (yph)	34	160	81	279	185	20		
Pedestrians								
Lane Wdath (tr)								
Walking Speed (t / s)								
Percent Blockage								
Right turn flare (veh)								
Mediantype				None	None			
Median storage veh)								
Upstream signal (ft)								
pX, platoon unblocked								
VC , confliciting volume	636	195	204					
vC1, stage 1 conf vol								
$\mathrm{vC2}$, stage 2 conf vol								
vCu, unblocked vol	636	195	204					
tc, single (s)	6.4	6.2	4.1					
tc, 2 stage (s)								
tF(s)	3.5	3.3	2.2					
p0 queue free\%	92	81	94					
cM capacity (veh/h)	415	847	1367					
Direction, Lane \#	EB1	NB1	SB1					
Volume Total	194	360	204					
Volume Left	34	81	0					
Volume Right	160	0	20					
cSH	715	1367	1700					
Volume to Capacity	0.27	0.06	0.12					
Queue Length 95th (tt)	28	5	0					
Control Delay (s)	11.9	2.2	0.0					
Lane LOS	B	A						
Approach Delay (s)	11.9	2.2	0.0					
Approach LOS	B							
Intersection Summary								
Average Delay			4.1					
Intersection Capacity Utilization			47.0\%		ICULevel of	Service	A	
Analysis Period (min)			15					

HCM Unsignalized Intersection Capacity Analysis	Synchro 7-Report
SRF \& Associates	Page 2

Proposed Carroll Landfill 5: Dodge Road \& Proposed Site Drive

	\rightarrow		7		4	7	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	$\stackrel{1}{ }$			\uparrow	M		
Volume (verh ${ }^{\text {a }}$	20	11	o	7	16	0	
Sign Control	Free			Free	Stop		
Grade	0\%			0\%	0\%		
Peak Hour Factor	0.59	0.59	0.44	0.44	0.92	0.92	
Hourly flow rate (yph)	34	19	-	16	17	0	
Pedestrians							
Lane Wdth (ti)							
Walking Speed (t/s)							
Percent Blockage							
Right turn flare (veh)							
Median type	None			None			
Median storage veh)							
Upstreamsignal (t)							
pX , platoon unblocked							
VC, conflicting volume			53		59	43	
$\mathrm{vC1}$, stage 1 conf vol							
$\mathrm{VC2}$, stage 2 conf vol							
vCu, unblocked vol			53		59	43	
tC , single (s)			4.1		7.4	6.2	
tC, 2 stage (s)							
tF (s)			2.2		4.4	3.3	
p0 queue free \%			100		98	100	
CM capacity (verVh)			1553		751	1027	
Direction, Lane\#	EB1	WB1	NB1				
Volume Total	53	16	17				
Volume Left	0	0	17				
Volume Right	19	-	0				
CSH	1700	1553	751				
Volume to Capacity	0.03	0.00	0.02				
Queue Length 95th (tt)	0	0	2				
Control Delay (s)	0.0	0.0	9.9				
Lane LOS			A				
Approach Delay (s)	0.0	0.0	9.9				
Approach Los			A				
Intersection Summary							
Average Delay			2.0				
Intersection Capacity Utilization			13.3\%		CuLevel of	Senice	A
Analysis Period (min)			15				

HCM Unsignalized Intersection Capacity Analysis

A7

Level of Service Calculations: 2030 Background Conditions

Proposed Carroll Landfill Expansior2030 Background Development Conditions - AM Peak Hour 1: Institute Street \& lvory Street

HCM Unsignalized Intersection Capacity Analysis	Synchro 7-Report
SRF \& Associates	Page 1

Proposed Carroll Landfill Expansion2030 Background Development Conditions - AM Peak Hour 2: Falconer Street \& Ivory Street

HCM Unsignalized Intersection Capacity Analysis	Synchro 7-Report
SRF \& Associates	Page 2

Proposed Carroll Landfill Expansior2030 Background Development Conditions - AM Peak Hour 3: CR 34 (Frew Run) \& Wiltsie Road 6/1920014

HCM Unsignalized Intersection Capacity Analysis	Synchro 7-Report
SRF \& Associates	Page 3

Proposed Carroll Landfill Expansior2030 Background Development Conditions - AM Peak Hour 4: Dodge Road \& Wiltsie Road

Pedestrians

Lane Width (tt)

Walking Speed (ft/s)
Percent Blockage

Right turn flare (veh) None	
Median type	

Median storage veh)
Upstream signal (tt)
pX , platoon unblocked

VC1, stage 1 conf vol
VC2, stage 2 conf vol

vC2, stage 2 conf vol			
vCu, unblocked vol	32	8	9
tC , single (s)	6.4	6.2	4.1

${ }^{\mathrm{t} C} \mathrm{C}$, single (s)
$\mathrm{tc}, 2$ sta
$\mathrm{tF}(\mathrm{s})$
tF(s)

	3.5	3.3	2.2
CM quevae free $\%$	100	98	100
(veh/h)	978	1074	1611

Direction, Lane\#	WB1	NB1	SB1		
Volume Total	23	9	17		
Volume Left	1	o	7		
Volume Right	22	1	0		
cSH	1069	1700	1611		
Volume to Capacity	0.02	0.01	0.00		
Queue Length 95th (tt)	2	0	0		
Control Delay (s)	8.4	0.0	2.7		
Lane LOS	A		A		
Approach Delay (s)	8.4	0.0	2.7		
Approach LOS	A				
Intersection Summary					
Average Delay			4.9		
Intersection Capacity Uilization			15.9\%	ICULevel of Service	A
Analysis Period (min)			15		

HCM Unsignalized Intersection Capacity Analysis	Synchro 7-Report
SRF \& Associates	Page 4

Proposed Carroll Landfill Expansion2030 Background Development Conditions - AM Peak Hour 5: Dodge Road \& Proposed Site Drive 6/1920014

HCM Unsignalized Intersection Capacity Analysis	Synchro $7-$ Report
SRF \& Associates	Page 5

2030 Background Conditions - PM Peak Hour 1: Institute Street \& Ivory Street

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\dagger			\dagger			\uparrow			\dagger	
Volume (verlh)	30	8	9	38	20	27	24	274	110	46	237	56
Sign Control		Stop			Stop			Free			Free	
Grade		\%\%			0\%			\%\%			0\%	
Peak Hour Factor	0.79	0.79	0.79	0.87	0.87	0.87	0.92	0.92	0.92	0.95	0.95	0.95

Peak Hour Factor
Hourly flow rate
lane Wdith (ft)
Walking Speed (t/s)
Percent Blockage
Reight turn flare (veh)
Right turn flare (veh)
Median type
Median storage veh)
Upstream signal (tt)
pX , platoon unblocked
VC , conflicting volume
vC1, stage 1 conf vol

	828	845	279	802	815	358	308	417

vau, unblocked vol
tC , single (s)
C, 2 stag
tF (s) queue free \%

	85	96	99	84	92	95	98	96
MM capacity (velVh)	248	281	760	276	292	687	1252	1142

Direction, Lane\#	EB1	WB1	NB1	SB1	
Volume Total	59	98	443	357	
Volume Left	38	44	26	48	
Volume Right	11	31	120	59	
cSH	291	346	1252	1142	
Volume to Capacity	0.20	0.28	0.02	0.04	
Queue Length 95th (tr)	19	8	2	3	
Control Delay (s)	20.5	19.4	0.7	1.5	
Lane LOS	c	c	A	A	
Approach Delay (s)	20.5	19.4	0.7	1.5	
Approach LOS	c	c			
Intersection Summary					
Average Delay			4.1		
Intersection Capacity Uilization			43.3\%	ICULevel of Service	A
Analysis Period (min)			15		

HCM Unsignalized Intersection Capacity Analysis	Synchro 7-Report
SRF \& Associates	Page 1

HCM Unsignalized Intersection Capacity Analysis	Synchro 7-Report
SRF \& Associates	Page 2

Proposed Carroll Landfill Expansion 2030 Background Conditions - PM Peak Hour

HCM Unsignalized Intersection Capacity Analysis	Synchro 7-Report
SRF \& Assciates	Page 3

Proposed Carroll Landfill Expansion
4: Dodge Road \& Wiltsie Road

HCM Unsignalized Intersection Capacity Analysis	Synchro 7-Report
SRF \& Associates	Page 4

Proposed Carroll Landfill Expansion 2030 Background Conditions - PM Peak Hou 5: Dodge Road \& Proposed Site Drive 6/19/2014

HCM Unsignalized Intersection Capacity Analysis
Synchro 7-Report

A8

Level of Service Calculations: 2030 Full Development Conditions

Proposed Carroll Landfill Expansion 2030 Full Development Conditions - AM Peak Hour 1: Institute Street \& Ivory Street $6 / 232014$

	\Rightarrow	\rightarrow		\checkmark			4		P			\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow			¢			\$			\dagger	
Volume (vel/h)	14	7	10	53	8	65	8	158	45	47	136	
Sign Control		Stop			Stop			Free			Free	
Grade		0\%			0\%			0\%			\%\%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (yph)	15	8	11	58	9	71	9	172	49	51	148	
Pedestrians												
Lane Whath (t)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstreamsignal (ft)												
pX , platoon unblocked												
vC , conflicting volume	542	492	152	482	471	196	155			221		
vC1, stage 1 conf vol												
VC2, stage 2 conf vol												
vCu, unblocked vol	542	492	152	482	471	196	155			221		
tC , single (s)	7.1	6.5	6.2	7.1	6.5	6.4	4.1			4.5		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.5	2.2			2.6		
p0 queue free \%	96	98	99	88	98	91	99			96		
CM capacity (verh)	390	454	895	464	466	801	1425			1144		
Direction, Lane\#	EB1	WB1	NB1	SB1								
Volume Total	34	137	229	207								
Volume Left	15	58	9	51								
Volume Right	11	71	49	8								
cSH	496	593	1425	1144								
Volume to Capacity	0.07	0.23	0.01	0.04								
Queue Length 95th (tt)	5	22	0	4								
Control Delay (s)	12.8	12.9	0.3	2.4								
Lane LOS	B	B	A	A								
Approach Delay (s)	12.8	12.9	0.3	2.4								
Approach LOS	B	B										
Intersection Summary												
Average Delay			4.6									
Intersection Capacity Utilization			40.8\%		ULevel	Senice			A			
Analysis Period (min)			15									

HCM Unsignalized Intersection Capacity Analysis	Synchro 7-Report
SRF \& Associates	Page 1

Proposed Carroll Landfill Expansion 2030 Full Development Conditions - AM Peak Hour 2: Falconer Street \& Ivory Street 6/23/2014

HCM Unsignalized Intersection Capacity Analysis	Synchro 7-Report
SRF \& Associates	Page 2

Proposed Carroll Landfill Expansion 2030 Full Development Conditions - AM Peak Hou 3: CR 34 (Frew Run) \& Wiltsie Road 6

HCM Unsignalized Intersection Capacity Analysis	Synchro 7-Report
SRF \& Associates	Page 3

Proposed Carroll Landfill Expansion 2030 Full Development Conditions - AM Peak Hour 4: Dodge Road \& Wiltsie Road

HCM Unsignalized Intersection Capacity Analysis	Synchro 7-Report
SRF \& Associates	Page 4

Proposed Carroll Landfill Expansion 2030 Full Development Conditions - AM Peak Hour 5: Dodge Road \& Proposed Site Drive 6/23/2014

HCM Unsignalized Intersection Capacity Analysis
Synchro 7-Report

Proposed Carroll Landfill Expansion 2030 Full Development Conditions - PM Peak Hour 1: Institute Street \& Ivory Street

HCM Unsignalized Intersection Capacity Analysis	Symchro $7-$ Report SRF \& Associates

Proposed Carroll Landfill Expansion 2030 Full Development Conditions - PM Peak Hour 2: Falconer Street \& Ivory Street 6/23/2014

HCM Unsignalized Intersection Capacity Analysis	Synchro 7-Report
SRF \& Associates	Page 2

Proposed Carroll Landfill Expansion 2030 Full Development Conditions - PM Peak Hour 3: CR 34 (Frew Run) \& Wiltsie Road

HCM Unsignalized Intersection Capacity Analysis	Synchro 7-Report
SRF \& Associates	Page 3

Proposed Carroll Landfill Expansion 2030 Full Development Conditions - PM Peak Hour 4: Dodge Road \& Wiltsie Road 6/23/2014

Pedestrians
Walking Speed (tt/s)
Wercent Blockage
Percent Blockage
$\begin{array}{ll}\text { Right turn flare (veh) None } \\ \text { Median type } & \\ \end{array}$
Median storage veh)
Upstream signal (It)
px, platoon unblocked
$\begin{array}{llll}\text { vC, conficting volume } & 142 & 19 & 19\end{array}$
vC1, stage 1 conf vol

| $\mathrm{VC2}$, stage 2 conf vol | | |
| :--- | :--- | :--- | :--- |
| va, unblocked vol | 142 | 19 |

$\mathrm{VCC2}$, stage 2 conf vol			
vCu , unblocked vol	142	19	19
tCC single (s)	6.4	6.9	4.4
tc 2 2 stage (s)			

$\mathrm{tF}(\mathrm{s}$

	3.5	4.0	2.5
queueve free $\%$	99	94	96
M capacity (veh/h)	820	886	1418

Direction, Lane\#	WB1	NB1	SB1		
Volume Total	55	19	72		
Volume Left	5	0	51		
Volume Right	50	0	0		
CSH	880	1700	1418		
Volume to Capacity	0.06	0.01	0.04		
Queue Length 95th (tt)	5	0	3		
Control Delay (s)	9.4	0.0	5.4		
Lane LOS	A		A		
Approach Delay (s)	9.4	0.0	5.4		
Approach LOS	A				
Intersection Summary					
Average Delay			6.2		
Intersection Capacity Utilization			19.2\%	ICULevel of Service	A
Analysis Period (min)			15		

Proposed Carroll Landfill Expansion 2030 Full Development Conditions - PM Peak Hour 5: Dodge Road \& Proposed Site Drive 6/23/2014

HCM Unsignalized Intersection Capacity Analysis
Synchro 7-Report

Letter from: Thomas A. Messana, State of New York Department of Transportation
To: Brian Boddecker, Daigler Engineering, P.C.

NYSDOT Review - Proposed Traffic Safety Improvements

April 21, 2014

Darrell F. Kaminski, P.E.
Regional Director

Joan McDonald
COMMISSIONER

April 21, 2014
Mr. Brian Boddecker, Staff Engineer
DAIGLER ENGINEERING, P.C.
2620 Grand Island Boulevard
Grand Island, NY 14072

Subject: REVIEW OF PROPOSED TRAFFIC SAFETY IMPROVEMENTS TOWN OF CARROLL (HAMLET OF FREWSBURG)

Dear Mr. Boddecker:
We have completed our review of the report submitted by your firm on March 19, 2014 proposing safety enhancements to mitigate the effects of increased truck traffic through the Village of Frewsburg, caused by an expansion of the Carroll Landfill south of the Village.

Based on our review, we have the following comments:

- A review of our records indicates that Frewsburg is an unincorporated hamlet, not a village; therefore they do not have any legal standing. All municipal references in this letter will be related to the Town of Carroll.
- The New York State Department of Transportation (NYSDOT) agrees with the proposal to add painted crosswalks at the intersections of Route 62 with Institute St , Frew Run Rd, and Falconer St; however, crosswalks can only be placed where there are Americans with Disabilities Act (ADA) compliant curb ramps.

Based on this requirement, we have determined that a crosswalk can be placed across Route 62, on the north side of the intersection with Institute St/Frew Run Rd. It would be preferable for the curb ramp on the northwest quadrant of this intersection to face directly the curb ramp on the east side of the road; we have also determined that crosswalks can be placed across Falconer St, Institute St, and Frew Run Rd.

Since the crossing of Route 62 is not stop controlled, the crosswalk should be of the high visibility type. There should also be a Pedestrian warning sign and a diagonal downward Arrow at the crossing location, as well as a Pedestrian warning sign with sub-panel reading 300 Feet, in advance of the crosswalk, for both the northbound and southbound directions.

In street Pedestrian Crossing signs, they are placed within a crosswalk; therefore, one could be placed within the crosswalk proposed for Route 62. The Town of Carroll would need to obtain a permit from our Department to place and remove the sign on a daily basis, and the sign would only be allowed between April and October.

- NYSDOT also agrees with the proposal to add stop lines to the intersections of Institute St, Frew Run Rd, and Falconer St with Route 62.
- The school speed limit on Route 62, at the Robert H. Jackson Elementary School is currently 1000 feet. New York State Vehicle and Traffic Law allows for a school speed limit to be a maximum of 1320 feet. Therefore, NYSDOT will extend this school speed limit to the legal maximum, and adjust the location of the school speed limit signs.
- School speed limits can be established for roads which have direct access to/from a school. Therefore, a school speed limit can be established for Institute St, but not Route 62. Should it be so desired, a school speed limit can also be established on Falconer St. This request must come from the Town of Carroll directly to NYSDOT, and once approved, then the signs could be installed.

In summary, the NYSDOT agrees with your proposal to install crosswalks, stop lines, and pedestrian signs on Route 62 and recommends that the curb ramp on the northwest quadrant of the intersection be modified as well. We have enclosed an aerial photograph indicating these modifications for your use. Prior to completing any of this work, permits and approvals must first be obtained from the NYSDOT. A separate permit must be obtained by the municipality to place the instreet pedestrian sign. NYSDOT will make the proposed change to the existing school speed limit on Route 62; however, the Town of Carroll must officially request any additional school speed limits.

If you have any questions or need additional information, please contact me at (716) 847-3268 or Angelo Borgese, of my staff, at (716) 847-3262.

Sincerely,
Original Signed by
Thomas S. Messana, P.E.
Thomas S. Messana, P.E. Regional Traffic Engineer

TSM/AB/paf

Enclosure
cc: Major Michael J. Cerretto, Troop "A" Commander, NYS Police Angelo Borgese, P.E., Regional Traffic Operations Engineer

