Technical Notes: Rates and FX Derivatives Pricing & Exposure Computation

The pricing and counterparty exposure computation for Rates and FX derivative products involves building a robust, scalable, and accurate framework that handles trade valuation, exposure calculations, and counterparty risk metrics.

1. Rates Products

1.1 Interest Rate Swaps

- NPV Calculation
 - Floating leg: Forward rate projection using relevant curve
 - Fixed leg: Discounted cashflows using OIS curve
 - o Consideration of multi-curve framework post-2008

1.2 Cross Currency Swaps

- Key Components
 - o Basis spread adjustment
 - FX forward rates integration
 - o Quanto adjustment for cross-currency basis

1.3 Swaptions

- Pricing Methods
 - o Black-76 model for European swaptions
 - o Hull-White for Bermudan swaptions
 - SABR calibration for volatility smile

2. FX Products

2.1 FX Forwards

- Valuation Factors
 - Spot rate
 - Interest rate differential
 - Forward points calculation

2.2 FX Options

- Models
 - o Garman-Kohlhagen model
 - Local volatility for exotic options

• FX volatility surface construction

2.3 FX Swaps

- Components
 - Near leg (spot)
 - Far leg (forward)
 - Swap points consideration
- 3. Exposure Computation
- 3.1 Potential Future Exposure (PFE)
 - Calculation Methods
 - Monte Carlo simulation
 - Grid-based approach
 - Risk factor evolution models

3.2 Expected Positive Exposure (EPE)

- Key Elements
 - Time buckets definition
 - Netting agreements impact
 - Collateral modeling

3.3 Credit Valuation Adjustment (CVA)

- Components
 - Default probability term structure
 - Loss Given Default (LGD)
 - Wrong-way risk consideration
- 4. Risk Factor Modeling
- 4.1 Interest Rates
 - Term Structure Models
 - Short rate models (Hull-White, CIR)
 - Forward rate models (HJM framework)
 - Multiple curve bootstrapping

4.2 FX Rates

• Evolution Models

- Geometric Brownian Motion
- Jump diffusion models
- Stochastic volatility considerations

4.3 Volatility

- Surface Construction
 - o SABR parameterization
 - Local volatility calibration
 - Volatility cube building

5. Market Data Requirements

5.1 Curves Construction

- Data Points
 - Cash rates
 - Futures prices
 - Swap rates
 - Basis spreads

5.2 Volatility Data

- Sources
 - ATM volatilities
 - o Risk reversals
 - Butterflies
 - Historical calibration

6. Risk Measures

6.1 Greeks Calculation

- First Order
 - o Delta
 - o Vega
 - o Rho
 - o Theta

• Second Order

- o Gamma
- o Vanna
- o Volga

6.2 Scenario Analysis

- Stress Testing
 - Historical scenarios
 - Hypothetical scenarios
 - Correlation breakdown scenarios

7. Numerical Methods

7.1 Integration Techniques

- Gauss-Legendre quadrature
- Adaptive Simpson's method
- Monte Carlo integration

7.2 Interpolation Methods

- Cubic spline
- Linear interpolation
- Monotone convex interpolation

8. System Requirements

8.1 Performance Considerations

- Real-time pricing capability
- Grid computing for exposure
- Cache management

8.2 Data Management

- Market data validation
- Curve versioning
- Calibration parameter storage

9. Model Validation

9.1 Testing Framework

- Unit testing
- Integration testing
- Regression testing

9.2 Benchmarking

- Market prices comparison
- Model comparison
- Stress scenario validation

10. Regulatory Considerations

10.1 Basel Requirements

- Capital calculation
- Exposure measurement
- Model validation standards

10.2 Documentation

- Model documentation
- Validation reports
- Regular review process