

TEMPORAL ACTIVITY ASSESSMENTS OF MAJOR METABOLIC PATHWAYS IN HUMAN/HUMAN[™] HEPATIC AND STROMAL CO-CULTURE MODEL Shiloh Barfield¹, Kristina K. Wolf¹, Ronald Laethem¹, Brittany Allen¹, Rachel Whisnant¹, **Richard Malavarca², and Marsha Roach²** ¹QPS Hepatic Biosciences, Research Triangle Park, NC, USA; ²PhoenixSongs Biologicals, Inc., Branford, CT, USA

INTRODUCTION

- Primary human hepatocytes are used routinely during drug development for metabolism, transport, toxicity, and drug-drug interaction studies.
- Despite being the "gold standard", hepatocyte cultures can vary tremendously in quality, functional capabilities, and longevity.
- An advanced multi-cellular model consisting of only human-derived cells may be better capable of maintaining physiologically relevant morphologic and biochemical hepatocellular characteristics, as well as mirror in vivo responses, for extended periods of time.
- We have developed and optimized the Human/Human[™] hepatic co-culture model, consisting of primary human hepatocytes and stromal cells.

The objective of this study was to characterize the temporal activities of phase I and phase II metabolic pathways in the Human/Human[™] hepatic co-culture model.

METHODS

Culture Model

- Cryopreserved primary human hepatocytes from individual donors (TABLE 1) were thawed in Cryopreservation Recovery Medium[™]. Cryopreserved growth-arrested stromal cells, not donor matched, were thawed in Hepatocyte Plating Medium (TABLE 1).
- The co-cultures were created by seeding hepatocytes and stromal cells together at a 1:1 ratio in Hepatocyte Plating Medium in collagen I-coated 24-well and 96-well plates. Cells were seeded at 0.3 x 10^6 and 0.48 x 10^6 cells/well for 24- and 96-well plates, respectively. Hepatocyte only and stromal cell only cultures also were seeded at the same densities.
- Cultures were maintained in Hepatocyte Culture Medium with daily medium changes.

TABLE 1. Characteristics of hepatocyte and stromal cell (LMSC-1006) donors.

	Characteristics							
Donor	Gender	Race	Age	BMI	Tobacco History	Alcohol History	Drug History	Medicatio
QHum13035	Male	Caucasian	30	20.9	Yes	2/day	No	None
QHuf15028	Female	Caucasian	21	25	1-1½ ppd	Socially	Marijuana	Tylenol
LHuf15908B	Female	Caucasian	27	30	½ ppd	Socially	No	Unknown
LHum16081	Male	African American	67	28	No	No	No	Unknown
NL-1001	Male	African American	2 mo	N/A	N/A	N/A	N/A	Unknown
LMSC-1006	Female	Caucasian	11	Unknown	N/A	N/A	N/A	Unknown

N/A = not applicable

Metabolic Activity

- For the initial studies, the CYP3A4 P450-Glo[®] assay with Luciferin-IPA (Promega) was used.
- For the CYP and phase II profiling study, cultures were incubated with probe substrates (TABLE 2) for 30 min on Days 0 (3 hr), 3, 5, 7, 14, 21 and 28. After sample removal, the wells were washed and fresh medium was added for continued culturing. Samples were analyzed by LC-MS/MS.

TABLE 2. Probe substrates for Phase I and Phase II metabolic pathways.

Isoform	Probe Substrate	Metabolite(s)		
CYP1A2	Phenacetin	Acetaminophen		
CYP2B6	Bupropion	Hydroxybupropion		
CYP2C9	Diclofenac	4'-Hydroxydiclofenac		
CYP2D6	Dextromethorphan	Dextrorphan		
CYP3A4/5	Midazolam	1'-Hydroxymidazolam		
CYP3A4/5	Testosterone	6β-Hydroxytestosterone		
UGT and SULT	7-Hydroxycoumarin	7-Hydroxycoumarin Glucuronide/Sulfate		

Imaging

- Cultures were incubated with 5(6)-carboxy-2',7'-dichlorofluorescein diacetate (CDFDA; 5 µM) for 20 minutes on Days 7, 14, 21, 28, 35 and 43 to determine bile canaliculi formation.
- Images were captured on either a fluorescent microscope or a Celígo[®] imaging cytometer.

Donor 2 = QHuf15028 Donor 3 = LHum16081 Donor 4 = LHuf15908B Donor 1 = QHum13035**Donor 5 = NL-100**1

Stromal = LMSC-1006

- Future directions include examining the capabilities of the model for enzyme induction and the metabolism of slow turnover compounds.

