

CLASS 6TH CHAPTER-11** ALGEBRA

EXERCISE- 11.1 NCERT SOLUTION

- 1. Find the rule which gives the number of matchsticks required to make the following matchstick patterns. Use a variable to write the rule.
- (a) A pattern of letter T as $\overline{}$ Ans.

A pattern of letter T is 2n. (As 2 matchstick are used in that pattern).

(b) A pattern of letter Z as Z
Ans.
A pattern of letter T is 3n. (As 3 matchstick are used in that pattern).

(c) A pattern of letter U as L
Ans.

A pattern of letter T is 3n. (As 3 matchstick are used in that pattern).

(d) A pattern of letter V as \vee Ans.

A pattern of letter T is 2n. (As 2 matchstick are used in that pattern).

(e) A pattern of letter E as — Ans.

A pattern of letter T is 5n. (As 5 matchstick are used in that pattern).

(f)	A	pattern	of	letter	S	as	5
An							

A pattern of letter T is 5n. (As 5 matchstick are used in that pattern).

(g) A pattern of letter A as

Ans.

A pattern of letter T is 6n. (As 6 matchstick are used in that pattern).

2. We already know the rule for the pattern of letters L, C and F. Some of the letters from Q.1 (given above) give us the same rule as that given by L. Which are these? Why does this happen?

Rule for C, C and C are same C as they require C matchsticks. Rule for C, C and C are same C as they require C matchsticks.

3. Cadets are marching in a parade. There are 5 cadets in a row. What is the rule which gives the number of cadets, given the number of rows? (Use n for the number of rows.) Ans.

Number of Rows = nNumber of cadet in each row = 5 \therefore Total Number of Cadet = 5n

4. If there are 50 mangoes in a box, how will you write the total number of mangoes in terms of the number of boxes? (Use b for the number of boxes.)

Ans.

Number of Boxes = b
Number of Mangoes in one box = 50
∴Total Number of mangoes = 50b

5. The teacher distributes 5 pencils per student. Can you tell how many pencils are needed, given the number of students? (Use s for the number of students.)

Ans.

Number of Student = *s*Number of pencil to each student = 5
∴Total Number of pencil needed are = 5*s*

6. A bird flies 1 kilometer in one minute. Can you express the distance covered by the bird in terms of its flying time in minutes? (Use t for flying time in minutes? (Use t for flying time in minutes.)

Ans.

Flying time in minutes = tSpeed of bird = 1km in 1minute \therefore Distance covered by bird in terms of its flying time = $1 \times t = t$

7. Radha is drawing a dot Rangoli (a beautiful pattern of lines joining dots) with chalk powder. She has 9 dots in a row. How many dots will her Rangoli have for r rows? How many dots are there if there are 8 rows? If there are 10 rows?

Ans.

Number of Rows = rNumber of dots in one row = 9 \therefore Total number of dots = 9rNumber of dots in $8 \text{ rows} = 8 \times 9 = 72$ Number of dots in $10 \text{ rows} = 10 \times 9 = 80$

8. Leela is Radha's younger sister. Leela is 4 years younger than Radha. Can you write Leela's age in terms of Radha's age? Take Radha's age to be x years.

Ans.

Radha age be = $x \ years$ \therefore Leela's age will be = $(x - 4) \ years$ 9. Mother has made laddus. She gives some laddus to guests and family members; still 5 laddus remain. If the number of laddus mother gave away is I, how many laddus did she make?

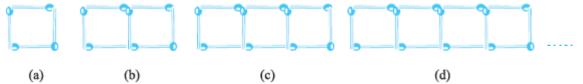
Ans.

Number of laddus gave away = lNumber of laddus remaining = 5

 \therefore Total number of laddus that she make = 5l

10. Oranges are to be transferred from larger boxes into smaller boxes. When a large box is emptied, the oranges from it fill two smaller boxes and still 10 oranges remain outside. If the number of oranges in a small box are taken to be x, what is the number of oranges in the larger box?

Number of oranges in small box = x

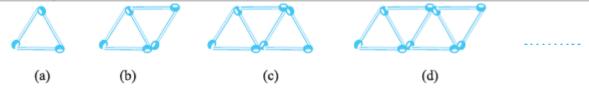

Number of small box = 2

 \therefore Total number of oranges in small box = 2x

Remaining oranges = 10

Thus number of pranges in larger box = 2x + 10

11. (a) Look at the following matchstick pattern of squares (Fig 11.6). The squares are not separate. Two neighbouring squares have a common matchstick. Observe the patterns and find the rule that gives the number of matchsticks in terms of the number of squares. (Hint: If you remove the vertical stick at the end, you will get a pattern of Cs.)



Ans.

- (a) 4 Matchsticks
- (b) 7 Matchsticks
- (c) 10 Matchsticks

(d) 13 Matchsticks Hence, the required equation is 3x + 1, where x is the number of squares.

(b) Fig 11.7 gives a matchstick pattern of triangles. As in Exercise 11 (a) above, find the general rule that gives the number of matchsticks in terms of the number of triangles.

Ans.

- (a) 3 Matchstick
- (b) 5 Matchstick
- (a) 7 Matchstick
- (d) 9 Matchstick

Hence, the required equation is 2x + 1, where x is the number of triangles.