

US 20130309245A1

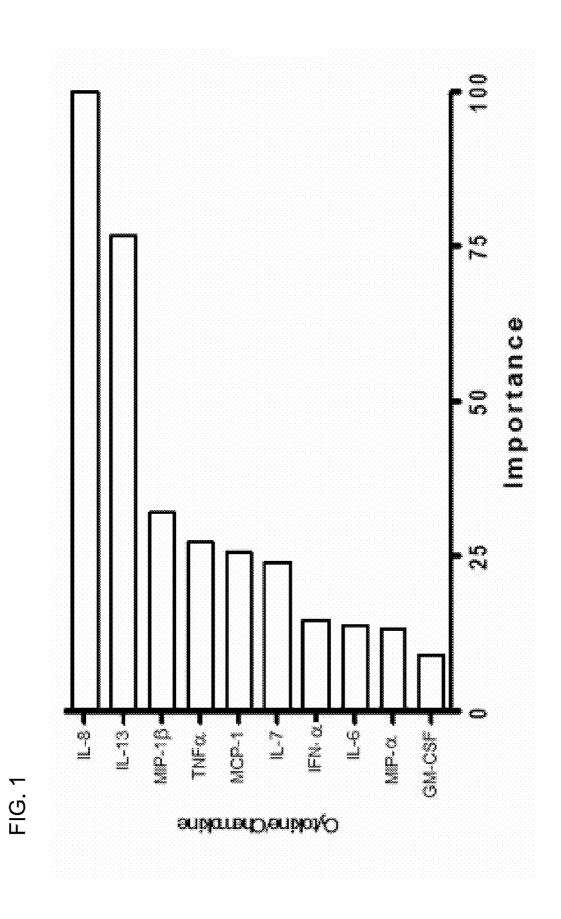
(19) United States(12) Patent Application Publication

Lombardi et al.

(10) Pub. No.: US 2013/0309245 A1 (43) Pub. Date: Nov. 21, 2013

- (54) USING A CYTOKINE SIGNATURE TO DIAGNOSE DISEASE OR INFECTION
- (71) Applicant: Whittermore Peterson Institute for Neuro-Immune Disease, Sparks, NV (US)
- (72) Inventors: Vincent C. Lombardi, Reno, NV (US); Judy A. Mikovits, Reno, NV (US)
- (73) Assignee: Whittermore Peterson Institute for Neuro-Immune Disease, Sparks, NV (US)
- (21) Appl. No.: 13/957,932
- (22) Filed: Aug. 2, 2013

Related U.S. Application Data


 (63) Continuation-in-part of application No. PCT/US2012/ 023876, filed on Feb. 3, 2012. (60) Provisional application No. 61/439,328, filed on Feb. 3, 2011.

Publication Classification

- (51) Int. Cl. *G01N 33/68* (2006.01)

(57) ABSTRACT

Provided are methods and compositions for detection of levels, activity, or expression of cytokines so as to determine a cytokine signature. A cytokine signature of a subject can be compared to a control or reference value(s) and differences there between used in the diagnosis or monitoring of a neuroimmune disease or a retroviral infection.

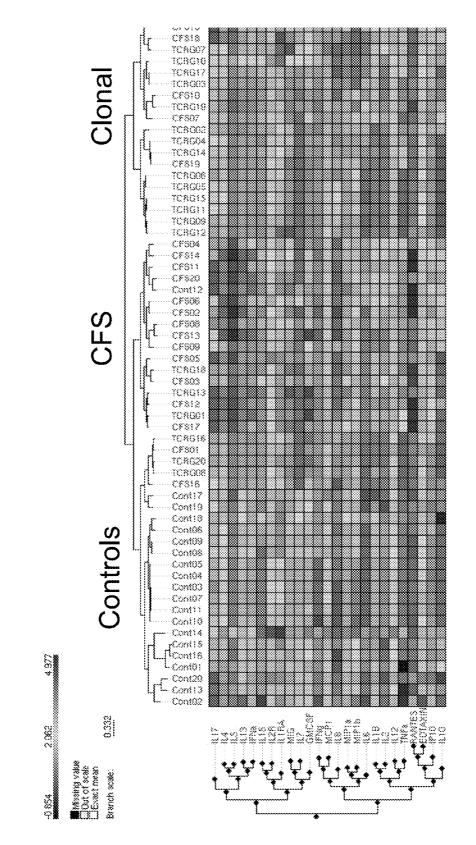
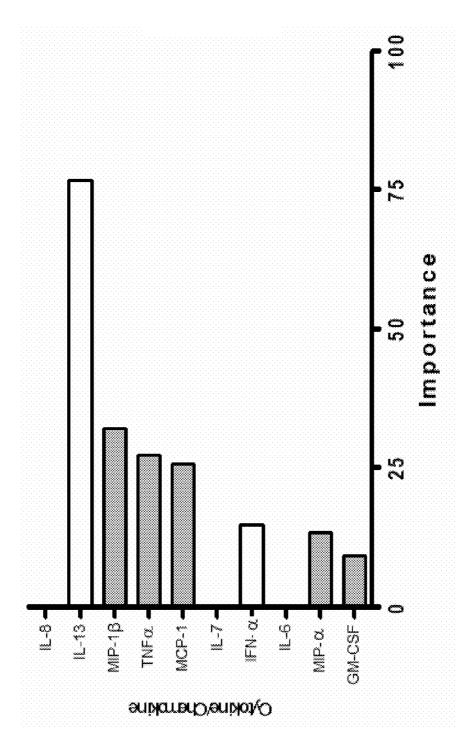
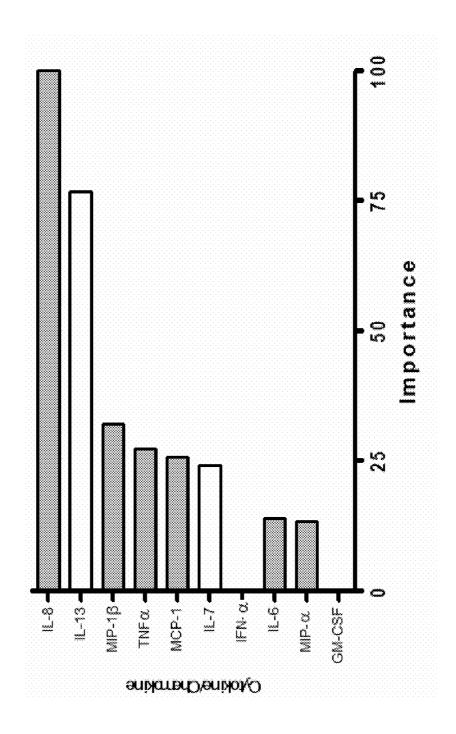




FIG. 2

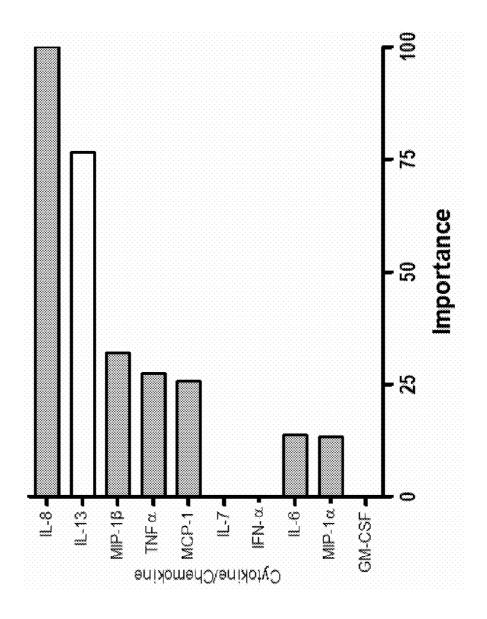


FIG. 5

USING A CYTOKINE SIGNATURE TO DIAGNOSE DISEASE OR INFECTION

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application is a Continuation-in-Part of PCT International Application No. PCT/2012/023876 filed 3 Feb. 2012, which claims the benefit of U.S. Provisional Application Ser. No. 61/439,328, filed on Feb. 3, 2011, each of which is incorporated herein by reference in its entirety.

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

[0002] This invention was made with government support under grant number R01 AI078234-01A2 awarded by National Institutes of Health. The government has certain rights in the invention.

MATERIAL INCORPORATED-BY-REFERENCE

[0003] The Sequence Listing, which is a part of the present disclosure, includes a computer readable form comprising nucleotide and/or amino acid sequences of the present invention. The subject matter of the Sequence Listing is incorporated herein by reference in its entirety.

FIELD OF THE INVENTION

[0004] The present disclosure generally relates to the differences in cytokine expression seen between healthy individuals and individuals diagnosed with a neuroimmune disease or infected with a retrovirus, including those associated with a retrovirus.

BACKGROUND OF THE INVENTION

[0005] Cytokines are cell-to-cell signals, and include proteins, peptides and glycoproteins. Cytokines are secreted by, inter alia, glial cells in the nervous system, and many immune cells. Cytokines are generally understood to encompass interleukins, interferons (lymphokines) and chemokines. Interleukins (ILs) promote the development and differentiation of T, B and hematopoietic cells in healthy individuals. The functions of at least 35 interleukins are currently known. Interferons (IFNs, or lymphokines) are synthesized and released by lymphocytes in response to the presence of pathogens, and activate MHC and STAT signaling. Chemokines are small cytokines that can stimulate chemotaxis, and are characterized by two or four conserved cysteine residues key to the folding of the peptide. Some chemokines are produced during an immune response to recruit immune cells to the site of infection; other chemokines are homeostatic and control cell migration during tissue growth and/or maintenance.

[0006] Cytokines are recognized by cognate cell-surface receptors. Binding of a cytokine to its receptor triggers intracellular signaling which can ultimately up- or down-regulate genes and alter cell functions. The effect of any given cytokine is dependent on its identity, abundance, and the cell type on which the receptor is located.

[0007] Cytokines are immunomodulating agents, and can be proteins, peptides or glycoproteins. Cytokines are classified as interferons (lymphokines), interleukins and chemokines, based on their presumed or known function; what cells they are secreted by; or which cells they target. There is, however, much cross-classification and overlap in organization within these categories, consistent with the pleiotropic nature of the molecules' functions. Some cytokines are redundant in function with other cytokines, and pleiotropic in their activity. They can be classified into two functional types: (i) type 1 cytokines that upregulate cellular immune responses, and include IFN- γ and TGF- β among others; and (ii) type 2 cytokines which upregulate antibody responses, and include IL-4, IL-10, IL-13, among others.

[0008] Inteferons and lymphokines are secreted by lymphocytes and include, but are not limited to, interleukin (IL)-2, IL-3, IL-4, IL-5, IL-6, granulocyte-macrophage colony-stimulating factor (GM-CSF), and interferon (IFN)- γ . They recruit macrophages and other lymphocytes to sites of infection and prepare the recruited cells to mount an immune response.

[0009] Interleukins are secreted by a wide variety of cells and function to promote the development and differentiation of T, B and hematopoietic cells. Interleukins include, but are not limited to, IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-11, IL-12, IL-13, IL-14, IL-15, IL-16, IL-17, IL-18, IL-19, IL-20, IL-21, IL-22, IL-23, IL-24, IL-25, IL-26, IL-27, IL-28, IL-29, IL-30, IL-31, IL-32, IL-33, IL-34, and IL-35.

[0010] Chemokines are a group of smaller cytokines, initially so named because they cause chemotaxis. Some chemokines are considered pro-inflammatory, and recruit cells of the immune system to a site of infection; others are considered homeostatic and control the migration of cells during normal tissue growth and maintenance. Chemokines can be divided into four groups based on the presence and placement of up to six cysteine residues within the peptide.

[0011] The CC chemokines have two adjacent cysteines near their amino terminus. This group includes MCP-1 (or CCL2) and RANTES (or CCL5). The group also includes CCL1 (I-309, TCA-3), CCL3 (MIP-1α), CCL4 (MIP-1β), CCL6 (C10, MRP-2), CCL7 (MARC, MCP-3), CCL8 (MCP-2), CCL9 (same as CCL10; MRP-2, CCF18, MIP-113), CCL11 (Eotaxin), CCL12 (MCP-5), CCL13 (MCP-4, NCC-1, Ckβ10), CCL14 (HCC-1, MCIF, Ckβ1, NCC-2, CCL), CCL15 (Leukotactin-1, MIP-5, HCC-2, NCC-3), CCL16 (LEC, NCC-4, LMC, Ckβ12), CCL17 (TARC, dendrokine, ABCD-2), CCL18 (PARC, DC-CK1, AMAC-1, Ck_β7, MIP-4), CCL19 (ELC, Exodus-3, Ckβ11), CCL20 (LARC, Exodus-1, Ckβ4), CCL21 (SLC, 6Ckine, Exodus-2, Ckβ9, TCA-4), CCL22 (MDC, DC/β-CK), CCL23 (MPIF-1, Ckβ8, MIP-3), CCL24 (Eotaxin-2, MPIF-2, Ck β 6), CCL25 (TECK, Ckβ15), CCL26 (Eotaxin-3, MIP-4a, IMAC, TSC-1), CCL27 (CTACK, ILC, Eskine, PESKY, skinkine), and CCL28 (MEC).

[0012] In the CXC chemokines, the two amino-terminal cysteines are separated by one amino acid. These chemokines are also referred to as α -chemokines; and can be subdivided into glutamic acid-leucine-arginine (ELR) positive or negative, based on the presence or absence of this 3-aa motif before the first cysteine of the CXC motif. The CXC chemokines include, but are not limited to, CXCL1(Gro- α , GRO1, NAP-3, KC), CXCL2 (Gro- β , GRO2, MIP-2 α), CXCL3 (Gro-, GRO3, MIP-2 β), CXCL4 (PF-4), CXCL5 (ENA-78), CXCL6 (GCP-2), CXCL7 (NAP-2, CTAPIII, β -Ta, PEP), CXCL8 (IL-8, NAP-1, MDNCF, GCP-1), CXCL9 (MIG, CRG-10), CXCL10 (IP-10, CRG-2), CXCL11 (I-TAC, β -R1, IP-9), CXCL12 (SDF-1, PBSF), CXCL13 (BCA-1, BLC), CXCL14 (BRAK, bolekine), CXCL15 (Lungkine, WECHE), CXCL16 (SRPSOX), and CXCL17 (DMC, VCC-10).

[0013] The C chemokines (or γ chemokines) have only two cysteines, one of which is near the N-terminus of the peptide, and one of which is near the C-terminus. The two C chemokines are XCL1 (lymphotactin- α , SCM-1a, ATAC) and XCL2 (lymphotactin- β , SCM-1 β). The CX₃C chemokine CX3CL2 (Fractalkine, Neurotactin, ABCD-3) has three amino acids between the two N-terminal cysteine residues.

[0014] The cytokines RANTES, MIP (macrophage inflammatory proteins) 1 α and 1 β (now known as CCL5, CCL3 and CCL4 respectively) suppress HIV-1 (Ciccgu et al., Science 270(5243): 1811-1815, 1995). It has been suggested that increased amounts of these chemokines is associated with more favorable clinical status in AIDS cases (Garzino-Demo et al., PNAS 96(21):11986-11991, 1999).

[0015] It has been reported that initial HIV infection disrupts the normal balance of cytokines by causing the levels of certain cytokines to rise. Cytokines reported to increase during initial HIV infection include IFN_γ, IL-2 and IL-12. As HIV progresses to AIDS, the steady-state levels of IFN_γ, IL-2 and IL-12 are reported to fall. Simultaneously, the levels of another group of cytokines (including IL-4, IL-5, IL-6, IL-10, TNF α) have been reported to increase. According to the Th-1/ Th-2 theory, this change in cytokine expression signature may directly cause many of the symptoms associated with AIDS (Babakhanian, 1995).

[0016] Neuroimmune disease is a category of diseases which have both neurological effects and (auto)immune effects. Neuroimmune diseases can be chronic neuroimmune diseases, or acute neuroimmune diseases. As used herein, neuroimmune disease can include chronic fatigue syndrome, fibromyalgia, myalgic encephalitis, atypical multiple sclerosis, non-epileptic seizures, Gulf War Syndrome or autism.

[0017] Chronic Fatigue Syndrome (CFS) is an example of a neurological disease believed to involve malfunctions in the immune system. CFS is a debilitating disease that affects more than one million people in the US alone. CFS is a disease characterized by severe and debilitating fatigue, sleep abnormalities, impaired memory and concentration, and musculoskeletal pain. In the Western world, the population prevalence is estimated to be of the order of 0.5%-2% (Papanicolaou et al. 2004. Neuroimmunomodulation 11(2):65-74; White. 2007. Popul Health Metr 5(1):6). CFS subjects are known to have a shortened lifespan and are at risk for developing lymphoma. Currently, there is no diagnostic test and no treatment, except for the specific treatment of microbial infections in those cases in which microbial agents can be identified (Devanur and Kerr. 2006. J Clin Virol 37(3):139-150). Although the precise pathogenesis of CFS is unknown, a range of factors have been shown to contribute (Komaroff and Buchwald. 1998. Annu Rev Med 49:1-13; Devanur and Kerr. 2006. supra). Furthermore, a single patient with a bona fide CFS diagnosis can present with variable symptoms over the duration of the illness.

[0018] Several retroviruses such as the MuLVs, primate retroviruses, HIV, HTLV-1 and xenotropic murine leukemia virus-related virus (XMRV) are associated with neurological diseases (C. Power, Trends in Neurosci. 24, 162, 2001; Miller and Meucii 1999 TINS 22(10), 471-479; Power et al. 1994 Journal of Virology 68(7) 4463-4649). Investigation of the molecular mechanism of retroviral induced neurodegeneration in rodent models revealed vascular and inflammatory changes mediated by cytokines and chemokines and these changes were observed prior to any neurological pathology (X. Li, C., Hanson. J. Cmarik, S. Ruscetti J. Virol. 83, 4912,

March, 2009, K. E. Peterson., B Chesebro. Curr. Opin. Microbiol. Immunol. 303, 67 2006). The XMRV genome encodes, in 5'-to-3' order, the 5' long terminal repeat (LTR); a short, apparently non-coding sequence comprising a splice site acceptor ("SA"); the Gag gene; the Pro-Pol gene, comprising a splice donor site ("SD"), the extreme 3'-end of which overlaps with the 5'-end of the Env gene; the Env gene; another short non-coding sequence; the 3'-end LTR; and a poly-A tail (see Urisman et al. 2006 PLoS Pathogens 2(3), e25; Lombardi et al. 2009 Science 326(5952), 585-589).

SUMMARY OF THE INVENTION

[0019] Among the various aspects of the present invention is the provision of a method of predicting symptoms in a subject infected with a retrovirus.

[0020] One aspect provides a method of diagnosing a retroviral infection or a neuroimmune disease in a subject. In some embodiments, the method includes comparing a cytokine expression signature of a subject with a control. In some embodiments, the cytokine expression signature includes an expression level of at least three cytokines or chemokines, which can be selected from IL-8, IL-13, MIP-1 β , TNF- α , MCP-1, IL-7, IFN- α , IL-6, MIP-1 α , or GM-CSF. In some embodiments, the method includes diagnosing the subject with a retroviral infection or a neuroimmune disease where the cytokine expression signature of the subject comprises at least one of the selected cytokines or chemokines at or above a predetermined threshold of expression.

[0021] In some embodiments, the method includes application of an algorithm for determining whether a cytokine signature is indicative of a retroviral infection or a neuroimmune disease in a subject. In some embodiments, the algorithm includes a weighted value for a portion of or all of cytokines or chemokines of the cytokine signature. In some embodiments, the algorithm includes addition of a weighted value to arrive at a sum of weighted values where a cytokine or chemokine of the cytokine expression signature is at or above a predetermined threshold of expression. In some embodiments, application of an algorithm includes diagnosing the subject with a retroviral infection or a neuroimmune disease where the sum of weighted values is at or above a predetermined threshold value.

[0022] Another aspect provides a device for detecting a cytokine expression signature of a subject comprising an array, wherein the array detects the presence or expression level at least three cytokines or chemokines selected from the group consisting of IL-8, IL-13, MIP-1 β , TNF- α , MCP-1, IL-7, IFN- α , IL-6, MIP-1 α , and GM-CSF.

[0023] Other objects and features will be in part apparent and in part pointed out hereinafter.

DESCRIPTION OF THE DRAWINGS

[0024] Those of skill in the art will understand that the drawings, described below, are for illustrative purposes only. The drawings are not intended to limit the scope of the present teachings in any way.

[0025] FIG. **1** shows the importance of various cytokines and chemokines in XMRV-related disease as assessed by Random Forests Variables analysis.

[0026] FIG. 2 shows the results of cluster analysis of cytokine/chemokine expression data in XMRV-infected subjects, XMRV-infected subjects with increased $\gamma\delta$ T-cell populations, and healthy controls. **[0027]** FIG. **3** shows the results of Random Forests variable analysis for subject 2623.

[0028] FIG. **4** shows the results of Random Forests variable analysis for subject 1127.

[0029] FIG. **5** shows the results of Random Forests variable analysis for subject 967.

DETAILED DESCRIPTION OF THE INVENTION

[0030] Provided herein is a description of signature changes in cytokine expression that can be reliably associated with a diagnosis of a neuroimmune disease, such as CFS, or with a retroviral infection. The present disclosure is based, at least in part, on the observation that cytokine expression in an individual diagnosed with chronic fatigue syndrome (CFS) is different from cytokine expression in a healthy individual. The present disclosure is based, at least in part, on the correlation of specific changes in cytokine expression with a diagnosis of CFS. The present disclosure is also based, at least in part, on the correlation of specific changes in cytokine expression with a diagnosis of cression with a retroviral infection.

[0031] The inventors have identified a statistically significant dysregulation in the innate immune system in a population of CFS patients when compared to healthy controls. Specifically, it has been observed that, i) plasma levels of interferon alpha (IFN- α) are significantly decreased in CFS patients (p<0.0001), ii) IL-8, IL-6, TNF-α, MIP-1α, MIP-1β, IP-10, and MCP-1 are significantly upregulated in this population; and iii) plasmacytoid dentritic cells (pDCs), when isolated from CFS patients and subjected to the Toll-like receptor (TLR) 7 agonists imiquimod and to a lesser extent, the TLR9 agonist ODN 2213, overproduce the pro-inflammatory cytokines IL-6, TNF-a, MIP-1a, MIP-1β, IP-10, MCP-1, and IFN- α in contrast to pDCs isolated from healthy controls. When taken together, these data implicate the involvement of a dysregulation of plasmacytoid dentritic cells in the pathophysiology of CFS.

[0032] Cytokine Signature

[0033] A cytokine expression signature of a subject, as described herein, can include changes in level, activity, or expression of one or more cytokines for which no or substantially no corresponding changes occur in a control. For example, a cytokine expression signature of a subject can include changes in level, activity, or expression of one or more of a type 1 cytokine or a type 2 cytokine.

[0034] A cytokine expression signature of a subject can include changes in level, activity, or expression of one or more of an inteferon or a lymphokine. For example, a cytokine expression signature of a subject can include changes in level, activity, or expression of one or more of interleukin (IL)-2, IL-3, IL-4, IL-5, IL-6, granulocyte-macrophage colony-stimulating factor (GM-CSF), and interferon (IFN)- γ . As another example, a cytokine expression signature of a subject can include changes in level, activity, or expression of one or more of IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-11, IL-12, IL-3, IL-4, IL-5, IL-6, IL-7, IL-18, IL-19, IL-20, IL-21, IL-22, IL-23, IL-24, IL-25, IL-26, IL-27, IL-28, IL-29, IL-30, IL-31, IL-32, IL-33, IL-34, and IL-35.

[0035] A cytokine expression signature of a subject can include changes in level, activity, or expression of one or more chemokines. For example, a cytokine expression signature of a subject can include changes in level, activity, or

expression of one or more of a CC chemokine, a CXC chemokine, a C chemokine (or γ chemokine), RANTES, CCL5, CCL3 and CCL4.

[0036] For example, a cytokine expression signature of a subject can include changes in level, activity, or expression of one or more of CC chemokines selected from MCP-1 (or CCL2), RANTES (or CCL5), CCL1 (I-309, TCA-3), CCL3 (MIP-1a), CCL4 (MIP-1b), CCL6 (C10, MRP-2), CCL7 (MARC, MCP-3), CCL8 (MCP-2), CCL9 (same as CCL10; MRP-2, CCF18), CCL11 (Eotaxin), CCL12 (MCP-5), CCL13 (MCP-4, NCC-1, Ckβ10), CCL14 (HCC-1, MCIF, Ckβ1, NCC-2, CCL), CCL15 (Leukotactin-1, MIP-5, HCC-2, NCC-3), CCL16 (LEC, NCC-4, LMC, Ckβ12), CCL17 (TARC, dendrokine, ABCD-2), CCL18 (PARC, DC-CK1, AMAC-1, Ck_β7, MIP-4), CCL19 (ELC, Exodus-3, Ck_β11), CCL20 (LARC, Exodus-1, Ckβ4), CCL21 (SLC, 6Ckine, Exodus-2, Ck_β9, TCA-4), CCL22 (MDC, DC/β-CK), CCL23 (MPIF-1, Ckβ8, MIP-3), CCL24 (Eotaxin-2, MPIF-2, Ckβ6), CCL25 (TECK, Ckβ15), CCL26 (Eotaxin-3, MIP-4a, IMAC, TSC-1), CCL27 (CTACK, ILC, Eskine, PESKY, skinkine), and CCL28 (MEC).

[0037] As another example, a cytokine expression signature of a subject can include changes in level, activity, or expression of one or more of CXC chemokines selected from a glutamic acid-leucine-arginine (ELR) positive CXC chemokine or a glutamic acid-leucine-arginine (ELR) negative CXC chemokine. As another example, a cytokine expression signature of a subject can include changes in level, activity, or expression of one or more of a CXC chemokine selected from CXCL1(Gro-α, GRO1, NAP-3, KC), CXCL2 (Gro-β, GRO2, MIP-2α), CXCL3 (Gro-, GRO3, MIP-2β), CXCL4 (PF-4), CXCL5 (ENA-78), CXCL6 (GCP-2), CXCL7 (NAP-2, CTAPIII, β-Ta, PEP), CXCL8 (IL-8, NAP-1, MDNCF, GCP-1), CXCL9 (MIG, CRG-10), CXCL10 (IP-10, CRG-2), CXCL11 (I-TAC, β-R1, IP-9), CXCL12 (SDF-1, PBSF), CXCL13 (BCA-1, BLC), CXCL14 (BRAK, bolekine), CXCL15 (Lungkine, WECHE), CXCL16 (SRP-SOX), and CXCL17 (DMC, VCC-10).

[0038] As another example, a cytokine expression signature of a subject can include changes in level, activity, or expression of one or more C chemokines selected from XCL1 (lymphotactin- α , SCM-1 α , ATAC), XCL2 (lymphotactin- β , SCM-1 β), and CX3CL2 (Fractalkine, Neurotactin, ABCD-3).

[0039] As another example, a cytokine expression signature of a subject can include changes in level, activity, or expression of one or more RANTES, CCL5, CCL3, and CCL4.

[0040] As another example, a cytokine expression signature of a subject can include one or more of those cytokines known to be upregulated by pDCs (e.g., IL-8, IL-6, TNF- α , MIP- α or MIP-1 β). As another example, a cytokine expression signature of a subject can exclude one or more of those cytokines not known to be upregulated by pDCs (e.g., IL-1a, IL-2, IL-3, IL-4, IL-5, IL-13 or IL-15).

[0041] It is understood that a cytokine expression signature, as described herein, can include any combinations of cytokines recited above for which there is a change in expression in a subject as compared to a control. Particular combinations are further discussed below.

[0042] A cytokine expression signature as described herein can include an expression pattern in which one or more cytokines are modulated in a subject as compared to a control. For example, a cytokine expression signature can include an expression pattern in which one or more cytokines are upregulated in a subject as compared to a control. As another example, a cytokine expression signature can include an expression pattern in which one or more cytokines are down regulated in a subject as compared to a control. As another example, a cytokine expression signature can include a cytokine expression pattern in which one or more cytokines are upregulated and one or more other cytokines are down regulated in a subject as compared to a control.

[0043] A cytokine expression signature can include any combination of increase(s) and decrease(s) in the expression levels of any of the cytokines described herein. A cytokine that has an altered expression can include any cytokine identified herein. Alteration in cytokine expression can include both up- or down-regulation of expression. Such alterations can be part of a cytokine expression signature as described herein.

[0044] Upregulated

[0045] A cytokine expression signature can include expression of at least one cytokine upregulated in a subject as compared to a control. For example, a cytokine expression signature can include at least two, at least three, at least four, at least five, at least six, at least seven, at least eight, at least nine, or at least ten or more cytokines upregulated in a subject as compared to a control.

[0046] A cytokine (of a cytokine signature) that has a upregulated expression can be selected from IL-8, MIP-1 β , TNF- α , IL-6, IL-2, IP-10, Eotaxin, IL-12, Regulated on Activation, Normal T Expressed and Secreted protein (RANTES), MCP-1 and MIP-1 α . A cytokine signature of a subject can comprise upregulated expression of one or more of cytokines selected from IL-8, MIP-1 β , TNF- α , IL-6, IL-2, IP-10, Eotaxin, IL-12, Regulated on Activation, Normal T Expressed and Secreted protein (RANTES), MCP-1 and MIP-1 α .

[0047] A cytokine signature can include IL-8 expression at least about 10-fold higher in a subject as compared to a control. For example, IL-8 expression can be at least about 20-, at least about 30-, at least about 40-, at least about 50-, at least about 60-, at least about 70-, at least about 80-, or at least about 90-fold higher in a subject as compared to a control. As another example, IL-8 expression can be at least about 100-fold or more higher in a subject as compared to a control.

[0048] A cytokine signature can include MIP-1 β expression at least about 10-fold higher in a subject as compared to a control. For example, MIP-1 β expression can be at least about 20-, at least about 30-, at least about 40-, at least about 50-, at least about 60-, at least about 70-, at least about 80-, or at least about 90-fold higher in a subject as compared to a control. As another example, MIP-1 β expression can be at least about 100-fold or more higher in a subject as compared to a control.

[0049] A cytokine signature can include TNF- α expression at least about 2-fold higher in a subject as compared to a control. For example, TNF- α expression can be at least about 3-, at least about 4-, at least about 5-, at least about 6-, at least about 7-, at least about 8-, or at least about 9-fold higher in a subject as compared to a control. As another example, TNF- α expression can be at least about 10-fold or more higher in a subject as compared to a control.

[0050] A cytokine signature can include IL-6 expression at least about 2-fold higher in a subject as compared to a control. For example, IL-6 expression can be at least about 3-, at least about 4-, at least about 5-, at least about 6-, at least about 7-,

at least about 8-, or at least about 9-fold higher in a subject as compared to a control. As another example, IL-6 expression can be at least about 10-fold or more higher in a subject as compared to a control.

[0051] A cytokine signature can include IL-2 expression at least about 2-fold higher in a subject as compared to a control. For example, IL-2 expression can be at least about 3- or at least about 4-fold higher in a subject as compared to a control. As another example, IL-2 expression can be at least about 5-fold or more higher in a subject as compared to a control.

[0052] A cytokine signature can include IP-10 expression at least about 2-fold higher in a subject as compared to a control. For example, IP-10 expression can be at least about 3-fold higher in a subject as compared to a control. As another example, IP-10 expression can be at least about 4-fold or more higher in a subject as compared to a control.

[0053] A cytokine signature can include Eotaxin expression at least about 2-fold higher in a subject as compared to a control. For example, Eotaxin expression can be at least about 3-fold higher in a subject as compared to a control. As another example, Eotaxin expression can be at least about 4-fold or more higher in a subject as compared to a control.

[0054] A cytokine signature can include IL-12 expression at least about 1.1-fold higher in a subject as compared to a control. For example, IL-12 expression can be at least about 1.2-fold or more higher in a subject as compared to a control.

[0055] A cytokine signature can include RANTES expression at least about 2-fold higher in a subject as compared to a control. For example, RANTES expression can be at least about 3-fold higher in a subject as compared to a control. As another example, RANTES expression can be at least about 4-fold or more higher in a subject as compared to a control.

[0056] A cytokine signature can include MCP-1 expression at least about 1.1-fold higher in a subject as compared to a control. For example, MCP-1 expression can be at least about 1.2-fold or more higher in a subject as compared to a control.

[0057] A cytokine signature can include MIP-1 α expression at least about 2-fold higher in a subject as compared to a control. For example, MIP-1 α expression can be at least about 3-, at least about 4-, at least about 5-, at least about 6-, at least about 7-fold or more higher in a subject as compared to a control.

[0058] Down Regulated

[0059] A cytokine expression signature can include expression of at least one cytokine down regulated in a subject as compared to a control. For example, a cytokine expression signature can include at least two, at least three, at least four, at least five, at least six, at least seven, at least eight, at least nine, or at least ten or more cytokines down regulated in a subject as compared to a control.

[0060] A cytokine (of a cytokine signature) that has down regulated expression can be selected from IL-13, IL-5, IL-7, MIG, and IFN- α . A cytokine signature of a subject can comprise down regulated expression of one or more of cytokines selected from IL-13, IL-5, IL-7, MIG, and IFN- α .

[0061] A cytokine signature can include IL-13 expression at least about 2-fold lower in a subject as compared to a control. For example, IL-13 expression can be at least about 3-, at least about 4-, or at least about 5-fold or more lower in a subject as compared to a control.

[0062] A cytokine signature can include IL-5 expression can be at least about 2-fold lower in a subject as compared to

a control. For example, IL-5 expression can be at least about 3- or at least about 4-fold or more lower in a subject as compared to a control.

[0063] A cytokine signature can include IL-7 expression at least about 2-fold lower in a subject as compared to a control. IL-7 expression can be at least about 3-, at least about 4-, or at least about 5-fold or more lower in a subject as compared to a control.

[0064] A cytokine signature can include MIG expression can be at least about 2-fold lower in a subject as compared to a control.

[0065] A cytokine signature can include IFN- α expression at least about 2-fold lower in a subject as compared to a control.

[0066] A cytokine signature can include GM-CSF expression at least about 0.7-fold lower in a subject as compared to a control.

[0067] Combinations

[0068] A cytokine expression signature can include the changes in a cytokine expression described herein. For example, a cytokine expression of one or more cytokines selected from GM-CSF, IL-8, MIP-1 β , TNF- α , IL-6, IL-2, IP-10, Eotaxin, IL-12, Regulated on Activation, Normal T Expressed and Secreted protein (RANTES), MCP-1, MIP-1 α , IL-13, IL-5, IL-7, MIG, and IFN- α , as compared to a control.

[0069] As another example, a cytokine expression signature can include changes in level, activity, or expression of IL-8, IL-13, MIP-1 β , TNF- α , MCP-1, IL-7, IFN- α , IL-6, MIP-1 α , and GM-CSF, as compared to a control.

[0070] A cytokine expression signature of a subject can include changes in level, activity, or expression of two or more of: (i) IL-8 expression of at least about 10-fold higher in a subject, as compared to a control; (ii) IL-13 expression of at least about 5-fold lower in a subject, as compared to a control; (iii) MIP-1 β expression of at least about 10-fold higher in a subject, as compared to a control; (iv) TNF- α expression of at least about 10- or more-fold higher in a subject, as compared to a control; (v) MCP-1 expression of at least about 1.1-fold higher in a subject, as compared to a control; (vi) IL-7 expression of at least about 5-fold lower in a subject, as compared to a control; (vii) IFN- α expression of at least about 2-fold lower in a subject, as compared to a control; (viii) IL-6 expression of at least about 10- or more-fold higher in a subject, as compared to a control; (ix) MIP-1 α expression of at least about 2-fold higher in a subject, as compared to a control and (x) GM-CSF expression of at least about 0.7-fold higher in a subject, as compared to a control. For example, a cytokine expression signature of a subject can include changes in level, activity, or expression of three or more of (i)-(x). As another example, a cytokine expression signature of a subject can include changes in level, activity, or expression of four or more of (i)-(x). As another example, a cytokine expression signature of a subject can include changes in level, activity, or expression of five or more of (i)-(x). As another example, a cytokine expression signature of a subject can include changes in level, activity, or expression of six or more of (i)-(x). As another example, a cytokine expression signature of a subject can include changes in level, activity, or expression of seven or more of (i)-(x). As another example, a cytokine expression signature of a subject can include changes in level, activity, or expression of eight or more of (i)-(x). As another example, a cytokine expression signature of a subject can include changes in level, activity, or expression of nine or more of (i)-(x). As another example, a cytokine expression signature of a subject can include changes in level, activity, or expression of (i)-(x). The magnitude of change of the level, activity, or expression of cytokines above are exemplary and can include any of the level of change described herein for a particular cytokine.

[0071] Cytokine Detection

[0072] Detection or determination of a cytokine, cytokine activity, expression of a cytokine, or expression levels of a cytokine can be according to conventional methods understood in the art (see e.g., Kotb and Calandra 2010 Cytokines and Chemokines in Infectious Diseases Handbook, Humana Press, 1st ed., ISBN-10 1617372471; Kuchroo et al. 2011 Cytokines and Autoimmune Diseases, Humana Press, 1st ed., ISBN-10 1617372250; House and Descotes 2010 Cytokines in Human Health: Immunotoxicology, Pathology, and Therapeutic Applications, Methods in Pharmacology and Toxicology, Humana Press, 1st ed., ISBN-10 1617375861; DeLey 2010 Cytokine Protocols, Methods in Molecular Biology, Humana Press, 1st ed., ISBN-10 1617372692; Korholz and Kiess 2010 Cytokines and Colony Stimulating Factors, Methods and Protocols, Methods in Molecular Biology, Humana Press, 1st ed., ISBN-10 1617373184). For example, identification of a cytokine can be according to a cell secretion assay (see e.g., Manz et al. 1995 PNAS 92, 1921-1925). As another example, identification of a cytokine can be according to assays described herein.

[0073] Prediction Algorithm

[0074] In some embodiments, a predictive algorithm can provide weighting for presence or magnitude of level, activity, or expression of different combinations of cytokines. An individual cytokine can be assigned a value of relative importance. When that cytokine is present at or above a threshold level (e.g., as described above), the value of relative importance for that cytokine can be added to a total value representing the cytokine signature. Where the total value exceeds a threshold, then a prediction or diagnosis of a neuroimmune disorder (e.g., CFS) or retroviral infection can be made (see e.g., Example 5).

[0075] For example, an individual cytokine at or above a threshold level can be assigned a weighted value such as: IL-8 is 100, IL-13 is 90, MIP-1 β is 80, TNF- α is 70, MCP-1 is 60, IL-7 is 50, IFN- α is 40, IL-6 is 30, MIP-1 α is 20, and GM-CSF is 10. A prediction or diagnosis of a neuroimmune disorder (e.g., CFS) or retroviral infection can be made by any combination of cytokines with a combined value of about 190 or greater, about 200 or greater, about 210 or greater, about 220 or greater, about 230 or greater, about 240 or greater, about 250 or greater, or more.

[0076] For example, an individual cytokine at or above a threshold level can be assigned a weighted value such that IL-8 is 100, IL-13 is 90, MIP-1 β is 80, TNF- α is 70, MCP-1 is 60, IL-7 is 50, IFN- α is 40, IL-6 is 30, MIP-1 α is 20, and GM-CSF is 10, and a prediction or diagnosis of a neuroimmune disorder (e.g., CFS) or retroviral infection can be made by any combination of cytokines or chemokines with a combined value of about 210 or greater.

[0077] Correlation of Cytokine Expression Signature with Neuroimmune Disease

[0078] The present inventors have determined that a cytokine expression signature, as described herein, can be correlated with a diagnosis of a neuroimmune disease. For example, a cytokine expression signature can be correlated with a diagnosis of neuroimmune disease associated with a retroviral infection. As another example, a cytokine expression signature can be correlated with a diagnosis of neuroimmune disease not presently known to be associated with a retroviral infection.

[0079] A cytokine expression signature associated with a neuroimmune disease can include an expression pattern in which one or more cytokines are modulated (e.g., upregulated or down regulated) in a subject having or diagnosed as having the neuroimmune disease.

[0080] A neuroimmune disease that is correlated with a cytokine expression signature can be a chronic neuroimmune disease. A neuroimmune disease correlated with a cytokine expression signature can be, for example, chronic fatigue syndrome, fibromyalgia, myalgic encephalitis, atypical multiple sclerosis, non-epileptic seizures, Gulf War Syndrome or autism.

[0081] A cytokine expression signature associated with a neuroimmune disease can include an expression level of any combination of cytokines as described herein. A cytokine of an expression signature and level, activity, or expression relative to a control can be as discussed herein.

[0082] A cytokine expression signature associated with a neuroimmune disease can be according to any of the cytokine expression signatures discussed herein. For example, a cytokine expression of one or more cytokines selected from GM-CSF, IL-8, MIP-1 β , TNF- α , IL-6, IL-2, IP-10, Eotaxin, IL-12, Regulated on Activation, Normal T Expressed and Secreted protein (RANTES), MCP-1, MIP-1 α , IL-13, IL-5, IL-7, MIG, and IFN- α . As another example, a cytokine expression signature associated with a neuroimmune disease can include changes in level, activity, or expression of IL-8, IL-13, MIP-1 β , TNF- α , MCP-1, IL-7, IFN- α , IL-6, MIP-1 α , and GM-CSF. Presence or magnitude of upregulated or down regulated level, activity, or expression of a cytokine can be according to the discussion above.

[0083] A control for the purposes of a cytokine expression signature associated with a neuroimmune disease can be, for example, the expression signature of the same or similar group of cytokines in a subject not having or diagnosed as having the neuroimmune disease. As another example, a control for the purposes of a cytokine expression signature associated with a neuroimmune disease can be reference levels of the same or similar group of cytokines. As another example, a control for the purposes of a cytokine expression signature associated with a neuroimmune disease can be reference levels of the same or similar group of cytokines. As another example, a control for the purposes of a cytokine expression signature associated with a neuroimmune disease can be expression levels of the same or similar group of cytokines in the same subject at a point in time in which that subject was healthy or did not have or was not diagnosed as having the neuroimmune disease.

[0084] Correlation of Cytokine Expression Signature with a Retroviral Infection

[0085] The present inventors have discovered that a retroviral infection can be correlated with alterations in cytokine expression. A cytokine expression signature associated with a retroviral infection can include an expression pattern in which one or more cytokines are modulated (e.g., upregulated or down regulated) in a subject infected with a retrovirus relative to a subject who is not infected with the retrovirus.

[0086] A retrovirus as that term is used herein can be, for example, a gamma retrovirus.

[0087] A retrovirus as that term is used herein can be, for example, a MuLVs, primate retrovirus, HIV, HTLV-1 or xeno-

tropic murine leukemia virus-related virus (XMRV) (see Power, Trends in Neurosci. 24, 162, 2001; Miller and Meucii 1999 TINS 22(10), 471-479; Power et al. 1994 Journal of Virology 68(7) 4463-4649)).

[0088] A retrovirus as that term is used herein can be, for example, a retrovirus as described in U.S. Pat. App. Pub. No. 2011/0311484, filed Apr. 6, 2011, incorporated herein by reference in its entirety. A retrovirus as that term is used herein can have a gamma retroviral associated function or activity and be encoded by a sequence at least about 80% sequence identity (e.g., at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% sequence identity) to a sequence according to SEQ ID NO: 1 and, optionally, having one or more nucleotide changes selected from C80T, G90A, A96G, A97G, G111A, A137-157 deletion, T173C, G180A, G183A, C197T, C247T, C257T, C308T, C308G, C319T, C320T, T326C, A329G, C715T, T791G, A804G, T816Del, A856G, A665Del, T691G, G790A (potential hypermethylation site), T791G, T796C, G807Del, A840G, A873G, A875G, C903T, T963G, C5810Del, A6101T, G6154T, G7421A, A7459C, and an insertion at nucleotide position 7322 having a sequence of GAAAAGTCTCTGACCTCGTTGTCTGAG-

GTGGTCCTACAGAACCGGAGGGGAT TAGTCTA (SEQ ID NO: 179); or a functional fragment thereof. For example, an XMRV strain can have at least two, at least three, at least four, at least five, at least six, at least seven, at least eight, at least nine, or at least ten, or more, of nucleotide changes described herein. Assays for determining gamma retrovirus functionality can be according to general methods known in the art (see e.g., Kurth 2010 Retroviruses: Molecular Biology, Genomics and Pathogenesis, Caister Academic Press, ISBN-10: 1904455557; Zhu 2010 Human Retrovirus Protocols: Virology and Molecular Biology (Methods in Molecular Biology), 1st Edition, Humana Press, ISBN-10: 1617375993) and those described in U.S. Pat. App. Pub. No. 2011/0311484.

[0089] A retrovirus as that term is used herein can be, for example, a xenotropic murine leukemia virus-related virus (XMRV). An XMRV can be according to a virus described in, for example, Urisman et al. 2006 PLoS Pathogens 2(3), e25; Lombardi et al. 2009 Science 326(5952), 585-589; Silverman et al. WO2006110589; Mikovits et al. US App Pub No. 2010/ 0167268; Mikovits et al. WO2010/148323; Mikovits at al. US App Pub. No. 2011/0117056; and Mikovits et al. US App Pub. No. 2011/0151431, each of which are incorporated herein by reference in their entirety. The XMRV consensus sequence has been described previously (Urisman et al., PLOS Pathogens 2006 2(3):e25), Accession number DQ399707.1, and is referred to herein as VP62, or SEQ ID NO: 1. VP62 was identified from a clone reconstructed from nucleic acids isolated from prostate tumors. Accession number EF185282.1 (SEQ ID NO: 162) is an 8165 nucleotide sequence of VP62, while Accession number DQ399707.1 (SEQ ID NO: 1) is an 8185 nucleotide sequence of VP62. The reference sequence of SEQ ID NO: 1 corresponds to Accession number DQ399707.1.

[0090] A number of clinical observations, previously described in CFS, suggest a defect in the innate immune response. For instance, viral agents such as parvovirus B19, cytomegalovirus (CMV), Epstein-Barr virus (EBV) and human herpes virus 6 and 7 (HHV-6 and 7), have been asso-

7

ciated with CFS (reviewed by Devanur et al. J Clin Virol, 2006. 37(3): p. 139-50). Most individuals encounter these viruses early in life; however, they are kept in check by the immune system and only reactivate at times of immune suppression. Therefore, the viral reactivation frequently observed in CFS patients suggests suppression of the antiviral immune system. A number of antiviral mechanisms depend on the regulation of type I IFN for proper function. For example, the 2'-5' oligoadenylate synthetase enzymes (OAS), the endoribonuclease L (RNase L) and protein kinase R (PKR) are regulated by type I IFN (Stark et al., Annu Rev Biochem, 1998. 67: p. 227-64); and this pathway has been reported to be dysregulated in CFS patients (see e.g., De Meirleir et al., Am J Med, 2000. 108(2): p. 99-105; De Meirleir et al., Clin Infect Dis, 2002. 34(10): p. 1420-1; author reply 1421-2; Fremont et al., Life Sci, 2006. 78(16): p. 1845-56). A dysregulation in the type I IFN response is consistent with the viral reactivation observed in CFS. Another salient clinical observation consistently described in CFS is the unregulated overproduction of pro-inflammatory cytokines, such as IL-8, IL-6 and TNF- α (Fletcher et al., J Transl Med, 2009. 7: p. 96; Kerr and Tyrell, Curr Pain Headache Rep, 2003. 7(5): p. 333-41; Lombardi et al., In Vivo, 2011. 25(2); Peterson et al., Clin Diagn Lab Immunol, 1994. 1(2): p. 222-6). The over expression of these cytokines may be responsible for many of the symptoms associated with CFS. [0091] A cytokine expression signature that is associated with infection with a retroviral infection can include an expression level of a cytokine as described herein. A cytokine of an expression signature and expression levels relative to a control can be as discussed above.

[0092] A cytokine expression signature correlated with a retroviral infection in a subject can be according to any of the cytokine expression signatures discussed above. For example, a cytokine expression signature can include changes in level, activity, or expression of one or more cytokines selected from GM-CSF, IL-8, MIP-1 β , TNF- α , IL-6, IL-2, IP-10, Eotaxin, IL-12, Regulated on Activation, Normal T Expressed and Secreted protein (RANTES), MCP-1, MIP-1 α , IL-13, IL-5, IL-7, MIG, and IFN- α . As another example, a cytokine expression signature associated with infection with XMRV can include changes in level, activity, or expression of IL-8, IL-13, MIP-1 β , TNF- α , MCP-1, IL-7, IFN- α , IL-6, MIP-1 α , and GM-CSF. Levels of upregulated or down regulated expression for any of these cytokines can be according to the discussion above.

[0093] A control for the purposes of a cytokine expression signature associated with a retroviral infection can be, for example, the expression signature of the same or similar group of cytokines in a subject not infected with the retrovirus. As another example, a control for the purposes of a cytokine expression signature associated with a retroviral infection can be reference levels of the same or similar group of cytokines. As another example, a control for the purposes of a cytokine expression signature associated with a retroviral infection can be reference levels of the same or similar group of cytokine expression signature associated with a retroviral infection can be expression levels of the same or similar group of cytokines in the same subject at a point in time in which that subject was healthy or was not infected with the retrovirus.

[0094] An amount of retrovirus present in a subject can be associated with a degree of change of one or more cytokines of a cytokine signature. For example, an amount of a retrovirus present in a subject can be correlated to an index number describing the modulated cytokine signature. An amount of a retrovirus present in a subject can be determined according to

methods known in the art, such as determination of viral titre. For example, an retrovirus viral titre of a subject or a sample of a subject can be associated with a degree of change in a cytokine signature, or one or more components thereof, of the subject or the sample of the subject. For example, increasing viral titre can be associated with an increasing change in cytokine expression from a subject who is negative for a retrovirus. As another example, increasing viral titre can correlate to a change in a cytokine expression; so that, at a relatively low retrovirus titre, a first cytokine expression signature is observed; and at a relatively higher retrovirus titre, a second cytokine expression signature is observed.

[0095] Mechanism

[0096] While under no obligation to do so, and without limiting the present invention in any way, mechanisms underlying a correlation of altered cytokine expression with retroviral infection or symptoms of neuroimmune disease are provided herein.

[0097] Single stranded RNA and CpG DNA initiate the synthesis of type I IFN through the activation TLR 7/8 and 9 respectively, where TNF receptor associated factor 6 (TRAF6) plays a pivotal role in the activation of pro-inflammatory cytokine production. A TRAF6 initiated cascade leads to phosphorylation and nuclear translocation of IRF7 and 8, consequently, triggering transcription of multiple proinflammatory cytokines and IFN-a. To prevent over-expression of these cytokines, Fas-associated Death Domain (FADD) interacts with the tripartite motif-containing protein 21 (TRIM21) promoting TRIM21 ubiquitin ligase activity and subsequently down-regulating cytokine production. Thus, TRIMM21 provides a negative feedback loop to prevent over-production of inflammatory cytokines. Findings described herein support that dysregulation of TRIM21 can lead to the over production of pro-inflammatory cytokines and the hyper-reactivity of IFN- α expression in CFS patients. [0098] Viral reactivation is a common occurrence in CFS; but a mechanism to account for this condition has not been reported. As pDCs are thought to be primarily involved in responses to viral infection, the inventors propose that a pDC dysregulation may be a contributing factor to viral reactivation. Plasmacytoid dendritic cells are the primary producers of IFN- α and also produce pro-inflammatory cytokines that are consistent with previous observations in CFS. Observations reported herein are consistent with a dysregulation in the negative feedback loop for IFN-a control. CFS patients display a number of immune abnormalities, mostly involving the innate immune system; but some employ the humorial immune system as well. Plasmacytoid dendritic cells are professional antigen-presenting cells but they also produce cytokines, which activate T-cells, B-cells and NK cells. Therefore, pDCs link innate and adaptive immunity, which is a requisite to explain the pathology of CFS.

[0099] Furthermore, an interrelated dysregulation may occur in the pathways mediating type I IFN and pro-inflammatory cytokine production in pDCs of CFS. Dysregulation of pDCs may account for the aberrant IFN and pro-inflammatory cytokine production as well as the other abnormalities observed in the innate immune system of CFS patients. As shown herein, CFS patients have decreased plasma levels of INF-a. Because pDC are major producers of INF-a, it is expected that pathogenesis of CFS may be explained by dysfunction of these cells. Indeed, data demonstrated that while producing limited amount of INF-a in vivo, pDC from CFS are releasing 20 folds more INF-a when stimulated with TLR

ligands in vitro as compared to healthy donors. Although the pattern of pro-inflammatory cytokine produced by stimulated pDC was similar between patients and controls, actual production was 3-20 folds higher in the CFS patients. This dysregulation is also consistent with other chronic immune diseases such as Sjogren's syndrome and systemic lupus erythematosus.

[0100] Recently, a novel intracellular antiviral function has been reported for TRIM21, involving intracellular antibodymediated proteolysis (Mallery et al., Proc Natl Acad Sci USA. 107(46): p. 19985-90). A dysregulation of the biochemical pathway involving TRIM21, FADD or TRAF6 in pDCs suggests the origin of inflammatory cytokines in addition to the dysregulation of IFN. Plasmacytoid dendritic cells are found primarily in the gut, the spleen and the lymph nodes (Dzionek et al., Hum Immunol, 2002. 63(12): p. 1133-48). Thus the inventors propose that pDC involvement of CFS is consistent with the lymphadenopathy, splenomegaly and gastrointestinal abnormalities commonly reported in CFS patients (see Carruthers et al., Journal of Chronic Fatigue Syndrome, 2003. 11(1): p. 7115).

[0101] The tripartite motif (TRIM) family member, TRIM21, is an E3 ubiquitin ligase that is known to ubiquitinate the IFN regulatory factors IRF3, IRF7 and IRF8 through a cooperative interaction with the Fas-associated death domain (FADD). The interaction between TRIM21 and FADD enhances TRIM21 ubiquitin ligase activity to downregulate type I IFN by promoting the degradation of IRF7. But TRIM21 transcription is enhanced by type I IFN, suggesting TRIM21 plays an important role in a type I IFN negative feedback loop. TRIM21 also plays an important role in the regulation of NF-kb-dependent pro-inflammatory cytokine production through the negative regulation of NFkb. Therefore, TRIM21 functions in both innate and acquired immunity through its E3 ligase activity. Recent reports suggest that it has a more direct intracellular antiviral capability. It was reported that the antiviral capacity of TRIM21 is through its Fc binding domain (Mallery et al., Proc Natl Acad Sci USA. 107(46): p. 19985-90). TRIM21 binds, with high affinity, to the Fc domain of immunoglobin, which are attached to the incoming virus, and target it to the proteasome via its E3 ubiquitin ligase activity. Rapid proteasomal degradation of virions in the cytosol occurs before translation of virally encoded genes can commence. Therefore, a dysregulation of TRIM21 could result in reduced antiviral clearance, as is often observed in CFS patients. Murine TRIM21 knockout mice appear phenotypically normal if left undisturbed, however; when challenged with TLR agonists they produce abnormally high levels of pro-inflammatory cytokines compared to wild-type mice (Espinosa et al., J Exp Med, 2009. 206(8): p. 1661-71). TRIM21 was originally identified as an autoantigen in Sjogren's syndrome and systemic lupus erythematosus. Both diseases have many overlapping symptoms to that of CFS such as chronic fatigue, inflammation, exercise intolerance, and muscle and joint pain and like CFS, diseases also occur to greater extent in women. Moreover, preliminary research suggests that the cancer drug Rituxan (rituximatab), which lowers the level of B cells, may be an effective treatment for a subgroup of CFS patients (Fluge and Mella, BMC Neurol, 2009. 9: p. 28) suggestive of an autoimmune condition similar to Sjogren's syndrome and systemic lupus. A defect in the TRIM21 pathway is consistent with an autoimmune condition characterized by the excessive production of pro-inflammatory cytokines, and the hyper-reactivity of IFN- α as is often observed in CFS patients.

[0102] Plasmacytoid dendritic cells are the primary producers of type I IFN; they are responsible for over 95% of type I IFN produced by leukocytes. Although they have the ability to produce all type I IFNs, the primary product of plasmacytoid dendritic cells is IFN- α . Large quantities of IFN are produced by pDCs in response to viral infection through the initiation of pattern recognition receptors known as Toll-like receptors (TLR). Type I IFN producing TLRs of pDCs are located in endosomal compartments and are activated by ssRNA (TLR7/8) and by CpG dsDNA (TLR9). IFN then proceeds to act locally and globally, through the activation of the interferon-alpha/beta receptors, IFNAR1 and IFNAR2. The binding of IFN to its receptor results in subunit dimerization followed by activation of their associated Janus protein kinases, which in turn phosphorylate several proteins, including STAT1 and STAT2.

[0103] A number of clinical observations are consistent with a pDC involvement in CFS. First, pDC are found primarily in the gut, the spleen and the lymph nodes. Therefore, a pDC involvement of CFS is consistent with the lymphadenopathy, splenomegaly and gastrointestinal abnormalities commonly reported in CFS patients. Second, the most prevalent inflammatory cytokines identified herein, IL-8, IL-6, TNF- α , MIP- α and MIP-1 β are produced by pDCs; however, cytokines not produced by pDCs such as IL-1a, IL-2, IL-3, IL-4, IL-5, IL-13 and IL-15 are seldom upregulated in CFS patients. Finally, pDCs are responsible for 95% of all IFN- α production. Therefore, a dysregulation of IFN- α is most likely to occur in pDCs. These clinical and biochemical observations support that a TRIM21 dsyregulation occurs in the pDCs of CFS patients.

[0104] Production of type I interferon is involved with the innate antiviral response in CFS patients. During infection IFN- α promotes the production of IL-15, which performs a critical role in the development, maintenance and function of NK cells and activation of T cells. IFN- α also stimulates NK cell activity via the upregulation of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Additionally, the three principal components of the RNase L antiviral pathway (OAS, RNase L and PKR) are transcriptionally upregulated by type I IFN. CFS literature is replete with references to NK cell and RNase L dysfunction. Dysregulation of type I IFN may contribute to the innate immune abnormalities associated with CFS.

[0105] Thus, initial low levels of INF-a combined with high levels of pro-inflammatory cytokines produced by pDC may set the stage for chronic inflammation, interferon hyper-reactivity and susceptibility to viral infection commonly observed in CFS patients.

[0106] Identified herein are various cytokine expression signatures that are reliably and reproducibly associated with CFS symptoms in subjects infected with a retorvirus. These cytokine expression signatures are different from that in healthy subjects who are not infected with a retrovirus, or who do not display CFS symptoms, as described herein. It is presently thought that infection with a retrovirus can induce changes in cytokine expression patterns. Significant changes in cytokine expression can cause inflammation within a subject's body. When cytokine expression in an infected individual becomes significantly different from that in an uninfected individual, it is thought that the associated inflammation can cause symptoms of neuroimmune diseases.

In some instances, the symptoms can be one or more symptoms of CFS. In other instances, the inflammatory responses can cause neuroimmune diseases other than CFS, such as fibromyalgia, myalgic encephalitis, atypical multiple sclerosis, autism, non-epileptic seizures, or Gulf War Syndrome.

[0107] Physical symptoms of CFS can include, but are not limited to, those described in Carruthers et al. 2003 J Chronic Fatigue Syndrome 11, 1-12. More specifically, physical symptoms can include post-exertional malaise or fatigue, sleep dysfunction, and pain; have two or more neurlogical/ cognitive manifestations and one or more symptoms from two or the categories of autonomic, neuroendocrine and immune manifestations. Autonomic manifestations can include orthostatic intolerance-neurally mediated hypotension (NMH); postural orthostatic tachycardia syndrome (POTS); delayed postural hypotension; light-headedness, extreme pallor; nausea and irritable syndrome; urinary frequency and bladder dysfunction; palpitations with or without cardiac arrhythmias; or exertional dyspnea. Neuroendocrine manifestations can include loss of thermostatic stability-subnormal body temperature and marked diurnal fluctuation; sweating episodes; recurrent feelings of feverishness and cold extremities; intolerance of extremes of heat and cold; marked weight change-anorexia or abnormal appetite; loss of adaptability and worsening of symptoms with stress. Immune manifestations can include tender lymphnodes, recurrent sore throat, recurrent flu-like symptoms, general malaise, new sensitivities to food, or medications or chemicals. In order to meet the criteria for CFS, these symptoms will have persisted for at least six months and usually have a distinct onset, although onset may be gradual.

[0108] The above proposed mechanism may explain why some subjects (such as subject 2623, infra) can be diagnosed as infected with a retrovirus but do not appear to display any, some, or all symptoms of a neuroimmune disease. In such a subject, a cytokine expression signature may not be significantly different enough from the cytokine expression pattern in an uninfected individual. Therefore, no or substantially no chronic inflammation occurs, and there are no or substantially no apparent symptoms of neuroimmune disease.

[0109] The above-proposed mechanism may also accommodate the changes in symptoms sometimes seen in a subject with chronic neuroimmune diseases. It is reasonable to assume that, over time, fluctuation of specific inflammatory cytokine expression levels can occur. Such fluctuation in expression of a cytokine could reasonably lead to a fluctuation in one or more symptoms of a neuroimmune disease.

[0110] Diagnosis

[0111] A cytokine expression signature, as described herein, can be used to diagnose a retroviral infection, conditions associated with a retroviral infection, or a neuroimmune disease. For example, a cytokine expression signature, as described herein, can be used to diagnose a retroviral infection in a subject. As another example, a cytokine expression signature, as described herein, can be used to diagnose a neuroimmune disease in a subject.

[0112] A cytokine expression signature used to diagnose a retroviral infection, conditions associated with a retroviral infection, or a neuroimmune disease can include level, activity, or expression of a cytokine as described herein. A cytokine of an expression signature and level, activity, or expression relative to a control can be as discussed above.

[0113] A method of diagnosis can include determination of level, activity, or expression of one or more cytokines of a

cytokine expression signature in a subject or a sample of a subject. The cytokine level, activity, or expression signature profile (e.g., the expression pattern of cytokines of the signature) can be correlated with the presence of a retrovirus in the subject or the sample of the subject. Correlation of the cytokine expression signature and presence of a retrovirus can serve as, or contribute to, the diagnosis of a retrovirul infection in the subject. Similarly, the cytokine level, activity, or expression signature profile (e.g., the expression pattern of cytokines of the signature) of a subject or a sample of the subject can be correlated with a neuroimmune disease in the subject. Determination in a subject or a sample of a subject of a cytokine level, activity, or expression signature correlated to a neuroimmune disease can serve as, or contribute to, the diagnosis of the neuroimmune disease in the subject.

[0114] Sample and Subject

[0115] Methods for the identification of a cytokine level, activity, or expression signature described herein are generally performed on a subject or on a sample from a subject. A sample can contain or be suspected of containing a retrovirus. [0116] A sample can be a biological sample from a subject. A sample can be a biological sample from a subject. A sample can be a blood sample, a serum sample, a plasma sample, a cerebrospinal fluid sample, or a solid tissue sample. For example, the sample can be a blood sample, such as a peripheral blood sample. As another example, a sample can be a solid tissue sample. As another example, a sample can be a solid tissue sample. As another example, a sample can include cells of a subject. For example, a sample can include cells such as fibroblasts, endothelial cells, peripheral blood mononuclear cells, hematopoietic cells, or a combination thereof.

[0117] The subject can be a subject having, diagnosed with, suspected of having, or at risk for developing a retroviral infection. A subject considered at risk of developing a retroviral infection can be, for example and without limitation, an individual with a familial history of the retrovirus, an individual contacted with a biological sample suspected of comprising the retrovirus, or an individual residing in a region comprising a cluster of individuals with the retroviral infection.

[0118] The subject can be a subject having, diagnosed with, suspected of having, or at risk for developing a neuroimmune disease or a lymphoma. For example, a subject can have, be diagnosed with, be suspected of having, or be at risk for developing a retroviral-related neuroimmune disease or a retroviral-related lymphoma. For example, a subject can be tested for the presence of an retrovirus where the subject exhibits one or more sign or a symptom associated with a neuroimmune disease or a lymphoma. As another example, a subject can have been diagnosed with a neuroimmune disease or lymphoma, or diagnosed with a retroviral-related neuroimmune disease or retroviral-related neuroimmune disease or symptom associated neuroimmune disease or lymphoma, or diagnosed with a retroviral-related neuroimmune disease or retroviral-related lymphoma.

[0119] A subject considered at risk of developing a neuroimmune disease or lymphoma can be, for example and without limitation, an individual with a familial history of a neuroimmune disease or lymphoma or an individual residing in a region comprising a cluster of individuals with a neuroimmune disease or lymphoma. For example, a subject can be considered at risk of developing CFS, if, without limitation, the individual has a familial history of CFS, or the individual resides in a region comprising a cluster of individual with comparison of the individual resides in a region comprising a cluster of individuals with CFS.

[0120] In some cases, subjects infected with a retrovirus can exhibit no or substantially no persistent symptoms; i.e., they are apparently healthy. In other cases, subjects infected

with a retrovirus are diagnosed with CFS. In other cases, subjects infected with a retrovirus are diagnosed with one or more cancer. In other cases, subjects infected with a retrovirus exhibit altered immune responses. In some cases, subjects infected with a retrovirus exhibit digestive-tract symptoms. Some subjects infected with a retrovirus develop multiple clinical symptoms, for example both CFS and cancer.

[0121] For example, a subject can be one which fulfills the 1994 CDC Fukuda Criteria for CFS (Fukuda et al., Ann Intern Med 1994; 121: 953-9); the 2003 Canadian Consensus Criteria (CCC) for ME/CFS (Carruthers et al, J Chronic Fatigue Syndrome 2003; 11:1-12; Jason et al., J Chronic Fatigue S 2004; 12:37-52), or both the Fukuda and CCC criteria. The CCC requires post-exertional malaise, which many clinicians believe is the sine qua non of ME/CFS. In contrast, the Fukuda and 1991 Oxford Criteria do not require exercise intolerance for a diagnosis of ME/CFS. The CCC further requires that subjects exhibit post-exertional fatigue, unrefreshing sleep, neurological/cognitive manifestations and pain, rather than these being optional symptoms.

[0122] The subject can be an animal subject, preferably a mammal, more preferably horses, cows, dogs, cats, sheep, pigs, mice, rats, monkeys, guinea pigs, and chickens, and most preferably a human.

[0123] As another example, the subject can be an animal, such as a laboratory animal that can serve as a model system for investigating a neuroimmune disease or lymphoma (see e.g., Chen, R. et al., Neurochemical Research 33: 1759-1767, 2008; Kumar, A., et al., Fundam. Clin. Pharmacol. 23(1): 89-95, February 2009; Gupta, A., et al, Immunobiology 214: 33-39, 2009; Singh, A., et al., Indian J. Exp. Biol. 40: 1240-1244, 2002; Ford, R. J., et al. Blood 109: 4899-4906, 2007; Smith, M. R., et al., Leukemia 20: 891-893, 2006; Bryant, J., et al., Lab. Invest. 80: 557-573, 2000; M'kacher, R., et al., Cancer Genet Cytogenet. 143: 32-38, 2003).

[0124] Device

[0125] Also provided is a device for use in detecting a cytokine expression signature described herein. Such a device can detect one of more cytokines or cytokine levels described herein. A device as described herein can be contacted with a biological sample so as to detect presence or level of one or more cytokines described herein.

[0126] Devices for detection of cytokines are understood in the art (see e.g., Khan et al. 2004 Cytometyery Part B: Clinical Cytometry 61B(A), 35-39; Li and Reichert 2003 Langmuir 19(5), 1557-1566; Huang et al. 2001 Analytical Biochemistry 294(1), 55-62; Haab 2005 Molecular and Cellular Proteomics 4, 377-383; Luchansky and Bailey 2010 Anal Chem 82(5), 1975-1981; Elshal and McCoy 2006 Methods 38(4), 317-323; Cytokine Antibody Array, Isogen Life Science, Netherlands; BioPlex Cytokine Assay, Bio-Rad; xMAP, Luminex Corp. Austin, Tex.; Human Cytokine Array Kit, R&D Systems, Minneapolis, Minn.). One of ordinary skill in the art can adapt conventional cytokine-detection devices for specificity with respect to one or more cytokines described herein. A device can incorporate a predictive algorithm described herein. A device can include an indicator for when a combination of cytokines of an specified expression signature described herein is present in a sample. A device can include an indicator for when a combination of levels of cytokines of an specified expression signature described herein is present in a sample.

[0127] A device can include an array (e.g., a microarray) for detection of one of more cytokines or cytokine levels

described herein. A device can include a cytokine array membrane created by spotting capture antibodies onto the membrane. For example, a device can provide high-throughput simultaneous screening of multiple cytokine expression based on a protein array system. For example, a device can include an antibody-based array for detection of one of more cytokines or cytokine levels described herein. For example, a device can include an silicon photonic microring resonator for real-time detection of one or more cytokines described herein on account of their spectral sensitivity toward surface binding events between a target and antibody-modified microrings (see generally, Luchansky and Bailey 2010 Anal Chem 82(5), 1975-1981). For example, a device can include a multiplex bead array cytokine assay (see generally, Elshal and McCoy 2006 Methods 38(4), 317-323). For example, a device can include a cytokine detection protein array that combines cDNA microarray technology and sandwich fluoroimmunoassay, where a protein array can be printed by spotting one or more cytokines described herein onto planar substrates (see generally Li and Reichert 2003 Langmuir 19(5), 1557-1566).

[0128] Therapeutic Methods

[0129] Also provided is a process of treating a retroviral infection or a neuroimmune disease in a subject. As described herein, a cytokine expression signature of a subject or a sample of a subject can be correlated to a retroviral infection, thus providing or contributing to a diagnosis of a retroviral infection in the subject. As described herein, a cytokine expression signature of a subject or a sample of a subject can be correlated to a neuroimmune disease, thus providing or contributing to a diagnosis of the neuroimmune disease in the subject. Upon detection or determination of a cytokine expression signature described herein, a subject can be diagnosed with a retroviral infection or a neuroimmune disease and thereafter administered appropriate therapeutic treatment.

[0130] Protocols or agents for treatment of a neuroimmune disease can be according to a conventional therapeutic treatment known in the art.

[0131] The neuroimmune disease being diagnosed or treated can be CFS. Treating CFS can comprise administration of a therapeutically effective amount of an agent that restores cytokine expression to that of a healthy individual, which restores cytokine expression to levels similar to those in a healthy individual, which restores cytokine signaling to that of a healthy individual, or which restores cytokine signaling to levels similar to those in a healthy individual. Treating CFS can suppress or prevent CFS symptoms.

[0132] Furthermore, the present disclosure provides methods of treating symptoms of a retroviral infection, or directly treating a retroviral infection, in a subject. Protocols or agents for treatment of a retroviral infection can be according to a conventional therapeutic treatment known in the art. Therapeutic agents for treatment of a retroviral infection include, but are not limited to, a retroviral integrase inhibitor (e.g., raltegravir, Merck & Co., brand name Isentress; L-000870812, Merck & Co.) and a nucleoside reverse transcriptase inhibitor (e.g., tenofovir disoproxil fumarate, Gilead Sciences, brand name Viread; zidovudine, Glaxo-SmithKline, azidothymidine (AZT)) (see Singh et al. 2010 PLoS ONE 5(4): e9948).

[0133] Treating symptoms of a retroviral infection, or directly treating a retroviral infection, can comprise administration of a therapeutically effective amount of an agent that

restores cytokine expression to that of a healthy individual, which restores cytokine expression to levels similar to those in a healthy individual, which restores cytokine signaling to that of a healthy individual, or which restores cytokine signaling to levels similar to those in a healthy individual. Treating symptoms of a retroviral infection, or directly treating a retroviral infection, can suppress or prevent retroviral infection symptoms.

[0134] In some embodiments, a therapeutic agent can be a cytokine antagonist. The cytokine antagonist can be an anti-cytokine antibody, such as an anti-IFN α antibody or an anti-IFN α antibody (see, eg, Jkurkovich et al., Medical Hypotheses 59(6): 770-780, 2002, Anticytokine therapy—new approach to the treatment of autoimmune and cytokine-disturbance diseases). The cytokine antagonist can be an agent possessing anti-TNF properties, such as infliximab or etanercept. The cytokine antagonist can possess anti-interleukin-1 (IL-1) or anti-interleukin-6 (IL-6) properties. The cytokine antagonist can be a glucocorticoid.

[0135] Methods described herein are generally performed on a subject in need thereof. A subject in need of the therapeutic methods described herein can be diagnosed with a neuroimmune disease, such as CFS, or at risk thereof. A subject in need of the therapeutic methods described herein can be infected with a retrovirus, diagnosed with a retroviral infection, or exhibiting one or more symptoms of a retroviral infection. A determination of the need for treatment will typically be assessed by a history and physical exam consistent with the disease or condition at issue. Diagnosis of the various conditions treatable by the methods described herein is within the skill of the art. The subject can be an animal subject, preferably a mammal, more preferably horses, cows, dogs, cats, sheep, pigs, mice, rats, monkeys, guinea pigs, and chickens, and most preferably a human.

[0136] An effective amount of an agent described herein is generally that which can restore cytokine expression to that of a healthy individual, which restores cytokine expression to levels similar to those in a healthy individual, which restores cytokine signaling to that of a healthy individual, or which restores cytokine signaling to levels similar to those in a healthy individual. An effective amount of an agent can suppress or prevent some, substantially all, or all symptoms of a neuroimmune disease, such as CFS. Alternatively, an effective amount of an agent can suppress cyfes cyfes and the constraint of the cyfes of the cyfes. Symptoms related to CFS can include those used to diagnose CFS as described herein.

[0137] When used in the treatments described herein, a therapeutically effective amount of an agent can be employed in pure form or, where such forms exist, in pharmaceutically acceptable salt form and with or without a pharmaceutically acceptable excipient. For example, the compounds of the invention can be administered, at a reasonable benefit/risk ratio applicable to any medical treatment, in a sufficient amount to suppress or prevent a retroviral infection, a neuroimmune disease, such as CFS, or altered cytokine expression that is associated with a retroviral infection or a neuroimmune disease, such as CFS.

[0138] The amount of a composition described herein that can be combined with a pharmaceutically acceptable carrier to produce a single dosage form will vary depending upon the host treated and the particular mode of administration. It will be appreciated by those skilled in the art that the unit content of agent contained in an individual dose of each dosage form need not in itself constitute a therapeutically effective amount, as the necessary therapeutically effective amount could be reached by administration of a number of individual doses.

[0139] Toxicity and therapeutic efficacy of compositions described herein can be determined by standard pharmaceutical procedures in cell cultures or experimental animals for determining the LD_{50} (the dose lethal to 50% of the population) and the ED_{50} , (the dose therapeutically effective in 50% of the population). The dose ratio between toxic and therapeutic effects is the therapeutic index that can be expressed as the ratio LD_{50}/ED_{50} , where large therapeutic indices are preferred.

[0140] The specific therapeutically effective dose level for any particular subject will depend upon a variety of factors including the disorder being treated and the severity of the disorder; activity of the specific compound employed; the specific composition employed; the age, body weight, general health, sex and diet of the patient; the time of administration; the route of administration; the rate of excretion of the composition employed; the duration of the treatment; drugs used in combination or coincidental with the specific compound employed; and like factors well known in the medical arts (see e.g., Koda-Kimble et al. (2004) Applied Therapeutics: The Clinical Use of Drugs, Lippincott Williams & Wilkins, ISBN 0781748453; Winter (2003) Basic Clinical Pharmacokinetics, 4th ed., Lippincott Williams & Wilkins, ISBN 0781741475; Sharqel (2004) Applied Biopharmaceutics & Pharmacokinetics, McGraw-Hill/Appleton & Lange, ISBN 0071375503). For example, it is well within the skill of the art to start doses of the composition at levels lower than those required to achieve the desired therapeutic effect and to gradually increase the dosage until the desired effect is achieved. If desired, the effective daily dose may be divided into multiple doses for purposes of administration. Consequently, single dose compositions may contain such amounts or submultiples thereof to make up the daily dose. It will be understood, however, that the total daily usage of the compounds and compositions of the present invention will be decided by an attending physician within the scope of sound medical judgment.

[0141] Administration of an agent can occur as a single event or over a time course of treatment. For example, an agent can be administered daily, weekly, bi-weekly, or monthly. For treatment of acute conditions, the time course of treatment will usually be at least several days. Certain conditions could extend treatment from several days to several weeks. For example, treatment could extend over one week, two weeks, or three weeks. For more chronic conditions, treatment could extend from several weeks to several months or even a year or more.

[0142] Treatment in accord with the methods described herein can be performed prior to, concurrent with, or after conventional treatment modalities for a retroviral infection or a neuroimmune disease, such as CFS.

[0143] An agent can be administered simultaneously or sequentially with another agent, such as an antibiotic, an antiinflammatory, or another agent. For example, an agent can be administered simultaneously with another agent, such as an antibiotic or an antiinflammatory. Simultaneous administration can occur through administration of separate compositions, each containing one or more of agent described herein, an antibiotic, an antiinflammatory, or another agent. Simultaneous administration can occur through administration for agent.

tion of one composition containing two or more of an agent described herein, an antibiotic, an antiinflammatory, or another agent. An agent can be administered sequentially with an antibiotic, an antiinflammatory, or another agent. For example, an agent can be administered before or after administration of an antibiotic, an antiinflammatory, or another agent.

[0144] Compositions or agents described herein can be administered in a variety of means known to the art. For example, administration can be parenteral, pulmonary, oral, topical, intradermal, intramuscular, intraperitoneal, intravenous, subcutaneous, intranasal, epidural, ophthalmic, buccal, or rectal administration. As another example, administration can include, for example, methods involving oral ingestion, direct injection (e.g., systemic or stereotactic), implantation of cells engineered to secrete the factor of interest, drugreleasing biomaterials, polymer matrices, gels, permeable membranes, osmotic systems, multilayer coatings, microparticles, implantable matrix devices, mini-osmotic pumps, implantable pumps, injectable gels and hydrogels, liposomes, micelles (e.g., up to 30 µm), nanospheres (e.g., less than 1 um), microspheres (e.g., 1-100 um), reservoir devices, a combination of any of the above, or other suitable delivery vehicles to provide the desired release profile in varying proportions. Other methods of controlled-release delivery of agents will be known to the skilled artisan and are within the scope of the invention.

[0145] General

[0146] Compositions and methods described herein utilizing molecular biology protocols can be according to a variety of standard techniques known to the art (see, e.g., Sambrook and Russel (2006) Condensed Protocols from Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, ISBN-10: 0879697717; Ausubel et al. (2002) Short Protocols in Molecular Biology, 5th ed., Current Protocols, ISBN-10: 0471250929; Sambrook and Russel (2001) Molecular Cloning: A Laboratory Manual, 3d ed., Cold Spring Harbor Laboratory Press, ISBN-10: 0879695773; Elhai, J. and Wolk, C. P. 1988. Methods in Enzymology 167, 747-754; Studier (2005) Protein Expr Purif. 41(1), 207-234; Gellissen, ed. (2005) Production of Recombinant Proteins: Novel Microbial and Eukaryotic Expression Systems, Wiley-VCH, ISBN-10: 3527310363; Baneyx (2004) Protein Expression Technologies, Taylor & Francis, ISBN-10: 0954523253).

[0147] Definitions and methods described herein are provided to better define the present disclosure and to guide those of ordinary skill in the art in the practice of the present disclosure. Unless otherwise noted, terms are to be understood according to conventional usage by those of ordinary skill in the relevant art.

[0148] In some embodiments, numbers expressing quantities of ingredients, properties such as molecular weight, reaction conditions, and so forth, used to describe and claim certain embodiments of the present disclosure are to be understood as being modified in some instances by the term "about." In some embodiments, the term "about" is used to indicate that a value includes the standard deviation of the mean for the device or method being employed to determine the value. In some embodiments, the numerical parameters set forth in the written description and attached claims are approximations that can vary depending upon the desired properties sought to be obtained by a particular embodiment. In some embodiments, the numerical parameters should be construed in light of the number of reported significant digits and by applying ordinary rounding techniques. Notwithstanding that the numerical ranges and parameters setting forth the broad scope of some embodiments of the present disclosure are approximations, the numerical values set forth in the specific examples are reported as precisely as practicable. The numerical values presented in some embodiments of the present disclosure may contain certain errors necessarily resulting from the standard deviation found in their respective testing measurements. The recitation of ranges of values herein is merely intended to serve as a shorthand method of referring individually to each separate value falling within the range. Unless otherwise indicated herein, each individual value is incorporated into the specification as if it were individually recited herein.

[0149] In some embodiments, the terms "a" and "an" and "the" and similar references used in the context of describing a particular embodiment (especially in the context of certain of the following claims) can be construed to cover both the singular and the plural, unless specifically noted otherwise. In some embodiments, the term "or" as used herein, including the claims, is used to mean "and/or" unless explicitly indicated to refer to alternatives only or the alternatives are mutually exclusive.

[0150] The terms "comprise," "have" and "include" are open-ended linking verbs. Any forms or tenses of one or more of these verbs, such as "comprises," "comprising," "has," "having," "includes" and "including," are also open-ended. For example, any method that "comprises," "has" or "includes" one or more steps is not limited to possessing only those one or more steps and can also cover other unlisted steps. Similarly, any composition or device that "comprises," "has" or possessing only those one or more features is not limited to possessing only those one or more features and can cover other unlisted features.

[0151] All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g. "such as") provided with respect to certain embodiments herein is intended merely to better illuminate the present disclosure and does not pose a limitation on the scope of the present disclosure otherwise claimed. No language in the specification should be construed as indicating any non-claimed element essential to the practice of the present disclosure.

[0152] Groupings of alternative elements or embodiments of the present disclosure disclosed herein are not to be construed as limitations. Each group member can be referred to and claimed individually or in any combination with other members of the group or other elements found herein. One or more members of a group can be included in, or deleted from, a group for reasons of convenience or patentability. When any such inclusion or deletion occurs, the specification is herein deemed to contain the group as modified thus fulfilling the written description of all Markush groups used in the appended claims.

[0153] Citation of a reference herein shall not be construed as an admission that such is prior art to the present disclosure. **[0154]** Having described the present disclosure in detail, it will be apparent that modifications, variations, and equivalent embodiments are possible without departing the scope of the present disclosure defined in the appended claims. Furthermore, it should be appreciated that all examples in the present disclosure are provided as non-limiting examples.

EXAMPLES

[0155] The following non-limiting examples are provided to further illustrate the present disclosure. It should be appreciated by those of skill in the art that the techniques disclosed in the examples that follow represent approaches the inventors have found function well in the practice of the present disclosure, and thus can be considered to constitute examples of modes for its practice. However, those of skill in the art should, in light of the present disclosure, appreciate that many changes can be made in the specific embodiments that are disclosed and still obtain a like or similar result without departing from the spirit and scope of the present disclosure.

Example 1

[0156] This example describes methods that can be used to obtain nucleic acid samples from subjects.

[0157] DNA and RNA isolation. Whole blood can be drawn from subjects by venipuncture using standardized phlebotomy procedures into 8-mL greencapped Vacutainers containing the anti-coagulant sodium heparin (Becton Dickinson). Plasma can be collected by centrifugation, aspirated and stored at -80° C. for later use. The plasma can be replaced with PBS and the blood resuspended and further diluted with an equal volume of PBS. PBMCs can be isolated by layering the diluted blood onto Ficoll-Paque PLUS (GE Healthcare), centrifuging for 22 min at 800 g, aspirating the PBMC layer and washing it once in PBS. The PBMCs (approximately 2×10^7 cells) can be centrifuged at 500 g for 7 min and either stored as frozen unactivated cells in 90% FBS and 10% DMSO at -80° C. for further culture and analysis or resuspended in TRIzol (Invitrogen) and stored at -80° C. for DNA and RNA extraction and analysis. DNA can be isolated from TRIzol according the to manufacturer's protocol and also can be isolated from frozen PBMC pellets using the QIAamp DNA Mini purification kit (QIAGEN) according to the manufacturer's protocol and the final DNA can be resuspended in RNase/DNase free water and quantified using the Quant-iTTM Pico Green dsDNA Kit (Invitrogen). RNA can be isolated from TRIzol according to the manufacturer's protocol and quantified using the Quant-iT Ribo Green RNA kit (Invitrogen). cDNA can be made from RNA using the iScript Select cDNA synthesis kit (Bio-Rad) according to the manufacturer's protocol.

Example 2

[0158] This example describes methods of amplifying, and determining the nucleic acid sequence of, XMRV polynucleotides.

[0159] PCR. Nested PCR can be performed with separate reagents in a separate laboratory room designated to be free of high copy amplicon or plasmid DNA. Negative controls in the absence of added DNA can be included in every experiment. Identification of XMRV gag and env genes can be performed by PCR in separate reactions. Reactions can be performed as follows: 100 to 250 ng DNA, 2 μ L of 25 mM MgC12, 25 μ L of HotStart-IT FideliTaq Master Mix (USB Corporation), 0.75 μ L of each of 20 μ M forward and reverse oligonucleotide primers in reaction volumes of 50 μ L. For identification of gag, 419F (5'-ATCAGTTAACCTACCCGAGTCGGAC-3') (SEQ ID NO: 5) and 1154R (5'-GCCGCTCTTCTTCATTGTTCTC-3') (SEQ ID NO: 6) can be used as forward and reverse primers. For env, 5922F (5'-GCTAATGCTACCTC-CCTCGG-3') (SEQ ID NO: 7) and 6273R (5'-GGAGC-

CCACTGAGGAATCAAAACAGG-3') (SEQ ID NO: 8) can be used. For both gag and env PCR, 94° C. for 4 min initial denaturation can be performed for every reaction followed by 94° C. for 30 seconds, 57° C. for 30 seconds and 72° C. for 1 minute. The cycle can be repeated 45 times followed by final extension at 72° C. for 2 minutes. Six microliters of each reaction product can be loaded onto 2% agarose gels in TBE buffer with 1 kb+DNA ladder (Invitrogen) as markers. PCR products can be purified using Wizard SV Gel and PCR Clean-Up kit (Promega) and sequenced. PCR amplification for sequencing full-length XMRV genomes can be performed on DNA amplified by nested or semi-nested PCR from overlapping regions from PBMC DNA. For 5' end amplification of R-U5 region, 4F (5'-CCAGTCATCCGATAGACT-GAGTCGC-3') (SEQ ID NO: 9) and 1154R can be used for first round and 4F and 770R (5'-TACCATCCTGAGGC-CATCCTACATTG-3') (SEQ ID NO: 10) can be used for second round. For regions including gag-pro and partial pol, 350F(5'-GAGTTCGTATTCCCGGCCGCAGC-3') (SEQ ID NO: 11) and 5135R (5'-CCTGCGGCATTCCAAATCTCG-3') (SEQ ID NO: 12) can be used for first round followed by second round with 419F and 4789R (5'-GGGTGAGTCTGT-GTAGGGAGTCTAA-3') (SEQ ID NO: 13). For regions including partial pol and env region, 4166F (5'-CAAGAAG-GACAACGGAGAGCTGGAG-3') (SEQ ID NO: 14) and 7622R (5'-GGCCTGCACTACCGAAAT TCTGTC-3') (SEQ ID NO: 15) can be used for first round followed by 4672F (5'-GAGCCACCTACAATCAGACAAAAGGAT-3') (SEQ ID NO: 16) and 7590R (5'-CTGGACCAAGCGGT-TGAGAATACAG-3') (SEQ ID NO: 17) for second round. For the 3' end including the U3-R region, 7472F (5'-TCAG-GACAAGGGTGGTTTGAG-3') (SEQ ID NO: 18) and 8182R (5'-CAAACAGCAAAAGGCTTTATTGG-3') (SEQ ID NO: 19) can be used for first round followed by 7472F and 8147R (5'-CCGGGCGACTCAGTCTATC-3') (SEQ ID NO: 20) for second round. The reaction mixtures and conditions can be as described above except for the following: For larger fragments, extension can be done at 68° C. for 10 min instead of 72° C. All second round PCR products can be column purified as mentioned above and overlapping sequences can be determined with internal primers. Nested RT-PCR for gag sequences can be done as described with modifications. GAG-O-R primer can be used for 1st strand synthesis; cycle conditions can be 52° C. annealing, for 35 cycles. For second round PCR, annealing can be at 54° C. for 35 cycles.

[0160] Once nucleic acids have been amplified by PCR, standard sequencing techniques can be used to determine the nucleic acid sequence thereof. Standard in silico translation techniques can be used to determine amino acid sequences from nucleic acid sequences.

Example 3

[0161] Cytokine analysis can be made by any quantitative method including but not limited to microplate assays such as Enzyme-linked immunosorbent assay (ELISA); multiplexing assay using antibody-conjugated microspheres, such as the Luminex xMAP Bead-based assay or Bender MedSystems bead-based system; systems involving the amplification of cytokine mRNA of the direct measurement of intracellular cytokines using flow cytometry or any other method that can quantitatively measure cytokines.

Example 4

[0162] This example describes biomarkers associated with neuroimmune diseases, and specifically, with CFS. The methods in this example are as described in Examples 1-3, unless otherwise specified.

[0163] Cytokine and chemokine profiles are altered by infection. The inventors therefore examined the levels of 26 cytokines and chemokines from 156 XMRV-infected individuals and 140 healthy controls in an attempt to identify any hallmarks of XMRV infection. XMRV status was determined both by PCR-based and serological experiments, which detected XMRV env nucleic acid and protein, respectively.

[0164] Table 2 shows that a number of cytokines and chemokines are differentially expressed in XMRV-infected individuals. Notably, inflammatory chemokines such as IL-8 and MIP-1 α and MIP-1 β are upregulated in XMRV-infected subjects.

TABLE 2

Cytokines and chemokines up-regulated in XMRV-infected subjects						
	XMRV positive		XMRV	XMRV negative		
	Mean	S.E.	Mean	S.E.		
IL-8	1067	(267)	11.1	(1.3)	< 0.0001	
MIP-1β	1840	(580)	157	(40)	< 0.0001	
TNF-α	109	(48)	12.8	(4.6)	< 0.0001	
IL-6	271	(78)	29	(12)	< 0.0001	
IL-2	99	(59)	29	(11)	< 0.0001	
IP-10	84	(15)	32.6	(3.0)	< 0.0001	
Eotaxin	258	(18)	87.5	(5.9)	< 0.0001	
IL-12	272	(18)	210	(34)	0.0002	
Rantes	26191	(3554)	8458	(529)	0.0041	
MCP-1	468	(42)	421	(41)	0.0003	
MIP-1a	673	(360)	91	(28)	0.006	

[0165] Table 3 shows that a number of cytokines were down regulated in XMRV-infected subjects when compared to healthy controls. Notably, IL-13, involved in anti-inflammatory responses, is down regulated in XMRV-positive subjects. IFN- α is also down regulated, as is IL-7, which is a key regulator of interferon signaling.

TABLE 3

Cytokines and chemokines down-regulated in XMRV-infected subjects						
	XMRV	positive	XMRV	negative		
	Mean	S.E.	Mean	S.E.		
IL-13	24.4	(2.4)	89.5	(6.9)	< 0.0001	
IL-5	7.11	(0.64)	22.2	(5.3)	< 0.0001	
IL-7	21.1	(4.8)	82	(7.3)	< 0.0001	
MIG	43.7	(7.3)	83	(13)	< 0.0001	
IFN-α	29.5	(3.0)	60.6	(4.4)	< 0.0001	

[0166] Table 4 lists cytokines and chemokines that are differentially expressed in XMRV-infected subjects relative to healthy controls, and describes their functions.

TABLE 4

Cytokine/ Chemokine	P value Function In Inflammation
	Upregulated in XMRV-infected subjects
IL-6	< 0.0001 Stimulates chronic inflammation
MIP-1a	0.0062 Elevated in neurodegenerative disease
IL-8	<0.0001 RNase L and CMV activated
MIP-1β	<0.0001 Elevated in Neurodegenerative disease
TNF-α	<0.0001 Stimulates chronic inflammation
MCP-1	0.003 Elevated in chronic inflammatory diseases
	Down regulated in XMRV-infected subjects
IL-13	< 0.0001 Inhibits inflammatory cytokine production
IL-7	<0.0001 Stimulates proliferation of B and T lymphocytes and NK cells
IFN-α	<0.0001 Stimulates macrophages and NK cells to elicit an anti-viral response
GM-CSF	<0.0001 Stimulates proliferation of B and T lymphocytes and NK cells

Example 5

[0167] This example describes a method of predicting a subject's XMRV status. Unless otherwise described, methods are as described in Examples 1-4.

[0168] Using data described above, the present inventors have developed an algorithm that predicts XMRV infection status from chemokine and cytokine expression information, with about 95% accuracy (Table 5). The inventors used the data described, including the pre-determined XMRV status, above as a training set for a Random Forest algorithm. The prediction algorithm was constructed using a standard Random Forest learning algorithm.

TABLE 5

Accuracy	of Random Fo	est algorithm in pred	licting XMR	V status
Actual Class	Total Cases	Percent Correct	Control N = 137	Positive N = 159
Control Positive	140 156	92.857 95.513	130 7	10 149

[0169] The Random Forest prediction algorithm identified the cytokines and chemokines listed in Table 4, above, as most critical in identifying XMRV status of an individual. FIG. **1** shows the relative importance of each.

[0170] When individual cytokines and chemokines are assigned a value of importance such that IL-8 is 100, IL-13 is 90, MIP-1 β is 80, TNF- α is 70, MCP-1 is 60, IL-7 is 50, IFN- α is 40, IL-6 is 30, MIP-1 α is 20, and GM-CSF is 10 then the prediction of CFS can be made by any combination of cytokines, cytokines and chemokines or chemokines with a combined value of about 210 or greater.

Example 6

[0171] This example describes a method of identifying XMRV-infected subjects. Unless otherwise described, methods are as described in Examples 1-5.

[0172] For some individuals in the dataset used in these experiments, data was available which indicated the presence of $\gamma\delta$ T-cells. $\gamma\delta$ T-cells are cells that play an active role in the

regulation and resolution of pathogen-induced immune responses. They accumulate at sites of inflammation caused by infections; and also in auto-immune diseases. γδ T-cells are also known to up-regulate MIP1- α , MIP1- β , and TNF- α . Clinically, the presence of yo T-cells indicates chronic infection or cancer.

[0173] Data was collected from subjects who had been diagnosed with CFS who were subsequently diagnosed with cancer. Many of the CFS patients were also yo T-cell positive patients; and all CFS patients subsequently tested were found to have XMRV. These results are summarized in Table 6.

TABLE 6

	$\gamma\delta$ T-cells can be detected in CFS subjects with cancer						
ID#	XMRV status	γδ T-cell status	Type of Cancer				
1103	positive	positive	MCL				
1109	positive	negative	Thymoma				
1125	positive	positive + IGH	MCL				
1186	positive	positive	Lymphoma				
1199	positive	positive	Lymphoma				
1150	positive	positive	Lymphoma				
1320	positive	Not tested	Thymoma				
1321	Not tested	Not tested	MCL				
1174	positive	positive	Thymoma				
1205	positive	Not tested	lymphoma				
1172	positive	positive	MCL				
1127	positive	positive	CLL				
1322	Not tested	Not tested	MCL				
1181	positive	Not tested	CLL				
1188	positive	positive	CLL				
1189	positive	positive	MCL				

subjects labeled as "Not Tested" were deceased by the time subsequent data collection for XMRV/T-cell status occurred MCL = mantle cell lymphoma;

CLL = chronic lymphocytic leukemia

Example 7

[0174] This example describes the phenotype of XMRVinfected subjects. Unless otherwise described, methods are as in Examples 1-6.

[0175] Clustering analysis was applied to the cytokine/ chemokine dataset as described above. Cluster analysis clearly identified three groups that include healthy controls; CFS patients that have elevated $\gamma\delta$ T-cell populations, and CFS patients who do not have elevated yô T-cell populations (see e.g., FIG. 2). The $\gamma\delta$ T-cell positive group has a prominent inflammatory response, as indicated by the high expression of pro-inflammatory cytokines and chemokines. Without being limited by theory, the present inventors hypothesize that this inflammation contributes to or causes the CFS symptoms associated with XMRV pathology. The inventors also hypothesize that inflammation may be a marker of disease progression.

Example 8

[0176] This example describes the cytokine signature and disease state of an XMRV-positive subject. Methods are as in examples 1-7, unless otherwise specified.

[0177] Subject 2623 is a 52-year-old female. She is positive for XMRV as determined by PCR and seroconversion tests, but does not display symptoms of chronic immune disease. FIG. 3 shows the expression levels of the cytokines and chemokines that were identified by the Random Forests analysis (supra) as a signature of XMRV infection. The cytokines and chemokines that were in the normal range have been removed from this dataset (eg, IL-8, IL-7 and IL-6). Of the remaining cytokines and chemokines, IL-13 and IFN- α show decreased expression relative to that in an uninfected subject; whereas MIP1 α , MIP1 β , TNFa and GM-CSF show increased expression relative to that in an uninfected subject. Not shown is subject 2623's increased IL-12 expression; IL-2 expression was identified by the cluster analysis (supra) to be important in staging disease progression.

Example 9

[0178] This example describes the cytokine signature and disease state of an XMRV-positive subject. Methods are as in examples 1-8, unless otherwise specified.

[0179] Subject 1127 is a 63-year-old female. She is positive for XMRV and has been diagnosed with CFS. She also has clonal populations of $\gamma\delta$ -T cells, and eventually developed CLL. FIG. 4 shows the expression levels of the cytokines and chemokines that were identified by the Random Forests analysis (supra) as a signature of XMRV infection. The cytokines and chemokines that were in the normal range have been removed from this dataset (eg, IFN-a, GM-CSF).

Example 10

[0180] This example describes the cytokine signature and disease state of an XMRV-positive subject. Methods are as in examples 1-9, unless otherwise specified.

[0181] Subject 967 is a 31-year-old female. She is positive for XMRV and has chronic immune disease. She does not have clonal populations of $\gamma\delta$ -T cells. FIG. 5 shows the expression levels of the cytokines and chemokines that were identified by the Random Forests analysis (supra) as a signature of XMRV infection. She has elevated IL-8, MIP-1 α , MIP-1β, TNFα, IL-6 and GM-CSF. Not shown is subject 967's elevated RANTES levels; RANTES is not included as part of the diagnostic signature but is consistent with the findings of the cluster analysis.

Example 11

[0182] This example describes cytokine and chemokine dysregulation in CFS patients. Methods are as in examples 1-10, unless otherwise specified.

[0183] CFS patients that meet both the CDC and Canadian Consensus Criteria. Patients were not selected on the basis of absence or presence of a known retroviral infection. Detection of cytokines was according to Multiplex Bean Immunoassays by patient and control.

[0184] Results showed an upregulation of the pro-inflammatory cytokines IL-6, IL-8, MIP-1 α , MIP-1 β and TNF- α in the plasma of CFS patients (Table 7).

TABLE 7

	Patient Mean N = 164 (pg/mL)	Patient Median N = 164 (pg/mL)	Control Mean N = 139 (pg/mL)	Control Median N = 139 (pg/mL)
	τ	Jp-Regula	ted	
IL-8 IL-6 IL-1β MIP-1β MIP-1α	$\begin{array}{c} (8290 \pm 1011) \\ (2623 \pm 515) \\ (219.3 \pm 29.2) \\ (3701 \pm 797) \\ (1813 \pm 334) \end{array}$	3574 30 80.4 281 97	$\begin{array}{c} (13.1 \pm 1.6) \\ (28.4 \pm 10.7) \\ (88.9 \pm 20.5) \\ (157.3 \pm 40.3) \\ (90.6 \pm 19.2) \end{array}$	8.3 4.0 55.8 85.0 63.9

TABLE 7-continued

	Patient Mean N = 164 (pg/mL)	Patient Median N = 164 (pg/mL)	Control Mean N = 139 (pg/mL)	Control Median N = 139 (pg/mL)
EOTAXIN	(205.4 ± 15.1)	141.0	(102.5 ± 8.5)	84.1
TNF-α	(158.1 ± 38)	19.9	(13.2 ± 4.25)	6.3
MCP-1	(788.8 ± 51.3)	593.1	(423.8 ± 40.5)	291.1
IP-10	(110.0 ± 20.8)	34.3	(35.6 ± 3.71)	23.2
IFN-γ	(20.0 ± 1.23)	15.6	(13.9 ± 0.866)	11.8
IL-12	(215.4 ± 14.0)	160	(212.8 ± 31.1)	131.8
IL-2	(30.6 ± 9.2)	13.2	(28.5 ± 10.2)	11.8
	Ľ	own-regu	lated	
IL-13	(38.27 ± 3.2)	25.08	(84.8 ± 6.5)	77.5
IL-13 IL-7	(58.27 ± 5.2) (57.2 ± 15)	23.08	(34.8 ± 0.3) (76.9 ± 6.8)	68.4
IL-7 IFN-α	· · · · · · · · · · · · · · · · · · ·	22.8	(70.9 ± 0.8) (58.3 ± 4.1)	48.7
	(48.1 ± 5.7)		· · · · ·	
MIG	(54.7 ± 10.4)	30.9	(78.5 ± 11.6)	53.2

All mean values are significant at the 95% C.I. by the log transformed Student t-Test.

[0185] CFS patients often report gastrointestinal issues similar to that of Crohn's disease and ulcerative colitis. In this study, pDCs from Crohn's patients, ulcerative colitis patients, and healthy controls were isolated and cultured in the presence or absence of the TLR agonist's imiquimod and ODN 2218.

[0186] Results showed that pro-inflammatory cytokine production of pDCs was significantly greater in the two patient groups than in the control group. Additionally, the upregulated cytokines observed, were similar to that observed in the plasma of CFS patients. These similarities suggest that CFS patients may also have dysfunction of pDCs.

[0187] To explore this possibility, pDCs were isolated from two healthy controls and one classic CFS patient who reported a viral flu-like onset of CFS and who has consistently displayed elevated plasma levels of pro-inflammatory cytokines. The isolated pDCs were cultured in the presence and absence of imiquimod and ODN for 22 hours. Levels of multiple cytokines were evaluated in culture media by multiplex analysis. Cytokine levels were determined in supernatants of pDC collected from CFS patients and healthy controls. pDC fraction of PBMC was isolated using CD304 positive selection (Miltenyi). TLR7 and 9 agonists were used to stimulate pDC for 22 hours. At the end of stimulation, supernatants were analyzed by Luminex multiplex assay.

[0188] Results showed little or no difference was observed for IL-1RA, IL-2, IL-2R, IL-4, IL-5, IL-7, IL-13, IL-17, IFN-7 GM-CSF, MIG, IP-10 and RANTES. IL-8 was elevated in all samples, including the non-stimulated pDCs, suggesting that activation occurred during the pDC purification process. But similar to the observed results in Crohn's disease and ulcerative colitis, a dramatic upregulation of the cytokines IL-6, MIP-1 α , MIP-1 β and TNF- α was observed in the pDCs isolated from the CFS patient but not in the control samples (data not shown). The stimulated pDC cytokine production was similar between the healthy controls; however, on average, the CFS patient's pDCs produced 3 times the inflammatory cytokines as the healthy controls. Strikingly, the IFN-a production of activated pDCs of the CFS patient was approximately 20 times that of the healthy controls in spite of having relatively normal plasma IFN- α levels (data not shown). Both control subjects had plasma cytokine levels within normal ranges, and the CFS subject had elevated plasma levels of pro-inflammatory cytokines, consistent with previous results (Data not show).

[0189] These data support that pDCs of CFS patients are more responsive to TLR agonists, with the greatest difference observed in the production IFN- α .

Example 12

[0190] It is thought that an interrelated dysregulation occurs in the pathways mediating type I IFN and pro-inflammatory cytokine production in pDCs of CFS. Dysregulation of pDCs may account for the aberrant IFN and pro-inflammatory cytokine production as well as the other abnormalities observed in the innate immune system of CFS patients.

[0191] Previous data indicate that CFS patients have decreased plasma levels of INF-a. Because pDC are major producers of INF-a, it is expected that pathogenesis of CFS may be explained by dysfunction of these cells. Indeed, data demonstrated that while producing limited amount of INF-a in vivo, pDC from CFS are releasing 20 folds more INF-a when stimulated with TLR ligands in vitro as compared to healthy donors. Although the pattern of pro-inflammatory cytokine produced by stimulated pDC was similar between patients and controls, actual production was 3-20 folds higher in the CFS patients.

[0192] An ex vivo cell model system is used to characterize the mechanism of dysregulation of IFN and pro-inflammatory cytokines associated with CFS

[0193] IRF7, TRAF6, TRIM21 and FADD are evaluated at the level of transcription, translation and protein turnover (half-life) in pDCs cells of CFS patients and healthy controls in the presence and absence of TLR agonists. Sequencing and quantitative PCR, western blot analysis, ELISA of cell culture media; and IHC staining at multiple time points are used in the presence and absence of TLR agonists imiquimod and ODN 2213, using magnetically purified pDCs from CFS patients and healthy controls.

[0194] The ubiquidation, phosphorylation and nuclear translocation of IRF7, TRAF6, TRIM21 and FADD are characterized in pDCs of CFS patients and healthy controls in the presence and absence of TLR agonists.

[0195] Ten CFS patients that meet both the CDC and Canadian Consensus Criteria and 10 healthy controls are used in these experiments. Leukocytes are separated from whole blood by density gradient using Ficoll-Paque. Subject pDCs are purified by negative selection, in order to prevent any unforeseen effects by antibody binding, using the antibodies CD3, CD7, CD16, CD19, CD56, CD123, and CD235a (Miltenyi Biotec). The isolated pDCs are CD303 (BDCA-2)+, (BDCA-4/Neuropilin-1)⁺, CD123⁺, CD4⁺, CD304 CD45RA⁺, CD141 (BDCA-3)^{dim} and CD1c (BDCA-1)⁻, CD2⁻, which lack expression of lineage markers (CD3, CD14, CD16, CD19, CD20, CD56), and express neither myeloid markers such as CD13 and CD33, nor Fc receptors such as CD32, CD64, or FcaRI (Dzionek et al., Hum Immunol, 2002. 63(12): p. 1133-48). Cell line purity is evaluated by flow cytometry with the surface makers CD303 and CD123. Isolated pDCs are cultured on RPMI complete media supplemented with IL-3 (Jones et al., Nat Med, 2008. 14(4): p. 429-36) in the presence or absence of imiquimod and ODN 2213. The same experiment is made using pDC depleted lymphocytes as a control. Primary cells are cultured and analyzed for cytokine production at four separate time points, T=0 hrs, 6 hrs, 22 hrs and 4 days. Culture media is collected at each time point and flash frozen for cytokine analysis using Luminex multi-plex bead system. All measurements are made in triplicate for each time point then averaged.

[0196] Transcription analysis is made on the time point that produce optimal cytokine production by collecting cells on TRIzol for mRNA according to the manufacture's instructions; cDNA synthesis and Q-PCR is performed using the Superscript III Platinum CellsDirect Two-step qRT-PCR Kit. Transcriptome analysis is made using an Illumina HISeq 1000 with 50 pb single end reads and confirmed by RT-PCR. Proteomic analysis is then made by conducting a contig blast and a human reference guided alignment. Nuclear translocation is investigated by IHC using anti-TRIM21, FADD, IRF7 and IRF8 antibodies. Protein turnover is measured by western blot analysis on cells treated with GolgiStop to prevent cytokine secretion (BD PharMigen) and compared relative to control values and reported as a percentage change. Glyceraldehyde-3-phosphate dehydrogenase is used as a housekeeping gene control as well as a control for all experiments. Characterization of ubiquidation and phosphorylation of IRF7, TRAF6, TRIM21 and TRAFF is made by western blot using anti-ubiquitin and anit-phos[ho antibodies, which are commercially available. Nuclear localization is made by IHC of fixed pDC cells with anti-IRF7, TRAF6, TRIM21 and TRAF6 antibodies.

[0197] To determine differences between patient and controls, common nonparametric data analysis is used. Numerical data is analyzed with the computer program Prism and Flow cytometry analysis is made using the computer program FloJo. Densitometry analysis of western blots is made using program Image Quant (GE Health Sciences). DNASTAR software is used for denovo assembly and transcript identification of data is produced by next generation transcriptome sequencing.

[0198] It is expected to identify the point of dysregulation of cytokine production in the pDCs of CFS patients. If a decrease in transcription is observed, this would indicate that the disruption is occurring between the TLR and the initiation of transcription by the transcription complex. If normal transcription is observed but translation is not or is reduced compared to controls this would indicate the protein translation machinery is involved. In the event that a dysregulation is not observed at the level of TRIM21, FADD, IRF7 or IRF8, a transcriptome wide comparison is conducted between the pDCs of patients and controls to identify any differences that may account for the cytokine dysregulation not explained either by the TRIM21 pathway or dysregulation of pDCs.

[0199] Taken together, initial low levels of INF-a combined with high levels of pro-inflammatory cytokines produced by pDC may set the stage for chronic inflammation, interferon hyper-reactivity and susceptibility to viral infection commonly observed in CFS patients.

SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOS: 56

<210> SEQ ID NO 1

<211> LENGTH: 8185 <212> TYPE: DNA

<213> ORGANISM: Xenotropic murine lukemia virus related virus

<400> SEQUENCE: 1

gcgccagtca	tccgatagac	tgagtcgccc	gggtacccgt	gttcccaata	aagccttttg	60
ctgtttgcat	ccgaagcgtg	gcctcgctgt	tccttgggag	ggtctcctca	gagtgattga	120
ctacccagct	cgggggtctt	tcatttgggg	gctcgtccgg	gattcggaga	cccccgccca	180
gggaccaccg	acccaccgtc	gggaggtaag	ccggccggcg	atcgttttgt	ctttgtctct	240
gtetttgtge	gtgtgtgtgt	gtgccggcat	ctaatcctcg	cgcctgcgtc	tgaatctgta	300
ctagttagct	aactagatct	gtatctggcg	gttccgcgga	agaactgacg	agttcgtatt	360
cccggccgca	gccctgggag	acgtcccagc	ggcctcgggg	gcccgttttg	tggcccattc	420
tgtatcagtt	aacctacccg	agtcggactt	tttggagtgg	ctttgttggg	ggacgagaga	480
cagagacact	teccgccccc	gtctgaattt	ttgctttcgg	ttttacgccg	aaaccgcgcc	540
gcgcgtctga	tttgttttgt	tgttcttctg	ttcttcgtta	gttttcttct	gtctttaagt	600
gttctcgaga	tcatgggaca	gaccgtaact	acccctctga	gtctaacctt	gcagcactgg	660
ggagatgtcc	agegeattge	atccaaccag	tctgtggatg	tcaagaagag	gcgctgggtt	720
accttctgtt	ccgccgaatg	gccaactttc	aatgtaggat	ggcctcagga	tggtactttt	780
aatttaggtg	ttatctctca	ggtcaagtct	agagtgtttt	gtcctggtcc	ccacggacac	840
ccggatcagg	tcccatatat	cgtcacctgg	gaggcacttg	cctatgaccc	ccctccgtgg	900
gtcaaaccgt	ttgtctctcc	taaaccccct	cctttaccga	cagctcccgt	cctcccgccc	960
ggtccttctg	cgcaacctcc	gtcccgatct	gccctttacc	ctgcccttac	cccctctata	1020

18

aagtccaaac	ctcctaagcc	ccaggttctc	cctgatagcg	gcggacctct	cattgacctt	1080
ctcacagagg	atcccccgcc	gtacggagca	caaccttcct	cctctgccag	ggagaacaat	1140
gaagaagagg	cggccaccac	ctccgaggtt	tcccccctt	ctcccatggt	gtctcgactg	1200
cggggaagga	gagaccctcc	cgcagcggac	tccaccacct	cccaggcatt	cccactccgc	1260
atgggggggag	atggccagct	tcagtactgg	ccgttttcct	cctctgattt	atataattgg	1320
aaaaataata	accetteett	ttctgaagat	ccaggtaaat	tgacggcctt	gattgagtcc	1380
gtcctcatca	cccaccagcc	cacctgggac	gactgtcagc	agttgttggg	gaccctgctg	1440
accggagaag	aaaagcagcg	ggtgctccta	gaggctagaa	aggcagtccg	gggcaatgat	1500
ggacgcccca	ctcagttgcc	taatgaagtc	aatgctgctt	ttccccttga	gcgccccgat	1560
tgggattaca	ccactacaga	aggtaggaac	cacctagtcc	tctaccgcca	gttgctctta	1620
gcgggtctcc	aaaacgcggg	caggagcccc	accaatttgg	ccaaggtaaa	agggataacc	1680
cagggaccta	atgagtctcc	ctcagccttt	ttagagagac	tcaaggaggc	ctatcgcagg	1740
tacactcctt	atgaccctga	ggacccaggg	caagaaacca	atgtgtccat	gtcattcatc	1800
tggcagtctg	ccccggatat	cggacgaaag	ttagagcggt	tagaagattt	aaagagcaag	1860
accttaggag	acttagtgag	ggaagctgaa	aagatcttta	ataagcgaga	aaccccggaa	1920
gaaagagagg	aacgtatcag	gagagaaata	gaggaaaaag	aagaacgccg	tagggcagag	1980
gatgagcaga	gagagagaga	aagggaccgc	agaagacata	gagagatgag	caagctcttg	2040
gccactgtag	ttattggtca	gagacaggat	agacaggggg	gagagcggag	gaggccccaa	2100
cttgataagg	accaatgcgc	ctactgcaaa	gaaaagggac	actgggctaa	ggactgccca	2160
aagaagccac	gagggccccg	aggaccgagg	ccccagacct	ccctcctgac	cttaggtgac	2220
tagggaggtc	agggtcagga	gccccccct	gaacccagga	taaccctcaa	agtcgggggg	2280
caacccgtca	ccttcctggt	agatactggg	gcccaacact	ccgtgctgac	ccaaaatcct	2340
ggacccctaa	gtgacaagtc	tgcctgggtc	caagggggcta	ctggaggaaa	gcggtatcgc	2400
tggaccacgg	atcgcaaagt	acatctggct	accggtaagg	tcacccactc	tttcctccat	2460
gtaccagact	gcccctatcc	tctgctagga	agagacttgc	tgactaaact	aaaagcccaa	2520
atccactttg	agggatcagg	agctcaggtt	gtgggaccga	tgggacagcc	cctgcaagtg	2580
ctgacagtaa	acatagaaga	tgagtattgg	ctacatgata	ccaggaaaga	gccagatgtt	2640
cctctagggt	ccacatggct	ttctgatttc	cttcaggcct	gggcggaaac	cggggggcatg	2700
ggactggcag	ttcgccaagc	tcctctgatc	atacctctga	aggcaacctc	tacccccgtg	2760
tccataaaac	aataccccat	gtcacaagaa	gccagactgg	ggatcaagcc	ccacatacag	2820
aggetgttgg	accagggaat	actggtaccc	tgccagtccc	cctggaacac	gcccctgcta	2880
cccgttaaga	aaccagggac	taatgattat	aggcetgtee	aggatctgag	agaagtcaac	2940
aagcgggtgg	aagacatcca	ccccaccgtg	cccaaccctt	acaacctctt	gagegggete	3000
ccaccgtccc	accagtggta	cactgtgctt	gatttaaagg	atgccttttt	ctgcctgaga	3060
ctccacccca	ccagtcagcc	tctcttcgcc	tttgagtgga	gagatccaga	gatgggaatc	3120
tcaggacaac	tgacctggac	cagactccca	cagggtttca	aaaacagtcc	caccctgttt	3180
gatgaggcac	tgcacagaga	cctagcagat	ttccggatcc	agcacccaga	cttgatcctg	3240
ctacagtacg	tggatgactt	actgctggcc	gccacttctg	agcaagactg	ccaacgaggt	3300

-continued

19

actoggace tatacase ctaggate ctaggate cagatacga cactacga ca			-continued	
trigatrigg cogaaaaga geotgeacg georgeac totgeaca Cootgeaca 3400 claagyggt tottagge georgeat tytoct gestootge gittgeaga 3400 cageaaagg oottateaga atteacag geotgeat tytotatig geoceaga 3400 cageaaagg oottateaga atteacag geotgeat geotgeaga georgeaga 2700 geoceagg aaaatigg oottagge georgeag oottaggeg totaotge caaaagta 770 geoceaga aaaatigg oottagge georgeag oottaggeg oottagge ta gootgeaga 3700 geoceaga aaaatigg oottagge georgeag oottaggeg oottagge caaagta 3700 geoceaga aaaatigg oottagge georgeag oottagge oottagge 3700 geoceaga aaaatig oogtagge oottagge oottagge oottagge 3700 geoceaga aaaatig oogtage oottagge oottagge oottagge 3700 geoceaga aaaatig oogtagge oottagge oottagge oottagge 3700 geoceaga aaaatig oogtage oottagge oottagge oottagge 3700 geoceaga aaaatig oogtage oottagge oottagge aaaggagge oottag oottag geoceaga aagaagga cagottoot acagaacag oottageo oottage 3700 geogeooot tyotoootta aagaagga aaggagaa gaagtaa 1400 gegacgag tagaaga caactage taagaagga aaggagaa aatataag gegoogaa tagaagaa tagoogaa tagottogo oogtaggaa atatatag geoceaaa geoceaaga atagaaga cagottoga acaagaaga gaagtaa 1430 geoceaaag deoceaaaga tagaagaa caagaagaa gaagtaa 1430 geoceaaaga deoceaaaga tagaagaa tagaagaa acaagaaga gaagtaa gaageaaa geoceaa gaacgaga cagaagaa caagaaga acaagaaga gaagtaa aaaggaaaca geoceaaaga cagaagaa cagaagaa caagaaga acaagaaga 4400 titgeaaaga caagaaga cagaagaa cagaagaa cagagaaa cagaagaa 4400 geoceaaaga tagaaga cagaagaa cogaagaa cagaagaa acaagaaga 4400 titgeaaaga caagaagaa tagaagaa cogaaaaa tocaaagaa cagaagaa 4400 geoceaaaga atagaaga cagaagaa cogaaaaa cogaaaaa cogaaagaa 4400 geoceaaaga caagaagaa cagaaaaga cogaaaaa cogaaaaa cogaaaaa 4400 geoceaaaga caasaaaa gaagaccaa geocaaa gaagacaa 4400 geoceaaaga caasaaaa cogaaaaa cocaaagaa cagaagaa caagaaga 4400 geoceaaaga acacaga gaaacgaa gaacaat geogaaa cogaaaac 200 gaagaacaa tagaagaa aag	actcgggccc tattacaaac	cctagggaac ctcgggtatc	gggcctcggc caagaaagcc	3360
tabaggaact tottaggaa genegett tgeneett gasteotig gitteoraga 3440 atgecagee ettgiaeet tettaeeaa eegggate tgittaatig gegeeraga 2600 cageaaagg oftaeeaga ateaaceg getettet tgitaatig gegeeraga 2600 cagacaatgg oftaeett igaatett gitegacaga genggeta egeaagget 270 gieetaage tigaatage getettig geneegga getegget egeerage 270 gieetaage ageergggig geoeregge egeerigg etageacega igaaggeta egeaaagge 170 giegtaage iggeaaget igaatage getegget gegeerage igaaceae 1200 giegtagee iggteaaea acceerige etagget giegaegget getageerage 1800 gieggaagee iggteaaea acceerige etaggete geteggetig geoeraae 4800 coggeecaete geteeraae acceerige etaggete ageagget getegeteg 1800 gieggaagee iggteaaea acceerige etaggeteg etageerage 1800 gieggaagee iggteade acceerige etaggeteg etageerage 1800 gieggaagee iggteade acceerige etageerage tageerage 1800 gieggaagee iggteade acceerige etageerage tageerage 1800 gieggaagee iggteade acceerige etageerage tageerage 1800 gieggaegea iggteerig ageerage etageerage etageerage 1800 gieggaegea iggteerige accegaaeg etageerage etageerage 1800 gieggaegea iggtegga ageereerig egeerige agaaggeta accegaagge 1800 gigtetaetig agacerigg actorege eggeerage eggeerage eragegeata 1800 aanggaaaea gigeerigge eggegeae egetagge eggaggetee 1900 gigtetaaes gigeerigge eggegeae egetagge eggaggetee 1900 gigtetaaes iggterigge eggeerage etaggeaea etaggeaeae 1400 tacaeteag acaaggaa aacoeteae etaaagat tagggaatea eggageaea 1800 geaegeaet igtetigge egetage egaeggeae etggegeae 1800 geaegeaet igtetigge egaeggeae etggegeae 190 gigtetigae igtetigge egaetage egaeggeae etggegeae 1800 gaaageeat itggetee egeetige eaaggaaat eggaageta etateagg 1800 giaaggeat igtetigge egaetage egaeggeae igtageaeae etaaagge 1800 giaaggeat gietiggee egaetige eaaggaa acceeate giggaageae eaaatagg 1800 giaaggeat gietiggee egaetige eaaggaa ageageaeta eaagege 1800 giaaggeat igteiggee gataegge aggaagete egaetige eaaggaa igtageaee 1800 giaaggeat igteiggae aacogo egaetige eaaggaa acceeate giggaagea igaageaete 1800 giaaggeat igteiggee gataegge aggaagetee	caaatttgcc agaaacaggt	caagtatetg gggtatetee	taaaagaggg acagagatgg	3420
Angycapie o cititacon i kitakan a oggigalet i tittatig iggicolagi 3600 oligoanaagi ootatoaagi attotaeta aoggigalet igtitatig iggicolagi 3600 oligoanaagi ootatoaagi attotaeta digoocogo ootgigatti 3600 oligoanaagi ootatoaagi actotigig oggocigig otaectito caataagot 3780 gaocaagi ga ootgigig ogocitig ootactig ootaottig 2440 acaaanat caggoaagot actatgigi cagocigig totattigig occocatig 3800 gigaagaet Sigataase accocatiga oftigigi agaogigi gaoggigigi gigootaac 4020 oligaagaet Sigataase accocatiga oftigigi gaoggigigi gigootaac 4020 coggocato tigotoaagi aactatgigi agagocece atgatige oligaateta 4140 actigiaagaet Sigataase accocatiga oftigigi gaoggigigi gigootaac 4020 oligaagaeta Sigataase accocatiga oftigigi gaoggigigi gigootaac 4020 oligaagaeta Sigataase accocatiga oftigigi gaaggagt tigigagagi digagatagi agagotaac 4020 oligaagaeta Sigataase accocatiga ogtigigi gaagadi eigagagagi digagagagi digagaaga gagocaaggi agatgaada accocatiga oftigigi gaagagi tigigagagi digagagagi digagaaga gagocaaggi agatgaga accitota agagagga cagogocag caccocaga ogtigata gitataata gagocagagi aattiggi agagacatiga gaagataa 4140 attigiaaaga tigototo acciggicaagi tacaggaaga attiataag gitataata gaagogaa tigototoo aggocoat tooatgiga aatatatag aasocaaagi gactittid gocaaagag caaggocaa cigagagaa cicigaaa atatatag gacataga gaagata tigototaga aaccitaa tooatgiga gaagataa tacagi gaagotaa aasopaaca gitotaga aaccitaa tootacaag cicigaagaa digagacaa cigagaaga dibaa aagaaaa gitotaga aaccitaa tootacaagaaga caggaagaa cigagaaga afaagaaga gagoca gitagaaa tigagaaca cigagaaga accigataa tacagi gaagagagi gatagaga agoceaa cigagaaa cigagaaa cigagaaga aabataag gaagagagi gatagaga agoceaag ciaaagaaga caaggaaga digagaaaa cigagaagaa dibaagaaga gagoceaa gaacagaa cigagaaaa cigagaaga digagaagaa dibaa gaagagaaga gagoceaa gacaaaga tigagaagaa cigagaagaa cigagaaga aabataga gaagagagi gatagaga gaceeaa gaacagaa cigagaaga ciaaagaaga daabaaaa daagaaaa gaacagaa agoceaaa gaagaaaa cigagaagaa cigagaagaa cigagaaga ciaaagaa gaagagaaga gaacceaaga aagoceaaga gaaaceaa dibaa aaabataaga gaagagaaga gaa	ctgactgagg ccagaaaaga	gactgtgatg gggcagccca	ctccgaagac ccctcgacaa	3480
acagaaaaga citaacaaag satcaaacag statteta sigeecoogs citgsgatig sagaatiga citaagecott tgaactett giegacigaga ageaggeta egeeaaage gaccaatig eagetiggig geeeetig etaeggatig tageageat tgeegtetet gaccaatig eagetiggig geeeetig etaeggatig tageageat tgeegtetet gaccaatig eagetiggig geeeetig etaeggatig tageageat tgeegtetet gacaaaagae tggeaaaget aactatigga eageegtag taattetige eeeeatig gacgaaaage tggeaaaget aactatigga eageegtag taattetige eeeeatig taateaggaa tggeeaaaget aactatigga eageegtag taattetige eeeeatig gacgageaee tggeteaaget acgigaaag gaageegteg gacegtigg geoeteaa tateaggaa eggeaacag eaeggaade agggaget ggaeggigg geoeteaa tateaggaa eggeaacag eaeggaade agggaget eggeeggag tggageagg gatgaageg eagetiggag eagettee eaggaacaa eeggagage tggageagg gatgaageg aggeagag aatteggge aggeettee eggetiggaa eaeggagag tggageagg gatgaagge tgatageegt ateetiggeg aggeettee eggetiggaa eaeggeagg gatgaagge tgatageegt tgeettee eggeetiggaa eaeggagag tggageagg gatgaagge tgatageegt tgeettege eggetiggaa eaeggeagag tab gageeggag tgetigaeet eaegaggaa eaeggeaga etaeggees tab gageeggag tgetigaeet egeesgge agaaggea eaeggeaga tab gageaggag tgetigaeet egeesgge eageetig eagaeetaa tabe gageaggag tgetigaeet egeesgge eageetig eagaeetaa tabe gaceagaa gageetiettig eeeaaagge eageetig eagaeetaa tabe gacatgaag eagetetteg eagaggeae egstiggea eagaegea tabe gacatgaag eagetetteg eagaeggaa etaeggegaa teaggagea tabe gatataa teggaga ageetictae eeeaaattig tabe taeaataga eaaaatgg aggeetige eagtaage taeggagaa tabe gageagag egtettage ageetige eagtaage taeggagaa taeggagaa tugggaaga ageetigte eagaaggaa etgeeotag taedgaaga tabe gaaggaga ageetigte egeetige eaagtaage taeggagaa eatateegg tabe gaaggagag eatetege eeetige eaagtaag eagaegaa eatateegg tabe gaaggaga ageetigte gatageeg aategee eggeetige eaaattig gaagaeatt tueeggaa tategeeg agatateg eagaagaa eatateege taggagaaga ageetigte gatagee eaagtag gaageetia tabe gaageagga eatetege eaategge eagaegae etaeteege taggagaaga eatetege eaategg eagaegaa etaeteege tabe gaageagag eagtegatag gatageega gatateege gagaegaa etaeteege tabe gaageaga	ctaagggagt tcctagggac	ggcaggette tgtegeetet	ggatccctgg gtttgcagaa	3540
sequenting characect i gearcect i geographic cigocanages i cigocanages i cigocanages i graphic cigocanages i geographic cancer i cigocanages i graphic cigocanages i geographic cancer i cigocanages i cancer i cigocanages i cigocanages i cigocanages i cigocanages i cigocanages i cigocanages i geographic cancer i cigocanages i cicocanages i cico	atggcagccc ccttgtaccc	tcttaccaaa acggggactc	tgtttaattg gggcccagac	3600
gecetaacge aaaaactggg acettiggegt eggectigg e etacetgte canaaagat 3780 geceeatgg eagetgggeg geceeettig e taeggatgg tageageeat tgeegtetti 3840 acaaaaaatg eagetagget aaetatggga eageegtag teettigge e eeestigge e gegeettig 3900 gtagaageae tggteaaee aceecetgae egttiggeta eeaatgeeeg etagaeeeae 3960 tateaggeaa tgeteetigg taeagaeegg gteegtieg gaeeggegg ggeeeteaa 4020 eeggeeaeee tgeteeceet aceggaaaag gaageeeee atgaetgeet eggaatettig 4080 getggaege aeggaaega aceggaeet aegggeeage eeggaaeg teggageage 4200 eeggeeaee tgategeag eagetteete eagggagge tegggaae ateggeegg 4200 getgaeteet gaegeegg aceggeegge agggeeteg eeggaaea ateggeeae 4200 eeggeegaee tgategeet aecegagee taaagaegg eageteggaae ateggeeae 4200 eeggeegaee tgatageaet eaceeagee ttaaagteg eaggagga gaagetaat 4200 gegaegeegge tgetgeeta tgeetegee agggeeae getaggaaa ataataag 4380 aggeeggggg tgetgaeet agaaggeaa gaagtaaa acaagaaega gaaettaa 4300 gedaeagge tgetgeeta tgeetegea eaggeeae getaggaa ataataa gaagetaa 4500 aaaggaaae aggeetgagg eagageaae egtatggea ateageage eegagggee 460 geeatgaag eagtetaga aaceetaae eeteatggeag eegaggaee eggaggeeae 460 eeteeett teeattaae egaaaeaga teegggeae eggsgaee eggaggeae 460 eeteeett teeattaae egaaaeaga teegggeeae eggsgaee eggaggeeae 460 geeatgaag eagtetaga aaceetaae eteeaaagae taggggaeae eggaggeeae 460 eeteeett teeattaae egaaaeaga teeggeeae eggageeae 460 eeteeett teeattaae egaaaeaga teeggeeae eggaggaa gaaetaee eegggaaeg 4800 geateett gaageeegg aaatggeea geaeeeta taaggaaga agaeeetaa 4800 geateetg aaggaaga aageeeeta taeatgtaa eeggeeeta 4860 taeggeagg gaaetgeae geeeeag eegeaeag teggaaeae ettaegga 4800 gaagaeat ttreeagaat aegeegaa aetgeeag teggaaege effeteggaa 4800 gaagaeat ttreeagaat eageegga aetgeeag tegaeagae effeteggaa 4800 gaagaeat ttreeagaat teggagee geeeeag teggaaage effetegga 4800 taggegaeg gaeetgaag gaaaegee eggeeeag tegeeeggaee 5160 teggeeegg agategeag eageeggaa aetgeeag tegaeagae 520 gaagtaett teegagat geaaagee eegeeggaa tegaeagae 520 gaeetgaatt teegaagae geeeeagaa tegaeagae gaaetgeeeggaes 520 geeetgaag aatteeegge eeeagagaa tegaeagaa gaaeg	cagcaaaagg cctatcaaga	aatcaaacag gctcttctaa	ctgcccccgc cctgggattg	3660
accearding cagetigging geoceeting etaeggating tagengeat tigeogiteting 3840 acaaaaating caggeaaget aactatigging cageogeting teatetings eccearaged 3960 tateraggeaa tigeteetings taasgaceog giteogetin eeaatigeeeg catigaceeae 3960 tateraggeaa tigeteetings taasgaceog giteogeting gaeeggeng gigeoeteaae 4020 eeggeeaeee tigeteeeee aceggaaaaag gaageeeeee atgaetigeet eggageateeting 4060 gitiggaagea enggaaeeea aceggaeeee acggaeeae eeggegaeee eggegaeeae 4140 aettiggtaee engategeag aceggeeete acggaeeaeg eesteegaee eggeegaeeae 4220 gitigaaege acgategeag aatetigginge aggeeenge eggetigging eageageae ateegeeeae 4220 gitigaaege tigeteeeeageee thaasgainge aceggaegae gaggeeeage eggeegaeeae 4220 gitiaaeeti gaaegeeet igeeeting eagegeeage eesteegaeeae 4220 gitiaaeeti gaaegeeta tigeetinge acgigeeeag teeetingsaga aatatatag 4380 aaggegaggit tigetgaeeee eggeeeae egategeae eggeegaee 4440 tigetaaaag eteetiteti geeeaaaee etaasgae tagggeeae eggageeae 4440 tigetaaaag etgetigagge cagageaee egitageag ateeageee eeggeegaee 4440 tigetaaaag eagetiteaa aeeetitaa eteetiatag aggaeetaae 4500 aaaggaaaea gigetigagge cagageaee egitageag ateeageee eegaegeea 4500 geeatigaang eagtetaag aaceetaa eteetiatag aggaeetaae eeggaageae 4500 geateeting caaaaggaat tigggeeet eegaeeaae etgegaae egitageag 4620 eeteecaatt toeattaae egaaaeagat eteeggaaee egitagegae aaetateeg 460 tacaateeag eaaaggaat tigggeeet eeaagtaaag eegeeeta aeagaetagaa 4800 gaadeeting caaaggaaa aageeetae teaatgitaa aceggagaea daetateeg 480 tatgtgaee gaaeetgeae egeetgeee aagtaatg eeageaage eaaattagg 4920 geagggitg egataeegga aateegee ageeeetat teaatgitaa teeeggaae titeeeggaa 4920 geaggegtig egataeegga eateggeee geeeeeta teaagtata eeggeaea etaateeg 480 tatgtgaee gaeeetgeae eageeggaa ategeeag tegetgaee eaaagtagga 4920 geageeegga eateggeee geaeeeggeeeeeta eageeagaee etaatategg 4920 geaggeetge gaeeetgeae eageeggaa ategeeag tegetgaeeg tegetgaeeg 4920 geageetgeeg egataetgee egaeeeggeegeeggeeeeeeeggeeggeeeeeeggeeeggeeee	ccagatttga ctaagccctt	tgaactcttt gtcgacgaga	agcagggcta cgccaaaggc	3720
anaanaatig cagunaget anettagga eageregetag teattetago ceccettego 3900 gtagaangee tigtteaaca accocetyae egitagetat eeaatgereg eatgacecae 3960 tateaggea tigtteetaga taeagaeegi gtteagtteg gaeeggtigt ggeeeteaa 4020 eeggeeacee tigtteeetea accocetyae egitagetat eeaatgereg eatgacecae 4020 getigageeg acggaaceag acceggaeete eaggaeeage ceateereag egitagetage 4140 acttiggtae eagaareag accegaeete eaggaeeage ceateereage getiggteate 4140 acttiggtae eagaareag eageteete eaggaeeage eaeggagge tiggageeage 4200 graateett gataegeet eaceeage teaagatgae aceggaage tiggageeage 4200 graateett gatageeet eaceeage etaagatge eaggaggea gaggetage ateeggagae 4200 graateett gatageeet eaceeage etaagatge eaggaggea gaggetage 4200 gtitaeett gatageeet eaceeage etaagatge eaggaggea gaggetage 4200 gtitaeet gatageeget tigetegee eaggeeag gagetetige eaggaggae atatatag 4380 aggegagggt tigetgaeete agaeegga gaattaaa acaagaaega gaettagee 4400 tigetaaag etetettet geeeaaege eitageeage eegaaggee eaggaggee eaggaggee 4400 tigetaaag eagtetage eaggeeae eitageeage eegaaggee eagaaggea 4500 aasggaaca gtigetgagee eaggeeae eitageeage eegaaggee eagaaggee 4600 eeeeeaaga eagaaggaa aceeetae eitagegeaa eegagaagee eitageggaee 4600 eeeeeaag eagaaggaag ageeetae taeegggaae tigggeeaee 4600 eeeetaga eagaaggaag ageeetae taeeggaaae tigggeeaee eitagee 4600 eeeeeaaga eagaaggaa ageeeeae tigggeeee gaeeagga ageeeae 4740 gtgittigae tigtagete ectaeeaaga etaeeggaeag aactaeegg aactaeeg 4600 eeaeteegga eagaegaaga ageeeeae taeeggaaag aactaeegga aeetaeegg 4920 geaegggige gagtaeegga eaceegeea ggeeeeae tiggaeeeega 4920 gaaageeag ageetgatag giteaagtee deceatget tigtagaee etteegge 4920 gaaageeag gaetgatag giteaagtee eagtaaag eeageaage egaaaggee 4920 gaaageeag eagtageeg eagtaegee gaeteaggee gitegeeaaage eitaeegga 4920 gaaageeag eagtaeteg giteaagtee eagtaagee gigaeegate 2020 gaaggaeatt tieeegaae tiggaeaga eitaeeggeeag eageeage eitaeeggaa ageeetae 2020 gaaggaeatt tieeegaae tiggaeagae eitaeggeeg eagteeagee 2020 aattiggeea eeeegaa taeeeggeea gaeegaeeg eagteeagte	gtcctaacgc aaaaactggg	accttggcgt cggcctgtgg	cctacctgtc caaaaagcta	3780
<pre>gagaaggac tggtcaaca accocctgac cgttggtat ccatgcoc tagaccaa 3960 tatcaggca tggtcoctga tacagacog gttoagttg gacogtggt ggcoctaa 4000 coggocacc tgetcocct accggaaag gaagcocc atgactgot cgagatctt 4000 gstgagacga caggaaccag accggaccac caggaccag ccatcocag cgctgatac 4140 acttggtac cagatggaa cagctoct acagacgac accggagga acggaagga tggagcage 4200 gtgatactg gaccgagt atccggo gaggtott cggctggaa atcogocaa 4260 cogaccgae tgatagcat caccaacga ttaagatg cagaaggaa acggagga atcagcaca 4260 gagccgae tgatagcat caccaacga ttaaggto cggctggaa atcogocaa 4260 gtgtaaactg gatagcagt tgocttoc acggccgat tcatggag agagtaa gaagtaa gaagtaa 4320 gtttaactg atagcogt tgoctoc acggccag ttaata 4320 gtttaactg atagcogt tgoctoc acggccat tacatgac gagaaggta gaataaa accagacg gatttage 4440 ttgctaaagg ctttttt gccaacga ctgtagaa ttaagacc agaggaga 4500 agacgaaggat gtgtagge caggggaac cgtaggaag ttaagtcag cgagaggaa 4500 acccccat tcoattaca cgaaacgat ctcotcata agaca accggaac ac coggaagaga gagttagg cagtatgag aacccaga cgtaggeaa tacgggaac ac coggaagagg gcagtttaga tggtocaa caagga at tacaggac ac cgtggac ca 4500 ccccccat tcoattaca cgaaacgat ctcoaaaga ctgtggac cgaaggaga 4500 gcactgaag cagtagaag agaccaaga cgtaggaag cagtagaga 4500 gcactgaag cagtagaag agoccac tacaggaaac tgggaacca 4600 tacaatcaga caaaggaa agoccac tacaggaaac tgggaagcac 4400 gtgtttgaa tgttagate cotacaaga tcoccaca tgggaacga actaccag 4800 gcactoctg acagaagaa agoccat tacatgtaa accgggaag aactatccag 4800 gcactoctg acagaagaa agoccac tacatgtaa accggaaga aactatccag 4800 gcactoccag acgaagaag agoccac tacatgtaa tcoggaaag aactatccag 4800 ggaagacag ttgtgage caaggaag agoccac tggaacgaa tggaaggaa actatccag 4800 ggaagacga gagtagagg actcogga actogga ggaacgaa ggaagta actgcaaag caaaaggag aactatccag 4800 ggaagacga gagtagagg actggaaga acgccaaga tggaaggaa acgcgaaagg aactatccag 4800 ttaggaaga gaagtagaa gaaccaa ctcoggaa actgccaaag 290 ggaagacga gagtagaag gaacaaga ctcoccac ggaacgaa gaactatc g 4800 ggaagacga gagtgaagg agacagaa ggaagaa gaacgaaag agactata 4800 gaagacaga gaagaggag actggaagg gaacagaa ctcoccacag ggaacgaag aacgcaaagg 290 gaagaagag g</pre>	gacccagtgg cagctgggtg	gcccccttgc ctacggatgg	tagcagccat tgccgttctg	3840
tatoaggoa tigototiga tacaacog gitcagtiog gacoggigi gocottaac 4020 oggigoacoc tigotococt acogaaaag gaagococo atgactgic gagatotig 4080 gotgacacoc tigotococt acogaaaag gaagococo atgactgic gagatotig 4080 gotgacacoc tigotococ acogacot acogaaga acoggagae tiggagoago 4200 gigactact gagocgagi atotggig aggigototig oggitggaa atogocoa 4260 ogagocgac tigatagoat caccoago titaagatgi cagaaggta gaagtaa 4200 gigtactact gagocgat tigotococ acogocoa tootaggaga atatatagg 4380 aggogaggi tigotgaoot aggagogag gaattaaa acaagaacga gatotiggoo 4440 tigotaaag ototitte gocoaacga ottagtata ticocigo aggicataa 4500 aaaggaaac gigotgaggi cagaggcaa cigatggaa ataagaa coagaacga gatotiggoo 4440 tigotaaag ototitte gocoaacga ottagtata ticocigo aggicaca 4500 aaaggaaaca gigotgaggi cagaggcaa cigatggaa tacagcago cogagagga 4560 gocatgaaggi cagtotaga aacottaca tootaaga taggaact acoggaacaa 4600 cococcat toottaca ogaaaggaa dicaggaaa ciggagaca cigataggaa taagaaga 4600 giguttagaa tigtagaa cacagga tocaaggaa cigaggaaca ciggagaa acatocog 4680 tacaatoga caaaaggaa tigggicoca caaggaaaa ciggagacaa diggaagatag 4800 gocatocog acagaagaa adococtaa tacatgita acogggaacga acataccag 4860 tatgigacig gactocog cocogga caatggoc aggaccat taggaagta 4800 gocagggig gadtocoga caagoggaa actocogaa gococat tacagaa ticacagaa dacatocag 4800 giaaagocag gactgaag adaccocta tacatgita ggaagtaa aggigataa 4800 goaagagat ticogaga catcogoca gocacat gigaagaa citocoggo 5540 tiggataago gactatagg caaggaga gitatagg gaactaca 5220 tiggatagag attocoga caagagaa gitatagg gaactagaa cigococa 5340 gocococa aggiaagta tiggaaca gicagaaga tiggaagaa attagga 5280 acttigacca aattaacg tigatagga gitatagg gitaccoca accococt 5340 gocococa gagocogaa tactocoge ciccaaga tigatagaa gitaataga 5280 acttigacca attaacgo tigoattig gaagaaga tigaaagaa gitaataga 5280 acttigacca aattaacgo tigoattig cacagaag tigaaagaa aattaagga 5280 acttigacca attaacgo tigoattig cacagaag tigaaagaa gitaacatac 5340 gocococa gagocogaa tactocoga ciccaaga tigaaccaag gitaccoct accoccat 5340 gacococa gagocgaa tactocoga ciccaagaa tigaaagaa gitaacaa 5460 attiggig	acaaaaaatg caggcaagct	aactatggga cagccgctag	tcattctggc cccccatgcg	3900
coggocacce tgetecoect acoggaaag gaagecoece atgateget egagateta getgagaceg aeggaceag acoggacete aeggacege ecateceaga egetgatae atteggtae eagteggag cagteteet eaggaegae tgegeggae tgegegeg getgatetet gaacegag atateggeg aggottege egetggaa ateegeeaa 4260 egagecgae tgatggaag taeteggee aggoette taagatgg egeggagae ateegeeaa 4260 egagecgae tgatggae taeteggee aggoette teaggagg aattataa 4320 gtttaaaet gatgeegt tgettee aggoega gaattaaa acaagaega gatetaga 4320 gtttaaaet gatgegag taeteggee aggoetag teetaggag aattataag 4320 gtttaaaet gatgegag tgettee aggaegag gaattaaa acaagaega gatetage 4440 ttgetaaag eteetete geeaaaega etegtagaa atataag 450 aaaggaaaea gtgetgage eagaggeaa etegtgeag ateatagaa eteggaggea 450 aaaggaaaea gtgetgage eagaggeaa etegtgeag ateataga eeggaggea 450 eeteeeat teeataee egaaaega etegtgeag ateatageae eeggaggea 450 geeatgaag eagtetaga aacetae etegtgeag ateaageag eeggaggea 450 eeteeeat teeataee egaaaega etegtgeag teegaggae 450 geeatgaag eagtetaga aceetae etegtgeag teegaggeae 450 geeatgaag eagtetaga aceetae etegtgeag eegaaggea 450 geeatgaag eagtetaga aceetae etegtgeag eegaaggea 450 geeatgaag eagtetaga aceetae etegageeae eegaggeae 460 taeaateag eaaaggaa aaceeeae etegggaeae etegtgee egateagte 4740 gtgtttgaae tgttagaet eetaacaga etegeggaaae etggageeae aaagtaga 4800 geateeteg acaggagag aageeeta eteaceete tgageeeta aaagtagg 4800 geaageeag gaetgatag gacetegee eageeeaa etegegaea etteetegg 5040 tagggaggg eagtetgg gaeaagta eteetagg eeggtattg gaagtaa eteetagg 500 attgegagag gaetgatgg gaeaagta eteetagg eeggtattg gaagtaa eteeteegg 5160 ttegeetee aggtaatg teggateg gattaetg gagtateg gaetgateg gaagtaea 520 attuggea eegeeeg etegtage egagaag tgatagaa tgaatagae aatagga 520 attuggee eeegee tgetteteg eteggee egae tgatecega tgaaagae gatecetta 520 tagggeae eeegee tgetateg eegagaa ggeatee tgaateega 5520 eeeteedea attaaeget tgeatege eteacegge tgatecega tgaaagae gateceeta 5460 agteeette teeaageta etteaggee tgeteedge etgaaegae tgataeeaa gtaaeaa 5460 agteeette teeaaget etteaggee eteeegee eteeseaagae gaetgaag 5520	gtagaagcac tggtcaaaca	accccctgac cgttggctat	ccaatgcccg catgacccac	3960
<pre>cdgagaggg acggaaccag acgggaccag ccatcccaga cgctgatac 4140 acttggtaca cagtggagg cagtctcct acagaaggag cagtgagg cggggaggg 4200 gtgactactg agaccgag tactcgggg agggtctcg cggtggaac atcggcaca 4260 cgagcggaa tgatagcagt tactcgggg ggggccag cggaggaga 4200 gtttaactg atagccgt tagcttcgc acggcccag tccatggag aattatag 4320 gtttaactg atagccgt tgcttcgc acggccag tccatggag aattatag 4380 aggcgaggt tgttgactct agaaggaag gaattaaa acagaacgg gatttggc 4440 ttgctaaaag tcctttt gcccaaacga cttagtata ttcatgtca aggacaca 4560 gccatgaagg cagttctag accctcaa ccctatag aggactaat 4500 aaaggaacaa gtgctgagg cagaggcaa cgtaggaag tacaagcag cggaaggaa 4660 gccatgaagg cagttctag accctcaa ccctcatag aggactaa cccggtaagg 4620 cctccccat tccattaca cgaaacaga ctcaccaac tgggacat ggggaccac 4680 tacaatcaga caaaggaat ttgggtcct caaggacaa ctgcggaag aattata 4600 ggagggtg ggacaccg gcaccat ggacacac ctgtggag aattacaa 4660 gcatgaagg cagtagcg gactcgac cgaagac ccatgggaa tacagggaa aattatag 4800 gcatcctcg acaggaaga aagcccta tacatgtta accgggaag aattacag 4800 gcatcctcg acaggagga aagcccac tacatgtta accgggaag aattacag 4800 gcatcctcg acaggaag aagcccta tacatgtta accgggaca actgcgga 4660 tatgggacgg gatcgcg gactggga catcggca ggacccat gggaagtga tttaccgg 4920 gcaggggtg ggatcgcg gactggga catcggca ggacccat gggaagtga tttaccgga 4980 gtaaagccag gactgtatg gtacagga catcgccag ggacccat gggaagtga tttcagga 4980 gtaaagcag gactgtatg gtacagga catcgccag ggacccat gggaagtga tttaccgga 4980 gtaaagcag gactgtatg gtacagga catcgccag ggacccat gggaagtga tttcagga 4980 gtaaagcag gattgtag gatagga catgccag ggacccat ggaagtga tttcagga 4980 gtaaagcag gattgtag gactgatag gtaatgag catgccag tggatcag 5040 tgggtagagg cattccga caaggaga actgccagg tggacca 5160 ttcgcac aggaagtg ttcggacg caggagg ggatcga gaagtaca 5220 tgtgctata gacccgaa ttaccgga ctaagaga gataga attacag 5280 acttgac attacegg ttcgagga gtaagag aggatcat 5220 tgtgctata gacccgat tgcatgg cccaagga ctaaggac attacegga 5340 attaggac ttcccag attacegg cccaagga tgaagaa tgaagaca attacag 5340 agtcgacgac cccccc tgtcaattt catgaccg ttacaaga ggtctgaa gtactaat 5460 aattggaca attacegg cc</pre>	tatcaggcaa tgctcctgga	tacagaccgg gttcagttcg	gaccggtggt ggccctcaac	4020
acttgytaca cagatggaag cagttotota caagaaggata aacggagage tggagcageg 4200 gtgatatag agacegagg aattgggg aggottege eggetggaac atoeggeeaa 4260 cgageegaac tgatageet caeceaagee ttaagatgg cagaaggtaa gaagetaaat 4320 gtttacaetg atageeget tgettee goeetaggaega egaattaaa gaagetaaat 4320 gtttacaetg atageeget tgetgeeeta tgeettege aggeeetag teetaggaga aatatatagg 4380 aggegagggt tgetgacete goeetage etagtataa teetaetagg 440 ttgetaaag eteetette goeetaaega ettagtataa teetaetgee aggeetaaa 4500 aaaggaaaca gtgetgagge eggageaete egatggeeg ateaageag gaeetagg 4560 geeetagaag egteetaga aaceeteae eteetaa eteetag aggaeeteag 4560 geeetagagg egttetaga aaceeteae eteetaa eteetage eggageeeta 4560 geeetagagg egttetaga aaceeteae eteetaa eteegagaeet eggageeeta 4560 geeetagagg eggteetaga aaceeteae eteetaa eteggaaet eggageeete 4680 tacaateaga eaaaggata ttgggteeta eaaggeaae etggageete gagageaetea 4560 geeeteetag etgatageete eteetaaegeeteeta etaggeaete gageeteeta aaagatgaag 4800 geeeteet gatagaete eetaeaga eteaeceae etggageete gaaetateeag 4860 tatgetageet gettaggeete eetaetag etgaeeteeta aaagatgaag 4800 geeeteeteg aggeetgeg gaeteegeg eetaeteeta etgageetee aaaattagg 4920 geeaggegget gagtaegegg acateggee gaeeceat gggaagtga ttteeeggaa 4980 gtaaageeag gaetgtagg gaeaagtae eteetagg tegtgeeaa aaagetgta 5100 gaaggeagt etteegaa tteggaaeg eggaeeceat gggaagtag etgeteeta aaagetgta 5100 gaagaeatt tteegagat teggaaeg eggaetg ggategg gaatgaae attaggg 5280 aettegaee agteegag ateaggee gattaegg gaetgage gggateet eteeteeta 5340 geeeteeta gaeecegaa tacteegge eeceaggae tggateeta ataagga 5280 aetteggee eecegeet tgeateteg eeceaggae teggeete ggateetea effeta 5460 atteggeee eecegeet tgeateteg eeceagae tagaeeg ggateeta attaagga 5520 eecetagee etgettate ggaeegeet tagaeege tgataeea eecetteeteg 5580	ccggccaccc tgctccccct	accggaaaag gaagcccccc	atgactgcct cgagatcttg	4080
gtgattatg agacegagt attegggeg aggetetge eggetggaa atceggeedaa 4260 egageegaa tgatageet eaceecaage ttaagatgg eagaagtaa gaagetaa 4320 gtttaeetg atageegta tgeettege aeggeeetig teeatggag aatatatagg 4380 aaggegagggt tgetgaeet ageetgeea eggeeetig teeatggag aatatatagg 4440 ttgetaaaag eteettet geeedaag etaggeega gaattaa teeetgee aggaegaa 4500 aaaggaaaea gtgetgage eggageaa etagtaaa teeatgaege eggagegaa 4500 geeatgaagg eagteeaga eeggeeeda eeggeega eteeggaaeeaa 4500 geeatgaagg eagteeaga eegeeedae eeggaaeea eggageeag 4620 eeteeette eegaaega eteeggaaee eeggaaeee eeggaaeee 4680 taeaateeag eaaaaggaa teeggeaae eeggaaeee ggageegaee 4680 geeatgaagt etgtagaee eegaaegae eeggaaeea eeggaaegae 4680 geeatgaagg eagteeaga eegaaegae eeggaaeea eeggaaegae 4680 geeatgaage gaaetgaee eegaaegae eeggaaeea eeggaaegae 4680 geeateeaga eaaaggaa ateeggeaae eeggaaegae aaggaeegae 4680 geeateeag eaaaaggaa ateeggeeaa eeggaaegae aaggaeeagae 4860 geeateeag gaaeegae eegeeaae eeggaaegae aaeeggaaegae aaaateegg geaggggge gageeegee geeedae eeggaaaege eaaaategg 4920 geeaggggee gageeege geeedee geeedee geeedee eegees 4980 geaageeag gaeetgeeg gaeeegee ggeeeeat gggaagetg tteeggeee 5040 tgggtaggg eatteeega eaeggegaa aetgeeag teeggeeaa aaageegee 5040 tgggtagagg eatteeega eaeggegaa aetgeeag teeggeeaa aageegee 5160 teegeetee aggaaget teegaaeg eagtateg ggateegat eeggeeeee 5160 teegeetee aggeeega teeggee gattaeeg ggaaetga eeggeeeee 5160 teegeetee agtaagee geageege gattaeeg ggaaetga eatatagga 5280 aettageea gaeeegaa teeegge eeseegae tggeteeed aeteeette 5340 geeettee gaaeeega teeeggee eeseegae tggeteega aatataegga 5280 aettggeee eeseeet tgeateege eeseegae tggeteega gtaaaaa taaagaa 5400 tatggggee eeseeet tgeateege eeseegae tgateeega gtaaaaa tgaaagae gaaetaee 5220 tatggeee eeseeet tgeateege eeseegae tgateeega gtaaaaa 5400 aetteggeee eeseeet tgeateege eeseegae tgateeega gtaaaagae 5400 aattaggeee eeseeet tgeateege eeseegae tgateeega gtaaaagae 5400 aattaggeee eeseeet tgeateegee eeseegae tgateeega gtaaagae 5400 aattaggeee eeseeet tgeateege eeseegae tgateeega gtaaaaa 5400 aattag	gctgagacgc acggaaccag	accggacctc acggaccagc	ccatcccaga cgctgattac	4140
cgagecgaac tgatageaet cacecaagee ttaaagatgg cagaaggtaa gaagetaat 4320 gtttacaetg atageegeta tgeettegee aeggeeeatg teeatggaga aatatatagg 4380 aggegagggt tgetgaeete agaaggeag gaaattaaa acaagaaega gatettggee 4440 ttgetaaaag eteettet geeeaaaega ettagtataa tteeetgee aggaeateaa 4500 aaagggaaeg tgetgagee eagaggeaae egtatggeag ateeaageege eeggaggea 4560 geeatgaagg eagttetaga aacetetae eteeteada aggaeetead 4500 eeteeteeteeteeteeteeteeteeteeteeteeteet	acttggtaca cagatggaag	cagcttccta caagaaggac	aacggagagc tggagcagcg	4200
guttacactg atagoogda tgoottogoo acggoocatg tooatgaga aatataagg 4380 aggogagggt tgotgagot tgoottogoo agggooga gaaattaaaa acaagaacga gatottggoo 4440 ttgotaaag otoottotto gootaacga ottagtataa ttoactgtoo aggacatcaa 4500 aaaggaaaca gtgotgaggo cagaggaaa ogtatggag atcaagcago cogagaggoa 4560 goottootto toottotto gootaacga ottagtataa ttoactgtoo aggacatcaa 4500 cottoocatt toottaga aacototaca otoottag aggactcaac cogtatagg 4620 cottoocatt toottaga aacototaca otoottag aggactcaa ogggagoo 4680 tacaatcaga caaaaggata ttgggtootta caaggaaac otgtgggoo gagagoo 4680 goottagaa caaaaggata ttgggtootta caaggaaac otgtgagoo gagagoo 4680 goottootta toottaga aggootta caaggaaa otgggagoo gagactag 4800 goottoottag agagaaga aggootta tacatgttaa accgggacag acotatcog 4860 tatgtgact gatagoog acatoggoo gagaccootta tacatgttaa accgggacag acotatcog 4860 tatgtgactg agacotgoo ogoottgoo caagtaaatg coagaaago caaaattggg 4920 googggggtg gagtacggg acatoggoo gagooccatt gggaagttga ttoacggaa 4980 gtaaagcoag gactgtatgg gtacaagta otootagtg ttgtagaaca ottototggo 5040 tgggtagagg cattocogae caagogggaa actgocagg togtgtocaa aaagtgta 5100 gaaggaacatt ttoogagat tggatagoo caggattgg gatogatag acggootgoo 5160 ttogootcoo aggtaagta gtoaggoo gattactgg caggtattg gaagtaca 5220 tgtoottata gacccaga ttaggacag gtagaagaa tgaatagaa atataaga 5280 acttgaca aataacgot tgoatotggo coccacgga tgactoot actococta 5340 gooctcace gagcooggaa tactocoggo coccacgga tgactoog tacatcoocta 5400 tatgggac coccgocot tgtoattt catgatcot gaactgoog acatgtoa 5520 agtootto tocaagota ottacaggo coccacgag tacaacaga ggtocgaa 5520 coccocco tgoottata ggaccagta gatagacaga tgatacaa cocctocot 5580	gtgactactg agaccgaggt	aatctgggcg agggctctgc	cggctggaac atccgcccaa	4260
aggcgagggt tgctgacctc agaaggcaga gaattaaaa acaagaacga gatcttggcc 4440 ttgctaaaag ctctcttt gcccaaacga cttagtataa ttcactgtcc aggacatcaa 4500 aaaggaaaca gtgctgagg cagaggcaa cgatggcag atcaagcagc ccgagaggca 4560 gccatgaagg cagttctaga aacctctaca ctcctcatag aggactcaac ccgtatacg 4620 cctccccatt tccattaca cgaaacagat ctcaaaagaa tacgggaact ggggagcacc 4680 tacaatcaga caaaaggata ttgggtccta caaggcaaac ctgtgatgcc cgatcagtc 4740 gtgtttgaac tgttagact cctacacaga ctcaccact tgagcccta aaagatgaag 4800 gccatccteg acagagaaga aagcccctac tacatgttaa acegggaacg aactatccag 4860 tatgtgactg agacctgca cgcctgtgc caagtaaatg ccagcaaagc caaaattggg 4920 gcaggggtg gagtacagg acateggcca ggcacccat gggaagttga tttcacggaa 4980 gtaaagccag gactgtagg gtacaagta ctcctagtg tggaagttga tttcacggaa 4980 ggaaagccag gactgtagg gtacaagta ctcctaggt tggaagttga tttcacggaa 4980 ggaaggaggt ttccgaga caaggggaa actgccaag tggaagttga tttcacggaa 4980 gtaaagccag gactgtagg gtacaagta ctcctagtg tggaagttga tttcacggaa 4980 ggaaggagtt ttccgagat ggacaggca ggcacccat gggaagttga tttcacggaa 520 gaggaggt ttccgag tacgggg actgggca caggtatgg gatctgata cgggcctgc 5160 ttgggtagag cattcccgac caaggagag agtagaaga tggaagtaga aattaaggg 5280 actttgacca aattaacgt tggaattgg ccacagga gtgagatgg ggatctcat actcccctta 5340 gcccttacc gagcccgga tacteggg ccccaggac tgatccgta tgaattctg 5400 tatggggcac ccccgccct tgtcaattt catgatcctg aaatgtcaa gttaactat 5460 agtcoctct tccaagcta cttacaggc ctccaagga tacaacaga ggtctgaag 5520 cccgcgcg ctgttata gacccag gtacgatt gatacaca cccttcctg 5580	cgagccgaac tgatagcact	cacccaagcc ttaaagatgg	cagaaggtaa gaagctaaat	4320
ttgctaaag ctctcttct gcccaaacga cttagtataa ttcactgtcc aggacatcaa 4500 aaaggaaaca gtgctgagg cagaggcaac cgtatggcag atcaagcagc ccgaagggca 4560 gccatgaagg cagttctaga aacetetaca ctceteatag aggacteaac ccgtatacg 4620 ceteeccatt tecattacae cgaaacagat etcaaaagae taegggaaet gggagecaec 4680 tacaateaga caaaaggata ttgggteeta caaggcaaac etgtgatgee egateagte 4740 gtgtttgaae tgttagaete ectaacaga etcacecate tgagecetea aaagatgaag 4800 gccateeteg acagagaaga aageceetae taeatgttaa acegggacag aaetateeag 4860 tatgtgaetg agacetgeae egeetgee eaagtaaatg ecageaage eaaaatggg 4920 gcaggggtge gagtaegeg acateggee eaagtaaatg ecageaaage eaaaatggg 4920 gcaggggtge gagtaegeg acateggee aggeaeceat gggaagttga ttteaeggaa 4980 gtaaageeag gaetgtatgg gtacaagtae etcetagtg ttgtagaeae ettetegge 5040 tgggtagag eatteegae eaageggaa aetgeeag tegtgee eaagtata egggeetgee 5160 ttgggtaggg eatteegae eaggtagee gagttaeg ggategattg gaagttaeat 5220 tggetgetata gaeceeag gteaggaeg gtagaagaa tgaatagaa atataagga 5280 actttgaeea aattaeget tgeatetgg ecceeaggae tgateegt agaatgtaa 5100 gaeceeea agtaagte tgeatetgg ecceeaggae tgateegt agaatgtaa 5340 geceetaee gageeeggaa taeteegge ecceeaggae tgateega aggtaaga 5280 actttgaeea aattaeget tgeatetgg ecceeaggae tgateega tgaatagaa ggtaataea 5460 agteeettee teeaagee ecceeaggae tgateeega ggtaateeaa ggtaateeta 5340 geceteaee gageeeggaa taeteegge ecceeaggae tgaeteega ggtaateata 5460 agteeettee teeaagee etteette eatgaeee ecceaggae tgaeteega ggtaeteet 5580	gtttacactg atagccgcta	tgccttcgcc acggcccatg	tccatggaga aatatatagg	4380
aaaggaaaCa gtgctgaggc cagaggcaac cgtatggcag atcaagcagc ccgagaggca 4560 gccatgaagg cagttctaga aacctctaca ctoctcatag aggactcaac cccgtatacg 4620 cctccccatt tccattacac cgaaacagat ctcaaaagac tacgggaact gggagccacc 4680 tacaatcaga caaaaggata ttgggtocta caaggcaaac ctgtgatgoc cgatcagtc 4740 gtgtttgaac tgttagactc octaccacag ctcaccact tgagocotca aaagatgaag 4800 gccattoctog acagagaaga aagococtac tacatgttaa accgggacag aactatccag 4860 tatgtgactg agacetgoc ogoctgtgoc caagtaaatg ocagcaaage caaaattggg 4920 gcaggggtgo gagtacgogg acatcggoca ggcaccatt gggaagttga tttcacggaa 4980 gtaaagocag gactgtatgg gtacaagtac otcoctagtg ttgtagaca ottoctggc 5040 tgggtagagg cattocogac caageggaa actgoccag tggtactga aaaggtgta 5100 gaagacattt ttcogagat tggaatgoc gagttatgg gatcgatag ggactgata 5100 gaagacattt ttcogagat tggaagge gattactgg gaattagg gatcgata 2520 tgtgottata gaccocaga ttcaggaca gtagaagaa tgaatagaa attaaggag 5280 actttgacca aattaacgt tgcatctgg ccccaeggae tgatcocgt tgaaattoc 5340 gccctotace gagcocgga tactcoogge ccccaeggae tgattocg tagaatttg 5400 tatgggcae cccogocot tgtcaattt catgatoctg aaatgtcaa ggtacatat 5460 agtcoctot tocaagcta ottaccagge ccccaegga tgatcocg tagaataga ggtagaag 5520 cccctocc tocaagcta ottaccagge ctccaagcag tgataccaa cccttoctg 5580	aggcgagggt tgctgacctc	agaaggcaga gaaattaaaa	acaagaacga gatcttggcc	4440
gccatgaagg cagttetaga aacetetaca eteeteatag aggaeteaae ecegtataeg 4620 ceteeceat teeattaeae egaaacagat eteaaagae taegggaaet gggageeaee 4680 taeaateaga caaaaggata ttgggteeta eaaggeaaae etgggtegee egateagtee 4740 gtgtttgaae tgttagaete eetaeaeaga eteaeceate tgageeetea aaagatgaag 4800 gecateeteg acagagaaga aageeeetae taeatgttaa acegggaaeg aaetateeag 4860 tatgtgaetg agaeetgeae egeetgee eaagtaaatg eeageaage eaaaattggg 4920 geaggggtge gagtaegegg acateggee ageaeeeat gggaagttga ttteaeggaa 4980 gtaaageeag gaeetgaag gtaeaeggea eeteetget ttgtagaeee etteetgee 5040 tgggtagagg eatteeegae eaagegggaa actgeeaagg tegtgteeaa aaagetgtta 5100 gaagaeatt tteegaatt tggaatgee eagttateg ggateggate	ttgctaaaag ctctctttct	gcccaaacga cttagtataa	ttcactgtcc aggacatcaa	4500
cctceccatt tecattacae egaaacagat eteaaaagae taegggaact gggageeaee 4680 taeaateaga eaaaaggata ttgggteeta eaaggeaaae etgtgatgee egateagtee 4740 gtgtttgaae tgttagaete eetaeaagae teaeaggaaae etgtgatgee egateagtee 4800 geaeteeteg acagagaaga aageeeeta taeatgttaa aeegggaeag aaetateeag 4860 tatgtggaetg agaeetgeae egeetggee eaagtaaatg eeaggaaag eaaaattegg 4920 geaggggtge gagtaegegg acateggeea ggeaeeeatt gggaagttga ttteaeggaa 4980 gtaaageeag gaetgtatgg gtaeaagtae eteetagtt tggagaegt aaaagtegga 4920 geaggggtge gagtaegegg acateggeea ggeaeeeatt gggaagttga ttteaeggaa 4980 gtaaageeag gaetgtatgg gtaeaagtae eteetagtt tggagaegt estetetee 5040 tgggtagagg eatteeegae eaageegggaa aetgeeaagg tegtgteeaa aaageetgta 5100 gaagaeaettt tteegagatt tggaatgeeg eaggtattgg gateggatag aggteetee 5160 ttegeeteee aggtaagtea gteagtggee gattaetgg ggategatag aattaegga 5280 aetttgaeea aattaeget tgeaattege eeeaggae tggateegat agaaagaa 5280 aetttgaeea aattaaeget tgeeatetge eeeaggae tggateegat ggaaatteeg 5340 geeeeteae gageeeggaa taeteeggee eeeaggae tggateegat ggaaatteeg 5400 tatggggeae eeeeeet tgeeaattt eatgateet aaagteega ggtaeteet ateeeetta 5340 geeetetaee gageeeggaa taeteeggee eeeaggae tgaeteegaa gttaaetaat 5460 agteeettee teeeagetea ettaeaggee teeeagae tgaeacaaga ggteeggaag 5520 eeegeegee etgettatea ggaeeegge daeagtag daeageag tgaaeagaa ggteeggaa 5520	aaaggaaaca gtgctgaggc	cagaggcaac cgtatggcag	atcaagcagc ccgagaggca	4560
tacaatcaga caaaaggata ttgggtccta caaggcaaac ctgtgatgce cgatcagtce 4740 gtgtttgaac tgttagacte cetacacaga etcacecate tgaggecetca aaagatgaag 4800 gcaeteeteg acagagaaga aageecetae tacatgttaa acegggacag aaetateeag 4860 tatgtgaetg agaeetgeae egeetggee caagtaaatg eeageaaage caaaattggg 4920 geaggggtge gagtaegegg acateggee ggeaeeett gggaagttga ttteaeggaa 4980 gtaaageeag gaetgtatgg gtacaagtae etceetagtgt tggagaeae etteetegge 5040 tgggtagagg catteeegae caageggaa actgeeagg tegtgteeaa aaagetgtta 5100 gaagaeattt tteegagatt tggaatgeeg eaggtatgg gategata egggeetgee 5160 ttegeetee aggtaagtea gteagtgge gattaetgg gategata egggeetgee 5160 ttggettata gaeeeeaga tteaggaeag gaagaagaa tgaatagaae aattaaggag 5280 aetttgaeea aattaaeget tgeatetgge actagagaet gggtaeteet acteeetta 5340 geceetaee gageeeggaa taeteegge eeceaeggae tgaeteegta tgaaattetg 5400 tatggggeae eeceaegga taeteegge eeceaeggae tgaeteegta 5460 agteeette teeaagetea ettaeaggee etceaageag taeaacaaga ggtetggaag 5520	gccatgaagg cagttctaga	aacctctaca ctcctcatag	aggactcaac cccgtatacg	4620
gtgtttgaac tgttagacte eetaacaaga eteaceate tgageeetea aaagatgaag 4800 geeeteeteg acagagaaga aageeetee taatgttaa acegggacag aaetateeg 4860 tatgtgaetg agaeetgeae egeetgee eaagtaaatg eeageaage eaaaattggg 4920 geaggggtge gagtaegegg acateggee ggeaeeeat gggaagttga ttteaeggaa 4980 gtaaageeag gaetgtagg gtaeaagtae eteetagtgt tgtagaeae etteetege 5040 tgggtagagg eatteeegae eaagegggaa actgeeagg tegtgteeaa aaagetgtta 5100 gaagaeattt tteegagat tggaatgee gagtateg gategaatg gaetgataa egggeetgee 5160 ttegeetee aggtaagtea gteagtgge gattaetgg ggategattg gaagttaeat 5220 tgtgettata gaeeeegaa teeggae gteagaaat gggaagat gagatagaa aattaaggag 5280 actttgaeea aattaaeget tgeatetgge eeeeaggae tggeteeta acteeeeta 5340 geeeetaee gageeeggaa taeteegge eeeeaggae tgaeteegaa gteagaatte 5460 tatggggeae eeeeeet tgeaattt eatgateetg aaatgteaa gttaaetaat 5460 agteeette teeaagetea ettaeaggee eteeaaggag taeaacaaga ggtetggaag 5520	cctccccatt tccattacac	cgaaacagat ctcaaaagac	tacgggaact gggagccacc	4680
gcacteeteg acagagaaga aageeeeta tacatgttaa acegggacag aaetateeag 4860 tatgtgaetg agaeetgeae egeetgeee eagetaaatg eeageaage eaaaattggg 4920 gcagggggtge gagtaegegg acateggeea ggeaeeeat gggaagttga ttteaeggaa 4980 gtaaageeag gaetgtatgg gtaeaagtae eteetaagt tggtagaeae etteetgge 5040 tgggtagagg eatteeegae eaagegggaa actgeeaagg tegtgteeaa aaageetgta 5100 gaagaeattt tteegagatt tggaatgeeg eaggtategg gategataa egggeetgee 5160 ttegeetee aggtaagtea gteagtggee gattaetgg ggategattg gaagttaeat 5220 tgtgettata gaeeeeagg tegageaga tggagaagaa tgaatagaae aattaaggag 5280 aetttgaeea aattaaeget tgeatetgge actagagaet gggtaeteet acteeetta 5340 geeetee gageeeggaa taeteeggge eeeeaggae tgaeteega ggaaatteeg 5400 tatggggeae eeeeeeet ggeeeegae tgeateetg aaatgteaaa gtaaateetg 5400 tatggggeee eeeeeet tgeeaattt eatgateet aaatgteaa gtaaateet 5460 agteeetee teeeageee etgeetatea ggaeeegge tgeateegg gateggag ggeetggag 5520 eegeetggeeg etgettatea ggaeeegeta gateageeg tgataeeea eceetteegt 5580	tacaatcaga caaaaggata	ttgggtccta caaggcaaac	ctgtgatgcc cgatcagtcc	4740
tatgtgactg agacetgeae egeetgtgee eaagtaaatg eeageaaage eaaattggg 4920 geaggggtge gagtaegeegg acateggee ggeaceeatt gggaagttga ttteaeggaa gtaaageeag gaetgtatgg gtacaagtae eteetaagte ttgtagaeae etteeteggee 5040 tgggtagagg eatteeegae eaagegggaa actgeeagg tegtgteeaa aaagetgtta 5100 gaagaeattt tteegagatt tggaatgeeg eaggtattgg gatetgataa egggeetgee 5160 tteggeetee aggtaagtee gteagtgee gattaetgg ggategattg gaagttaeat 5220 tgtgeettata gaeeeeaga teegagaeag eggtaeteg eggtaetee acteeeetta 5340 geeeeetee aggeeeggaa taeteeggge eeeeeagae tgaeteega gtaaatteet 5460 tatggggeee eeeeetee tgteaattt eatgateet gaaagtee aaatgeeag gteagaatg ggeeteggaag 5520 eeeeetee teeeageete eteeaggee eteetaaggee gaeedeg tgataeeedege ggeeteggaag	gtgtttgaac tgttagactc	cctacacaga ctcacccatc	tgagccctca aaagatgaag	4800
gcaggggtgc gagtacgcgg acatcggcca ggcacccatt gggaagttga tttcacggaa 4980 gtaaagccag gactgtatgg gtacaagtac ctcctagtgt ttgtagacac cttctcggc 5040 tgggtagagg cattcccgac caagcgggaa actgccaagg tcgtgtccaa aaagctgtta 5100 gaagacattt ttccgagatt tggaatgccg caggtattgg gatctgataa cgggcctgcc 5160 ttcgcctccc aggtaagtca gtcagtggcc gattactgg ggtacgattg gaagttacat 5220 tgtgcttata gaccccagag ttcaggacag gtagaaagaa tgaatagaac aattaaggag 5280 actttgacca aattaacgct tgcatctggc actagagact gggtactcct actccctta 5340 gccctctacc gagcccggaa tactccgggc ccccacggac tgactccgat tgaaatteg 5400 tatggggcac ccccgccct tgtcaattt catgatcctg aaatgtcaaa gttaactaat 5460 agtccctct tccaagctca cttacaggcc ctccaagcag tacaacaaga ggtctggaag 5520	gcactcctcg acagagaaga	aagcccctac tacatgttaa	accgggacag aactatccag	4860
gtaaageeag gaetgtatgg gtacaagtae eteetaagtgt ttgtagaeae etteetegee 5040 tgggtagagg eatteeegae eaagegggaa aetgeeaagg tegtgteeaa aaagetgtta 5100 gaagaeattt tteegagatt tggaatgeeg eaggtattgg gatetgataa egggeetgee 5160 tteggeetee aggtaagtea gteagtggee gattaetgg ggategattg gaagttaeat 5220 tgtgeettata gaeeeegag tteaggaeag gtagaaagaa tgaatagaae aattaaggag 5280 aetttgaeea aattaaegee tgeatetgge eeeeegae gggtaeteet aeteeeetta 5340 geeeeteetee gageeeggaa taeteeggge eeeeeeggae tgaeteegaa gtaaattet 5460 agteeeteeteetee teeeaagee eteeaageag taeaaeaaga ggteetggaag 5520 eeegeeggeeg etgettatea ggaeeageta gateageeag tgataeeaa eeeetteetee 5580	tatgtgactg agacctgcac	cgcctgtgcc caagtaaatg	ccagcaaagc caaaattggg	4920
tgggtagagg catteeegae eaagegggaa aetgeeaagg tegtgteeaa aaagetgtta 5100 gaagacattt tteegagatt tggaatgeeg eaggtattgg gatetgataa egggeetgee 5160 ttegeeteee aggtaagtea gteagtggee gattaetgg ggategattg gaagttaeat 5220 tgtgettata gaeeeeagag tteaggaeag gtagaaagaa tgaatagaae aattaaggag 5280 aetttgaeea aattaaeget tgeatetgge aetagagaet gggtaeteet aeteeeeta 5340 geeetetaee gageeeggaa taeteeggge eeeeaggae tgaeteegta tgaaattetg 5400 tatggggeae eeeeet tgteaattt eatgateetg aaatgteeaa gttaaetaat 5460 agteeetet teeaagetea ettaeaggee eteeaagaa tgataeeaaga ggtetggaag 5520 eegetggeeg etgettatea ggaeeageta gateageeag tgataeeaa eceetteegt 5580	gcaggggtgc gagtacgcgg	acatcggcca ggcacccatt	gggaagttga tttcacggaa	4980
<pre>gaagacattt ttccgagatt tggaatgccg caggtattgg gatctgataa cgggcctgcc 5160 ttcgcctccc aggtaagtca gtcagtggcc gatttactgg ggatcgattg gaagttacat 5220 tgtgcttata gaccccagag ttcagggacag gtagaaagaa tgaatagaac aattaaggag 5280 actttgacca aattaacgct tgcatctggc actagagact gggtactcct actcccctta 5340 gccctctacc gagcccggaa tactccgggc ccccacggac tgactccgta tgaaattctg 5400 tatggggcac ccccgcccct tgtcaatttt catgatcctg aaatgtcaaa gttaactaat 5460 agtccctctc tccaagctca cttacaggcc ctccaagcag tgataccaca ccccttccgt 5580</pre>	gtaaagccag gactgtatgg	gtacaagtac ctcctagtgt	ttgtagacac cttctctggc	5040
ttcgcctccc aggtaagtca gtcagtggcc gatttactgg ggatcgattg gaagttacat 5220 tgtgcttata gacccagag ttcaggacag gtagaaagaa tgaatagaac aattaaggag 5280 actttgacca aattaacgct tgcatctggc actagagact gggtactcct actcccctta 5340 gccctctacc gagcccggaa tactccgggc ccccacggac tgactccgta tgaaattctg 5400 tatggggcac ccccgcccct tgtcaatttt catgatcctg aaatgtcaaa gttaactaat 5460 agtccctctc tccaagctca cttacaggcc ctccaagcag tacaacaaga ggtctggaag 5520 ccgctggccg ctgcttatca ggaccagcta gatcagccag tgataccaca ccccttccgt 5580	tgggtagagg cattcccgac	caagcgggaa actgccaagg	tcgtgtccaa aaagctgtta	5100
tgtgcttata gaccccagag ttcaggacag gtagaaagaa tgaatagaac aattaaggag 5280 actttgacca aattaacgct tgcatctgge actagagact gggtacteet acteecetta 5340 geeetetaee gageeeggaa taeteeggge eeceaeggae tgaeteegta tgaaattetg 5400 tatggggeae eecegeeet tgteaatttt eatgateetg aaatgteaaa gttaaetaat 5460 agteeetete teeaagetea ettaeaggee etceaageag taeaaeaaga ggtetggaag 5520 eegetggeeg etgettatea ggaceageta gateageeag tgataceae eceetteegt 5580	gaagacattt ttccgagatt	tggaatgccg caggtattgg	gatctgataa cgggcctgcc	5160
actttgacca aattaacget tgeatetgge actagagaet gggtaeteet acteeetta 5340 geeetetaee gageeeggaa taeteeggge eeceaeggae tgaeteegta tgaaattetg 5400 tatggggeae eecegeeeet tgteaatttt eatgateetg aaatgteaaa gttaaetaat 5460 agteeetete teeaagetea ettaeaggee etceaageag taeaaeaaga ggtetggaag 5520 eegetggeeg etgettatea ggaeeageta gateageeag tgataeeaa eceetteegt 5580	ttcgcctccc aggtaagtca	gtcagtggcc gatttactgg	ggatcgattg gaagttacat	5220
gccctctacc gagcccggaa tactccgggc ccccacggac tgactccgta tgaaattctg 5400 tatgggggcac ccccgcccct tgtcaatttt catgatcctg aaatgtcaaa gttaactaat 5460 agtccctctc tccaagctca cttacaggcc ctccaagcag tacaacaaga ggtctggaag 5520 ccgctggccg ctgcttatca ggaccagcta gatcagccag tgataccaca ccccttccgt 5580	tgtgcttata gaccccagag	ttcaggacag gtagaaagaa	tgaatagaac aattaaggag	5280
tatgggggcac ccccgcccct tgtcaatttt catgatcctg aaatgtcaaa gttaactaat 5460 agtccctctc tccaagctca cttacaggcc ctccaagcag tacaacaaga ggtctggaag 5520 ccgctggccg ctgcttatca ggaccagcta gatcagccag tgataccaca ccccttccgt 5580	actttgacca aattaacgct	tgcatctggc actagagact	gggtactcct actcccctta	5340
agteeetete teeaagetea ettacaggee etceaageag tacaacaaga ggtetggaag 5520 eegetggeeg etgettatea ggaceageta gateageeag tgataceaea eeeetteegt 5580	gccctctacc gagcccggaa	tactccgggc ccccacggac	tgactccgta tgaaattctg	5400
ccgctggccg ctgcttatca ggaccagcta gatcagccag tgataccaca ccccttccgt 5580	tatggggcac ccccgcccct	tgtcaatttt catgatcctg	aaatgtcaaa gttaactaat	5460
	agtccctctc tccaagctca	cttacaggcc ctccaagcag	tacaacaaga ggtctggaag	5520
gteggtgaeg eegtgtgggt aegeeggeae eagaetaaga aettagaaee tegetggaaa 5640	ccgctggccg ctgcttatca	ggaccagcta gatcagccag	tgataccaca ccccttccgt	5580
	gtcggtgacg ccgtgtgggt	acgccggcac cagactaaga	acttagaacc tcgctggaaa	5640

20

	ataataat a		agggtata	aagtagagg	astatataaa	5700
ggaccctaca cc						5760
tggatacacg cc						
gtccagcgtt cto						5820
tggggatett ggt						5880
atgtcacttg gaa						5940
tggggacgat gad						6000
acaactggga tga						6060
aaaggacaag act						6120
gagggccgag aga						6180
ggaagccatc ato	catcatgg g	jacctaattt	cccttaagcg	aggaaacact	cctaagggtc	6240
agggcccctg tt	ttgattcc t	cagtgggct	ccggtagcat	ccagggtgcc	acaccgggggg	6300
gtcgatgcaa cco	ccctagtc c	tagaattca	ctgacgcggg	taaaagggcc	agctgggatg	6360
cccccaaaac ato	ggggacta a	agactgtatc	gatccactgg	ggccgacccg	gtgaccctgt	6420
tctctctgac cc	gccaggtc c	tcaatgtag	ggccccgcgt	ccccattggg	cctaatcccg	6480
tgatcactga aca	agctaccc c	ecctcccaac	ccgtgcagat	catgctcccc	aggacteete	6540
gteeteetee tte	caggegeg g	jcctctatgg	tgcctggggc	tcccccgcct	tctcaacaac	6600
ctgggacggg aga	acaggctg c	taaacctgg	tagaaggagc	ctacctagcc	ctcaacctca	6660
ccagtcccga caa	aaacccaa g	Jagtgetgge	tgtgtctagt	atcgggaccc	ccctactacg	6720
aaggggtggc cgt	tcctaggt a	acttactcca	accatacctc	tgccccggct	aactgctccg	6780
tgacctccca aca	acaagctg a	accctgtccg	aagtgaccgg		tgcataggag	6840
tgacctccca aca cagttcccaa aad				gcagggactc		6840 6900
	cccatcag g	jccctgtgta	ataccaccca	gcagggactc gaagacgagc	gacgggtcct	
cagttcccaa aad	cccatcag g ctcccgcc g	gccctgtgta gggaccattt	ataccaccca gggcttgcag	gcagggactc gaagacgagc caccgggctc	gacgggtcct actccctgtc	6900
cagttcccaa aad actatttggc cto	cccatcag g ctcccgcc g tgcttaac t	gccctgtgta gggaccattt taaccactg	ataccaccca gggcttgcag attactgtgt	gcagggactc gaagacgagc caccgggctc cctggttgaa	gacgggtcct actccctgtc ctctggccaa	6900 6960
cagttcccaa aad actatttggc cto tatctactac tgi	cccatcag g ctcccgcc g tgcttaac t actcccct a	geeetgtgta gggaeeattt taaceaetg aattatgttt	ataccaccca gggcttgcag attactgtgt atggccagtt	gcagggactc gaagacgagc caccgggctc cctggttgaa tgaaaagaaa	gacgggtcct actccctgtc ctctggccaa actaaatata	6900 6960 7020
cagtteccaa aad actatttgge etd tatetaetae tgl aggtaaceta eed	cccatcag g ctcccgcc g tgcttaac t actcccct a tgtcatta a	geootgtgta gggaccattt ttaaccactg aattatgttt actotggooco	ataccaccca gggcttgcag attactgtgt atggccagtt tgctgttggg	gcagggactc gaagacgagc caccgggctc cctggttgaa tgaaaagaaa aggacttact	gacgggtcct actccctgtc ctctggccaa actaaatata atgggcggca	6900 6960 7020 7080
cagtteccaa aad actatttgge etd tatetaetae tgf aggtaaceta eed aaagagagee ggf	cocatcag g ctocogoo g tgottaac t actocoot a tgtoatta a ttggaaca g	gccctgtgta gggaccattt taaccactg aattatgttt actctggccc gggactacag	ataccaccca gggcttgcag attactgtgt atggccagtt tgctgttggg ccctagtggc	gcagggactc gaagacgagc caccgggctc cctggttgaa tgaaaagaaa aggacttact caccaaacaa	gacgggtcct actccctgtc ctctggccaa actaaatata atgggcggca ttcgagcagc	6900 6960 7020 7080 7140
cagttcccaa aad actatttggc ctd tatctactac tgf aggtaaccta ccd aaagagagcc ggf tagctgcagg agf	cccatcag g ctcccgcc g tgcttaac t actcccct a tgtcatta a ttggaaca g tacataca g	gecetgtgta gggaceattt staaceaetg aattatgttt aetetggeeee gggaetaeag gaeettgggg	ataccaccca gggcttgcag attactgtgt atggccagtt tgctgttggg ccctagtggc ccttagaaaa	gcagggactc gaagacgagc caccgggttgaa tgaaaagaaa aggacttact caccaaacaa atcagtcagt	gacgggtcct actccctgtc ctctggccaa actaaatata atgggcggca ttcgagcagc gccctagaaa	6900 6960 7020 7080 7140 7200
cagttcccaa aad actatttggc ctd tatctactac tgf aggtaaccta cca aaagagagcc ggf tagctgcagg agf tccaggcagc caf	cocatcag g ctcccgcc g tgcttaac t actcccct a tgtcatta a ttggaaca g tacataca g cgttgtct g	gecetgtgta gggaccattt ttaaccaetg aattatgttt aetetggeeee gggaetaeag gaeettgggg gaggtggtee	ataccaccca gggcttgcag attactgtgt atggccagtt tgctgttggg ccctagtggc ccttagaaaa tacagaaccg	gcagggactc gaagacgagc caccgggctc cctggttgaa tgaaaagaaa aggacttact caccaaacaa atcagtcagt gaggggatta	gacgggtcct actccctgtc ctctggccaa actaaatata atgggcggca ttcgagcagc gccctagaaa gatctactgt	6900 6960 7020 7080 7140 7200 7260
cagttcccaa aad actatttggc ctd tatctactac tgf aggtaaccta cca aaagagagcc ggf tagctgcagg agf tccaggcagc caf agtctctgac ctd	cccatcag g ctcccgcc g tgcttaac t actcccct a tgtcatta a ttggaaca g tacataca g cgttgtct g gaggatta t	gecetgtgta gggaceattt taaceaetg aattatgttt aetetggece gggaetaeag gaeettgggg gaegtggtee egtgetgeee	ataccaccca gggcttgcag attactgtgt atggccagtt tgctgttggg ccctagtggc ccttagaaaa tacagaaccg taaaagaaga	gcagggactc gaagacgagc caccgggctc cctggttgaa tgaaaagaaa aggacttact caccaaacaa atcagtcagt gaggggatta atgctgtttt	gacgggtcct actccctgtc ctctggccaa actaaatata atgggcggca ttcgagcagc gccctagaaa gatctactgt tacgcggacc	6900 6960 7020 7140 7200 7260 7320
cagttcccaa aad actatttggc ctd tatctactac tgf aggtaaccta ccd aaagagagcc ggf tagctgcagg agf tccaggcagc caf agtctctgac ctd tcctaaaaga agg	cccatcag g ctcccgcc g tgcttaac t actcccct a tgtcatta a tggaaca g tacataca g cgttgtct g gaggatta t taagagat a	gecetgtgta gggaceattt staaceaetg aattatgttt aetetggeeee gggaetaeag gaeettgggg gaggtggteee sgtgetgeeee ageatggeaa	ataccaccca gggcttgcag attactgtgt atggccagtt tgctgttggg ccctagtggc ccttagaaaa tacagaaccg taaaagaaga agctaagaga	gcagggactc gaagacgagc caccgggctc cctggttgaa tgaaaagaaa aggacttact caccaaacaa atcagtcagt gaggggatta atgctgtttt aaggttaaac	gacgggtcct actccctgtc ctctggccaa actaaatata atgggcggca ttcgagcagc gccctagaaa gatctactgt tacgcggacc cagagacaaa	6900 6960 7020 7140 7200 7260 7320 7380
cagttcccaa aad actatttggc ctd tatctactac tgd aggtaaccta ccd aaagagagcc ggd tagctgcagg agd tcccaggcagc cad agtctctgac ctd tcctaaaaga agg acactggcgt agd	cccatcag g ctcccgcc g tgcttaac t actcccct a tggcatta a ttggaaca g tacataca g gaggatta t taagagat a caggacaa g	gecetgtgta gggaceattt taaceaetg aattatgttt aetetggece gggaetaeag gaeettgggg gaggtggtee ageatggeaa gggtggtttg	ataccaccca gggcttgcag attactgtgt atggccagtt tgctgttggg ccctagtggc ccttagaaaa tacagaaccg taaaagaaga agctaagaga	gcagggactc gaagacgagc caccgggttgaa tgaaaagaaa aggacttact caccaaacaa atcagtcagt gaggggatta atgctgtttt aaggttaaac taacaggtcc	gacgggtcct actccctgtc ctctggccaa actaaatata atgggcggca ttcgagcagc gccctagaaa gatctactgt tacgcggacc cagagacaaa ccatggttca	6900 6960 7020 7140 7200 7260 7320 7380 7440
cagttcccaa aad actatttggc ctd tatctactac tgf aggtaaccta ccd aaagagagcc ggf tagctgcagg agf tccaggcagc caf agtctctgac ctd tcctaaaaga agg acactggcgt agf aattgttcga atd	cccatcag g ctcccgcc g tgcttaac t actcccct a tgtcatta a tggagaca g cgttgtct g gaggatta t taaagagat a caaggacaa g ccaccatt a	gecetgtgta gggaceattt ttaaceaetg aattatgttt aetetggeeee gggaetaeag gaeettgggg gaggtggteee ageatggeaa gggtggtttg atgggeeete	ataccaccca gggcttgcag attactgtgt atggccagtt tgctgttggg ccctagtggc ccttagaaaa tacagaaccg taaaagaaga agctaagaga agggactgtt tgatagtact	gcagggactc gaagacgagc caccgggctc cctggttgaa tgaaaagaaa aggacttact caccaaacaa atcagtcagt gagggggatta atgctgtttt aaggttaaac taacaggtcc tttattaatc	gacgggtcct actccctgtc ctctggccaa actaaatata atgggcggca ttcgagcagc gccctagaaa gatctactgt tacgcggacc cagagacaaa ccatggttca ctactcttcg	6900 6960 7020 7140 7200 7260 7320 7380 7440 7500
cagttcccaa aad actatttggc ctd tatctactac tgd aggtaaccta cca aaagagagcc ggd tagctgcagg agd tcccaggcagc cad agtctctgac ctd tcctaaaaga agg acactggcgt agd aattgttcga ato	cccatcag g stcccgcc g tgcttaac t actcccct a tggcatta a ttggaaca g tacataca g gaggatta t taagagat a caaggacaa g ccaccatt a tcaaccgc t	gecetgtgta gggaceattt taaceaetg aattatgttt aetetggeeee gggaetaeag gaeettgggg gaegtggteee ageatggeaa gggtggtttg atgggeeete ttggteeagt	ataccaccca gggcttgcag attactgtgt atggccagtt tgctgttggg ccctagtggc ccttagaaaa tacagaaccg taaaagaaga agctaagaga agggactgtt tgatagtact ttgtaaaaga	gcagggactc gaagacgagc caccgggctc cctggttgaa tgaaaagaaa aggacttact caccaaacaa atcagtcagt gaggggatta atgctgtttt aaggttaaac taacaggtcc tttattaatc cagaatttcg	gacgggtcct actccctgtc ctctggccaa actaaatata atgggcggca ttcgagcagc gccctagaaa gatctactgt tacgcggacc cagagacaaa ccatggttca ctactcttcg gtagtgcagg	6900 6960 7020 7140 7200 7260 7320 7380 7440 7500 7560
cagttcccaa aad actatttgge cto tatctactac tgu aggtaaccta cco aaagagagec ggu tagctgcagg agu tccaggcage cau agtctctgac cto tcctaaaaga agg acactggcgt agu aattgttcga ato gaccctgtat tco	cccatcag g ctcccgcc g tgcttaac t actcccct a tgtcatta a ttggaaca g tacataca g gaggatta t taagagat a caggacaa g ccaccatt a tcaaccgc t	gecetgtgta gggaceattt itaaceaetg aattatgttt aetetggeeee gggaetaeag gaggtggteee ageatggeaa gggtggtttg atgggeeete itgggeeete itggteeagt iateaceaae	ataccaccca gggcttgcag attactgtgt atggccagtt tgctgttggg ccctagtggc ccttagaaaa tacagaaccg taaaagaaga agggactgtt tgatagtact ttgtaaaaga tcaaatcaat	gcagggactc gaagacgagc caccgggctc cctggttgaa tgaaaagaaa aggacttact caccaaacaa atcagtcagt gagggggatta atgctgtttt aaggttaaac taacaggtcc tttattaatc cagaattcg agatccagaa	gacgggtcct actccctgtc ctctggccaa actaaatata atgggcggca ttcgagcagc gccctagaaa gatctactgt tacgcggacc cagagacaaa ccatggttca ctactcttcg gtagtgcagg gaagtggaat	6900 6960 7020 7140 7200 7260 7320 7380 7440 7500 7560 7620
cagttcccaa aad actatttggc ctd tatctactac tgd aggtaaccta cca aaagagagacc ggd tagctgcagg agd tccaggcagc cad agtctctgac ctd tcctaaaaga agg acactggcgt agd aattgttcga atd gaccctgat tcd ccctggttct gad	cccatcag g steccegee g tgettaac t acteceet a tgteatta a ttggaaca g tacataca g gaggatta t taagagata a ccaggacaa g ccaccatt a tcaacege t cccaacag t	geoodgetgetgeta gggaccattt itaaccactg aattatgttt actotggococ gggactacag gacottgggg gaggtggtoco agcatggcaa gggtggtttg atgggcoctc itggtccagt iatcaccaac itcagtttco	ataccaccca gggcttgcag attactgtgt atggccagtt tgctgttggg ccctagtggc ccttagaaaa tacagaaccg taaaagaaga agggactgtt tgatagtact ttgtaaaaga tcaaatcaat	gcagggactc gaagacgagc caccgggctc cctggttgaa tgaaaagaaa aggacttact caccaaacaa atcagtcagt gagggggatta atgctgtttt aaggttaaac taacaggtcc tttattaatc cagaatttcg aggtcagaa gggaatgaaa	gacgggtcct actccctgtc ctctggccaa actaaatata atgggcggca ttcgagcagc gccctagaaa gatctactgt tacgcggacc cagagacaaa ccatggttca gtagtgcagg gaagtggaat gacccacca	6900 6960 7020 7140 7200 7260 7380 7380 7440 7500 7560 7620
cagttcccaa aad actatttgge cto tatctactac tgu aggtaaccta cco aaagagagec ggu tagctgcagg agu tccaggcage cau agtctctgac cto tcctaaaaga agg acactggcgt agu aattgttcga ato gaccctgtat tcu ccctggttct gao cacgtgaata aad	cccatcag g ctcccgcc g tgcttaac t actcccct a tgtcatta a ttggaaca g tacataca g gaggatta t taagagata t caggacaa g ccaccatt a tcaaccgc t ccccaacag t agatttta t cgctagct a	geoodgetgetgeta gggaccattt itaaccactg hattatgttt actotggococ gggactacag gagetggtggtco aggatggtttg atgggcocto itggtcoagt itggtcoagt itcagtttco acagtaacgo	ataccaccca gggcttgcag attactgtgt atggccagtt tgctgttggg ccctagtggc ccttagaaaa tacagaaccg taaaagaaga agggactgtt tgatagtact ttgtaaaaga tcaaatcaat agaaagaggg cattttgcaa	gcagggactc gaagacgagc caccgggctc cctggttgaa tgaaaagaaa aggacttact caccaacaa atcagtcagt gagggggatta atgctgtttt aaggttaaac ttaacaggtcc tttattaatc cagaatttcg aggtcaagaa gggaatgaaa	gacgggtcct actccctgtc ctctggccaa actaaatata atgggcggca ttcgagcagc gccctagaaa gatctactgt tacgcggacc cagagacaaa ccatggttca ctactcttcg gtagtgcagg gaagtggaat gaccccacca agtaccagag	6900 6960 7020 7140 7200 7260 7320 7380 7440 7560 7560 7620 7680 7740
cagttcccaa aad actatttggc ctd tatctactac tgd aggtaaccta cca aaagagagagcc ggd tagctgcagg agd tccaggcagc cad agtctctgac ctd tcctaaaaga agg acactggcgt agd aattgttcga atc gaccctgat tcd ccctggttct gad cacgtgaata aad	cccatcag g stcccgcc g tgcttaac t actcccct a tgtcatta a ttggaaca g tacataca g gaggatta t taagagata a caggacaa g ccaccatt a tccaaccgc t agatttta t cgctagct a aagttaca a	geoodgetgetgeta gggaccattt itaaccactg aattatgttt actotggococ gggactacag gaggtggtggtcoc igggatggtcoc igggtggtttg atgggcoctc itggtcoagt itaggtcoagt itaggtcoagt itaggtaccagt	ataccaccca gggcttgcag attactgtgt atggccagtt tgctgttggg ccctagtggc ccttagaaaa tacagaaccg taaaagaaga aggtaagaaga agggactgtt tgatagtact ttgtaaaaga tcaaatcaat agaaagaggg cattttgcaa	gcagggactc gaagacgagc caccgggctc cctggttgaa tgaaaagaaa aggacttact caccaacaa atcagtcagt gagggggatta atgctgtttt aaggttaaac ttaacaggtcc tttattaatc cagaatttcg aggtcagaa gggaatgaaa aggcatggaat	gacgggtcct actccctgtc ctctggccaa actaaatata atgggcggca ttcgagcagc gccctagaaa gatctactgt tacgcggacc cagagacaaa ccatggttca gtagtgcagg gaagtggaat gaccccacca agtaccagag aacactggga	6900 6960 7020 7140 7200 7260 7380 7440 7500 7500 7620 7680 7740 7800

-continued

getteccama sugaceggg a nataceccam gettatta antianecha tegeteget 8040 totogettet gtacecagege tittigete ceastoctag costataaa aaggggtaag 8100 nattecama tegeogege agtateceg tagactaget geoegggt ceegggta ceegtgtee 8160 sattaaaget tittigetgit tgeaa 8105 210 - 680 ID NO 2 211 - 680 CH NO 2 212 - 680 ID NO 2 213 - 680 HW NO 2 214 - 680 HW NO 2 215 - 680 HW NO 2 216 - 680 HW NO 2 216 - 680 HW NO 2 217 - 680 HW NO 2 218 - 680 HW NO 2 228 - 680 HW NO 2 229 - 680 HW NO 2 220 - 780	-continued	
Actorgetted gaacegege tittigstee coagtectag costataaa aaggggaag 8100 aactocacae teggegegee agteateega tagaetgagt egeeegggta coegtgtee 8160 mataaagee tittgetgit tgena 8185 calo. BD D D D 0 all Comparison of the second secon	gatggtcctc agataaagcg aaactaacaa cagtttctgg aaagtcccac ctcagtttca 7980	
Analysis of the second	agtteeecaa aagaeeggga aataeeecaa geettattta aaetaaeeaa teageteget 8040	
cline state angle of tit specific tige and 2115 cline state angle of tit specific tige and 2115 cline state angle of tit specific tige and 2115 cline state angle of tit specific tige and 2115 cline state angle of tit specific tige and 2115 cline state angle of tit specific tige angle tit specific tige angle tit specific tige angle of tit	tetegettet gtaceegege tttttgetee eeagteetag eeetataaaa aaggggtaag 8100	
 All A A A A A A A A A A A A A A A A A A	aactccacac teggegegee agteateega tagaetgagt egeeegggta eeegtgttee – 8160	
<pre>211: LINGTH: 1733 222- YTES: PAT 232- GRANNISM: Xenotropic murine lukemia virus related virus 222- VGENTIG: 13777137771377713777137771377713777137771377713777137771377771377771377777777</pre>	caataaagcc ttttgctgtt tgcaa 8185	
Met Oli Th Yal Th Yal Th Yal Sh Th Fro La Ser Lau Ser Val May Val Gin Ser Val May Val Gin Ser Val May Val Use May Val Las Ser Aa Gin Ser Val May Val May Val May Val May	<pre><210> SEQ ID NO 2 <211> LENGTH: 1733 <212> TYPE: PRT <213> ORGANISM: Xenotropic murine lukemia virus related virus <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (537)(537) <223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid</pre>	
1 5 10 15 314 347 311 <td><400> SEQUENCE: 2</td> <td></td>	<400> SEQUENCE: 2	
20 25 30 Arg Arg Trp Val Thr Phe Cys Ser Ala Glu Trp Pro Thr Phe Asn Val 31y Trp Pro Gln Asp Gly Thr Phe Asn Leu Gly Val 11e Ser Gln Val 50 50 Fro Ql Pro Gly Pro Gly Pro Hie Gly His Pro Asp Gln Val 80 50 Fro Tyr Ile Val Thr Trp Glu Ala Leu Ala Tyr Asp Pro	Met Gly Gln Thr Val Thr Thr Pro Leu Ser Leu Thr Leu Gln His Trp 1 5 10 15	
35 40 45 Sly Trp Pro Gln Asp Gly Thr Phe Asn Leu Gly Val 11e Ser Gln Val 55 60 yes Ser Arg Val Phe Cys Pro Gly Pro His Gly Pro His Gly Fi Pro Asp Gln Val 75 80 Pro Tyr Ile Val Thr Trp Glu Ala Leu Ala Tyr Asp Pro Pro Pro Trp 90 90 Pro Pro Pro Pro Trp 95 Val Leu Pro Phe Val Ser Pro Lys Pro Pro Pro Pro Ser Arg Ser Ala Leu 115 125 Pro Pro Pro Vy Pro Gln 125 Val Leu Pro Asp Ser Gly Qly Pro Ser Ala Gln Pro Pro Ser Arg Ser Ala Leu 115 140 Pro Pro Pro Ser Ala Cli Pro 125 Yer Pro Ala Leu Thr Pro Ser Ile Lys Ser Lys Pro Pro Pro Jys Pro Gln 135 140 Namp Leu Thr Glu Asp 155 Yer Pro Pro Tyr Gly Ala Gln Pro Ser Ser Ser Ser Ala Arg Glu Asp 165 16 16 Pro Pro Tyr Gly Ala Gln Pro Ser Ser Ser Ser Ala Arg Glu Asp 165 17 17 Sul Glu Glu Ala Ala Thr Thr Ser Glu Val Ser Pro Pro Pro Pro 19 10 18 17 Sul Glu Glu Ala Ala Pro 105 10 125 10 11 Yer Pro Pro Pro Tyr Gly Ala Gln Pro Ser Ser Ser Ala Arg Glu Asp Asp 165 16 16 17 Sul Glu Glu Ala Ala Thr Thr Ser Glu Val Ser Pro Pro Ala Ala Asp Ser Thr 200 10 10 10 12 Yer Pro Pro Pro Pro Pro Pro Pro Pro Ala Ala Asp Ser Thr 210 10 10 10 <td< td=""><td>Gly Asp Val Gln Arg Ile Ala Ser Asn Gln Ser Val Asp Val Lys Lys 20 25 30</td><td></td></td<>	Gly Asp Val Gln Arg Ile Ala Ser Asn Gln Ser Val Asp Val Lys Lys 20 25 30	
50505560Lys Ser Arg Val Phe Cys Pro Gly Pro His Gly His Oly His Pro Asp Gln Val 8580Pro Tyr Ile Val Thr Trp Glu Ala Leu Ala Tyr Asp Pro Pro Pro Pro 10590Val Lys Pro Phe Val Ser Pro Lys Pro Pro Pro Pro Pro Thr Ala Pro 110100Val Leu Pro Pro Cly Pro Ser Ala Gln Pro Pro Pro Pro Lug Pro Pro Pro Thr Ala Pro 110110Val Leu Pro Pro Ala Leu Thr Pro Ser Ala Gln Pro Pro Pro Lys Pro Gln 135111Val Leu Pro Pro Tyr Gly Ala Gln Pro Ser Ser Ser Ala Arg Glu Asp 165115Val Leu Pro Pro Tyr Gly Ala Gln Pro Ser Ser Ser Ala Arg Glu Asp 165115Val Lu Ala Ala Thr Thr Ser Glu Val Ser Pro Pro Ser Pro Met 185115Val Glu Ala Ala Pro Thr Ser Jer O Pro Pro Pro Pro Pro Thr 165115Val Leu Pro Pro Tyr Gly Ala Gln Pro Ser Ser Ser Na Ala Glu Asp 165115Val Ser Arg Leu Arg Gly Arg Arg Asp Pro Pro Pro Pro Ser Pro Met 190125Val Ser Arg Leu Arg Gly Arg Arg Asp Pro Pro Ala Ala Asp Ser Thr 210220Pro Ser Phe Ser Ser Ser Asp Leu Tyr Asn Tyr Lys Asn Asn Asn 245Pro Ser Phe Ser Glu Aap Pro Cly Lys Leu Thr Ala Leu Ile Glu Ser 240Pro Ser Phe Ser Glu Aap Pro Gly Lys Leu Thr Ala Leu Ile Glu Ser 240Pro Ser Phe Ser He Glu Pro Thr Thr Pro Pro Pro Pro Pro Pro Pro Pro Pro Pr	Arg Arg Trp Val Thr Phe Cys Ser Ala Glu Trp Pro Thr Phe Asn Val 35 40 45	
55 70 75 80 Pro Tyr Ile Val Thr Trp Glu Ala Leu Ala Tyr Asp Pro Pro Pro Trp Pro Pro </td <td>Gly Trp Pro Gln Asp Gly Thr Phe Asn Leu Gly Val Ile Ser Gln Val 50 55 60</td> <td></td>	Gly Trp Pro Gln Asp Gly Thr Phe Asn Leu Gly Val Ile Ser Gln Val 50 55 60	
val u_5 u_5 u_5 u_6 u_6 u_5 u_5 u_6	Lys Ser Arg Val Phe Cys Pro Gly Pro His Gly His Pro Asp Gln Val 65 70 75 80	
100 105 110 Val Leu Pro Gl Pro Ala Gl Pro Ser Ala Leu Yal Pro Pro Gl Pro Ala Ala Gl Pro Ser Ala Leu Yal Pro Pro Pro Ala Lu Thr Pro Ser Ala Pro Pro <td>Pro Tyr Ile Val Thr Trp Glu Ala Leu Ala Tyr Asp Pro Pro Pro Trp 85 90 95</td> <td></td>	Pro Tyr Ile Val Thr Trp Glu Ala Leu Ala Tyr Asp Pro Pro Pro Trp 85 90 95	
115 120 125 Yr Pro Ala Leu Thr Pro Ser Ser Ly No Pro Hy Pro Gla Val Leu Pro Asp Ser Gly Pro Lu Hy Pro Pro Hy Pro Gla Asp Val Leu Pro	Val Lys Pro Phe Val Ser Pro Lys Pro Pro Pro Leu Pro Thr Ala Pro 100 105 110	
130 135 140 Val Leu Pro Asp Ser Gly Gly Pro Leu Ile Asp Leu Thr Glu Asp Pro Pro Tyr Gly Ala Gln Pro Ser Gly Ala Pro Ser Thr Ser Ser Ser Ser Thr Ser Ser Ser Thr Ser Ser Ser Thr Ser Ser Thr Ser Ser Thr Ser Ser Thr Ser	Val Leu Pro Pro Gly Pro Ser Ala Gln Pro Pro Ser Arg Ser Ala Leu 115 120 125	
145 150 155 160 Pro Pro Pro Tyr Gly Ala Gln Pro Ser Fro Pro Tyr Gly Ala Gln Pro Ser Fro Pro Tyr Gly Ala Gln Pro Ser Fro Pro Pro Tyr Gly Ala Glu Ser Fro Pro Ser Fro Pro Ser Fro Pro Ser Pro Met Glu Glu Ala Ala Th Th Ser Glu Ala Ala Th Th Ser Glu Ala As Th Ser Fro Pro Ser Fro Met Val Ser Arg Leu Arg As Pro	Tyr Pro Ala Leu Thr Pro Ser Ile Lys Ser Lys Pro Pro Lys Pro Gln 130 135 140	
165 170 175 Glu Glu Ala Ala Ala Thr Ser Glu Re <t< td=""><td>Val Leu Pro Asp Ser Gly Gly Pro Leu Ile Asp Leu Leu Thr Glu Asp 145 150 155 160</td><td></td></t<>	Val Leu Pro Asp Ser Gly Gly Pro Leu Ile Asp Leu Leu Thr Glu Asp 145 150 155 160	
IR0 IR0 IR0 VAI See See See See See See See See See VI See VI See See See See See See See See See VI See See See See See See See See See VI See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See	Pro Pro Tyr Gly Ala Gln Pro Ser Ser Ala Arg Glu Asn Asn 165 170 175	
195200205ThrSerGln Ala PheProLeuArg MetGlyAspGlyGln LeuGlnTyrTrpProPheSerSerAspLeuTyrAsnTrpLysAsnAsn225TrProPheSerGluAspProLuTyrAsnTrpLysAsnAsnAsn225ThProPheSerGluAspProGlyLysLeuTheAlaLeuSer240ProSerGluAspProGlyLysLeuTheAsnAsnAsn225ThProProSerGluAspProGluLeuTheAspSer240ProSerGluAspProGluLeuTheGluSerSer240ProProProSerSerSerSerSerSer241LeuIteThrAspProThrAspAspCysGluSer243LeuIteSerSerSerSerSerSerSerSerSer244ThrSerSerSerSerSerSerSerSerSer245ThrSerSerSerSerSerSerSerSerSer245ThrLeuSerSerSer </td <td>Glu Glu Glu Ala Ala Thr Thr Ser Glu Val Ser Pro Pro Ser Pro Met 180 185 190</td> <td></td>	Glu Glu Glu Ala Ala Thr Thr Ser Glu Val Ser Pro Pro Ser Pro Met 180 185 190	
210215220TyrTrpProPheSerSerAspLeuTyrAspTypLysAspAspAspAsp225TrProPheSerSerSerAspLeuTyrAspTrpLysAspAspAsp225ProSerGluAspProGlyLysLeuThrAlaLeuIleGluSer240ProSerGluAspProGlyLysLeuThrAlaLeuIleGluSerValLeuIleThrHisGlnProThrTrpAspAspCysGlnGlnLeuLeuGlyThrLeuThrGlyGluGluLysGlnArgValLeuLeuGluAla275ProSinGluGluLysGlnArgValLeuLeuGluAla	Val Ser Arg Leu Arg Gly Arg Arg Asp Pro Pro Ala Ala Asp Ser Thr 195 200 205	
225 230 235 240 Pro Ser Phe Ser Glu Asp Pro Gly Lys Leu Thr Ala Leu Ile Glu Ser 245 250 111 Glu Ser 255 Val Leu Ile Thr His Gln Pro Thr Trp Asp Asp Cys Gln Gln Leu Leu 260 265 260 270 Gly Thr Leu Leu Thr Gly Glu Glu Lys 280 210 Arg Val Leu Leu 285 240	Thr Ser Gln Ala Phe Pro Leu Arg Met Gly Gly Asp Gly Gln Leu Gln 210 215 220	
245 250 255 Val Leu Ile Thr His Gln Pro Thr Trp Asp Asp Cys Gln Gln Leu Leu 260 265 270 Gly Thr Leu Leu Thr Gly Glu Glu Lys Gln Arg Val Leu Leu Glu Ala 275 280 285	Tyr Trp Pro Phe Ser Ser Asp Leu Tyr Asn Trp Lys Asn Asn Asn 225 230 235 240	
260 265 270 Gly Thr Leu Leu Thr Gly Glu Glu Lys Gln Arg Val Leu Leu Glu Ala 275 280 285	Pro Ser Phe Ser Glu Asp Pro Gly Lys Leu Thr Ala Leu Ile Glu Ser 245 250 255	
275 280 285	Val Leu Ile Thr His Gln Pro Thr Trp Asp Asp Cys Gln Gln Leu Leu 260 265 270	
Arg Lys Ala Val Arg Gly Asn Asp Gly Arg Pro Thr Gln Leu Pro Asn	Gly Thr Leu Leu Thr Gly Glu Glu Lys Gln Arg Val Leu Leu Glu Ala 275 280 285	
	Arg Lys Ala Val Arg Gly Asn Asp Gly Arg Pro Thr Gln Leu Pro Asn	

-continued

	290					295					300				
Glu 305	Val	Asn	Ala	Ala	Phe 310	Pro	Leu	Glu	Arg	Pro 315	Asp	Trp	Asp	Tyr	Thr 320
Thr	Thr	Glu	Gly	Arg 325	Asn	His	Leu	Val	Leu 330	Tyr	Arg	Gln	Leu	Leu 335	Leu
Ala	Gly	Leu	Gln 340	Asn	Ala	Gly	Arg	Ser 345	Pro	Thr	Asn	Leu	Ala 350	Lys	Val
Lys	Gly	Ile 355	Thr	Gln	Gly	Pro	Asn 360	Glu	Ser	Pro	Ser	Ala 365	Phe	Leu	Glu
Arg	Leu 370	Lys	Glu	Ala	Tyr	Arg 375	Arg	Tyr	Thr	Pro	Tyr 380	Asp	Pro	Glu	Asp
Pro 385	Gly	Gln	Glu	Thr	Asn 390	Val	Ser	Met	Ser	Phe 395	Ile	Trp	Gln	Ser	Ala 400
Pro	Asp	Ile	Gly	Arg 405	ГЛЗ	Leu	Glu	Arg	Leu 410	Glu	Asp	Leu	Lys	Ser 415	ГЛа
Thr	Leu	Gly	Asp 420	Leu	Val	Arg	Glu	Ala 425	Glu	Lys	Ile	Phe	Asn 430	Lys	Arg
Glu	Thr	Pro 435	Glu	Glu	Arg	Glu	Glu 440	Arg	Ile	Arg	Arg	Glu 445	Ile	Glu	Glu
ГÀа	Glu 450	Glu	Arg	Arg	Arg	Ala 455	Glu	Asp	Glu	Gln	Arg 460	Glu	Arg	Glu	Arg
Asp 465	Arg	Arg	Arg	His	Arg 470	Glu	Met	Ser	Lys	Leu 475	Leu	Ala	Thr	Val	Val 480
Ile	Gly	Gln	Arg	Gln 485	Asp	Arg	Gln	Gly	Gly 490	Glu	Arg	Arg	Arg	Pro 495	Gln
	-	-	500		-		-	505	-		-	-	His 510	-	
-	-	515		-	-		520	-		-	-	525	Arg		
	530					535	_		-	-	540	-	Gln		
545					550					555			Pro		560
			-	565	-				570				Gln	575	
-			580	-	-			585			-		Thr 590	-	-
		595					600					605	Ala		
	610					615					620		Tyr		
625	-	-	_		630		-		-	635			His		640
_		-		645			-		650	-			Leu	655	
			660			-		665	-			-	Thr 670	Ū	-
		675					680					685	Phe		
Ala	Trp 690	Ala	Glu	Thr	Gly	Gly 695	Met	Gly	Leu	Ala	Val 700	Arg	Gln	Ala	Pro

-continued

													10 111		•
Leu 705	Ile	Ile	Pro	Leu	Lys 710	Ala	Thr	Ser	Thr	Pro 715	Val	. Ser	Ile	Lys	Gln 720
Tyr	Pro	Met	Ser	Gln 725	Glu	Ala	Arg	Leu	Gly 730		Lys	Prc) His	Ile 735	Gln
Arg	Leu	Leu	Asp 740	Gln	Gly	Ile	Leu	Val 745	Pro	Сув	Gln	ı Ser	Pro 750		Asn
Thr	Pro	Leu 755	Leu	Pro	Val	ГЛа	Lys 760	Pro	Gly	Thr	Asn	n Asp 765	-	Arg	Pro
Val	Gln 770	Asp	Leu	Arg	Glu	Val 775	Asn	Гуз	Arg	Val	Glu 780	_) Ile	His	Pro
Thr 785	Val	Pro	Asn	Pro	Tyr 790	Asn	Leu	Leu	Ser	Gly 795	Leu	l Pro) Pro	Ser	His 800
Gln	Trp	Tyr	Thr	Val 805	Leu	Asp	Leu	Lys	Asp 810	Ala	Phe	e Ph∈	e Cys	Leu 815	Arg
Leu	His	Pro	Thr 820	Ser	Gln	Pro	Leu	Phe 825	Ala	Phe	Glu	ı Trp	Arg 830	-	Pro
Glu	Met	Gly 835	Ile	Ser	Gly	Gln	Leu 840	Thr	Trp	Thr	Arg	j Leu 845		Gln	Gly
Phe	Lys 850	Asn	Ser	Pro	Thr	Leu 855	Phe	Asp	Glu	Ala	Leu 860		Arg	Asp	Leu
Ala 865	Asp	Phe	Arg	Ile	Gln 870	His	Pro	Asp	Leu	Ile 875	Leu	ı Lev	ı Gln	Tyr	Val 880
Aap	Asp	Leu	Leu	Leu 885	Ala	Ala	Thr	Ser	Glu 890	Gln	Asp	о Сує	Gln	Arg 895	Gly
Thr	Arg	Ala	Leu 900	Leu	Gln	Thr	Leu	Gly 905	Asn	Leu	Gly	r Tyr	Arg 910		. Ser
Ala	Lys	Lys 915	Ala	Gln	Ile	Сүз	Gln 920	Lys	Gln	Val	Lys	925		Gly	Tyr
Leu	Leu 930	Lys	Glu	Gly	Gln	Arg 935	Trp	Leu	Thr	Glu	Ala 940		l Làa	Glu	. Thr
Val 945	Met	Gly	Gln	Pro	Thr 950	Pro	Lys	Thr	Pro	Arg 955	Gln	ı Lev	ı Arg	Glu	. Phe 960
Leu	Gly	Thr	Ala	Gly 965	Phe	Суз	Arg	Leu	Trp 970	Ile	Prc	₀ Gly	Phe	Ala 975	Glu
Met	Ala	Ala	Pro 980	Leu	Tyr	Pro	Leu	Thr 985	Lys	Thr	Gly	7 Thr	: Leu 990		Asn
Trp	Gly	Pro 995	Asp	Gln	Gln	Lys	Ala 100	-	r Gl	n Glu	u Il	-	rs G 005	ln A	la Leu
Leu	Thr 1010		a Pro	o Ala	a Lei	1 Gly 10	-	eu P:	ro A	sp L		'hr .020	Lya	Pro	Phe
Glu	Leu 1025		e Va	l Asj	p Glı	1 Ly: 10		ln G	ly T	yr A		уя .035	Gly	Val	Leu
Thr	Gln 1040		s Le	u Gl	y Pro	5 Trj 104		rg A	rg P	ro V		la .050	Tyr	Leu	Ser
Lys	Lys 1059		ı Asj	p Pro	o Val	1 Al. 10		la G	ly T	rp P:		ro .065	Сув	Leu	Arg
Met	Val 1070		a Ala	a Ile	e Ala	a Va 10		eu Tl	hr L	ys A:		la .080	Gly	Lys	Leu
Thr	Met 1085		y Glı	n Pro	o Lei	1 Va 10		le L	eu A	la P:		lis .095	Ala	Val	Glu
Ala	Leu 1100		l Ly:	s Glı	n Pro	o Pro 110		ab y:	rg T	rp L		er .110	Asn	Ala	Arg

Met	Thr 1115	His	Tyr	Gln	Ala	Met 1120		Leu	Asp	Thr	Asp 1125		Val	Gln
Phe	Gly 1130	Pro	Val	Val	Ala	Leu 1135		Pro	Ala	Thr	Leu 1140	Leu	Pro	Leu
Pro	Glu 1145		Glu	Ala	Pro	His 1150		Сүз	Leu	Glu	Ile 1155		Ala	Glu
Thr	His 1160	Gly	Thr	Arg	Pro	Asp 1165		Thr	Asp	Gln	Pro 1170	Ile	Pro	Asp
Ala	Asp 1175		Thr	Trp	Tyr	Thr 1180		Gly	Ser	Ser	Phe 1185	Leu	Gln	Glu
Gly	Gln 1190	Arg	Arg	Ala	Gly	Ala 1195		Val	Thr	Thr	Glu 1200		Glu	Val
Ile	Trp 1205		Arg	Ala	Leu	Pro 1210		Gly	Thr	Ser	Ala 1215		Arg	Ala
Glu	Leu 1220		Ala	Leu	Thr	Gln 1225		Leu	Lys	Met	Ala 1230	Glu	Gly	ГЛа
Lys	Leu 1235		Val	Tyr	Thr	Asp 1240		Arg	Tyr	Ala	Phe 1245	Ala	Thr	Ala
His	Val 1250	His	Gly	Glu	Ile	Tyr 1255		Arg	Arg	Gly	Leu 1260	Leu	Thr	Ser
Glu	Gly 1265	Arg	Glu	Ile	Lys	Asn 1270		Asn	Glu	Ile	Leu 1275	Ala	Leu	Leu
Lys	Ala 1280	Leu	Phe	Leu	Pro	Lys 1285		Leu	Ser	Ile	Ile 1290	His	Сув	Pro
Gly	His 1295	Gln	Lys	Gly	Asn	Ser 1300		Glu	Ala	Arg	Gly 1305	Asn	Arg	Met
Ala	Asp 1310	Gln	Ala	Ala	Arg	Glu 1315		Ala	Met	Lys	Ala 1320	Val	Leu	Glu
Thr	Ser 1325	Thr	Leu	Leu	Ile	Glu 1330		Ser	Thr	Pro	Tyr 1335	Thr	Pro	Pro
His	Phe 1340	His	Tyr	Thr	Glu	Thr 1345	Asp	Leu	Lys	Arg	Leu 1350	Arg	Glu	Leu
Gly	Ala 1355	Thr	Tyr	Asn	Gln	Thr 1360		Gly	Tyr	Trp	Val 1365	Leu	Gln	Gly
Lya	Pro 1370	Val	Met	Pro	Asp	Gln 1375		Val	Phe	Glu	Leu 1380	Leu	Asp	Ser
Leu	His 1385	Arg	Leu	Thr	His	Leu 1390	Ser	Pro	Gln	Lys	Met 1395	Lys	Ala	Leu
Leu	Asp 1400	Arg	Glu	Glu	Ser	Pro 1405		Tyr	Met	Leu	Asn 1410	Arg	Asp	Arg
Thr	Ile 1415	Gln	Tyr	Val	Thr	Glu 1420		Суз	Thr	Ala	Cys 1425	Ala	Gln	Val
Asn	Ala 1430	Ser	Lys	Ala	Lys	Ile 1435	Gly	Ala	Gly	Val	Arg 1440	Val	Arg	Gly
His	Arg 1445	Pro	Gly	Thr	His	Trp 1450		Val	Asp	Phe	Thr 1455	Glu	Val	Lya
Pro	Gly 1460	Leu	Tyr	Gly	Tyr	Lys 1465		Leu	Leu	Val	Phe 1470	Val	Asp	Thr
Phe	Ser 1475	Gly	Trp	Val	Glu	Ala 1480		Pro	Thr	Lys	Arg 1485	Glu	Thr	Ala
Lya	Val	Val	Ser	Lys	Lys	Leu	Leu	Glu	Asp	Ile	Phe	Pro	Arg	Phe

-continued

												-00	μ	ΤΠ	uec.		
	1490					149	5					150	0				
Gly	Met 1505		Glr	ı Val	Leu	Gly 151		er A	Asp	Asn	Gly	Pro 151		a	Phe	Ala	
Ser	Gln 1520		Ser	Gln	Ser	Val 152		la A	Asp	Leu	Leu	Gly 153		le	Asp	Trp	
Lys	Leu 1535		Суз	3 Ala	Tyr	Arg 154		ro (Gln	Ser	Ser	Gly 154		n	Val	Glu	
Arg	Met 1550		. Arg	g Thr	Ile	Lys 155		lu ?	Thr	Leu	Thr	Lys 156		eu	Thr	Leu	
Ala	Ser 1565		Thr	Arg	Asp	Trp 157		al I	Leu	Leu	Leu	Pro 157		eu	Ala	Leu	
Tyr	Arg 1580		Arg	g Asn	Thr	Pro 158		ly I	Pro	His	Gly	Leu 159		ır	Pro	Tyr	
Glu	Ile 1595		Туг	Gly	Ala	Pro 160		ro I	Pro	Leu	Val	Asn 160		ne	His	Asp	
Pro	Glu 1610		Ser	: Lys	Leu	Thr 161		an S	Ser	Pro	Ser	Leu 162		n	Ala	His	
Leu	Gln 1625		Leu	ı Gln	Ala	Val 163		ln (Gln	Glu	Val	Trp 163	-	's	Pro	Leu	
Ala	Ala 1640		Туг	Gln	Asp	Gln 164		eu A	Asp	Gln	Pro	Val 165		e	Pro	His	
Pro	Phe 1655		Val	. Gly	Asp	Ala 166		al S	Trp	Val	Arg	Arg 166		s	Gln	Thr	
Lys	Asn 1670		Glu	ı Pro	Arg	Trp 167		ys (Gly	Pro	Tyr	Thr 168		al	Leu	Leu	
Thr	Thr 1685		Thr	Ala	Leu	Lys 169		al A	Asp	Gly	Ile	Ser 169		a	Trp	Ile	
His	Ala 1700		His	8 Val	Lys	Ala 170		la 1	Thr	Thr	Pro	Pro 171		a	Gly	Thr	
Ala	Trp 1715		Val	. Gln	Arg	Ser 172		ln 2	Asn	Pro	Leu	Lys 172		.e	Arg	Leu	
Thr	Arg 1730		Ala	a Pro													
<21 <21	D> SE L> LE 2> TY 3> OR	NGTH PE :	: 53 PRT	6	trop	ic m	urir	ne :	luke	emia	vir	us r	elat	ed	. vir	rus	
<40)> SE	QUEN	CE :	3													
Met 1	Gly	Gln	Thr	Val 5	Thr '	Thr	Pro	Leı	u Se 10		eu T	hr L	eu C	ln	His 15	Trp	
Gly	Asp		Gln 20	Arg	Ile 2	Ala	Ser	Ası 25	n Gl	ln S	er V	al A		7al 80	Lys	s Lys	
Arg	Arg	Trp 35	Val	Thr	Phe		Ser 40	Ala	a Gl	Lu T	rp P	ro T 4		he	Asr	ı Val	
Gly	Trp 50	Pro	Gln	Asp		Thr 55	Phe	Ası	n Le	eu G		al I O	le S	Ser	Glr	ı Val	
Lys 65	Ser	Arg	Val		Cys : 70	Pro	Gly	Pro	o Hi	is G 7		is P	ro A	/ab	Glr	n Val 80	
Pro	Tyr	Ile	Val	Thr 85	Trp (Glu .	Ala	Leı	u Al 90		yr A	ap P	ro I	ro	Pro 95	Trp	
Val	Lys	Pro	Phe	Val	Ser 3	Pro	Lys	Pro	o Pi	ro P	ro L	eu P	ro 7	hr	Ala	a Pro	

-continued

												con		ucu	
			100					105					110		
Val	Leu	Pro 115	Pro	Gly	Pro	Ser	Ala 120	Gln	Pro	Pro	Ser	Arg 125	Ser	Ala	Leu
Tyr	Pro 130	Ala	Leu	Thr	Pro	Ser 135	Ile	Lys	Ser	Lys	Pro 140	Pro	Lys	Pro	Gln
Val 145	Leu	Pro	Asp	Ser	Gly 150	Gly	Pro	Leu	Ile	Asp 155	Leu	Leu	Thr	Glu	Asp 160
Pro	Pro	Pro	Tyr	Gly 165	Ala	Gln	Pro	Ser	Ser 170	Ser	Ala	Arg	Glu	Asn 175	Asn
Glu	Glu	Glu	Ala 180	Ala	Thr	Thr	Ser	Glu 185	Val	Ser	Pro	Pro	Ser 190	Pro	Met
Val	Ser	Arg 195	Leu	Arg	Gly	Arg	Arg 200	Asp	Pro	Pro	Ala	Ala 205	Asp	Ser	Thr
Thr	Ser 210	Gln	Ala	Phe	Pro	Leu 215	Arg	Met	Gly	Gly	Asp 220	Gly	Gln	Leu	Gln
Tyr 225	Trp	Pro	Phe	Ser	Ser 230	Ser	Asp	Leu	Tyr	Asn 235	Trp	Lys	Asn	Asn	Asn 240
Pro	Ser	Phe	Ser	Glu 245	Asp	Pro	Gly	Lys	Leu 250	Thr	Ala	Leu	Ile	Glu 255	Ser
Val	Leu	Ile	Thr 260	His	Gln	Pro	Thr	Trp 265	Asp	Asp	СЛа	Gln	Gln 270	Leu	Leu
_		275			Gly		280	-		-		285			
	290				Gly	295					300				
305					Phe 310				-	315	-	_	_	-	320
				325	Asn				330					335	
	-		340		Ala	-	-	345					350	-	
		355			Gly		360					365			
	370				Tyr	375					380				
385	-				Asn 390					395		-			400
	-		-	405	ГЛЗ			-	410		-		-	415	-
			420		Val			425					430		
		435			Arg		440	-		-	-	445			
Lys	Glu 450	Glu	Arg	Arg	Arg	Ala 455	Glu	Asp	Glu	Gln	Arg 460	Glu	Arg	Glu	Arg
Asp 465	Arg	Arg	Arg	His	Arg 470	Glu	Met	Ser	Lys	Leu 475	Leu	Ala	Thr	Val	Val 480
				485	Asp				490					495	
Leu	Asb	Lys	Asp 500	Gln	Сүз	Ala	Tyr	Cys 505	Lys	Glu	Lys	Gly	His 510	Trp	Ala

Lys	Asp	Cys 515	Pro	Lys	Lys	Pro	Arg 520	Gly	Pro	Arg	Gly	Pro 525	Arg	Pro	Gln	
Thr	Ser 530	Leu	Leu	Thr	Leu	Gly 535	Asp									
<213 <212	0> SI L> LI 2> TY 3> OI	ENGTI ZPE :	I: 64 PRT	15	otroj	pic T	nuriı	ne lu	ıkem:	ia v:	irus	rela	ated	viru	15	
<400)> SI	EQUEI	ICE :	4												
Met 1	Glu	Ser	Pro	Ala 5	Phe	Ser	Lys	Pro	Leu 10	Lys	Asp	Lys	Ile	Asn 15	Pro	
Trp	Gly	Pro	Leu 20	Ile	Ile	Met	Gly	Ile 25	Leu	Val	Arg	Ala	Gly 30	Ala	Ser	
Val	Gln	Arg 35	Asp	Ser	Pro	His	Gln 40	Val	Phe	Asn	Val	Thr 45	Trp	Lys	Ile	
Thr	Asn 50	Leu	Met	Thr	Gly	Gln 55	Thr	Ala	Asn	Ala	Thr 60	Ser	Leu	Leu	Gly	
Thr 65	Met	Thr	Asp	Thr	Phe 70	Pro	Lys	Leu	Tyr	Phe 75	Asp	Leu	Сув	Asp	Leu 80	
Val	Gly	Asp	Asn	Trp 85	Asp	Asp	Pro	Glu	Pro 90	Asp	Ile	Gly	Asp	Gly 95	Суз	
Arg	Ser	Pro	Gly 100	Gly	Arg	Lys	Arg	Thr 105	Arg	Leu	Tyr	Asp	Phe 110	Tyr	Val	
Суз	Pro	Gly 115	His	Thr	Val	Leu	Thr 120	Gly	Суз	Gly	Gly	Pro 125	Arg	Glu	Gly	
Tyr	Cys 130	Gly	Lys	Trp	Gly	Cys 135	Glu	Thr	Thr	Gly	Gln 140	Ala	Tyr	Trp	Lys	
Pro 145	Ser	Ser	Ser	Trp	Asp 150	Leu	Ile	Ser	Leu	Lys 155	Arg	Gly	Asn	Thr	Pro 160	
Lys	Gly	Gln	Gly	Pro 165	Сүз	Phe	Asp	Ser	Ser 170	Val	Gly	Ser	Gly	Ser 175	Ile	
Gln	Gly	Ala	Thr 180	Pro	Gly	Gly	Arg	Cys 185	Asn	Pro	Leu	Val	Leu 190	Glu	Phe	
Thr	Asp	Ala 195	Gly	Lys	Arg	Ala	Ser 200	Trp	Asp	Ala	Pro	Lys 205	Thr	Trp	Gly	
Leu	Arg 210	Leu	Tyr	Arg	Ser	Thr 215	Gly	Ala	Asp	Pro	Val 220	Thr	Leu	Phe	Ser	
Leu 225	Thr	Arg	Gln	Val	Leu 230	Asn	Val	Gly	Pro	Arg 235	Val	Pro	Ile	Gly	Pro 240	
Asn	Pro	Val	Ile	Thr 245	Glu	Gln	Leu	Pro	Pro 250	Ser	Gln	Pro	Val	Gln 255	Ile	
Met	Leu	Pro	Arg 260	Thr	Pro	Arg	Pro	Pro 265	Pro	Ser	Gly	Ala	Ala 270	Ser	Met	
Val	Pro	Gly 275	Ala	Pro	Pro	Pro	Ser 280	Gln	Gln	Pro	Gly	Thr 285	Gly	Asp	Arg	
Leu	Leu 290	Asn	Leu	Val	Glu	Gly 295	Ala	Tyr	Leu	Ala	Leu 300	Asn	Leu	Thr	Ser	
Pro 305	Asp	Lys	Thr	Gln	Glu 310	Сүз	Trp	Leu	Cys	Leu 315	Val	Ser	Gly	Pro	Pro 320	
Tyr	Tyr	Glu	Gly	Val 325	Ala	Val	Leu	Gly	Thr 330	Tyr	Ser	Asn	His	Thr 335	Ser	

-continued

											-	con	CTU	uea			
Ala I	Pro	Ala	Asn 340	Сүз	Ser	Val	Thr	Ser 345	Gln	His	Lys	Leu	Thr 350	Leu	Ser		
Glu N	Val	Thr 355	Gly	Gln	Gly	Leu	Cys 360	Ile	Gly	Ala	Val	Pro 365	Lys	Thr	His		
Gln A	Ala 370	Leu	Cys	Asn	Thr	Thr 375	Gln	Lys	Thr	Ser	Asp 380	Gly	Ser	Tyr	Tyr		
Leu 2 385	Ala	Ser	Pro	Ala	Gly 390	Thr	Ile	Trp	Ala	Сув 395	Ser	Thr	Gly	Leu	Thr 400		
Pro (Суз	Leu	Ser	Thr 405	Thr	Val	Leu	Asn	Leu 410	Thr	Thr	Asp	Tyr	Cys 415	Val		
Leu V	Val	Glu	Leu 420	Trp	Pro	Lys	Val	Thr 425	Tyr	His	Ser	Pro	Asn 430	Tyr	Val		
Tyr (Gly	Gln 435	Phe	Glu	Lys	Lys	Thr 440	Lys	Tyr	Гуз	Arg	Glu 445	Pro	Val	Ser		
Leu 1	Thr 450	Leu	Ala	Leu	Leu	Leu 455	Gly	Gly	Leu	Thr	Met 460	Gly	Gly	Ile	Ala		
Ala (465	Gly	Val	Gly	Thr	Gly 470	Thr	Thr	Ala	Leu	Val 475	Ala	Thr	Lys	Gln	Phe 480		
Glu (Gln	Leu	Gln	Ala 485	Ala	Ile	His	Thr	Asp 490	Leu	Gly	Ala	Leu	Glu 495	Lys		
Ser \	Val	Ser	Ala 500	Leu	Glu	Lys	Ser	Leu 505	Thr	Ser	Leu	Ser	Glu 510	Val	Val		
Leu (Gln	Asn 515	Arg	Arg	Gly	Leu	Asp 520	Leu	Leu	Phe	Leu	Lys 525	Glu	Gly	Gly		
Leu (Сув 530	Ala	Ala	Leu	Lys	Glu 535	Glu	Сув	Cys	Phe	Tyr 540	Ala	Asp	His	Thr		
Gly \ 545	Val	Val	Arg	Asp	Ser 550	Met	Ala	Lys	Leu	Arg 555	Glu	Arg	Leu	Asn	Gln 560		
Arg (Gln	Lys	Leu	Phe 565	Glu	Ser	Gly	Gln	Gly 570	Trp	Phe	Glu	Gly	Leu 575	Phe		
Asn A	Arg	Ser	Pro 580	Trp	Phe	Thr	Thr	Leu 585	Ile	Ser	Thr	Ile	Met 590	Gly	Pro		
Leu 1	Ile	Val 595	Leu	Leu	Leu	Ile	Leu 600	Leu	Phe	Gly	Pro	Cys 605	Ile	Leu	Asn		
Arg I	Leu 610	Val	Gln	Phe	Val	Lys 615	Asp	Arg	Ile	Ser	Val 620	Val	Gln	Ala	Leu		
Val I 625	Leu	Thr	Gln	Gln	Tyr 630	His	Gln	Leu	Lys	Ser 635	Ile	Asp	Pro	Glu	Glu 640		
Val (Glu	Ser	Arg	Glu 645													
<210: <211:																	
<212:	> T)	PE:	DNA														
<213: <220:				Art:	lfic:	ial S	Seque	ence									
<223:				ORMA'	LION	: 419	9F PC	CR pi	rime	r							
<400;	> SE	EQUEI	ICE :	5													
atcaç	gtta	ac d	ctaco	ccga	gt co	ggac										25	
<210:																	
<211: <212:				3													
<213:				Art:	lfic:	ial S	Seque	ence									

29

	-continued
<pre><220> FEATURE: <223> OTHER INFORMATION: 1154R PCR primer</pre>	
<400> SEQUENCE: 6	
geogeetett etteattgtt ete	23
<210> SEQ ID NO 7 <211> LENGTH: 22	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence <220> FEATURE:	
<223> OTHER INFORMATION: 5922F PCR primer	
<400> SEQUENCE: 7	
getaatgeta eeteeeteet gg	22
<210> SEQ ID NO 8	
<211> LENGTH: 26 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: 6273R PCR primer	
<400> SEQUENCE: 8	
ggagcccact gaggaatcaa aacagg	26
<210> SEQ ID NO 9	
<211> LENGTH: 25	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: 4F PCR primer	
<400> SEQUENCE: 9	
ccagtcatcc gatagactga gtcgc	25
<210> SEQ ID NO 10	
<211> LENGTH: 26 <212> TYPE: DNA	
<212> TIPE: DNA <213> ORGANISM: Artificial Sequence	
<pre><220> FEATURE: <223> OTHER INFORMATION: 770R PCR primer</pre>	
<400> SEQUENCE: 10	
taccatectg aggecatect acattg	26
	20
<210> SEQ ID NO 11	
<211> LENGTH: 23 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: 350F PCR primer	
<400> SEQUENCE: 11	
gagttegtat teeeggeege age	23
<210> SEQ ID NO 12	
<2105 SEQ ID NO 12 <2115 LENGTH: 21	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence <220> FEATURE:	
<223> OTHER INFORMATION: 5135R PCR primer	
<400> SEQUENCE: 12	

30

	-continued
cctgcggcat tccaaatctc g	21
<210> SEQ ID NO 13	
<211> LENGTH: 25	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: 4789R PCR primer	
<400> SEQUENCE: 13	
gggtgagtet gtgtagggag tetaa	25
<210> SEQ ID NO 14 <211> LENGTH: 25	
<211> LENGIA: 25 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: 4166F PCR primer	
<400> SEQUENCE: 14	
caagaaggac aacggagagc tggag	25
<210> SEQ ID NO 15	
<211> LENGTH: 24	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence <220> FEATURE:	
<223> OTHER INFORMATION: 7622R PCR primer	
<400> SEQUENCE: 15	
ggcctgcact accgaaattc tgtc	24
<210> SEQ ID NO 16	
<211> LENGTH: 27	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: 4672F PCR primer	
<400> SEQUENCE: 16	
gagccaccta caatcagaca aaaggat	27
<210> SEQ ID NO 17	
<211> LENGTH: 25	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: 7590R PCR primer	
<400> SEQUENCE: 17	
ctggaccaag cggttgagaa tacag	25
<210> SEQ ID NO 18	
<211> SEQ 1D NO 18 <211> LENGTH: 21	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<pre><220> FEATURE: <223> OTHER INFORMATION: 7472F PCR primer</pre>	
<400> SEQUENCE: 18	
	21
tcaggacaag ggtggtttga g	21
<210> SEQ ID NO 19	
<211> LENGTH: 23	

31

-continued	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: 8182R PCR primer	
<400> SEQUENCE: 19	
caaacagcaa aaggctttat tgg	23
<210> SEQ ID NO 20 <211> LENGTH: 19 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: 8147R PCR primer	
ccgggcgact cagtetate	19
<210> SEQ ID NO 21 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: MCox2-F2 PCR primer	
<400> SEQUENCE: 21	
ttctaccage tgtaateett a	21
<210> SEQ ID NO 22 <211> LENGTH: 22 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: MCox2-R1 PCR primer <400> SEQUENCE: 22	
gttttaggtc gtttgttggg at	22
<pre><210> SEQ ID NO 23 <211> LENGTH: 31 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: MCox2-PR1 PCR primer <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)(1) <223> OTHER INFORMATION: FAM moiety for real-time PCR <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (31)(31) <223> OTHER INFORMATION: BHQ moiety for real-time PCR</pre>	
<400> SEQUENCE: 23	
cgtagettea gtateattgg tgeeetatgg t	31
<pre><210> SEQ ID NO 24 <211> LENGTH: 26 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: MCox2-P1 PCR primer <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)(1) <223> OTHER INFORMATION: FAM moiety for real-time PCR <220> FEATURE:</pre>	

32

-continued

<221> NAME/KEY: misc_feature <222> LOCATION: (26)..(26) <223> OTHER INFORMATION: BHQ moiety for real-time PCR <400> SEQUENCE: 24 ttgetetece etetetaege atteta 26 <210> SEQ ID NO 25 <211> LENGTH: 377 <212> TYPE: DNA <213> ORGANISM: Xenotropic murine lukemia virus related virus <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (3)..(3) <223> OTHER INFORMATION: n is a, c, q, or t <400> SEQUENCE: 25 congattace ttgcagcact ggggagatgt ccagegcatt gcatecaace agtetgtgga 60 tqtcaqqaaq aqqcqctqqa ttaccttctq ttccqctqaa tqqccaactt tcaatqtqqq 120 atggcetcag gatggtactt tcaatttaag tattatetet caggttaagt ctagagtgtt 180 ttgtcctggt ccccacggac acccggatca ggtcccatat atcgtcacct gggaggcact 240 tgcctatgac ccccccgtgg gtcaaaccgt ttgtgtctcc taaacttcct cccttgccga 300 cageteeegt ecteeegeee ggteettetg egeaacetee gteeegatet geeetttaee 360 ctgcccttac cctctaa 377 <210> SEQ ID NO 26 <211> LENGTH: 384 <212> TYPE: DNA <213> ORGANISM: Xenotropic murine lukemia virus related virus <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (4)..(4) <223> OTHER INFORMATION: n is a, c, q, or t <400> SEQUENCE: 26 ctcngatcta ccttgcagca ctggggagat gtccagcgca ttgcatccaa ccagtctgtg 60 qatqtcaaqa aqaqqcqctq qqttaccttc tqttccqccq aatqqccaac tttcaatqta 120 ggatggcctc aggatggtac ttttaattta ggtgttatct ctcaggtcaa gtctagagtg 180 ttttgtcctg gtccccacgg acacccggat caggtcccat atatcgtcac ctgggaggca 240 cttgcctatg acccccctcc gtgggtcaaa ccgtttgtct ctcctaaacc ccctccttta 300 ccqacaqete ccqtceteec qeecqqteet tetqeqeaac etecqteecq atetqeecaa 360 tacactoccc ttacaaaaat aaaa 384 <210> SEO ID NO 27 <211> LENGTH: 366 <212> TYPE: DNA <213> ORGANISM: Xenotropic murine lukemia virus related virus <400> SEQUENCE: 27 ttgcagcact ggggagatgt ccagcgcatt gcatccaacc agtctgtgga tgtcaagaag 60 aggegetggg ttacettetg tteegeegaa tggeeaactt teaatgtagg atggeeteag 120 gatggtactt ttaatttagg tgttatctct caggtcaagt ctagagtgtt ttgtcctggt 180 ccccacggac acccggatca ggtcccatat atcgtcacct gggaggcact tgcctatgac 240 ccccctccgt gggtcaaacc gtttgtctct cctaaacccc ctcctttacc gacagetccc 300

-continued

accc 360
<pre><211> LENGTH: 366 <212> TYPE: DNA <213> ORGANISM: Xenotropic murine lukemia virus related virus <400> SEQUENCE: 28 ttgcagcact ggggagatgt ccagcgcatt gcatccaacc agtctgtgga tgtcaagaag 60 aggcgctggg ttaccttctg ttccgccgaa tggccaactt tcaatgtagg atggcctcag 120 gatggtactt ttaattagg tgttactct caggtcaagt ctagagtgtt ttgtcctggt 180 ccccaccggac acccggatca ggtcccata atcgtcacct gggaggcact tgcctatgac 240 ccccacccgt gggtcaaacc gttgtctct cctaaacccc tcctttacc gacagctocc 300 gtcctcccgc ccggtcctt tgcgcaact ccgtcccgat ctgccctta ccctgccctt 360 accctc 366 <210> SEQ ID NO 29 <211> LENGTH: 366 <212> TYPE: DNA <213> ORGANISM: Kenotropic murine lukemia virus related virus <400> SEQUENCE: 29 ttgcagcact ggggagatgt ccacgcgcatt gcaccacc agtctgtgga tgtccaagaag 60 aggcgctggg ttaccttctg ttccgccgaa tggccacact tcaatgtagg atggccccag 120 gatggtactt ttaattagg tattactct caggtcaagt ctagatgtt ttgcctggt 180 ccccaccggac acccggatca ggtcccata tacgtcaagt aggcgcat tgccttage 240 ccccatccgt gggtcaaacc gtttgtctt cctaaacccc gtccggaggcat tgcctaga 240 ccccctccgt gggtcaaacc gtttgtctt cctaaacccc tcctttacc gacagtcce 300 gtcctcccgc ccggtcctt tgcgcaact ccgtcccgat tgcccttag 240 ccccatccgt gggtcaaacc gtttgtctt cctaaacccc tcctttacc gacagtcce 300 gtcctccccg cggtcctt tgcgcaact ccgtcccgat tgccctta cctgccctt 360 accccc 366 <211> LENGTH: 366 <212> TYPE: DNA <210> SEQ ID NO 30 <220> FEMTURE: <221> INME/KHY: mic_feature <222> ICCTION: (364)(365) <222> CPMTURE: <222> FEMTURE: <222> FEMTURE: <222> ICMTURE INFORMATION: n Is a, c, g, or t <400> SEQUENCE: 30 ttgcagcact gggggagatgt ccagcgcatt gcatccaac agtctgtgga tgtcaagaag 60 aggcgctggg ttaccttctg ttccgcgaa tggccaact tcaatgtagg atggcctcag 120 gatggtactt ttaattagg tgttacttc caggtcaagt ctagatgtt ttgtcctgg 120 gatggtactt ttaattagg tgttacttc caggtcaagt ctagatgtt tgtcctgg 120 gatggtactt ttaattagg tgttacttc caggtcaagt ctagatgtt tgcctagga 240 ccccccccg ggggagatgt ccagcgcatt accgcgacag ctagatgtt tgtcctgg 240 ccccccccgg acccggatca gttccctcg ccaggtcag tcagatgt tgccaagaag 60 aggcgctggg ttaccttcg tccagcgat ggccactt tcaatgtagg atgccccag 12</pre>
<pre>ttgcagcact ggggagatgt ccagcgcatt gcatccaacc agtctgtgga tgtcaagaag 60 aggcgctgg ttaccttctg ttccgccgaa tggccaact tcaatgtagg atggcctag ccccccgg acccggatca ggtccatat atcgtcacct gggaggacat tgcctatgac 240 ccccctccgt gggtcaaacc gtttgtctct cctaaacccc tcctttacc gacagctccc 300 gtcctcccgc ccggtcctt tgcgcaact ccgtcccgat ctgccctta ccctgccctt 360 accctc 366 </pre>
aggcgctggg ttaccttctg ttccgccgaa tggccaact tcaatgtagg atggcctcag 120 gatggtactt ttaatttagg tgttatctct caggtcaagt ctagagtgtt ttgtcctggt 180 ccccacegga acccggatca ggtccatat atggtcacet gggaggacat tgcctagae 240 cccctccgg gggtcaaace gttgtctct cctaaacccc tcctttace gacagetccc 300 gtectcccge ccggtectt tgcgcaact ccgtcccgat ctgccctta ccetgccctt 360 accctc 366 2210 > SEO ID NO 29 <111 > LENGTH: 366 <212 > TFE: DNA <213 > ORGANISM: Xenotropic murine lukemia virus related virus <400 > SEQUENCE: 29 ttgcagcact ggggagatgt ccacgcgatt gcatccaace agtctgtgga tgtcaagaag 60 aggcgctggg ttacctctg ttccgccgaa tggccaact tcaatgtagg atggcctag 120 gatggtactt ttaatttagg tattatctc caggtcaagt ctagagtgt ttgtcatgae 240 ccccacegga caccggatca ggtccatat atcgtcact ggaggagcat tgcctagae 360 agccct 360 gtcctcccge ccggtcate tgcgcaact ccgtccgat ctgcatgte 360 acccc 360 gtcctcccge ccggtcaac gttgtcttc cctaaaccc ctcctttace gacagetccc 360 gtcctcccge ccggtcate tgcgcaact ccgtccgat tgcactta cctgccctta 360 acccc 360 <close 30<br="" id="" no="" seo=""><close 30<br="" id="" no="" seo=""><close 30<br="" id="" no="" seo=""><close feature:<br=""><lose feature:<br=""></lose></lose></lose></lose></lose><</lose></lose></lose></lose></lose></lose></lose></lose></lose></lose></lose></lose></lose></lose></lose></lose></lose></lose></lose></lose></lose></lose></lose></lose></lose></lose></lose></lose></lose></lose></lose></lose></lose></lose></lose></lose></lose></lose></lose></lose></lose></lose></lose></lose></lose></lose></lose></lose></lose></lose></close></close></close></close>
gatggtactt ttaatttagg tgttatctct caggtcaagt ctagagtgtt ttgtcctggt180ccccacggac acceggatca ggtcccata atcgtcact gggaggcact tgcctagac240ccccatcegt gggtcaaace gttgtetet ectaaacece ctectttace gacagetece300gtcetecege ceggtectte tgegcaacet ecgecegat etgecetta ecetgecett360accete366<210> SEQ ID NO 29<211> LENNTH: 366<212> TYPE: DNA<213> ORGANISM: Xenotropic murine lukemia virus related virus<400> SEQUENCE: 29ttgcagcact ggggagatgt ccagegcatt gcatccaace agtetgtgga tgtcaagaag60aggegetggg ttacettetg ttccgcegaa tggccaactt tcaatgtagg atggcetag180ccccaceggac acceggatea ggtccatat ategtcacet gggaggacatt tgcetagae300gtetetecege ceggtectte tgegeaacet cegtecegat etgecetta ecetgecet300gatgstactt taatttagg tattatete caggtcaagt etgecagat gacagetece300gtetetecege ceggtectte tgegeaacet cegtecegat etgecetta ecetgecet300gtetetecege ceggtectte tgegeaacet cegtecegat etgecetta ecetgecett360accece366<210> SEQ ID NO 30366<211> LENNTH: 366366<212> TYPE: DNA366<212> SAME/KEY: misc_feature366<212> OTHER INFORMATION: n is a, c, g, or t366<400> SEQUENCE: 3030ttgcagcact ggggagatgt ccagegcatt gcaccace agtetgtgg atggccacag60aggegetgg ttacettetg ttccgcega tggccaact tcaatgtagg atggcctag120gatggtactt ttaatttagg tgttatete caggcaagt etagagtgtt ttgtcctggt120gatggtactt ttaatttagg tgttatetet caggcaagt etagagtgt ftgcaagaag60aggegetggg ttacettetg
ccccacggac acccggatca ggtcccatat atcgtcacct gggaggcact tgcctatgac240ccccacccgg cggtcctc tgcgcacct ccgtcccgat ctgcccttac cgacgdcccc300gtcctcccgc ccggtcctt tgcgcaacct ccgtcccgat ctgccctta ccctgccctt360accctc366<211> LENGTH: 366<212> TYPE: DNA<400> SEQUENCE: 29ttgcagcact gggggagatgt ccagcgcatt gcatccaacc agtctgtgga tgtcaagaag60aggcgctggg ttaccttctg ttccgccgaa tggccaactt tcaatgtagg atggcctagg120gatggtactt ttaatttagg tattatctc caggtcaagt ctagagtgtt ttgtcctggt180cccccccccg ccggtccttc tgcgcaacc cgtcccggaggaggagatgt ccagcgacat366ccccacggac acccggatca ggtccaata tcgtcacg ggaggacat tgcctagac300gtcctcccgc cggtccttc tgcgcaact ccgtcccgat ctgccttac gacaggtccc300gtcctcccgc cggtccttc tgcgcaact ccgtcccgat ctgccttac gacaggtccc300gtcctcccgc ccggtccttc tgcgcaact ccgtcccgat ctgccctta cctgccctt366<210> SEQ ID NO 30366<211> LENGTH: 366366<212> TYPE: DNA366<212> TYPE: DNA366<212> TYPE: DNA366<212> TYPE: DNA366<212> TYPE: DNA366<212> CATTONE: (361)(355)366<212> TYPE: DNA366<212> SAME/KEY: misc_feature366<212> SAME/KEY: misc_feature366<212> SAME/KEY: misc_feature366<212> SAME/KEY: misc_feature366<212> SAME/KEY: misc_feature366<212> SAME/KEY: misc_feature366<212> SQUINCE: 3036ttgcagcact ggggagatgt ccagcgcatt gcccaacc agtctgtg
ccccctccgt gggtcaaacc gttgtctct cctaaacccc ctcctttacc gacagctccc 300 gtcctcccge ccggtcctt tgcgcaact ccgtccgat ctgccctta ccctgccctt 360 accct 366 <210> SEQ ID NO 29 <211> LENGTH: 366 <212> TYPE: DNA <213> ORGANISM: Xenotropic murine lukemia virus related virus <400> SEQUENCE: 29 ttgcagcact ggggagagtgt ccagcgcatt gcatccaacc agtctgtgga tgtcaagaag 60 aggcggtggg ttaccttctg ttccgccgaa tggccaactt tcaatgtagg atggcctcag 120 gatggtactt ttaatttagg tattatctc caggtcaagt ctagagtgtt ttgtcctggt 180 ccccaccggac acccggatca ggtcccatat atcgtcact ggagggcact tgcctatgac 240 ccccctccgt gggtcaaacc gttgtctct cctaaacccc ctcctttacc gacagctcce 300 gtcctcccge ccggtcctt tgcgcaact ccgtccgat ctgccctta ccdgccctt 360 acccc 366 <210> SEQ ID NO 30 <211> LENGTH: 366 <212> TYPE: DNA <213> ORGANISM: Xenotropic murine lukemia virus related virus <220> FEATURE: <222> LOCATION: (364)(365) <222> LOCATION: (364)(365) <222> OTHER INFORMATION: n is a, c, g, or t <400> SEQUENCE: 30 ttgcagcact gggggagatgt ccagcgcatt gcatccacc agtctgtgga tgtcaagaag 60 aggcgctggg ttaccttctg ttccgccgaa tggccaact tcaatgtagg atggccccag 120 gatggtactt ttaatttagg tgttatctc caggtcaagt ctagagtgt ttgtccagaag 60 aggcgctggg ttaccttctg ttccgccgaa tggccaact tcaatgtagg atggccctag 120 gatggtactt ttaatttagg tgttatctc caggtcaagt ctagagtgt ttgtccagaag 60 aggcgctggg ttaccttctg ttccgccgaa tggccaact tcaatgtagg atggccctag 120 gatggtactt ttaatttagg tgttatctc caggtcaagt ctagagtgt ttgtccagaag 60 aggcgctggg ttaccttctg ttccgccgaa tggccaact tcaatgtagg atggccctag 120 gatggtactt ttaatttagg tgttatctc caggtcaagt ctagagtgtt ttgtcctggt 180 ccccaccggac acccggatca ggtcccata atcgtcacc ggaggcact tgcctatgac 240 ccccctccgt gggtcaaacc gttgtcctt cctaaaccc ctctttacc gacagctcc 300
<pre>gtcctcccgc ccggtccttc tgcgcaacct ccgtcccgat ctgcccttta ccctgccctt accct 360 <close 366<br=""><close 366<br="">aggcgctggg ttaccttctg ttccgccgaa tgcccaacc agtctgtgga tgtcaagaag 60 aggcgctggg ttaccttctg ttccgccgaa tggccaactt tcaatgtagg atggcccag 120 gatggtactt ttaatttagg tattatctct caggtcaagt ctagagtgt ttgtcctggt 180 ccccacggac acccggatca ggtcccata atcgtcacct gggaggcact tgcctatgac 240 ccccctccgt gggtcaaacc gtttgtctct cctaaacccc tcctttacc gacagtccc 300 gtcctccccgc ccggtccttc tgcgcaacct ccgtcccgat ctgccctta ccctgccctt 360 accccc 366 <close 366<br=""><close 366<br=""><</close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></close></pre>
accctc 366 <210> SEQ ID NO 29 <211> LENGTH: 366 <212> TYPE: DNA <213> ORGANISM: Xenotropic murine lukemia virus related virus <400> SEQUENCE: 29 ttgcagcact ggggagatgt ccagcgcatt gcatccaacc agtctgtgga tgtcaagaag 60 aggcgctggg ttaccttctg ttccgccgaa tggccaactt tcaatgtagg atggcctagg gatggtactt ttaatttagg tattatctc caggtcaagt ctagagtgtt tgtcctggt 180 ccccaccggac acccggatca ggtcccatat atcgtcacct gggaggcact tgcctatgac 240 ccccctccgt gggtcaaacc gtttgtctc cctaaacccc tcctttacc gacagtccc 300 gtcctcccgc ccggtccttc tgcgcaact ccgtcccgat ctgcctta ccctgccct 360 accccc 366 <210> SEQ ID NO 30 <211> LENGTH: 366 <222> TYPE: DNA <222> NORANISM: Xenotropic murine lukemia virus related virus <220> FEATURE: <222> LOCATION: (364)(365) <223> OTHER INFORMATION: n is a, c, g, or t <400> SEQUENCE: 30 ttgcagcact ggggagatgt ccagcgcatt gcctacacc agtctgtgga tgtcaagaag 60 aggcgctggg ttaccttctg ttccgccgaa tggccaact tcaatgtagg atggccctag ftgcagcact ggggagatgt ccagcgcatt gcatccaacc agtctgtgga tgtcaagaag 60 aggcgctggg ttaccttctg ttccgccgaa tggccaact tcaatgtagg atggccctag ftgcagcact ggggagatgt ccagcgcatt gcatccaacc agtctgtgga tgtcaagaag 60 aggcgctggg ttaccttctg ttccgccgaa tggccaact tcaatgtagg atggccctag fccccacggac acccggatca ggtcccatat atcgtcacct gggaggcact tgcctatgac 240 ccccacggac acccggatca ggtcccatat atcgtcacct gggaggcact tgcctatgac 240 ccccacggac acccggatca ggtcccatat atcgtcacct ggaggcact tgcctatgac 240 ccccacggac acccggatca ggtcccatat atcgtcacct ggaggcact tgcctatgac 240 ccccacggac acccggatca ggtcccatat atcgtcacct ggaggcact tgcctatgac 240 cccctccgt gggtcaacc gtttgtctc cctaaaccc ctcctttacc gacagtccc 300
<pre><210> SEQ ID NO 29 <211> LENGTH: 366 <212> TYPE: DNA <213> ORGANISM: Xenotropic murine lukemia virus related virus <400> SEQUENCE: 29 ttgcagcact ggggagatgt ccagcgcatt gcatccaacc agtctgtgga tgtcaagaag 60 aggcgctggg ttaccttctg ttccgccgaa tggccaact tcaatgtagg atggcctagg 120 gatggtactt ttaatttagg tattatctct caggtcaagt ctagagtgtt ttgtcctggt 180 ccccaccggac acccggatca ggtcccatat atcgtcacct gggaggcact tgcctatgac 240 ccccctccgt gggtcaaacc gttgtctct cctaaacccc ctcctttacc gacagctccc 300 gtcctccccgc cggtccttc tgcgcaacct ccgtcccgat ctgccctta ccctgccctt 360 accccc 366 <210> SEQ ID NO 30 <211> LENGTH: 366 <212> TYPE: DNA <213> ORGANISM: Xenotropic murine lukemia virus related virus <220> FEATURE: <221> NAME/KFY: micc_feature <222> LOCATION: (364)(365) <223> OTHER INFORMATION: n is a, c, g, or t <400> SEQUENCE: 30 ttgcagcact ggggagatgt ccagcgcatt gcatccaacc agtctgtgga tgtcaagaag 60 aggcgctggg ttaccttctg ttccgccgaa tggccaactt tcaatgtagg atggcctagg 120 gatggtactt ttaatttagg tgttatctct caggtcaagt ctagagtgtt ttgtcctggt 180 ccccaccggac acccggatca ggtccaata atcgtcacc gggaggacat tgcctatgac 240 cccccccgg gggtcaaacc gttgtctct cctaaaccc agtctgtgga tgtcaagaag 60 aggcgctggg ttaccttctg ttccgccgaa tggccaactt tcaatgtagg atggccctag 120 gatggtactt ttaatttagg tgttatctct caggtcaagt ctagagtgtt ttgtcctggt 180 ccccaccggac acccggatca ggtcccatat atcgtcacct gggaggcact tgcctatgac 240 ccccctccgt gggtcaaacc gttgtctct cctaaaccc ctcctttacc gacagtccc 300</pre>
<pre><11> LENGTH: 366 <212> TYPE: DNA <213> ORGANISM: Xenotropic murine lukemia virus related virus <400> SEQUENCE: 29 ttgcagcact ggggagatgt ccagcgcatt gcatccaacc agtctgtgga tgtcaagaag 60 aggcgtggg ttacettetg ttecgecgaa tggccaactt teaatgtagg atggcetcag 120 gatggtaett ttaatttagg tattatetet caggtcaagt etagagtgtt ttgteetggt 180 ecceaeggae acceggatea ggteceatat ategteaeet gggaggeaet tgeetatgae 240 ecceetegg gggteaaaee gttgtetet ectaaacee gggaggeaet tgeetatgae 300 gteeteeege eeggteette tgegeaaeet eegteeegat etgeeetta ecetgeeett 360 acceet 366 <210> SEQ ID NO 30 <211> LENGTH: 366 <212> TYPE: DNA <213> ORGANISM: Xenotropic murine lukemia virus related virus <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (364)(365) <223> OTHER INFORMATION: n is a, c, g, or t <400> SEQUENCE: 30 ttgcagcaet ggggagatgt ecagegeatt gcatecaace agtetgtgga tgtcaagaag 60 aggegetggg ttacettetg tteegeeaa tggecaaett teaatgtagg atggeeteag 120 gatggtaett ttaatttagg tgttaeet caggteaagt etagagtgt ttgteetggt 180 ecceeaeggae acceggatea ggteeedat ategteaeet teaatgtagg atggeeteag 120 gatggtaett ttaatttagg tgttaeet caggteaagt etagagtgt ttgteetggt 180 ecceeaeggae acceggatea ggteeetat ategteaeet gggaggeaet tgeetatgae 240 ecceetegt gggteaaaee ggteeetat ategteaeet ggaggegeet tgeetatgae 240 ecceetegt gggteaaaee ggteeetat ategteaeet ggagggeetegg</pre>
<pre>ttgcagcact ggggagatgt ccagcgcatt gcatccaacc agtctgtgga tgtcaagaag 60 aggcgtggg ttaccttctg ttccgccgaa tggccaactt tcaatgtagg atggcctcag 120 gatggtactt ttaatttagg tattatctct caggtcaagt ctagagtgtt ttgtcctggt 180 ccccaccggac acccggatca ggtccatat atcgtcacct gggaggcact tgcctatgac 240 cccctccgt gggtcaaacc gttgtctct cctaaacccc ctcctttacc gacagctccc 300 gtcctcccgc ccggtccttc tgcgcaacct ccgtcccgat ctgccctta ccctgccctt 360 accccc 366 <210> SEQ ID NO 30 <211> LENOTH: 366 <212> TYPE: DNA <213> ORGANISM: Xenotropic murine lukemia virus related virus <221> NAME/KEY: misc_feature <222> LOCATION: (364)(365) <223> OTHER INFORMATION: n is a, c, g, or t <400> SEQUENCE: 30 ttgcagcact ggggagatgt ccagcgcatt gcatccaacc agtctgtgga tgtcaagaag 60 aggcgtggg ttaccttctg ttccgccgaa tggccaactt tcaatgtagg atggcctcag 120 gatggtactt ttaatttagg tgttatctct caggtcaagt ctagagtgtt ttgtcctggt 180 ccccacggac acccggatca ggtcccatat atcgtcacct gggaggcact tgcctatgac 240 cccccccgt gggtcaaacc gtttgtctt cctaaaccc agtctgtgga tgtcagaaga 60 aggcgtggg ttaccttctg ttccgccgaa tggccaactt tcaatgtagg atggcctcag 120 gatggtactt ttaatttagg tgttatctct caggtcaagt ctagagtgtt ttgtcctggt 180 ccccacggac acccggatca ggtcccatat atcgtcacct gggaggcact tgcctatgac 240 cccccccgt gggtcaaacc gtttgtctt cctaaaccc 330 ccccccg gatggt accctctg tccgccgaa tggccaact cagagtgt ttgtcctggt 180 ccccacggac acccggatca ggtcccatat atcgtcacct ggaggagcact tgcctatgac 240 cccccccgt gggtcaaacc gtttgtctt cctaaccc dgaggcact tgcctatgac 240 cccccccgt gggtcaaacc gttgtcct cctaaccc dgaggcact tgcctatgac 240 cccccccgt gggtcaaacc gttgtcct cctaaccc dgaggcact tgcctatgac 240 cccccccgt gggtcaaacc gttgtcct cctaaccc dgaggcact tgcctatgac 240 cccccccgt gggtcaacc gttgtcct cctaaccc cccctttacc gacagctccc</pre>
aggcgctggg ttaccttctg ttccgccgaa tggccaactt tcaatgtagg atggcctcag 120 gatggtactt ttaatttagg tattatctct caggtcaagt ctagagtgtt ttgtcctggt 180 cccccacggac acccggatca ggtcccatat atcgtcacct gggaggcact tgcctatgac 240 ccccctccgt gggtcaaacc gtttgtctct cctaaacccc ctcctttacc gacagctccc 300 gtcctcccgc ccggtccttc tgcgcaacct ccgtcccgat ctgccctta ccctgccctt 360 accccc 366 <210> SEQ ID NO 30 <211> LENGTH: 366 <212> TYPE: DNA <213> ORGANISM: Xenotropic murine lukemia virus related virus <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (364)(365) <223> OTHER INFORMATION: n is a, c, g, or t <400> SEQUENCE: 30 ttgcagcact ggggagatgt ccagcgcatt gcatccaacc agtctgtgga tgtcaagaag 60 aggcgctggg ttaccttctg ttccgccgaa tggccaactt tcaatgtagg atggcctcag 120 gatggtactt ttaatttagg tgttatctct caggtcaagt ctagagtgtt ttgtcctggt 180 ccccacggac acccggatca ggtcccatat atcgtcacct gggaggcact tgcctatgac 240 cccctccgt gggtcaaacc gttgtctct cctaaaccc ctcctttacc gacagctccc 300
gatggtactt ttaatttagg tattatctct caggtcaagt ctagagtgtt ttgtcctggt180cccccacggac acccggatca ggtcccatat atcgtcacct gggaggcact tgcctatgac240ccccctccgt gggtcaaacc gtttgtctct cctaaacccc ctcctttacc gacagctccc300gtcctcccgc ccggtccttc tgcgcaacct ccgtcccgat ctgccctta ccctgccctt360accccc366<210> SEQ ID NO 30<211> LENGTH: 366<212> TYPE: DNA<213> ORGANISM: Xenotropic murine lukemia virus related virus<220> FEATURE:<221> LOCATION: (364) (365)<222> LOCATION: (364) (365)<223> OTHER INFORMATION: n is a, c, g, or t<400> SEQUENCE: 30ttgcagcact ggggagatgt ccagcgcatt gcatccaacc agtctgtgga tgtcaagaagfdaggcgctggg ttaccttctg ttccgccgaa tggccaactt tcaatgtagg atggccctagggatggtactt ttaatttagg tgttatctct caggtcaagt ctagagtgtt ttgtcctggtfdccccacggac acccggatca ggtcccatat atcgtcacct gggaggcact tgcctatgac200gatggtactt ttaatttagg tgttatctct cctaaaccc ctcctttacc gacagtccc201ccccacggac acccggatca ggtcccatat atcgtcacct gggaggcact tgcctatgac202fd203204205205206206207208208208209209209209200200201201202203203204204205205206206207<
ccccacggac acccggatca ggtcccatat atcgtcact gggaggcact tgcctatgac 240 ccccctccgt gggtcaaace gttgtctct cctaaacccc ctcctttace gacageteee 300 gtectecege eeggteette tgegeaacet eegteeegat etgeeetta eeetgeeett 360 acccce 366 <210> SEQ ID NO 30 <211> LENGTH: 366 <212> TYPE: DNA <213> ORGANISM: Xenotropic murine lukemia virus related virus <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (364)(365) <223> OTHER INFORMATION: n is a, c, g, or t <400> SEQUENCE: 30 ttgcagcact ggggagatgt ccagegcatt gcatccaace agtetgtgga tgtcaagaag 60 aggegetggg ttacettetg tteegecgaa tggccaactt tcaatgtagg atggeeetag 120 gatggtaett ttaatttagg tgttatetet eaggteaagt etagagtgtt ttgtcetggt 180 ccccaeggae acceggatea ggteceatat ategteacet gggaggeaet tgeetatgae 240 ccccteegt gggteaaace gttgtetet eetaaacce eteettaee gacagetee 300
ccccctccgt gggtcaaacc gtttgtctct cctaaacccc ctcctttacc gacagctccc 300 gtcctcccgc ccggtccttc tgcgcaacct ccgtcccgat ctgccctta ccctgccctt 360 accccc 366 <210> SEQ ID NO 30 <211> LENGTH: 366 <212> TYPE: DNA <213> ORGANISM: Xenotropic murine lukemia virus related virus <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (364)(365) <223> OTHER INFORMATION: n is a, c, g, or t <400> SEQUENCE: 30 ttgcagcact ggggagatgt ccagcgcatt gcatccaacc agtctgtgga tgtcaagaag 60 aggcgctggg ttaccttctg ttccgccgaa tggccaactt tcaatgtagg atggcctcag 120 gatggtactt ttaatttagg tgttatctct caggtcaagt ctagagtgtt ttgtcctggt 180 ccccacggac acccggatca ggtcccatat atcgtcacct gggaggcact tgcctatgac 240 ccccctccgt gggtcaaacc gttgtctct cctaaaccc ctcctttacc gacagctccc 300
<pre>gtcctcccgc ccggtccttc tgcgcaacct ccgtcccgat ctgcccttta ccctgccctt 360 accccc 366 <210> SEQ ID NO 30 <211> LENGTH: 366 <212> TYPE: DNA <213> ORGANISM: Xenotropic murine lukemia virus related virus <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (364)(365) <223> OTHER INFORMATION: n is a, c, g, or t <400> SEQUENCE: 30 ttgcagcact ggggagatgt ccagegcatt gcatccaacc agtctgtgga tgtcaagaag 60 aggcgctggg ttaccttctg ttccgccgaa tggccaactt tcaatgtagg atggcctcag 120 gatggtactt ttaatttagg tgttatctct caggtcaagt ctagagtgtt ttgtcctggt 180 ccccacggac acccggatca ggtcccatat atcgtcacct gggaggcact tgcctatgac 240 cccctccgt gggtcaaacc gttgtctct cctaaaccc ctcctttacc gacagctccc 300</pre>
accccc 366 <210> SEQ ID NO 30 <211> LENGTH: 366 <212> TYPE: DNA <213> ORGANISM: Xenotropic murine lukemia virus related virus <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (364)(365) <223> OTHER INFORMATION: n is a, c, g, or t <400> SEQUENCE: 30 ttgcagcact ggggagatgt ccagcgcatt gcatccaacc agtctgtgga tgtcaagaag 60 aggcgctggg ttaccttctg ttccgccgaa tggccaactt tcaatgtagg atggcctcag 120 gatggtactt ttaatttagg tgttatctct caggtcaagt ctagagtgtt ttgtcctggt 180 ccccacggac acccggatca ggtcccatat atcgtcacct gggaggcact tgcctatgac 240 cccctccgt gggtcaaacc gttgtctct cctaaaccc ctcctttacc gacagctccc 300
<pre><210> SEQ ID NO 30 <211> LENGTH: 366 <212> TYPE: DNA <213> ORGANISM: Xenotropic murine lukemia virus related virus <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (364)(365) <223> OTHER INFORMATION: n is a, c, g, or t <400> SEQUENCE: 30 ttgcagcact ggggagatgt ccagcgcatt gcatccaacc agtctgtgga tgtcaagaag 60 aggcgctggg ttaccttctg ttccgccgaa tggccaactt tcaatgtagg atggcctcag 120 gatggtactt ttaatttagg tgttatctct caggtcaagt ctagagtgtt ttgtcctggt 180 ccccacggac acccggatca ggtcccata atcgtcacct gggaggcact tgcctatgac 240 ccccctccgt gggtcaaacc gttgtctct cctaaaccc ctcctttacc gacagctccc 300</pre>
<pre><211> LENGTH: 366 <212> TYPE: DNA <213> ORGANISM: Xenotropic murine lukemia virus related virus <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (364)(365) <223> OTHER INFORMATION: n is a, c, g, or t <400> SEQUENCE: 30 ttgcagcact ggggagatgt ccagcgcatt gcatccaacc agtctgtgga tgtcaagaag 60 aggcgctggg ttaccttctg ttccgccgaa tggccaactt tcaatgtagg atggcctcag 120 gatggtactt ttaatttagg tgttatctct caggtcaagt ctagagtgtt ttgtcctggt 180 ccccacggac acccggatca ggtcccatat atcgtcacct gggaggcact tgcctatgac 240 ccccctccgt gggtcaaacc gttgtctct cctaaaccc ctcctttacc gacagctccc 300</pre>
ttgcagcact ggggagatgt ccagcgcatt gcatccaacc agtctgtgga tgtcaagaag60aggcgctggg ttaccttctg ttccgccgaa tggccaactt tcaatgtagg atggcctcag120gatggtactt ttaatttagg tgttatctct caggtcaagt ctagagtgtt ttgtcctggt180ccccacggac acccggatca ggtcccatat atcgtcacct gggaggcact tgcctatgac240ccccctccgt gggtcaaacc gttgtetct cctaaacccc ctcctttacc gacagctccc300
aggegetggg ttacettetg tteegeegaa tggeeaactt teaatgtagg atggeeteag 120 gatggtaett ttaatttagg tgttatetet caggteaagt etagagtgtt ttgteetggt 180 ecceedegae acceggatea ggteeeata ategteaeet gggaggeaet tgeetatgae 240 ecceeteegt gggteaaace gttgtetet ectaaaeecee eteettaee gaeageteee 300
gatggtactt ttaatttagg tgttatctct caggtcaagt ctagagtgtt ttgtcctggt 180 ccccacggac acccggatca ggtcccatat atcgtcacct gggaggcact tgcctatgac 240 ccccctccgt gggtcaaacc gtttgtctct cctaaacccc ctcctttacc gacagctccc 300
ccccacggac acccggatca ggtcccatat atcgtcacct gggaggcact tgcctatgac 240 ccccctccgt gggtcaaacc gtttgtctct cctaaacccc ctcctttacc gacagctccc 300
ccccctccgt gggtcaaacc gtttgtctct cctaaacccc ctcctttacc gacagctccc 300
a
accnna 366

-continued

<211> LENGTH: 366 <212> TYPE: DNA <213> ORGANISM: Xenotropic murine lukemia virus related virus <400> SEQUENCE: 31 ttgcagcact ggggagatgt ccagcgcatt gcatccaacc agtctgtgga tgtcaagaag 60 aggegetggg ttacettetg tteegeegaa tggeeaactt teaatgtagg atggeeteag 120 gatggtactt ttaatttagg tgttatctct caggtcaagt ctagagtgtt ttgtcctggt 180 240 ccccacqqac acccqgatca ggtcccatat atcgtcacct gggaggcact tgcctatgac ccccctccqt qqqtcaaacc qtttqtctct cctaaacccc ctcctttacc qacaqctccc 300 qtcctcccqc ccqqtccttc tqcqcaacct ccqtcccqat ctqcccttta ccctqccctt 360 accete 366 <210> SEQ ID NO 32 <211> LENGTH: 363 <212> TYPE: DNA <213> ORGANISM: Xenotropic murine lukemia virus related virus <400> SEOUENCE: 32 ttgcagcact ggggagatgt ccagcgcatt gcatccaacc agtctgtgga tgtcaagaag 60 aggegetggg ttacettetg tteegeegaa tggeeaactt teaatgtagg atggeeteag 120 gatggtactt ttaatttagg tgttatctct caggtcaagt ctagagtgtt ttgtcctggt 180 ccccacggac acccggatca ggtcccatat atcgtcacct gggaggcact tgcctatgac 240 ccccctccgt gggtcaaacc gtttgtctct cctaaacccc ctcctttacc gacagetecc 300 gtcctcccgc ccggtccttc tgcgcaacct ccgtcccgat ctgcccaata cactgccctt 360 aca 363 <210> SEQ ID NO 33 <211> LENGTH: 645 <212> TYPE: PRT <213> ORGANISM: Xenotropic MuLV-related Virus VP35 <400> SEQUENCE: 33 Met Glu Ser Pro Ala Phe Ser Lys Pro Leu Lys Asp Lys Ile Asn Pro 1 5 10 15 Trp Gly Pro Leu Ile Ile Met Gly Ile Leu Val Arg Ala Gly Ala Ser 25 20 30 Val Gln Arg Asp Ser Pro His Gln Val Phe Asn Val Thr Trp Lys Ile 35 40 45 Thr Asn Leu Met Thr Gly Gln Thr Ala Asn Ala Thr Ser Leu Leu Gly 50 55 60 Thr Met Thr Asp Thr Phe Pro Lys Leu Tyr Phe Asp Leu Cys Asp Leu 65 70 75 80 Val Gly Asp Asn Trp Asp Asp Pro Glu Pro Asp Ile Gly Asp Gly Cys 85 90 95 Arg Ser Pro Gly Gly Arg Lys Arg Thr Arg Leu Tyr Asp Phe Tyr Val 100 105 110 Cys Pro Gly His Thr Val Leu Thr Gly Cys Gly Gly Pro Arg Glu Gly 115 120 125 Tyr Cys Gly Lys Trp Gly Cys Glu Thr Thr Gly Gln Ala Tyr Trp Lys 130 135 140

-continued

Pro Ser Ser Form Asp Leu Ise Leu Lise Top Asp Ser Ser </th
165 170 175 Gin Gly Ala Thr Pro Gly Gly Arg Cys Asn Pro Leu Val Leu Glu Phe 185 170 175 Thr Asp Ala Gly Lys Arg Ala Ser Trp Asp Ala Pro Lys Thr Trp Gly 200 175 177 Leu Arg Leu Tyr Arg Ser Thr Gly Ala Asp Pro Val Thr Leu Phe Ser 210 175 177 Leu Arg Leu Tyr Arg Ser Thr Gly Ala Asp Pro Val Thr Leu Phe Ser 210 176 177 Leu Arg Cu Tyr Arg Ser Thr Gly Ala Asp Pro Val Thr Leu Phe Ser 210 176 177 Leu Thr Arg Gln Val Leu Asn Val Gly Pro Arg Val Pro Ile Gly Pro 226 170 116 177 Asn Pro Val Ile Thr Glu Gln Leu Pro Pro Ser Gln Pro Val Ala Ala Ser Met 260 176 177 178 Val Pro Gly Ala Pro Pro Pro Pro Pro Pro Ser Gln Ala Ala Ser Met 275 178 178 178 Val Pro Gly Ala Pro Pro Pro Pro Ser Gln Ala Leu Asn Leu Thr Ser 280 180 178 178 Val Pro Gly Ala Pro Gln Glu Cys Trp Leu Cys Leu Asn Leu Thr Ser 310 180 178 175 Yry Tyr Glu Gly Val Ala Val Leu Gly Thr Tyr Ser Asn His Thr Ser 320 179 174 174 174 175 Ala Pro Ala Asn Cys Ser Val Thr Ser Gln His Lys Leu Thr Leu Pro 335 180 180 180 175 180 Glu Val Thr Gly Gln Gly Leu Cys Thr Gln Al
180 165 190 Thr Asp Ala Gly Lys Arg Ala Ser Trp Asp Ala Pro Lys Thr Trp Gly 200 Thr Asp Ala Gly Lys Arg Ser Thr Gly Ala Asp Pro Val 220 Thr Leu Pro Pro Ser Cln Pro Val Gly Pro 230 Leu Arg Leu Tyr Arg Ser Thr Gly Ala Asp Pro Val Cln Pro Val Gln Pro Val Gln Pro Val II e Thr Glu Gln Leu Pro Pro Ser Gly Ala Ala Asp Pro Val Gly Ala Asp Pro Val Gly Ala Asp Pro Val Gly Ala Pro Val Gly Ala Pro 265 Pro Ser Gly Ala Ala Asp Pro Val Gly Ala Pro 265 Pro Ser Gly Ala Ala Asp Pro Val Gly Ala Pro 265 Pro Ser Gly Ala Ala Asp Pro 265 Pro Ser Gly Ala Ala Asp Pro 265 Pro Ser Gly Ala Ala Asp Pro 265 Pro 200 Pro 275 Pro 200 Pro 275 Pro 200 Pr
195 200 205 205 205 Leu Arg Leu Tyr Arg Ser Thr 215 Gly Ala Asp Pro Val Thr Leu Phe Ser 215 Thr Arg Gln Val Leu Ann Val Gly Pro Arg Val Pro 11e Gly Pro 242 Law Thr Arg Gln Val Leu Ann Val Gly Pro Ser Gln Pro Val Gln Ile 245 Thr Glu Gln Leu Pro Pro Ser Gln Pro Val Gln Ile 255 The Leu Pro Arg Pro Pro Arg Pro Pro Pro Ser Gly Ala Ala Ser Met 270 Val Pro Gly Ala Pro Pro Pro Pro Pro Ser Gln Pro Gly Thr Gly Asp Arg 286 Thr Glu Gly Thr Gln Ala Leu Ann Leu Val Glu Gly Ala Tyr Gln Ala Leu Van Leu Thr Ser 300 Ser Gly Pro Pro 320 Pro Asp Lyo Thr Gln Glu Cyo Trp Leu Cys Leu Val Ser Gly Pro 920 Ser Val Thr Ser 310 Thr Ser 310 Ser Val Thr 310 Ala Pro Ala Ann Cyo Ser Val Thr Ser 310 Thr Ser 310 Thr Ser 340 Ser Val Thr 310 Ser Val Thr 310 Ala Pro Ala Ann Cyo Ser Val Thr 310 Glu Ala Val Leu Cyo 11e Gly Ala Val Pro 11e Ser 300 Ser 10r Glu Val Thr Gly Gln Gly Leu Cyo 11e Gly Ala Val Pro 120 Ser 77 Ser 77 Ser 77 Glu Val Thr Gly Gln Gly Leu Cyo 11e Gly Ala Val Pro 10e Ser 77 Ser 77 Ser 77 Glu Val Thr Gly Gln Gly Leu Cyo 11e Thr Ser Asg Gly Ser 77 Try 330 Ser 77 Ser 77 Glu Val Thr Gly Gln Gly Leu Cyo 11e Thr 580 Ser 780 Ser
210 215 220 Leu Th Arg Gln Val Leu Ars Arg Gln Val Leu Ars Arg Gln Val Leu Ars Arg Cln Ile Gly Pro 235 Val Pro Arg Pro Ser Gln Pro Arg Cln Ile Cln Pro Ser Gln Pro
225 230 235 240 Asn Pro Val Ile Thr 245 Glu Gln Leu Pro 250 Ser Gln Pro Val Gln 11e 245 Glu Gln 245 Pro 250 Ser Gln Pro Val Gln Ala Ala Ser Met 250 Met Leu Pro Arg Pro Pro 260 Pro 275 Pro 275 Pro 275 Glu Ala Ala Ser Met 270 Val Pro 217 Arg Pro 217 Pro 275 Pro 275 Pro 275 Glu Ala Ala Ser Met 270 Val Pro 217 Arg Leu Val Glu Gly Ala Tyr Gln Ala Leu Asn Leu Thr 375 Glu Gly Ala Tyr Gln Ala Leu Asn Leu Thr Ser 280 Ser Gln Ala Leu Val Ser Gly Pro 320 Pro 305 Asp Lys Thr Gln Glu Cys Trp Leu Cys Leu Val Ser Asn His Thr Ser 330 Ser Asn His 75 Ser 330 Ala Pro Ala Asn Cys Ser Val Thr Ser 310 Glu Ala Val Pro 360 Yer 110 Ser 360 Glu Val Thr Gly Gln Gly Leu Cys 116 Gly Ala Val Pro 360 Yer 117 Ser 360 Glu Val Thr Gly Gln Gly Leu Cys 116 Gly Ala Val Pro 360 Yer 117 Ser 360 Glu Ala Leu Cys Asn Thr Thr 375 Gln Lys Thr 612 Ser 717 Ser 380 Glu Ala Leu Cys Asn Thr Thr 416 Ser 395 Ser 717 Ser 440 Ala Ser Pro Ala Gly Thr 11e Try Ala Cys Ser 716 Gly Leu Thr 440 Ser 440 Ala Cys Leu Ser Thr Thr Val Leu Asn Leu Thr Thr
245 250 261 263
260 265 270 Val Pro Gly Ala Pro Pro Sec Gln Gln Pro Gly Thr Gly Asp Arg Leu Asn Leu Asn Leu Asn Leu Gln Glu Gly Thr Gln Ala Cu Val Glu Gly Thr Gln Ala Leu Val Glu Gly Tr Gln Ala Cu Gly Sun Tr Tr Sun Tr Tr Sun Tr Sun Tr Sun Tr Sun Tr Sun Tr Tr Sun Tr<
275 280 285 1 1 Leu Asn Leu Val Glu Gly 295 1
290 295 300 Pro Asp Lys Thr Gln Glu Cys Trp Leu Cys Leu Na Ser Gly Pro 320 Tyr Glu Gly Val Ala Val Leu Gly Thr Ser Asp Ya Ser Val Thr Ser Ser Glu Glu His Leu Thr Ser Ser Ser Glu Thr Ser Ma Ser
305 310 311 315 320 Tyr Tyr Glu Gly Val Ala Val Leu Gly Tyr Ser Asn His Thr Ser Asn Fyr Ser Asn Cys Ser Val Thr Ser Glu His Lys Leu Thr Ser Glu Thr Ser Ma Val Thr Ser Glu Thr Ser Ma Thr Ser Glu Thr Ser Glu Glu Cys Thr Ser Glu Thr Ser Ma Val Thr Ser Thr Ser Glu Val Thr Thr Ser Glu Ser Thr Thr Ser Glu Val Thr Ser Asn Tyr Ser Thr Ser Thr Ser Thr Ma Ma Ser Thr Ma Ma Ma Ma
325 330 335 Ala Pro Ala Asn Cys Ser Val Thr Ser Gln His Lys Leu Thr Ser Glu Val Thr Gly Glu Gly Thr Gly Ala Cys Ser Gly Hu Ser Ser Ser Ser Gly His Lys Leu Thr His Ser Ser Thr Ser Thr His Ser Ser Tyr Tyr Ser Tyr Tyr Ser Tyr Tyr Tyr Ser Tyr Tyr Ser Tyr Tyr Ser Tyr Tyr Ser Tyr Ser Tyr Ser Tyr Ser Aso Tyr Val As
340 345 350 Glu Val Thr Gly Glu Gly Leu Cys Jab Val Pro Lys Thr His Glu Ala Thr Gly Leu Cys Asn Thr Gln Jas Val Pro Lys Thr His Gln Ala Sen Cys Asn Thr Gln Lys Thr Sen Asn Sen Tyr Tyr Leu Ala Sen Pro Ala Gly Thr Ile Tyr Ala Cys Fur Gly Leu Thr Asn Leu Thr Asn Sen Thr Asn Yr Sen Tyr Cys Val Thr Asn Yr Cys Val Thr Asn Yr Cys Val Asn Yr Cys Val Asn Yr Val Asn Yr Val <td< td=""></td<>
355 360 365 Gln Ala Cys Asn Thr Thr Gln Lys Thr Ser Asp Gly Ser Tyr Leu Ala Ser Pro Ala Gly Thr Ile Trp Ala Cys Ser Thr Gly Leu Thr Gly Leu Thr Gly Thr Ala Cys Ser Thr Gly Leu Thr Ma Saps Ser Thr Gly Leu Thr Ma Saps Ser Thr Gly Leu Thr Ma Saps Thr Ma Saps Thr Ma Saps Thr Ma Ma Leu Val Glu Leu Try Pro Lys Val Thr Lys Arg Glu Pro Val Yar Val Aga Tyr Val Aga Tyr Val Aga Tyr
370 375 380 110 110 380 110 110 380 110 110 390 110 110 390 110 110 390 110 110 390 110 110 390 110 110 390 110 110 390 110 110 390 110 110 390 110 110 390 110 110 390 110 110 390 110 110 390 110 110 390 110 110 390 1100 1100
385 390 395 400 Pro Cys Leu Ser Thr Thr Val Leu Asn Leu Thr Thr Asp Tyr Cys Val Leu Val Glu Leu Trp Pro Lys Val Thr Tyr Tyr Cys Val Leu Val Glu Leu Trp Pro Lys Val Thr Tyr His Ser Pro Asp Tyr Val Tyr Gly Gln Phe Gly Lys Lys Thr Lys Tyr Lys Arg Glu Pro Val Ser Leu Thr Leu Leu Leu Leu Gly Gly Gly Thr Met Gly Gly Ile Ala Ala Gly Val Gly Thr Gly Gly Gly Ile Ala Leu Ala Leu Ala Leu Ala Leu Ala Leu Ala <t< td=""></t<>
405 410 415 Leu Val Glu Leu Alber Trp Pro Lys Val Alber Trp Tyr Bro Lys Val Alber Tyr Tyr Bro Alber Ser Pro Alber Alber Val Alber Tyr Gly Gln Phe Gly Lys Lys Lys Thr Lys Tyr Lys Arg Glu Pro Val Alber Alber Alber Val Alber
420 425 430 Tyr Gly Gln Phe Gly Lys Lys Tyr Lys Arg Glu Pro Val Ser Leu Thr Leu Ala Leu Leu Leu Gly Gly Gly Leu Tyr Lys Arg Gly Gly In Met Gly Gly In Mat Ala Ala Ala In Met Gly Gly In Met Gly Gly In Ala In Met Gly Gly In Ala Ala Ala In Met Gly Ala In Phe Ala Mat In Phe Ala Mat In Phe Ala Mat In Phe Ala Ala In Ala In In In In In In In In
435440445LeuThrLeuAlaLeuLeuGlyGlyLeuThrMetGlyGlyIleAlaAlaGlyValGlyThrGlyThrThrAlaLeuValAlaThrLysGlnPhe465GluValGlyThrGlyThrThrAlaLeuValAlaThrLysGlnPhe465GluValGlnAlaAlaIleHisThrAspLeuGlyAlaLeuGluLysGluGlnLeuGlnAlaLeuGluLysSerLeuFrSerGluAlaLeuGluLysSerValSerAlaLeuGlyLeuAspLeuFrSerGluSerGluValValValLeuGlnAsnArgArgGlyLeuAspLeuFrSerGluGlyGlyGlyGlyGlyGlyLeuGlnAsnAlaLeuLysLysGluCysCysPheLysAlaAspHisThrLeuCysAlaAlaLeuLysLysGluCysCysPheTyrAlaAspHisThrSaoAlaAlaLeuLysLysGluCysCysPheTyrAla <td< td=""></td<>
450455460AlaGlyValGlyThrGlyThrAlaLeuValAlaThrLysGlnPhe465GluValGlyThrGlyThrAlaLeuValAlaThrLysGlnPheGluGlnLeuGlnAlaAlaAlaIleHisThrAspLeuGlyAlaLeuGluLysSerValSerAlaLeuGluLysSerLeuThrSerLeuSerGluValValLeuGlnAsnArgArgGlyLeuAspLeuLeuPheLeuLysGluGlyGlyLeuCysAlaAlaLeuLysLysGluCysCysPheLeuLysGluGlyGlyLeuCysAlaAlaLeuLysLysGluCysCysPheTyrAlaAspHisThrGlyValValArgAspSerMetAlaLysLysCysPheTyrAlaAspHisThrGlyValValArgAspSerMetAlaLysLysCysPheTyrAlaAspHisThrGlyValValArgAspSerMetAlaLysLysCysPheTyrAla
465470475480Glu Gln Leu Gln Ala Ala Ile His Thr Asp 485Leu Gly Ala Leu Glu Lys 490Leu Gly Ala Leu Glu Lys 495Leu Gly Ala Leu Glu Lys 495Leu Gly Ala Leu Glu Lys 495Leu Gly Ala Leu Glu Cys 495Leu Gly Ala Leu Glu Cys 495Leu Gly Ala Leu Glu Cys 495Leu Cys Glu Gly Cys 535Leu Cys Ala Ala Leu Lys 535Lys Glu Cys Cys Phe 540Leu Asp His Thr 540Gly Val Val Arg Asp Ser Met Ala Lys Leu Arg Glu Arg Leu Asn Gln
485490495Ser Val Ser Ala Leu Glu Lys Ser Leu Thr Ser Leu Ser Glu Val Val 500Ser Leu Glu Thr Ser Leu Ser Glu Val Val 505Val Ser Glu Val Val 510Leu Gln Asn Arg Arg Gly Leu Asp Leu Leu Phe 515Leu Lys Glu Gly Gly 520Ser Leu Phe 520Leu Lys Glu Gly Gly 525Leu Cys Ala Ala Leu Lys Lys Glu Cys Cys Phe 530Ala Asp His Thr 540Gly Val Val Arg Asp Ser Met Ala Lys Leu Arg Glu Arg Leu Asn Gln
500 505 510 Leu Gln Asn Arg Arg Gly Leu Asp Leu Leu Leu Lys Glu Gly Gly Leu Cys Ala Ala Leu Lys Lys Glu Gly Gly Gly Leu Cys Ala Ala Leu Lys Lys Glu Gly Gly Gly Val Val Arg Asp Ser Met Ala Lys Leu Arg Glu Arg Leu Asp
515 520 525 Leu Cys Ala Ala Leu Lys Lys Glu Cys Cys Phe Tyr Ala Asp His Thr 530 535 Gly Val Val Arg Asp Ser Met Ala Lys Leu Arg Glu Arg Leu Asn Gln
530 535 540 Gly Val Val Arg Asp Ser Met Ala Lys Leu Arg Glu Arg Leu Asn Gln
545 550 555 560

-continued

Arg Gln Lys Leu Phe Glu Ser Gly Gln Gly Trp Phe Glu Gly Leu Phe Asn Arg Ser Pro Trp Phe Thr Thr Leu Ile Ser Thr Ile Met Gly Pro Leu Ile Val Leu Leu Leu Leu Leu Phe Gly Pro Cys Ile Leu Asn Arg Leu Val Gln Phe Val Lys Asp Arg Ile Ser Val Val Gln Ala Leu Val Leu Thr Gln Gln Tyr His Gln Leu Lys Ser Ile Asp Pro Glu Glu Val Glu Ser Arg Glu <210> SEQ ID NO 34 <211> LENGTH: 1733 <212> TYPE: PRT <213> ORGANISM: Xenotropic MuLV-related Virus VP35 <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (537)..(537) <223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid <400> SEOUENCE: 34 Met Gly Gln Thr Val Thr Thr Pro Leu Ser Leu Thr Leu Gln His Trp Gly Asp Val Gln Arg Ile Ala Ser Asn Gln Ser Val Asp Val Lys Lys Arg Arg Trp Val Thr Phe Cys Ser Ala Glu Trp Pro Thr Phe Asn Val Gly Trp Pro Gln Asp Gly Thr Phe Asn Leu Gly Val Ile Ser Gln Val Lys Ser Arg Val Phe Cys Pro Gly Pro His Gly His Pro Asp Gln Val Pro Tyr Ile Val Thr Trp Glu Ala Leu Ala Tyr Asp Pro Pro Pro Trp Val Lys Pro Phe Val Ser Pro Lys Pro Pro Pro Leu Pro Thr Ala Pro Val Leu Pro Pro Gly Pro Ser Ala Gln Pro Pro Ser Arg Ser Ala Leu Tyr Pro Ala Leu Thr Leu Ser Ile Lys Ser Lys Pro Pro Lys Pro Gln Val Leu Pro Asp Ser Gly Gly Pro Leu Ile Asp Leu Leu Thr Glu Asp Pro Pro Pro Tyr Gly Val Gln Pro Ser Ser Ala Arg Glu Asn Asn Glu Glu Glu Ala Ala Thr Thr Ser Glu Val Ser Pro Pro Ser Pro Met Val Ser Arg Leu Arg Gly Arg Arg Asp Pro Pro Ala Ala Asp Ser Thr Thr Ser Gln Ala Phe Pro Leu Arg Met Gly Gly Asp Gly Gln Leu Gln Tyr Trp Pro Phe Ser Ser Asp Leu Tyr Asn Trp Lys Asn Asn Asn Pro Ser Phe Ser Glu Asp Pro Gly Lys Leu Thr Ala Leu Ile Glu Ser

-continued

				245					250					255	
Val	Leu	Ile	Thr 260	His	Gln	Pro	Thr	Trp 265	Asb	Asp	Сүз	Gln	Gln 270	Leu	Leu
Gly	Thr	Leu 275	Leu	Thr	Gly	Glu	Glu 280	Lys	Gln	Arg	Val	Leu 285	Leu	Glu	Ala
Gly	Lys 290	Ala	Val	Arg	Gly	Asn 295	Asp	Gly	Arg	Pro	Thr 300	Gln	Leu	Pro	Asn
Glu 305	Val	Asn	Ala	Ala	Phe 310	Pro	Leu	Glu	Arg	Pro 315	Asp	Trp	Asp	Tyr	Thr 320
Thr	Thr	Glu	Gly	Arg 325	Asn	His	Leu	Val	Leu 330	Tyr	Arg	Gln	Leu	Leu 335	Leu
Ala	Gly	Leu	Gln 340	Asn	Ala	Gly	Arg	Ser 345	Pro	Thr	Asn	Leu	Ala 350	Lys	Val
Lys	Gly	Ile 355	Thr	Gln	Gly	Pro	Asn 360	Glu	Ser	Pro	Ser	Ala 365	Phe	Leu	Glu
Arg	Leu 370	Lys	Glu	Ala	Tyr	Arg 375	Arg	Tyr	Thr	Pro	Tyr 380	Asp	Pro	Glu	Asp
Pro 385	Gly	Gln	Glu	Thr	Asn 390	Val	Ser	Met	Ser	Phe 395	Ile	Trp	Gln	Ser	Ala 400
Pro	Asp	Ile	Gly	Arg 405	Lys	Leu	Glu	Arg	Leu 410	Glu	Asp	Leu	Lys	Ser 415	Lys
Thr	Leu	Gly	Asp 420	Leu	Val	Arg	Glu	Ala 425	Glu	Гла	Ile	Phe	Asn 430	Гла	Arg
Glu	Thr	Pro 435	Glu	Glu	Arg	Glu	Glu 440	Arg	Ile	Arg	Arg	Glu 445	Ile	Glu	Glu
Lys	Glu 450	Glu	Arg	Arg	Arg	Ala 455	Glu	Asp	Glu	Gln	Arg 460	Glu	Arg	Glu	Arg
Asp 465	Arg	Arg	Arg	His	Arg 470	Glu	Met	Ser	Lys	Leu 475	Leu	Ala	Thr	Val	Val 480
Ile	Gly	Gln	Arg	Gln 485	Asp	Arg	Gln	Gly	Gly 490	Glu	Arg	Arg	Arg	Pro 495	Gln
Leu	Asp	Lys	Asp 500	Gln	Сүз	Ala	Tyr	Суз 505	Lys	Glu	Lys	Gly	His 510	Trp	Ala
Lys	Asp	Cys 515	Pro	Lys	Гла	Pro	Arg 520	Gly	Pro	Arg	Gly	Pro 525	Arg	Pro	Gln
Thr	Ser 530	Leu	Leu	Thr	Leu	Gly 535	Asp	Xaa	Gly	Gly	Gln 540	Gly	Gln	Glu	Pro
Pro 545	Pro	Glu	Pro	Arg	Ile 550	Thr	Leu	ГЛа	Val	Gly 555	Gly	Gln	Pro	Val	Thr 560
Phe	Leu	Val	Asp	Thr 565	Gly	Ala	Gln	His	Ser 570	Val	Leu	Thr	Gln	Asn 575	Pro
Gly	Pro	Leu	Ser 580	Asp	Гла	Ser	Ala	Trp 585	Val	Gln	Gly	Ala	Thr 590	Gly	Gly
Lys	Arg	Tyr 595	Arg	Trp	Thr	Thr	Asp 600	Arg	Lys	Val	His	Leu 605	Ala	Thr	Gly
Lys	Val 610	Thr	His	Ser	Phe	Leu 615	His	Val	Pro	Asp	Сув 620	Pro	Tyr	Pro	Leu
Leu 625	Gly	Arg	Asp	Leu	Leu 630	Thr	Lys	Leu	Lys	Ala 635	Gln	Ile	His	Phe	Glu 640
Gly	Ser	Gly	Ala	Gln 645	Val	Val	Gly	Pro	Met 650	Gly	Gln	Pro	Leu	Gln 655	Val

-continued

Leu	Thr	Leu	Asn 660	Ile	Glu	Asn	Lys	Tyr 665	Arg	Leu	His	Glu	Thr 670	Ser	Lys
Glu	Pro	Asp 675	Val	Pro	Leu	Gly	Ser 680	Thr	Trp	Leu	Ser	Asp 685	Phe	Pro	Gln
Ala	Trp 690	Ala	Glu	Thr	Gly	Gly 695	Met	Gly	Leu	Ala	Val 700	Arg	Gln	Ala	Pro
Leu 705	Ile	Ile	Pro	Leu	Lys 710	Ala	Thr	Ser	Thr	Pro 715	Val	Ser	Ile	Lys	Gln 720
Tyr	Pro	Met	Ser	Gln 725	Glu	Ala	Arg	Leu	Gly 730	Ile	ГЛа	Pro	His	Ile 735	Gln
Arg	Leu	Leu	Asp 740	Gln	Gly	Ile	Leu	Val 745	Pro	Суа	Gln	Ser	Pro 750	Trp	Asn
Thr	Pro	Leu 755	Leu	Pro	Val	Lys	Lys 760	Pro	Gly	Thr	Asn	Asp 765	Tyr	Arg	Pro
Val	Gln 770	Aap	Leu	Arg	Glu	Val 775	Asn	Lys	Arg	Val	Glu 780	Asp	Ile	His	Pro
Thr 785	Val	Pro	Asn	Pro	Tyr 790	Asn	Leu	Leu	Ser	Gly 795	Leu	Pro	Pro	Ser	His 800
Gln	Trp	Tyr	Thr	Val 805	Leu	Asp	Leu	Lys	Asp 810	Ala	Phe	Phe	Сув	Leu 815	Arg
Leu	His	Pro	Thr 820	Ser	Gln	Pro	Leu	Phe 825	Ala	Phe	Glu	Trp	Arg 830	Asp	Pro
Glu	Met	Gly 835	Ile	Ser	Gly	Gln	Leu 840	Thr	Trp	Thr	Arg	Leu 845	Pro	Gln	Gly
Phe	Lys 850	Asn	Ser	Pro	Thr	Leu 855	Phe	Asp	Glu	Ala	Leu 860	His	Arg	Asp	Leu
Ala 865	Aab	Phe	Arg	Ile	Gln 870	His	Pro	Asp	Leu	Ile 875	Leu	Leu	Gln	Tyr	Val 880
Asp	Aab	Leu	Leu	Leu 885	Ala	Ala	Thr	Ser	Glu 890	Gln	Asp	Сүз	Gln	Arg 895	Gly
Thr	Arg	Ala	Leu 900	Leu	Gln	Thr	Leu	Gly 905	Asn	Leu	Gly	Tyr	Arg 910	Ala	Ser
Ala	Lys	Lys 915	Ala	Gln	Ile	Суз	Gln 920	Lys	Gln	Val	Lys	Tyr 925	Leu	Gly	Tyr
Leu	Leu 930	Lys	Glu	Gly	Gln	Arg 935	Trp	Leu	Thr	Glu	Ala 940	Arg	Lys	Glu	Thr
Val 945	Met	Gly				Pro			Pro					Glu	
Leu	Gly	Thr	Ala	Gly 965	Phe	Cys	Arg	Leu	Trp 970	Ile	Pro	Gly	Phe	Ala 975	Glu
Met	Ala	Ala	Pro 980	Leu	Tyr	Pro	Leu	Thr 985	Lys	Thr	Gly	Thr	Leu 990	Phe	Asn
Trp	Gly	Pro 995	Asp	Gln	Gln	Lys	Ala 1000	-	r Glı	n Glu	ı Ile	∋ Ly: 100		ln A	la Leu
Leu	Thr 1010		a Pro	> Ala	a Lei	1 Gly 101		eu Pi	ro As	зр Le		nr 1 020	'ya I	Pro I	?he
Glu	Leu 1025		e Val	l Asp	Glu	1 Ly: 103		ln G	Ly Ty	vr Al		үв (035	Gly N	/al I	leu
Thr	Gln 1040		s Leu	ı Gly	/ Pro	5 Tr <u>1</u> 104		rg Ai	rg Pi	co Vá		la 5 050	fyr I	Leu f	Ser
Lys	Lys 1055		ı Asp) Pro	Va:	L Ala 100		La GI	Ly Ti	rp Pi		ro (065	Cys I	Leu A	Arg

Met	Val 1070	Ala	Ala	Ile	Ala	Val 1075	Leu	Thr	Lys	Asp	Ala 1080	Gly	Lys	Leu
Thr	Met 1085	Gly	Gln	Pro	Leu	Val 1090	Ile	Leu	Ala	Pro	His 1095	Ala	Val	Glu
Ala	Leu 1100	Val	Lys	Gln	Pro	Pro 1105	Asp	Arg	Trp	Leu	Ser 1110	Asn	Ala	Arg
Met	Thr 1115	His	Tyr	Gln	Ala	Met 1120		Leu	Asp	Thr	Asp 1125	Arg	Val	Gln
Phe	Gly 1130	Pro	Val	Val	Ala	Leu 1135		Pro	Ala	Thr	Leu 1140	Leu	Pro	Leu
Pro	Glu 1145	Lys	Glu	Ala	Pro	His 1150	Asp	Cys	Leu	Glu	Ile 1155	Leu	Ala	Glu
Thr	His 1160	Gly	Thr	Arg	Pro	Asp 1165		Thr	Asp	Gln	Pro 1170	Ile	Pro	Asp
Ala	Asp 1175	Tyr	Thr	Trp	Tyr	Thr 1180	Asp	Gly	Ser	Ser	Phe 1185	Leu	Gln	Glu
Gly	Gln 1190	Arg	Arg	Ala	Gly	Ala 1195	Ala	Val	Thr	Thr	Glu 1200	Thr	Glu	Val
Ile	Trp 1205	Ala	Arg	Ala	Leu	Pro 1210	Ala	Gly	Thr	Ser	Ala 1215	Gln	Arg	Ala
Glu	Leu 1220	Ile	Ala	Leu	Thr	Gln 1225	Ala	Leu	Lys	Met	Ala 1230	Glu	Gly	Lys
Lys	Leu 1235	Asn	Val	Tyr	Thr	Asp 1240	Ser	Arg	Tyr	Ala	Phe 1245	Ala	Thr	Ala
His	Val 1250	His	Gly	Glu	Ile	Tyr 1255	Arg	Arg	Arg	Gly	Leu 1260	Leu	Thr	Ser
Glu	Gly 1265	Arg	Glu	Ile	Lys	Asn 1270	-	Asn	Glu	Ile	Leu 1275	Ala	Leu	Leu
Lys	Ala 1280	Leu	Phe	Leu	Pro	Lys 1285	Arg	Leu	Ser	Ile	Ile 1290	His	Суз	Pro
Gly	His 1295	Gln	Lys	Gly	Asn	Ser 1300	Ala	Glu	Ala	Arg	Gly 1305	Asn	Arg	Met
Ala	Asp 1310	Gln	Ala	Ala	Arg	Glu 1315	Ala	Ala	Met	Lys	Ala 1320	Val	Leu	Glu
Thr	Ser 1325	Thr	Leu	Leu	Ile	Glu 1330	Asp	Ser	Thr	Pro	Tyr 1335	Thr	Pro	Pro
His	Phe 1340	His	Tyr	Thr	Glu	Thr 1345	Asp	Leu	Lys	Arg	Leu 1350	Arg	Glu	Leu
Gly	Ala 1355	Thr	Tyr	Asn	Gln	Thr 1360	Lys	Gly	Tyr	Trp	Val 1365	Leu	Gln	Gly
Lys	Pro 1370	Val	Met	Pro	Asp	Gln 1375	Ser	Val	Phe	Glu	Leu 1380	Leu	Asp	Ser
Leu	His 1385	Arg	Leu	Thr	His	Pro 1390	Ser	Pro	Gln	Lys	Met 1395	Lys	Ala	Leu
Leu	Asp 1400	Arg	Glu	Glu	Ser	Pro 1405	Tyr	Tyr	Met	Leu	Asn 1410	Arg	Asp	Arg
Thr	Ile 1415	Gln	Tyr	Val	Thr	Glu 1420	Thr	Сув	Thr	Ala	Cys 1425	Ala	Gln	Val
Asn	Ala 1430	Ser	Lys	Ala	Lys	Ile 1435	Gly	Ala	Gly	Val	Arg 1440	Val	Arg	Gly
His	Arg	Pro	Gly	Thr	His	Trp	Glu	Val	Asp	Phe	Thr	Glu	Val	Гла

-continued

_											- COI	1C 1 I	iuec	1
	1445					1450)				1455			
Pro	Gly 1460	Leu	Tyr	Gly	Tyr	Lys 1465		Leu	Leu	Val	Phe 1470	Val	Asp	Thr
Phe	Ser 1475	Gly	Trp	Val	Glu	Ala 1480		Pro	Thr	Гла	Arg 1485	Glu	Thr	Ala
Lys	Val 1490	Val	Thr	Lys	ГЛа	Leu 1495		Glu	Asp	Ile	Phe 1500	Pro	Arg	Phe
Gly	Met 1505	Pro	Gln	Val	Leu	Gly 1510		Asp	Asn	Gly	Pro 1515	Ala	Phe	Ala
Ser	Gln 1520	Val	Ser	Gln	Ser	Val 1525		Asp	Leu	Leu	Gly 1530	Ile	Asp	Trp
Lys	Leu 1535	His	Суз	Ala	Tyr	Arg 1540		Gln	Ser	Ser	Gly 1545	Gln	Val	Glu
Arg	Met 1550	Asn	Arg	Thr	Ile	Lys 1555		Thr	Leu	Thr	Lys 1560	Leu	Thr	Leu
Ala	Ser 1565	Gly	Thr	Arg	Asp	Trp 1570		Leu	Leu	Leu	Pro 1575	Leu	Ala	Leu
Tyr	Arg 1580	Ala	Arg	Asn	Thr	Pro 1585		Pro	His	Gly	Leu 1590	Thr	Pro	Tyr
Glu	Ile 1595	Leu	Tyr	Gly	Ala	Pro 1600		Pro	Leu	Val	Asn 1605	Phe	His	Asp
Pro	Glu 1610	Met	Ser	Lys	Leu	Thr 1615		Ser	Pro	Ser	Leu 1620	Gln	Ala	His
Leu	Gln 1625	Ala	Leu	Gln	Ala	Val 1630		Gln	Glu	Val	Trp 1635	Lys	Pro	Leu
Ala	Ala 1640	Ala	Tyr	Gln	Asp	Gln 1645		Asp	Gln	Pro	Val 1650	Ile	Pro	His
Pro	Phe 1655	Arg	Val	Gly	Asp	Ala 1660		Trp	Val	Arg	Arg 1665	His	Gln	Thr
Lys	Asn 1670	Leu	Glu	Pro	Arg	Trp 1675		Gly	Pro	Tyr	Thr 1680	Val	Leu	Leu
Thr	Thr 1685	Pro	Thr	Ala	Leu	Lys 1690		Asp	Gly	Ile	Ser 1695	Ala	Trp	Ile
His	Ala 1700	Ala	His	Val	Lys	Ala 1705		Thr	Thr	Pro	Pro 1710	Ala	Gly	Thr
Ala	Trp 1715	-				Ser 1720					Lys 1725		Arg	Leu
Thr	Arg 1730	Gly	Ala	Pro										
)> SE(
<212	L> LEI 2> TYI 3> OR(PE: 1	PRT		trop:	ic Mu	ıLV-r	elat	ed V	irus	VP35			
< 40)> SE	QUEN	CE:	35										
Met 1	Gly (Gln '		Val ' 5	Thr 7	Ihr I	ro L	eu S 1		eu Tl	nr Lei	ı Glı	n Hi: 15	s Trp
Gly	Asp '		Gln 2 20	Arg :	Ile 2	Ala S	er A 2		ln S	er V	al As _l	9 Va 30	l Ly:	s Lys
Arg		Irp ' 35	Val	Thr 1	Phe (er A 0	la G	lu T	rp P:	ro Th: 45	r Phe	e Asr	n Val
Gly	Trp 1	Pro (Gln 2	Asp (Gly ?	Thr B	he A	sn L	eu G	ly V	al Ile	e Se:	r Glr	n Val

-cont	inued

	50					55					60				
Lys 65	Ser	Arg	Val	Phe	Cys 70	Pro	Gly	Pro	His	Gly 75	His	Pro	Asp	Gln	Val 80
Pro	Tyr	Ile	Val	Thr 85	Trp	Glu	Ala	Leu	Ala 90	Tyr	Asp	Pro	Pro	Pro 95	Trp
Val	Lys	Pro	Phe 100	Val	Ser	Pro	Lys	Pro 105	Pro	Pro	Leu	Pro	Thr 110	Ala	Pro
Val	Leu	Pro 115	Pro	Gly	Pro	Ser	Ala 120	Gln	Pro	Pro	Ser	Arg 125	Ser	Ala	Leu
Tyr	Pro 130	Ala	Leu	Thr	Leu	Ser 135	Ile	Lys	Ser	ГÀа	Pro 140	Pro	Lys	Pro	Gln
Val 145	Leu	Pro	Asp	Ser	Gly 150	Gly	Pro	Leu	Ile	Asp 155	Leu	Leu	Thr	Glu	Asp 160
Pro	Pro	Pro	Tyr	Gly 165	Val	Gln	Pro	Ser	Ser 170	Ser	Ala	Arg	Glu	Asn 175	Asn
Glu	Glu	Glu	Ala 180	Ala	Thr	Thr	Ser	Glu 185	Val	Ser	Pro	Pro	Ser 190	Pro	Met
Val	Ser	Arg 195	Leu	Arg	Gly	Arg	Arg 200	Asp	Pro	Pro	Ala	Ala 205	Asp	Ser	Thr
Thr	Ser 210	Gln	Ala	Phe	Pro	Leu 215	Arg	Met	Gly	Gly	Asp 220	Gly	Gln	Leu	Gln
Tyr 225	Trp	Pro	Phe	Ser	Ser 230	Ser	Asp	Leu	Tyr	Asn 235	Trp	Lys	Asn	Asn	Asn 240
Pro	Ser	Phe	Ser	Glu 245	Asp	Pro	Gly	Lys	Leu 250	Thr	Ala	Leu	Ile	Glu 255	Ser
Val	Leu	Ile	Thr 260	His	Gln	Pro	Thr	Trp 265	Asp	Asp	Суз	Gln	Gln 270	Leu	Leu
Gly	Thr	Leu 275	Leu	Thr	Gly	Glu	Glu 280	Lys	Gln	Arg	Val	Leu 285	Leu	Glu	Ala
Gly	Lys 290	Ala	Val	Arg	Gly	Asn 295	Asp	Gly	Arg	Pro	Thr 300	Gln	Leu	Pro	Asn
Glu 305	Val	Asn	Ala	Ala	Phe 310	Pro	Leu	Glu	Arg	Pro 315	Asp	Trp	Asp	Tyr	Thr 320
Thr	Thr	Glu	Gly	Arg 325	Asn	His	Leu	Val	Leu 330	Tyr	Arg	Gln	Leu	Leu 335	Leu
Ala	Gly	Leu	Gln 340	Asn	Ala	Gly	Arg	Ser 345	Pro	Thr	Asn	Leu	Ala 350	Lys	Val
Lys	Gly	Ile 355	Thr	Gln	Gly	Pro	Asn 360	Glu	Ser	Pro	Ser	Ala 365	Phe	Leu	Glu
Arg	Leu 370	Lys	Glu	Ala	Tyr	Arg 375	Arg	Tyr	Thr	Pro	Tyr 380	Asp	Pro	Glu	Asp
Pro 385	Gly	Gln	Glu	Thr	Asn 390	Val	Ser	Met	Ser	Phe 395	Ile	Trp	Gln	Ser	Ala 400
Pro	Asb	Ile	Gly	Arg 405	Гла	Leu	Glu	Arg	Leu 410	Glu	Asp	Leu	Lys	Ser 415	Lys
Thr	Leu	Gly	Asp 420	Leu	Val	Arg	Glu	Ala 425	Glu	Гла	Ile	Phe	Asn 430	Гла	Arg
Glu	Thr	Pro 435	Glu	Glu	Arg	Glu	Glu 440	Arg	Ile	Arg	Arg	Glu 445	Ile	Glu	Glu
Lys	Glu 450	Glu	Arg	Arg	Arg	Ala 455	Glu	Asp	Glu	Gln	Arg 460	Glu	Arg	Glu	Arg

									-
-	C	O.	n	C :	1	n	u	e	a

Asp Arg Arg Arg His Arg Glu Met Ser Lys Leu Leu Ala Thr Val Val Ile Gly Gln Arg Gln Asp Arg Gln Gly Gly Glu Arg Arg Arg Pro Gln Leu Asp Lys Asp Gln Cys Ala Tyr Cys Lys Glu Lys Gly His Trp Ala Lys Asp Cys Pro Lys Lys Pro Arg Gly Pro Arg Gly Pro Arg Pro Gln 515 520 525 Thr Ser Leu Leu Thr Leu Gly Asp <210> SEQ ID NO 36 <211> LENGTH: 645 <212> TYPE: PRT <213> ORGANISM: Xenotropic MuLV-related Virus VP42 <400> SEOUENCE: 36 Met Glu Ser Pro Ala Phe Ser Lys Pro Leu Lys Asp Lys Ile Asn Pro Trp Gly Pro Leu Ile Ile Met Gly Ile Leu Val Arg Ala Gly Ala Ser Val Gln Arg Asp Ser Pro His Gln Val Phe Asn Val Thr Trp Lys Ile Thr Asn Leu Met Thr Gly Gln Thr Ala Asn Ala Thr Ser Leu Leu Gly Thr Met Thr Asp Thr Phe Pro Lys Leu Tyr Phe Asp Leu Cys Asp Leu Val Gly Asp Asn Trp Asp Asp Pro Glu Pro Asp Ile Gly Asp Gly Cys Arg Ser Pro Gly Gly Arg Lys Arg Thr Arg Leu Tyr Asp Phe Tyr Val Cys Pro Gly His Thr Val Leu Thr Gly Cys Gly Gly Pro Arg Glu Gly Tyr Cys Gly Lys Trp Gly Cys Glu Thr Thr Gly Gln Ala Tyr Trp Lys Pro Ser Ser Ser Trp Asp Leu Ile Ser Leu Lys Arg Gly Asn Thr Pro Lys Gly Gln Gly Pro Cys Phe Asp Ser Ser Val Gly Ser Gly Ser Ile Gln Gly Ala Thr Pro Gly Gly Arg Cys Asn Pro Leu Val Leu Glu Phe Thr Asp Ala Gly Lys Arg Ala Ser Trp Asp Ala Pro Lys Thr Trp Gly Leu Arg Leu Tyr Arg Ser Thr Gly Ala Asp Pro Val Thr Leu Phe Ser Leu Thr Arg Gln Val Leu Asn Val Gly Pro Arg Val Pro Ile Gly Pro Asn Pro Val Ile Thr Glu Gln Leu Pro Pro Ser Gln Pro Val Gln Ile Met Leu Pro Arg Pro Pro Arg Pro Pro Pro Ser Gly Ala Ala Ser Met Val Pro Gly Ala Pro Pro Pro Ser Gln Gln Pro Gly Thr Gly Asp Arg

-continued

												con		ueu	
Leu	Leu 290	Asn	Leu	Val	Glu	Gly 295	Ala	Tyr	Gln	Ala	Leu 300	Asn	Leu	Thr	Ser
Pro 305	Asp	Lys	Thr	Gln	Glu 310	Суз	Trp	Leu	Суз	Leu 315	Val	Ser	Gly	Pro	Pro 320
Tyr	Tyr	Glu	Gly	Val 325	Ala	Val	Leu	Gly	Thr 330	Tyr	Ser	Asn	His	Thr 335	Ser
Ala	Pro	Ala	Asn 340	-	Ser	Val	Thr	Ser 345	Gln	His	Lys	Leu	Thr 350	Leu	Ser
Glu	Val	Thr 355	Gly	Gln	Gly	Leu	Суз 360	Ile	Gly	Ala	Val	Pro 365	Lys	Thr	His
Gln	Ala 370	Leu	Суз	Asn	Thr	Thr 375	Gln	LÀa	Thr	Ser	Aap 380	Gly	Ser	Tyr	Tyr
Leu 385	Ala	Ser	Pro	Ala	Gly 390	Thr	Ile	Trp	Ala	Суз 395	Ser	Thr	Gly	Leu	Thr 400
Pro	Cys	Leu	Ser	Thr 405	Thr	Val	Leu	Asn	Leu 410	Thr	Thr	Asp	Tyr	Cys 415	Val
Leu	Val	Glu	Leu 420	Trp	Pro	Гла	Val	Thr 425	Tyr	His	Ser	Pro	Asn 430	Tyr	Val
Tyr	Gly	Gln 435	Phe	Glu	ГЛа	Гла	Thr 440	Гла	Tyr	Lys	Arg	Glu 445	Pro	Val	Ser
Leu	Thr 450	Leu	Ala	Leu	Leu	Leu 455	Gly	Gly	Leu	Thr	Met 460	Gly	Gly	Ile	Ala
Ala 465	Gly	Val	Gly	Thr	Gly 470	Thr	Thr	Ala	Leu	Val 475	Ala	Thr	Lys	Gln	Phe 480
Glu	Gln	Leu	Gln	Ala 485	Ala	Ile	His	Thr	Asp 490	Leu	Gly	Ala	Leu	Glu 495	Lys
Ser	Val	Ser	Ala 500	Leu	Glu	Lys	Ser	Leu 505	Thr	Ser	Leu	Ser	Glu 510	Val	Val
Leu	Gln	Asn 515	Arg	Arg	Gly	Leu	Asp 520	Leu	Leu	Phe	Leu	Lys 525	Glu	Gly	Gly
Leu	Cys 530	Ala	Ala	Leu	Lys	Glu 535	Glu	Суз	Суз	Phe	Tyr 540	Ala	Asp	His	Thr
Gly 545	Val	Val	Arg	Asp	Ser 550	Met	Ala	Lys	Leu	Arg 555	Glu	Arg	Leu	Asn	Gln 560
Arg	Gln	Lys	Leu	Phe 565	Glu	Ser	Gly	Gln	Gly 570	Trp	Phe	Glu	Gly	Leu 575	Phe
Asn	Arg	Ser	Pro 580		Phe	Thr	Thr	Leu 585	Ile	Ser	Thr	Ile	Met 590	Gly	Pro
Leu	Ile	Val 595	Leu	Leu	Leu	Ile	Leu 600	Leu	Phe	Gly	Pro	Суя 605	Ile	Leu	Asn
Arg	Leu 610	Val	Gln	Phe	Val	Lys 615	Asp	Arg	Ile	Ser	Val 620	Val	Gln	Ala	Leu
Val 625	Leu	Thr	Gln	Gln	Tyr 630	His	Gln	Leu	Lys	Ser 635	Ile	Asp	Pro	Glu	Glu 640
Val	Glu	Ser	Arg	Glu 645											
<220	L> LH 2> T) 3> OF 0> FH	ENGTH (PE : RGAN] EATUH	H: 1 PRT ISM: RE:	733 Xeno	otroj	-		-rela	ated	Vir	us V.	P42			
					c_fea 7)										

		-
-cont	- i n	ned

											-	con	tin	ued	
<223	3> 01	HER	INF	ORMA'	TION	: Xaa	a cai	n be	any	nati	ural	ly o	ccuri	ring	amino acid
<400)> SI	EQUEI	ICE :	37											
Met 1	Gly	Gln	Thr	Val 5	Thr	Thr	Pro	Leu	Ser 10	Leu	Thr	Leu	Gln	His 15	Trp
Gly	Aab	Val	Gln 20	Arg	Ile	Ala	Ser	Asn 25	Gln	Ser	Val	Asp	Val 30	ГЛа	Гуз
Arg	Arg	Trp 35	Val	Thr	Phe	Сүз	Ser 40	Ala	Glu	Trp	Pro	Thr 45	Phe	Asn	Val
Gly	Trp 50	Pro	Gln	Asp	Gly	Thr 55	Phe	Asn	Leu	Gly	Ile 60	Ile	Ser	Gln	Val
Lys 65	Ser	Arg	Val	Phe	Сув 70	Pro	Gly	Pro	His	Gly 75	His	Pro	Asp	Gln	Val 80
Pro	Tyr	Ile	Val	Thr 85	Trp	Glu	Ala	Leu	Ala 90	Tyr	Asp	Pro	Pro	Pro 95	Trp
Val	Lys	Pro	Phe 100	Val	Ser	Pro	Lys	Pro 105	Pro	Pro	Leu	Pro	Thr 110	Ala	Pro
Val	Leu	Pro 115	Pro	Gly	Pro	Ser	Ala 120	Gln	Pro	Pro	Ser	Arg 125	Ser	Ala	Leu
Tyr	Pro 130	Ala	Leu	Thr	Pro	Ser 135	Ile	Lys	Ser	Гла	Pro 140	Pro	Гла	Pro	Gln
Val 145	Leu	Pro	Asp	Ser	Gly 150	Gly	Pro	Leu	Ile	Asp 155	Leu	Leu	Thr	Glu	Asp 160
Pro	Pro	Pro	Tyr	Gly 165	Ala	Gln	Pro	Ser	Ser 170	Ser	Ala	Arg	Glu	Asn 175	Asn
Glu	Glu	Glu	Ala 180	Ala	Thr	Thr	Ser	Glu 185	Val	Ser	Pro	Pro	Ser 190	Pro	Met
Val	Ser	Arg 195	Leu	Arg	Gly	Arg	Arg 200	Asp	Pro	Pro	Ala	Ala 205	Asp	Ser	Thr
Thr	Ser 210	Gln	Ala	Phe	Pro	Leu 215	Arg	Met	Gly	Gly	Asp 220	Gly	Gln	Leu	Gln
Tyr 225	Trp	Pro	Phe	Ser	Ser 230	Ser	Asp	Leu	Tyr	Asn 235	Trp	Lys	Asn	Asn	Asn 240
Pro	Ser	Phe	Ser	Glu 245	Asp	Pro	Gly	Lys	Leu 250	Thr	Ala	Leu	Ile	Glu 255	Ser
Val	Leu	Ile	Thr 260	His	Gln	Pro	Thr	Trp 265	Asp	Asp	Суз	Gln	Gln 270	Leu	Leu
Gly	Thr	Leu 275	Leu	Thr	Gly	Glu	Glu 280	Lys	Gln	Arg	Val	Leu 285	Leu	Glu	Ala
Arg	Lуя 290	Ala	Val	Arg	Gly	Asn 295	Asp	Gly	Arg	Pro	Thr 300	Gln	Leu	Pro	Asn
305					310		Leu		-	315	_	-	-	-	320
			-	325			Leu		330	-	-			335	
	-		340			-	Arg	345					350	-	
-	-	355			-		Asn 360					365			
Arg	Leu 370	Lys	Glu	Ala	Tyr	Arg 375	Arg	Tyr	Thr	Pro	Tyr 380	Asp	Pro	Glu	Asp
Pro	Gly	Gln	Glu	Thr	Asn	Val	Ser	Met	Ser	Phe	Ile	Trp	Gln	Ser	Ala

-continued

383 JUN JUN Aug
405 410 415 Thr Leu Gly Asp Leu Val Arg Glu Ala Glu Lys Ile Phe Asm Lys Arg 420 425 Glu Thr Pro Glu Glu Arg Glu Arg Ile Arg Arg Glu Ile Glu Glu Glu Arg
420 425 430 31u Thr Pro Glu Glu Arg Glu Arg Arg Glu Glu Glu Glu Glu Glu Arg Glu Arg Arg Arg Arg Glu Arg A
435 440 445 Lye Glu Glu Arg
450 455 460 Asp Arg Arg Arg Arg His Arg Glu Met Ser Lys Leu Leu Lu Ala Thr Val Val 475 Asp Arg Arg Arg Arg Gln Arg Gln Asp Arg Gln Gly Gly Glu Arg Arg Arg Pro Gln 485 Leu Asp Lys Asp Gln Cys Ala Tyr Cys Lys Glu Lys Gly His Trp Ala 500 Leu Asp Lys Asp Gln Cys Ala Tyr Cys Lys Glu Lys Gly Pro Arg Cly Pro Arg Gly Pro Arg Gly Gln Glu Gln Glu Glu Glo Gln Glu Fro 515 Lys Asp Cys Pro Lys Lys Pro Arg Gly Pro Arg Gly Gln Gly Gln Glu Glu Glo Glu Glo Glu Pro 515 Pro Pro Clu Pro Arg Ile Thr Leu Cly Asp Xaa Gly Gly Gln Gly Gln Glu Pro Val Thr 550 Pro Pro Glu Pro Arg Ile Thr Leu Lys Val Gly Gly Gln Pro Val Thr 550 Pro Pro Clu Val Asp Thr Gly Ala Gln His Ser Val Leu Thr Gln Asp Tro 570 Pro Pro Leu Ser Asp Lys Ser Ala Trp Val Gln Gly Ala Thr Gly Gly Gly Cly Cly Thr Arg Trp Thr Thr Asp Arg Lys Val His Leu Ala Thr Gly Gly 610 Lys Arg Tyr Arg Trp Thr Thr Asp Arg Lys Val His Leu Ala Thr Gly 600 Clys Arg Arg Arg Arg Leu Leu Thr Lys Lys Lys Ala Gln The His Phe Glu 610 Gly Arg Asp Leu Leu Thr Lys Lys Lys Ala Gln Fro Leu 625 Gly Arg Arg Arg Trp Thr Thr Asp Arg Lys Ala Gln The His Clu Thr 640 Sly Ser Gly Ala Gln Val Val Gly Pro Met Gly Gln Pro Leu 610 Gly Arg Asp Leu Leu Thr Lys Lys Chy Arg Leu His Glu Thr Ser Lys 665 Glu Thr Leu Ason The Gly Gly Met Gly Leu Ala Val Arg Gln Ala Pro 600 Glu Thr Leu Ason The Gly Gly Met Gly Leu Ala Val Arg Gln Ala Pro 700 Glu Thr Asp Yal Pro Le
4465 470 475 480 Ile Gly Gln Arg Gln Arg Gln Arg Gln
485 490 490 495 Leu Asp Lys Asp Gln Cys Ala Tyr Cys Lys Gly Fib Tyr Ala Lys Asp Cys Pro Lys Gly Fro Arg Gly Fro Arg Gly Fro Arg Gly
LysAspCysProLysLysProArgGlyProArgGlyProArgGlyProArgGlyProArgGlyProArgGlyProArgGlyGlnGluGlnGluGlnGluProGlnGluProGlnGluProValGlnGluProValThrSanGluProArgThLeuGlyAlaGluGluProValThrSanGluProValThrSanSanGluGluProValThrSanSanSanGluGluProValThrSanSanSanGluProValThrSanSa
515 520 525 Fir Sis Sis 520 525 Fir Ser Leu Thr Leu Gly Asp Xaa Gly Gly Gln Gly Glu Pro Pro Glu Pro Arg Ile Thr Leu Lys Val Gly Gln Gly Gln Pro Val Thr S45 Pro Glu Asp Thr Gly Ala Gln His Ser Val Gly Gln Asp Val Ser Val Gln Glu Asp Pro Ser Asp Lys Val Gln Glu Asp Pro Ser Asp Pro Ser Asp Pro Ser Asp Pro Ser Pro Glu Asp Gly Asp Pro Pro Ser Pro S
530 535 540 Pro Glu Pro Arg Ile The Leu Lys Val Gly Gln Pro Val Thr S55 Pro Glu Arg Thr Gly Ala Gly Ala Gly S55 Gly Gln Pro Val Ann S56 Pro Leu Val Asp Thr Gly Ala Gln His Ser Val Gln Gly Ala Thr Ser Val Gln Gly Ala Thr Ser Ala Thr Ser Val Gln Gly Ala Thr Gly Ser Ala Thr Ser Pro Leu Ser Pro Leu Ser Pro Leu Ser Ser Pro Leu Ser Ser Pro Leu Ala Thr Ser Ser Ser Ser Ser Ser Ser
545 550 555 560 Phe Leu Val Asp Thr Gly Ala Gln His Ser Val Leu Thr Gln Asp Fro Gly Pro Leu Ser Asp Lys Ser Ala Thr Ser Val Gly Ala Thr Gly Gly Gly Ser Asp Ser Asp Lys Ser Asp Ser Asp Ser Asp Pro Gly Ala Thr Gly Asp Ser Pro Fro Ser Ser Pro Ser Ser Pro Ser Ser Pro Ser Ser Pro Ser Pro Leu Ser Pro Ser Pro Leu Ser Pro Ser Pro Ser Pro Ser Ser Pro Ser Pro Ser Ser Pro Ser Ser Ser Ser
565 570 577 Gly Pro Leu Ser Asp Lys Ser Ala Trp Sad Gly Ala The Sad Gly Sad Gly Ala The Sad Sad Sad Sad Gly Ala The Sad Sad Sad Sad Gly Ala The Sad
580 580 585 590 590 Lys Arg Tyr Arg Tyr Arg Tyr Thr Thr Asp GU Val His Leu Ala Thr Gly Lys Val Thr His Ser Phe Leu His Val Pro Asp Cys Pro Tyr Pro Leu Leu Gly Arg Asp Leu Leu His Val Pro Asp Cys Pro Tyr Pro Leu Leu Gly Arg Asp Leu Leu His Val Gly Asp Cys Pro Tyr Pro Leu Gly Arg Gly Val Gly Pro Met Gly Gly Gly Gly Asp Glu Gly Asp Gly G
595 600 605 605 Lys Val Thr His Ser Phe Leu His Val Pro Asp Cys Pro Tyr Pro Leu Leu Gly Arg Asp Leu Leu Thr Lys Leu Tyr Pro Leu Glu Gas Glu Gas Glu His Pro Asp Cys Pro Tyr Pro Leu Gas Gly Arg Asp Leu Thr Lys Leu Thr Math Glu Gly Pro Met Gly Gln Pro Leu Glu
610 615 620 Leu Gly Arg Asp Leu Thr Lys Alu S I His Phe Glu Gly Ser Gly Ala Gln Val Gly Pro Met Gly Gln Pro Leu Gly Gln Gln <t< td=""></t<>
625 630 635 640 Gly Ser Gly Ala Gln Val Gln Val Gly Val Gly Pro $\stackrel{655}{650}$ Gly Gln Pro Leu Gln $\stackrel{655}{655}$ 640 Glu Thr Leu Asn Ile Glu Asp Glu Tyr Arg Leu His Glu Thr Ser Lys $\stackrel{655}{665}$ 660 7 Glu Pro $\stackrel{655}{650}$ Val $\stackrel{655}{650}$ 7 7 7 Glu Thr Leu Asn Ile Glu Gly Ser Thr Trp Leu Ser $\stackrel{655}{685}$ 7 7 7 Glu Pro $\stackrel{655}{675}$ Val $\stackrel{615}{695}$ 7 7 7 7 Glu Pro $\stackrel{655}{675}$ Val $\stackrel{615}{695}$ 7 7 7 7 7 Glu Pro $\stackrel{655}{675}$ Val $\stackrel{616}{655}$ 7 7 7 7 7 7 Glu Pro $\stackrel{655}{675}$ Val $\stackrel{610}{665}$ 610 1
645 650 655 Leu Thr Leu Asn Ile Glu Asp Glu Tyr Arg Leu His Glu Thr Ser Lys Glu Asp Val Pro Leu Glu Asp Glu Tyr Arg Leu His Glu Thr Ser Lys Glu Arg Pro Asp Val Pro Leu Gly Ser Thr Trp Leu Ser Asp Pro Gln Gln Ala Trp Ala Glu Thr Gly Gly Leu Ala Yal Arg Gln Ala Pro
660 665 670 Glu Pro Asp Val Pro Leu Gly Ser Thr Trp Leu Ser Asp 685 Pho Pro Gln Ala Trp Ala Glu Thr Gly Gly Leu Gly Leu Ala Val Pro Gln Ala Trp Ala Glu Thr Gly Gly Leu Ala Val Pro Gln Ala Trp Ala Glu Thr Gly Met Gly Leu Ala Val Trp Arg Gln Ala Pro Gro Ile Ile Pro Leu Lys Ala Thr Ser Thr Pro Val Ser Ile Lys Gln Tyr Pro Met Ser Gln Glu Ala Arg Leu Gly Ile Lys Thr Pro Thr Lys Ile Lys Tro Tro Tro Tro
675680685AlaTrpAlaGluThrGlyGlyMetGlyLeuAlaValArgGlnAlaProLeuIleIleProLeuLysAlaThrSerThrProValSerIleLysGln700ProMetSerGlnGluAlaThrSerThrProValSerIleLysGln700ProMetSerGlnGluAlaArgLeuGlyIleLysProTrAsoTrAso700ProMetSerGlnGluAlaArgLeuGlyIleLysProTrAsoTrAsoTrAsoProTrAsoP
690695700LeuIleIleProLeuLysAlaThrSerThrProValSerIleLysGlnTyrProMetSerGlnGluAlaArgLeuGlyIleLysProHisIleGlnTyrProMetSerGlnGluAlaArgLeuGlyIleLysProHisIleGlnArgLeuAspGlnGlyIleLeuValProCysGlnSerProTrpAsnThrProLeuLeuProValLysLysProGlyThrAsnAspTyrArgProValGlnAspLeuArgGluValAsnLysArgValGluAspIleHisProValGlnAspLeuArgGluValAsnLysArgValGluAspIleHisProValGlnAspLeuArgGluValAsnLysArgValGluAspIleHisProValGlnAspLeuArgGluNaspLysArgValGluAspIleHisPro
705 710 715 720 Tyr Pro Met Ser Gln Glu Ala Arg Leu Gly Ile Lys Pro His Ile Gln Arg Leu Leu Asp Gln Gly Ile Leu Val Pro Cys Gln Ser Pro Trp Asn Thr Pro Leu Leu Pro Val Lys Lys Pro Gly Thr Asn Asp Tyr Arg Pro Val Gln Asp Glu Val Asp Lys Lys Lys Arg Cly Thr Asn Asp Tyr Arg Pro Val Gln Asp Glu Val Asp Lys Lys Arg Val Glu Asp Ile His Pro Val Gln Asp Leu Arg Glu Val Asp Lys Lys Arg Val Glu Asp Ile His Pro
725730735Arg Leu Leu Asp Gln Gly Ile Leu Val Pro Cys Gln SerPro Trp Asn740745745Thr Pro Leu Leu Pro Val Lys Lys Pro Gly Thr Asn Asp Tyr Arg Pro755760Val Gln Asp Leu Arg Glu Val Asn Lys Arg Val Glu Asp Ile His Pro770775780
740745750Thr Pro Leu Leu Pro Val Lys Lys Pro Gly Thr Asn Asp Tyr Arg Pro 755760765Val Gln Asp Leu Arg Glu Val Asn Lys Arg Val Glu Asp Ile His Pro 770775780
755 760 765 Val Gln Asp Leu Arg Glu Val Asn Lys Arg Val Glu Asp Ile His Pro 770 775 780
770 775 780
Thr Val Pro Asn Pro Tyr Asn Leu Leu Ser Gly Leu Pro Pro Ser His
785 790 795 800

-continued

Gln	Trp	Tyr	Thr	Val 805	Leu	Asp	Leu	Lys	Asp 810		Phe	Phe	e Cys	Leu 815	Arg	
Leu	His	Pro	Thr 820	Ser	Gln	Pro	Leu	Phe 825	Ala	Phe	Glu	Trp	Arg 830		Pro	
Glu	Met	Gly 835	Ile	Ser	Gly	Gln	Leu 840	Thr	Trp	Thr	Arg	Leu 845		Gln	Gly	
Phe	Lys 850	Asn	Ser	Pro	Thr	Leu 855	Phe	Asp	Glu	Ala	Leu 860		Arg	Asp	Leu	
Ala 865	Asp	Phe	Arg	Ile	Gln 870	His	Pro	Asp	Leu	Ile 875		Leu	Gln	Tyr	Val 880	
Asp	Asp	Leu	Leu	Leu 885	Ala	Ala	Thr	Ser	Glu 890		Asp	Cya	Gln	Arg 895	Gly	
Thr	Arg	Ala	Leu 900	Leu	Gln	Thr	Leu	Gly 905	Asn	Leu	Gly	Tyr	Arg 910		Ser	
Ala	Lys	Lys 915	Ala	Gln	Ile	Суз	Gln 920	Lys	Gln	Val	Lys	Tyr 925		Gly	Tyr	
Leu	Leu 930	Lys	Glu	Gly	Gln	Arg 935	Trp	Leu	Thr	Glu	Ala 940	-	LYa	Glu	. Thr	
Val 945	Met	Gly	Gln	Pro	Thr 950	Pro	Гла	Thr	Pro	Arg 955		ı Leu	. Arg	Glu	. Phe 960	
Leu	Gly	Thr	Ala	Gly 965	Phe	Сув	Arg	Leu	Trp 970	Ile	Pro	Gly	Phe	Ala 975	Glu	
Met	Ala	Ala	Pro 980	Leu	Tyr	Pro	Leu	Thr 985	Lys	Thr	Gly	Thr	Leu 990		Asn	
Trp	Gly	Pro 995	Asp	Gln	Gln	Lys	Ala 100	-	r Gl:	n Gl	u Il	-	່ອ ເວີ	ln A	la Le	≥u
Leu	Thr 1010		a Pro	o Ala	a Leu	ı Gly 101		eu Pi	ro A	ap L		'hr .020	Lys	Pro	Phe	
Glu	Leu 1025		e Val	L Ası	o Glu	1 Lys 103		ln G	ly T	yr A		ys 035	Gly	Val	Leu	
Thr	Gln 1040	-	s Leu	ı Gly	7 Pro	5 Trp 104		rg A:	rg P	ro V		la 050	Tyr	Leu	Ser	
Lys	Lys 1055		ı Asp	p Pro	o Val	L Ala 106		la G	ly T	rp P		ro .065	Сүз	Leu	Arg	
Met	Val 1070		a Alá	a Ile	e Ala	a Val 107		eu Tl	hr L	ys A	_	la .080	Gly	Lys	Leu	
Thr	Met 1085	-	7 Glr	n Pro) Lei	ı Val 109		le L	eu A	la P		(is .095	Ala	Val	Glu	
Ala	Leu 1100		L Ly:	3 Glr	n Pro	> Pro 110		ab Yi	rg T	rp L		er 110	Asn	Ala	Arg	
Met	Thr 1115		з Туз	r Glr	n Ala	a Met 112		eu L	eu A	ap T		sp 125	Arg	Val	Gln	
Phe	Gly 1130		o Val	L Val	L Ala	a Leu 113		∍n P:	ro A	la T		eu 140	Leu	Pro	Leu	
Pro	Glu 1145	-	s Glu	ı Ala	a Pro) His 115		ap C	ys L	eu G		le 155	Leu	Ala	Glu	
Thr	His 1160		7 Thi	r Arç	g Pro	> Asp 116		eu Tl	hr A	ap G		ro 170	Ile	Pro	Asp	
Ala	Asp 1175		r Thi	r Tr <u>p</u>	у Туз	: Thi 118		∃p G	ly G	ly S		he 185	Leu	Gln	Glu	
Gly	Gln 1190	-	g Arç	g Ala	a Gly	/ Ala 119		la V	al T	hr T		lu 200	Thr	Glu	Val	

		-		-				-	_7
-	С	O	n	C.	1	n	u	е	а

Ile	Trp 1205	Gly	Gly	Val	Leu	Pro 1210	Ala	Gly	Thr	Ser	Ala 1215	Gln	Arg	Ala
Glu	Leu 1220	Ile	Ala	Leu	Thr	Gln 1225	Ala	Leu	Lys	Met	Ala 1230	Glu	Gly	Lys
Lys	Leu 1235	Asn	Val	Tyr	Thr	Asp 1240	Ser	Arg	Tyr	Ala	Phe 1245	Ala	Thr	Ala
His	Val 1250	His	Gly	Glu	Ile	Tyr 1255	Arg	Arg	Arg	Gly	Leu 1260	Leu	Thr	Ser
Glu	Gly 1265	Arg	Glu	Ile	Lys	Asn 1270	Lys	Asn	Glu	Ile	Leu 1275	Ala	Leu	Leu
Lys	Ala 1280	Leu	Phe	Leu	Pro	Lys 1285	Arg	Leu	Ser	Ile	Ile 1290	His	Суз	Pro
Gly	His 1295	Gln	Lys	Gly	Asn	Ser 1300	Ala	Glu	Ala	Arg	Gly 1305	Asn	Arg	Met
Ala	Asp 1310	Gln	Ala	Ala	Arg	Glu 1315	Ala	Ala	Met	Lys	Ala 1320	Val	Leu	Glu
Thr	Ser 1325	Thr	Leu	Leu	Ile	Glu 1330	Asp	Ser	Thr	Pro	Tyr 1335	Thr	Pro	Pro
His	Phe 1340	His	Tyr	Thr	Glu	Thr 1345	Asp	Leu	Lys	Arg	Leu 1350	Arg	Glu	Leu
Gly	Ala 1355	Thr	Tyr	Asn	Gln	Thr 1360	Lys	Gly	Tyr	Trp	Val 1365	Leu	Gln	Gly
Lys	Pro 1370	Val	Met	Pro	Asp	Gln 1375	Ser	Val	Phe	Glu	Leu 1380	Leu	Asp	Ser
Leu	His 1385	Arg	Leu	Thr	His	Leu 1390	Ser	Pro	Gln	Lys	Met 1395	Lys	Ala	Leu
Leu	Asp 1400	Arg	Glu	Glu	Ser	Pro 1405		Tyr	Met	Leu	Asn 1410	Arg	Asp	Arg
Thr	Ile 1415	Gln	Tyr	Val	Thr	Glu 1420	Thr	Cys	Thr	Ala	Cys 1425	Ala	Gln	Val
Asn	Ala 1430	Ser	Lys	Ala	Lys	Ile 1435	Gly	Ala	Gly	Val	Arg 1440	Val	Arg	Gly
His	Arg 1445	Pro	Gly	Thr	His	Trp 1450	Glu	Val	Asp	Phe	Thr 1455	Glu	Val	Lys
Pro	Gly 1460	Leu	Tyr	Gly	Tyr	Lys 1465	Tyr	Leu	Leu	Val	Phe 1470	Val	Asp	Thr
Phe	Ser 1475	Gly	Trp	Val	Glu	Ala 1480	Phe	Pro	Thr	Lys	Arg 1485	Glu	Thr	Ala
Lya	Val 1490	Val	Ser	Lys	Lys	Leu 1495	Leu	Glu	Asp	Ile	Phe 1500	Pro	Arg	Phe
Gly	Met 1505	Pro	Gln	Val	Leu	Gly 1510	Ser	Asp	Asn	Gly	Pro 1515	Ala	Phe	Ala
Ser	Gln 1520	Val	Ser	Gln	Ser	Val 1525	Ala	Asp	Leu	Leu	Gly 1530	Ile	Asp	Trp
Lys	Leu 1535	His	Сүз	Ala	Tyr	Arg 1540	Pro	Gln	Ser	Ser	Gly 1545	Gln	Val	Glu
Arg	Met 1550	Asn	Arg	Thr	Ile	Lys 1555	Glu	Thr	Leu	Thr	Lys 1560	Leu	Thr	Leu
Ala	Ser 1565	Gly	Thr	Arg	Asp	Trp 1570	Val	Leu	Leu	Leu	Pro 1575	Leu	Ala	Leu
Tyr	Arg	Ala	Arg	Asn	Thr	Pro	Gly	Pro	His	Gly	Leu	Thr	Pro	Tyr

-continued

	1580					158	5					1590				
Glu	Ile 1595		. Tyr	Glγ	/ Ala	160 Pro		ro P:	ro L	eu V	/al	Asn 1605		His	Asp	
Pro	Glu 1610		Ser	Lys	s Leu	ι Thi 161		sn Se	er P:	ro S	Ser	Leu 1620		Ala	His	
Leu	Gln 1625		Leu	. Glr	n Ala	1 Val 163		ln G	ln G	lu V	Val	Trp 1635	-	Pro	Leu	
Ala	Ala 1640		Tyr	Glr	n Asp) Glr 164		eu A	ap G	ln F	ro	Val 1650		Pro	His	
Pro	Phe 1655		Val	Glγ	/ Asp) Ala 166		al T:	rp V.	al A	Arg	Arg 1665		Gln	Thr	
rÀa	Asn 1670		. Glu	Pro	> Arg	167 167		ys G	Ly P:	ro I	'yr	Thr 1680		Leu	Leu	
Thr	Thr 1685		Thr	Ala	a Lev	ι Lys 169		al As	ap G	ly I	le	Ser 1695	Ala	Trp	Ile	
His	Ala 1700		His	Va]	L Lya	8 Ala 170		la Tì	nr Tl	hr F	ro	Pro 1710		Gly	Thr	
Ala	Trp 1715		Val	Glr	n Arg	j Sei 172		ln A:	an Pi	ro L	Jeu	Lys 1725	Ile	Arg	Leu	
Thr	Arg 1730		Ala	Pro	>											
<211 <212 <213	L> LE 2> TY 3> OR D> SE	PE : GANI	PRT SM:	Xenc	otrop	oic N	ſuLV∙	-rela	ated	Vir	us	VP42				
<211 <212	2> TY	PE :	PRT		otrop	oic N	ſuLV∙	-rela	ated	Vir	us	VP42				
<211 <212 <213 <400	2> TY 3> OR 0> SE	PE : GANI QUEN	PRT SM: CE:	Xeno 38 Val	-							VP42 nr Le	u Glr	ı Hi:	s Trj	p
<211 <212 <213 <400 Met 1	2> TY 3> OR 0> SE Gly	PE : GANI QUEN Gln	PRT SM: CE: Thr	Xeno 38 Val 5	Thr	Thr	Pro	Leu	Ser 10	Leu	ı Th	ır Le		15	-	-
<211 <212 <213 <400 Met 1 Gly	2> TY 3> OR D> SE Gly Asp	PE: GANI QUEN Gln Val	PRT SM: CE: Thr Gln 20	Xeno 38 Val 5 Arg	Thr Ile	Thr Ala	Pro Ser	Leu Asn 25	Ser 10 Gln	Leu Ser	ı Th	nr Le 11 As	p Val 30	15 Լ Լչ։	a Ly:	s
<211 <212 <213 <400 Met 1 Gly Arg	2> TY 3> OR D> SE Gly Asp Arg	PE: GANI QUEN Gln Val Trp 35	PRT SM: CE: Thr Gln 20 Val	Xend 38 Val 5 Arg Thr	Thr Ile Phe	Thr Ala Cys	Pro Ser Ser 40	Leu Asn 25 Ala	Ser 10 Gln Glu	Leu Ser Trp	1 Th 7 Va 9 Pr	nr Le 11 As 70 Th 45	p Val 30 r Phe	15 L Ly: e Asi	s Ly: n Vai	s 1
<211 <212 <213 <400 Met 1 Gly Arg	2> TY 3> OR D> SE Gly Asp Arg	PE: GANI QUEN Gln Val Trp 35	PRT SM: CE: Thr Gln 20 Val	Xend 38 Val 5 Arg Thr	Thr Ile Phe	Thr Ala Cys	Pro Ser Ser 40	Leu Asn 25 Ala	Ser 10 Gln Glu	Leu Ser Trp	1 Th 7 Va 9 Pr	nr Le 11 As To Th 45 .e Il	p Val 30 r Phe	15 L Ly: e Asi	s Ly: n Vai	s 1
<211 <212 <213 <400 Met 1 Gly Arg Gly Lys	2> TY 3> OR 0> SE Gly Asp Arg Trp 50	PE: GANI QUEN Gln Val Trp 35 Pro	PRT SM: CE: Thr Gln 20 Val Gln	Xenc 38 Val 5 Arg Thr Asp	Thr Ile Phe Gly	Thr Ala Cys Thr 55	Pro Ser Ser 40 Phe	Leu Asn 25 Ala Asn	Ser 10 Gln Glu Leu	Leu Ser Trp Gly	1 Th 7 Va 9 Pr 60	nr Le 11 As To Th 45 .e Il	p Val 30 r Phe e Sei	15 L Ly: e Asi r Gli	s Ly: n Vai n Vai	s 1
<212 <213 <400 Met 1 Gly Gly Gly Lys 65	<pre>2> TY 3> OR 3> OR Gly Asp Arg Trp 50 Ser</pre>	PE: GANI QUEN Gln Val Trp 35 Pro Arg	PRT SM: CE: Thr Gln 20 Val Gln Val	Xend 38 Val 5 Arg Thr Asp Phe	Thr Ile Phe Gly Cys 70	Thr Ala Cys Thr 55 Pro	Pro Ser Ser 40 Phe Gly	Leu Asn 25 Ala Asn Pro	Ser 10 Gln Glu Leu His	Leu Ser Trp Gly Gly 75	1 Th 7 Va 9 Pr 60 7 Hi	nr Le al As to Th 45 .e Il	p Val 30 r Phe e Sei o Asp	15 L Ly: Asi Gli Gli	s Ly: n Vai n Vai n Vai 80	s 1 1
<211 <212 <213 <400 Met 1 Gly Gly Gly Lys 65 Pro	<pre>2> TY 3> OR Gly Asp Arg Trp 50 Ser Tyr</pre>	PE: GANI CQUEN Gln Val Trp 35 Pro Arg Ile Pro	PRT SM: CE: Thr Gln 20 Val Gln Val Val	Xenc 38 Val 5 Arg Thr Asp Phe Thr 85	Thr Ile Phe Gly Cys 70 Trp	Thr Ala Cys Thr 55 Pro Glu	Pro Ser Ser 40 Phe Gly Ala	Leu Asn 25 Ala Asn Pro Leu	Ser 10 Gln Leu His Ala 90	Leu Ser Trp Gly 75 Tyr	1 Tr 7 Va 9 Pr 60 7 Hi 60	nr Le al As to Th 45 .e Il .s Pr	p Val 30 r Phe e Sei o Asp o Pro	15 L Ly: Asi C Gli O Gli 95 c Ala	s Ly: n Vai n Vai 80 p Trj	9 1 1 2
<211 <212 <212 <213 <400 Met 1 Gly Gly Gly Lys 65 Pro Val	<pre>2> TY 3> OR 0> SE Gly Asp Arg Trp 50 Ser Tyr Lys Leu</pre>	PE: GANI QUEN Gln Val Trp 35 Pro Arg Ile Pro	PRT SM: CE: Thr Gln 20 Val Gln Val Val Val Phe 100	Xeno 38 Val 5 Thr Asp Phe Thr 85 Val	Thr Ile Phe Gly Cys 70 Trp Ser	Thr Ala Cys Thr 55 Pro Glu Pro	Pro Ser 40 Phe Gly Ala Lys	Leu Asn 25 Ala Asn Pro Leu Pro 105	Ser 10 Gln Glu Leu His Ala 90 Pro	Leu Ser Trp Gly 75 Tyr Prc	1 Th 7 Va 9 Pr 60 7 Hi 60 7 Hi	nr Le al As To Th 45 .e Il .s Pr sp Pr	p Val 30 r Phe e Ser e Ser o Asp o Pro 110 110 2 Ser	15 L Ly: Asi Gli S Gli S Prr 95 C Ala	n Va: n Va: 80 o Trj a Pro	s 1 1 2 9
<211 <212 <212 <213 <400 Met 1 Gly Gly Lys 65 Pro Val Val	<pre>2> TY 3> OR 0D> SE Gly Asp Arg Trp 50 Ser Tyr Lys Leu</pre>	PE: GANI QUEN Gln Val Trp 35 Pro Arg Ile Pro Pro Pro 115	PRT SM: CE: Thr Gln 20 Val Gln Val Val Val Phe 100 Pro	Xend 38 Val 5 Arg Thr Asp Phe Thr 85 Val Gly	Thr Ile Phe Gly Cys 70 Trp Ser Pro	Thr Ala Cys Thr 55 Pro Glu Pro Ser	Pro Ser Ser 40 Phe Gly Ala Lys Ala 120	Leu Asn 25 Ala Asn Pro Leu Pro 105 Gln	Ser 10 Gln Leu His Ala 90 Pro Pro	Leu Ser Trp Gly 75 Tyr Prc Prc	1 Th 7 Va 9 Pr 60 7 Hi 60 7 Hi 60 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	nr Le il As o Th 45 .e Il o p Pr Pr Pr Pr Pr 12 co Pr	p Val 30 r Phe e Ser o Asp o Pro 0 Thi 110 g Ser 5	15 L Ly: Asi Gli O Cli 95 C Ala	s Ly: n Va: n Va: 80 50 Trj a Pro	s 1 1 2 9
<pre><211 <212 <212 <213 <400 Met 1 Gly Arg Gly Lys 65 Pro Val Val Tyr</pre>	<pre>2> TY 3> OR 0)> SE Gly Asp Arg Trp 50 Ser Tyr Lys Leu Pro 130</pre>	PE: GANI QUEN Gln Val Trp 35 Pro Arg Ile Pro Pro 115 Ala	PRT SM: CE: Thr Gln 20 Val Gln Val Val Val Phe 100 Pro Leu	Xend 38 Val 5 Arg Thr Asp Phe Thr 85 Val Gly Thr	Thr Ile Phe Gly Cys 70 Trp Ser Pro Pro	Thr Ala Cys Thr 55 Pro Glu Pro Ser Ser 135	Pro Ser 40 Phe Gly Ala Lys Ala 120 Ile	Leu Asn 25 Ala Asn Pro Leu Pro 105 Gln Lys	Ser 10 Gln Leu His Ala 90 Pro Pro Ser	Leu Ser Trp Gly Gly 75 Tyr Pro Pro Lys	1 The value of r of	nr Le il As o Th 45 .e Il o p Pr Pr Pr Pr Pr 12 co Pr	p Val 30 r Pho e Ser o Asp 110 g Ser 5 o Ly:	15 L Ly: Asi C Gli C Gli S Prc 95 C Ali C S Prc	Ly I Va I Va I Va I Va I Va SO Trj A Pro A Let	s 1 1 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2
<211 <212 <212 <213 <400 Met 1 Gly Gly Lys 65 Pro Val Val Tyr Val 145	<pre>2> TY 3> OR 0> SE Gly Asp Arg Trp 50 Ser Tyr Lys Leu Pro 130 Leu</pre>	PE: GANI QUEN Gln Val Trp 35 Pro Arg Ile Pro Pro 115 Ala Pro	PRT SM: CE: Thr Gln 20 Val Gln Val Val Val Phe 100 Pro Leu Asp	Xenc 38 Val 5 Arg Thr Asp Phe Thr 85 Val Gly Thr Ser	Thr Ile Phe Gly Cys 70 Trp Ser Pro Pro Gly 150	Thr Ala Cys Thr 55 Pro Glu Pro Ser Ser 135 Gly	Pro Ser 40 Phe Gly Ala Lys Ala 120 Ile Pro	Leu Asn 25 Ala Asn Pro Leu Pro 105 Gln Lys Leu	Ser 10 Gln Leu His Ala 90 Pro Pro Ser Ile	Leu Ser Trp Gly Gly 75 Tyr Pro Pro Lys Asp 155 Ser	1 Th 7 Va 9 Pr 7 Il 6C 7 Hi 6C 7 Hi 7 Hi 6C 7 Hi 6C 7 Hi 6C 7 Hi 6C 7 Hi 6C 7 Hi 7 Hi 6C 7 HI 7 HI	nr Le ll As Th fo Th fo Th fo Th fo Th fo Th fo th f f f f	p Val 30 r Phe e Sen o Asp 110 g Sen 5 o Ly:	15 L Ly: Asi C Gli S Gli S Pro Ali S Pro C Ali S Pro	Ly: N Val N Val Val N Val N Val Val N Val N Val N Val N Val N Val N Val N Val N Val N Val N Val	s 1 1 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3
<pre><211 <212 <212 <213 <400 Met 1 Gly Gly Clys 65 Pro Val Val Tyr Val 145 Pro</pre>	<pre>2> TY 3> OR Gly Asp Arg Trp 50 Ser Tyr Lys Leu Pro Leu Pro</pre>	PE: GANI QUEN Gln Val Trp 35 Pro Arg Ile Pro Pro 115 Ala Pro Glu	PRT SM: CE: Thr CIn 20 Val Gln Val Val Val Val Phe 100 Pro Leu Asp Tyr	Xend 38 Val 5 Arg Thr Asp Phe Thr 85 Val Gly Thr Ser Gly 165	Thr Ile Phe Gly Cys 70 Trp Ser Pro Pro Gly 150 Ala	Thr Ala Cys Thr 55 Pro Glu Pro Ser 135 Gly Gln	Pro Ser 40 Phe Gly Ala Lys Ala 120 Ile Pro	Leu Asn Ala Asn Pro Leu Pro 105 Gln Lys Leu Ser	Ser 10 Gln Leu His Ala 90 Pro Ser Ile Ser 170	Leu Ser Trp Gly Gly 75 Tyr Prc Lys Lys Ser	1 Th Va Pr 11 6C 7 Hi 6C 7 Hi 6C 7 Hi 6C 7 Hi 8 Pr 14 9 Le 8 Pr 14 9 Le 6 7 Le 6 7 Le 7 Le	nr Le 11 As 12 Th 145 11 15 Pr 12 12 12 12 12 12 12 12 12 12	p Val 30 r Phe e Sei o Asp 00 Pro 0 Thi 110 g Sei 5 5 0 Lys 110 g Glu	15 L Ly: Asn C Gli S Gli S Pro S S C Ala S Pro C Ala S Pro C Gli L Asn L79 C Pro C Pro C C C C C C C C C C C C C C C C C C C	h Vai h Vai h Vai h Vai 80 b Trj 80 b Trj 80 b Trj 80 b Gli 160 c 160 c 160 c 160 c	s 1 1 1 2 2 2 3 3 3 1 1 2 3 3 1 1 1 2 3 3 1 1 1 2 3 3 1 1 2 3 3 1 2 3 3 1 2 3 3 1 3 3 1 3 1

-continued

		195					200					205			
Thr	Ser 210	Gln	Ala	Phe	Pro	Leu 215	Arg	Met	Gly	Gly	Asp 220	Gly	Gln	Leu	Gln
Tyr 225	Trp	Pro	Phe	Ser	Ser 230	Ser	Asp	Leu	Tyr	Asn 235	Trp	Lys	Asn	Asn	Asn 240
Pro	Ser	Phe	Ser	Glu 245	Asp	Pro	Gly	Lys	Leu 250	Thr	Ala	Leu	Ile	Glu 255	Ser
Val	Leu	Ile	Thr 260	His	Gln	Pro	Thr	Trp 265	Asp	Asp	Суз	Gln	Gln 270	Leu	Leu
Gly	Thr	Leu 275	Leu	Thr	Gly	Glu	Glu 280	Lys	Gln	Arg	Val	Leu 285	Leu	Glu	Ala
Arg	Lys 290	Ala	Val	Arg	Gly	Asn 295	Asp	Gly	Arg	Pro	Thr 300	Gln	Leu	Pro	Asn
Glu 305	Val	Asn	Ala	Ala	Phe 310	Pro	Leu	Glu	Arg	Pro 315	Asp	Trp	Gly	Tyr	Thr 320
Thr	Thr	Glu	Gly	Arg 325	Asn	His	Leu	Val	Leu 330	Tyr	Arg	Gln	Leu	Leu 335	Leu
Ala	Gly	Leu	Gln 340	Asn	Ala	Gly	Arg	Ser 345	Pro	Thr	Asn	Leu	Ala 350	Lys	Val
Lys	Gly	Ile 355	Thr	Gln	Gly	Pro	Asn 360	Glu	Ser	Pro	Ser	Ala 365	Phe	Leu	Glu
Arg	Leu 370	Lys	Glu	Ala	Tyr	Arg 375	Arg	Tyr	Thr	Pro	Tyr 380	Asp	Pro	Glu	Asp
Pro 385	Gly	Gln	Glu	Thr	Asn 390	Val	Ser	Met	Ser	Phe 395	Ile	Trp	Gln	Ser	Ala 400
Pro	Asp	Ile	Gly	Arg 405	Гла	Leu	Glu	Arg	Leu 410	Glu	Asp	Leu	Lys	Ser 415	Lys
Thr	Leu	Gly	Asp 420	Leu	Val	Arg	Glu	Ala 425	Glu	Гла	Ile	Phe	Asn 430	Гла	Arg
Glu	Thr	Pro 435	Glu	Glu	Arg	Glu	Glu 440	Arg	Ile	Arg	Arg	Glu 445	Ile	Glu	Glu
ГЛа	Glu 450	Glu	Arg	Arg	Arg	Ala 455	Glu	Asp	Glu	Gln	Arg 460	Glu	Arg	Glu	Arg
Asp 465	Arg	Arg	Arg	His	Arg 470	Glu	Met	Ser	Lys	Leu 475	Leu	Ala	Thr	Val	Val 480
Ile	Gly	Gln	Arg	Gln 485	Asp	Arg	Gln	Gly	Gly 490	Glu	Arg	Arg	Arg	Pro 495	Gln
Leu	Asp	Lys	Asp 500	Gln	Суз	Ala	Tyr	Cys 505	Lys	Glu	ГЛа	Gly	His 510	Trp	Ala
Lys	Asp	Cys 515	Pro	ГЛЗ	ГЛа	Pro	Arg 520	Gly	Pro	Arg	Gly	Pro 525	Arg	Pro	Gln
Thr	Ser 530	Leu	Leu	Thr	Leu	Gly 535	Asp								
<213 <213	L> LH 2> TY	ENGTI ZPE :		45	otroj	pic N	MuLV	-rela	ated	Viru	us VI	P62			
			NCE :												
Met 1	Glu	Ser	Pro	Ala 5	Phe	Ser	Гла	Pro	Leu 10	Lys	Asp	Гла	Ile	Asn 15	Pro
Trp	Gly	Pro	Leu	Ile	Ile	Met	Gly	Ile	Leu	Val	Arg	Ala	Gly	Ala	Ser

-continued

												0011	0 1 11		
			20					25					30		
Val	Gln	Arg 35	Asp	Ser	Pro	His	Gln 40	Val	Phe	Asn	Val	Thr 45	Trp	Lys	Ile
Thr	Asn 50	Leu	Met	Thr	Gly	Gln 55	Thr	Ala	Asn	Ala	Thr 60	Ser	Leu	Leu	Gly
Thr 65	Met	Thr	Asp	Thr	Phe 70	Pro	ГЛа	Leu	Tyr	Phe 75	Asp	Leu	Сүз	Asp	Leu 80
Val	Gly	Aab	Asn	Trp 85	Asp	Asp	Pro	Glu	Pro 90	Asp	Ile	Gly	Asp	Gly 95	Суз
Arg	Ser	Pro	Gly 100	Gly	Arg	ГЛа	Arg	Thr 105	Arg	Leu	Tyr	Asp	Phe 110	Tyr	Val
Суа	Pro	Gly 115	His	Thr	Val	Leu	Thr 120	Gly	Суз	Gly	Gly	Pro 125	Arg	Glu	Gly
Tyr	Cys 130	Gly	Lys	Trp	Gly	Суз 135	Glu	Thr	Thr	Gly	Gln 140	Ala	Tyr	Trp	Lys
Pro 145	Ser	Ser	Ser	Trp	Asp 150	Leu	Ile	Ser	Leu	Lys 155	Arg	Gly	Asn	Thr	Pro 160
Lys	Gly	Gln	Gly	Pro 165	Сүз	Phe	Asp	Ser	Ser 170	Val	Gly	Ser	Gly	Ser 175	Ile
Gln	Gly	Ala	Thr 180	Pro	Gly	Gly	Arg	Cys 185	Asn	Pro	Leu	Val	Leu 190	Glu	Phe
Thr	Asp	Ala 195	Gly	LYa	Arg	Ala	Ser 200	Trp	Aab	Ala	Pro	Lys 205	Thr	Trp	Gly
Leu	Arg 210	Leu	Tyr	Arg	Ser	Thr 215	Gly	Ala	Asp	Pro	Val 220	Thr	Leu	Phe	Ser
Leu 225	Thr	Arg	Gln	Val	Leu 230	Asn	Val	Gly	Pro	Arg 235	Val	Pro	Ile	Gly	Pro 240
Asn	Pro	Val	Ile	Thr 245	Glu	Gln	Leu	Pro	Pro 250	Ser	Gln	Pro	Val	Gln 255	Ile
Met	Leu	Pro	Arg 260	Thr	Pro	Arg	Pro	Pro 265	Pro	Ser	Gly	Ala	Ala 270	Ser	Met
Val	Pro	Gly 275	Ala	Pro	Pro	Pro	Ser 280	Gln	Gln	Pro	Gly	Thr 285	Gly	Asp	Arg
Leu	Leu 290	Asn	Leu	Val	Glu	Gly 295	Ala	Tyr	Leu	Ala	Leu 300	Asn	Leu	Thr	Ser
Pro 305	Asp	Lys	Thr	Gln	Glu 310	Сүз	Trp	Leu	Суз	Leu 315	Val	Ser	Gly	Pro	Pro 320
Tyr	Tyr	Glu	Gly	Val 325	Ala	Val	Leu	Gly	Thr 330	Tyr	Ser	Asn	His	Thr 335	Ser
Ala	Pro	Ala	Asn 340	Сүз	Ser	Val	Thr	Ser 345	Gln	His	Lys	Leu	Thr 350	Leu	Ser
Glu	Val	Thr 355	Gly	Gln	Gly	Leu	Сув 360	Ile	Gly	Ala	Val	Pro 365	ГЛа	Thr	His
Gln	Ala 370	Leu	Сүз	Asn	Thr	Thr 375	Gln	ГÀа	Thr	Ser	Asp 380	Gly	Ser	Tyr	Tyr
Leu 385	Ala	Ser	Pro	Ala	Gly 390	Thr	Ile	Trp	Ala	Сув 395	Ser	Thr	Gly	Leu	Thr 400
Pro	Сув	Leu	Ser	Thr 405	Thr	Val	Leu	Asn	Leu 410	Thr	Thr	Asp	Tyr	Суз 415	Val
Leu	Val	Glu	Leu 420	Trp	Pro	ГЛЗ	Val	Thr 425	Tyr	His	Ser	Pro	Asn 430	Tyr	Val

-continued

TyrGlyGlnPheGluLysLysThrGluProValSerLeuThrLeuLeuLeuGlyGlyGlyGlyGlyGlyJleAlaAlaGlyValGlyThrGlyThrGlyGlyGlyGlyGloAlaAlaGlyValGlyThrGlyThrThrAlaLeuValAlaThrLysGluGlnLeuGlnAlaAlaAlaThrAlaLeuValAlaThrLysGluGlnLeuGlnAlaAlaAlaThrAlaLeuValAlaGluPheGluGlnLeuGlnAlaAlaIleHisThrAlaLeuValAlaCluAlaGluGlnLeuGlnAlaAlaIleHisThrAlaLeuValAlaLeuAlaGluGlnLeuGlnLeuGlnSerLeuSerGlnSerGlnValValLeuGlnAssArgArgGlnLeuAssSerLeuLeuLeuLeuLeuLeuLeuSerSerArgSerLeuAssSerFreThrSerSerSerSerSerLeuSerArgAssSerSerSer <td< th=""><th></th></td<>	
450455460AlaGlyValGlyThrGlyThrGlyThrGlyThrAlaLeuValAlaThrLysGlnPhe465GluValGlyAlaAlaThrAndAlaLeuValAlaThrLysGlnPheGluGlnLeuGlnAlaAlaIleHisThrAspLeuGlyAlaLeuGluLysSerValSerAlaLeuGluLysSerLeuFrSerGluValValLeuGlnAssArgArgGlyLeuAspLeuPheLeuSerGluGlyGlyLeuGlnAssArgArgArgGlyLeuAspLeuPheLeuSerGluGlyGlyLeuGlnAssArgArgArgArgGluGluCysCysPheThrSerGluGlyGlyLeuGlnAssArgArgArgArgArgSerMetAlaLysLeuArgAspHisThrSerValValArgAspSerMetAlaLysLeuArgAspHisThrSerValValArgAspSerMetAlaLysLeuArgAspHisThr	
465470475480Glu Gln Leu Gln Ala Ala Ile His Thr Asp Leu Gly Ala Leu Glu Lys 485Glu Gly Ala Leu Glu Lys 490Glu Gly Ala Leu Glu Lys 495Ser Val Ser Ala Leu Glu Lys Ser Leu Thr Ser Leu Ser Glu Val Val 500Ser Cu Ser Gly Leu Asp Leu Phe Leu Lys 520Gly Gly GlyLeu Gln Asn Arg Arg Gly Leu Asp Leu Cys Cys Phe Tyr Ala Asp His Thr 530Gly Val Val Arg Asp Ser Met Ala Lys Leu Arg Glu Arg Leu Asn Gln 555Gly Leu Phe Glu Ser Gly Gln Gly Trp Phe Glu Gly Leu Phe 570Asn Arg Ser Pro Trp Phe Thr Thr Leu Ile Ser Thr Ile Met Gly Pro	
485490495Ser Val Ser Ala 500Leu Glu Lys Ser Leu 500Thr Ser Leu Ser Glu Val Val 515Val Val 515Leu Gln Asn Arg Arg Gly Leu Asp 515Leu Leu Phe Leu Lys Glu Gly Gly 525Leu Cys Ala Ala Leu Lys Glu Glu Cys Cys Phe Tyr 530Ala Asp His Thr 545Leu Cys Ala Ala Leu Lys Glu Glu Gly SigCys Cys Phe Tyr 555Ala Asp His Thr 555Gly Val Val Arg Asp Ser Met Ala Lys Leu Arg Glu Arg Leu Asn Gln 565Asn Arg Ser Pro Trp Phe Thr Thr Leu Ile Ser Thr Ile Met Gly Pro	
500505510LeuAsnArgArgGlyLeuAsnSngLeuAsnSngSngGlySng </td <td></td>	
515520525Leu Cys Ala Ala Leu Lys Glu Glu Cys Cys Phe Tyr Ala Asp His Thr 530Glu Val Arg Asp Ser Met Ala Lys Leu Arg Glu Arg Leu Asn Gln 555Glu Yal Val Arg Asp Ser Met Ala Lys Leu Arg Glu Arg Leu Asn Gln 555Arg Gln Lys Leu Phe Glu Ser Gly Gln Gly Trp Phe Glu Gly Leu Phe 565Asn Arg Ser Pro Trp Phe Thr Thr Leu Ile Ser Thr Ile Met Gly Pro	
530535540Gly Val Val Arg Asp Ser Met Ala Lys Leu Arg Glu Arg Leu Asn Gln 555Glu Arg Leu Asn Gln 560Arg Gln Lys Leu Phe Glu Ser Gly Gln Gly Trp Phe Glu Gly Leu Phe 565Ser Gly Gln Gly Trp Phe Glu Gly Leu Phe 570Asn Arg Ser Pro Trp Phe Thr Thr Leu Ile Ser Thr Ile Met Gly Pro	
545550555560Arg Gln Lys Leu Phe Glu Ser Gly Gln Gly Trp Phe Glu Gly Leu Phe 565570575Asn Arg Ser Pro Trp Phe Thr Thr Leu Ile Ser Thr Ile Met Gly Pro	
565 570 575 Asn Arg Ser Pro Trp Phe Thr Thr Leu Ile Ser Thr Ile Met Gly Pro	
Asn Arg Ser Pro Trp Phe Thr Thr Leu Ile Ser Thr Ile Met Gly Pro	
Leu Ile Val Leu Leu Leu Leu Phe Gly Pro Cys Ile Leu Asn 595 600 605	
Arg Leu Val Gln Phe Val Lys Asp Arg Ile Ser Val Val Gln Ala Leu 610 615 620	
Val Leu Thr Gln Gln Tyr His Gln Leu Lys Ser Ile Asp Pro Glu Glu 625 630 635 640	
Val Glu Ser Arg Glu 645	
<pre><210> SEQ ID NO 40 <211> LENGTH: 1733 <212> TYPE: PRT <213> ORGANISM: Xenotropic MuLV-related Virus VP62 <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (537)(537) <223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid</pre>	
<400> SEQUENCE: 40	
Met Gly Gln Thr Val Thr Thr Pro Leu Ser Leu Thr Leu Gln His Trp 1 5 10 15	
Gly Asp Val Gln Arg Ile Ala Ser Asn Gln Ser Val Asp Val Lys Lys 20 25 30	
Arg Arg Trp Val Thr Phe Cys Ser Ala Glu Trp Pro Thr Phe Asn Val 35 40 45	
Gly Trp Pro Gln Asp Gly Thr Phe Asn Leu Gly Val Ile Ser Gln Val 50 55 60	
Lys Ser Arg Val Phe Cys Pro Gly Pro His Gly His Pro Asp Gln Val 65 70 75 80	
Pro Tyr Ile Val Thr Trp Glu Ala Leu Ala Tyr Asp Pro Pro Pro Trp 85 90 95	
Val Lys Pro Phe Val Ser Pro Lys Pro Pro Pro Leu Pro Thr Ala Pro 100 105 110	

-continued		

Tyr	Pro 130	Ala	Leu	Thr	Pro	Ser 135	Ile	Lys	Ser	Гла	Pro 140	Pro	Гла	Pro	Gln
Val 145	Leu	Pro	Asp	Ser	Gly 150	Gly	Pro	Leu	Ile	Asp 155	Leu	Leu	Thr	Glu	Asp 160
Pro	Pro	Pro	Tyr	Gly 165	Ala	Gln	Pro	Ser	Ser 170	Ser	Ala	Arg	Glu	Asn 175	Asn
Glu	Glu	Glu	Ala 180	Ala	Thr	Thr	Ser	Glu 185	Val	Ser	Pro	Pro	Ser 190	Pro	Met
Val	Ser	Arg 195	Leu	Arg	Gly	Arg	Arg 200	Asp	Pro	Pro	Ala	Ala 205	Asp	Ser	Thr
Thr	Ser 210	Gln	Ala	Phe	Pro	Leu 215	Arg	Met	Gly	Gly	Asp 220	Gly	Gln	Leu	Gln
Tyr 225	Trp	Pro	Phe	Ser	Ser 230	Ser	Asp	Leu	Tyr	Asn 235	Trp	Lys	Asn	Asn	Asn 240
Pro	Ser	Phe	Ser	Glu 245	Asp	Pro	Gly	ГÀа	Leu 250	Thr	Ala	Leu	Ile	Glu 255	Ser
Val	Leu	Ile	Thr 260	His	Gln	Pro	Thr	Trp 265	Asp	Asp	Сүз	Gln	Gln 270	Leu	Leu
Gly	Thr	Leu 275	Leu	Thr	Gly	Glu	Glu 280	Lys	Gln	Arg	Val	Leu 285	Leu	Glu	Ala
Arg	Lys 290	Ala	Val	Arg	Gly	Asn 295	Asp	Gly	Arg	Pro	Thr 300	Gln	Leu	Pro	Asn
Glu 305	Val	Asn	Ala	Ala	Phe 310	Pro	Leu	Glu	Arg	Pro 315	Asp	Trp	Asp	Tyr	Thr 320
Thr	Thr	Glu	Gly	Arg 325	Asn	His	Leu	Val	Leu 330	Tyr	Arg	Gln	Leu	Leu 335	Leu
Ala	Gly	Leu	Gln 340	Asn	Ala	Gly	Arg	Ser 345	Pro	Thr	Asn	Leu	Ala 350	Lys	Val
ГЛа	Gly	Ile 355	Thr	Gln	Gly	Pro	Asn 360	Glu	Ser	Pro	Ser	Ala 365	Phe	Leu	Glu
Arg	Leu 370	Lys	Glu	Ala	Tyr	Arg 375	Arg	Tyr	Thr	Pro	Tyr 380	Asp	Pro	Glu	Asp
Pro 385	Gly	Gln	Glu	Thr	Asn 390	Val	Ser	Met	Ser	Phe 395	Ile	Trp	Gln	Ser	Ala 400
Pro	Asp	Ile	Gly	Arg 405	Lys	Leu	Glu	Arg	Leu 410	Glu	Asp	Leu	ГÀа	Ser 415	Lys
Thr	Leu	Gly	Asp 420	Leu	Val	Arg	Glu	Ala 425	Glu	ГÀа	Ile	Phe	Asn 430	ГЛа	Arg
Glu	Thr	Pro 435	Glu	Glu	Arg	Glu	Glu 440	Arg	Ile	Arg	Arg	Glu 445	Ile	Glu	Glu
Lys	Glu 450	Glu	Arg	Arg	Arg	Ala 455	Glu	Asp	Glu	Gln	Arg 460	Glu	Arg	Glu	Arg
Asp 465	Arg	Arg	Arg	His	Arg 470	Glu	Met	Ser	Lys	Leu 475	Leu	Ala	Thr	Val	Val 480
Ile	Gly	Gln	Arg	Gln 485	Asp	Arg	Gln	Gly	Gly 490	Glu	Arg	Arg	Arg	Pro 495	Gln
Leu	Asp	Lys	Asp 500	Gln	Сүз	Ala	Tyr	Cys 505	Lys	Glu	Lys	Gly	His 510	Trp	Ala
Lys	Asp	Cys 515	Pro	Lys	Lys	Pro	Arg 520	Gly	Pro	Arg	Gly	Pro 525	Arg	Pro	Gln
Thr	Ser	Leu	Leu	Thr	Leu	Gly	Asp	Xaa	Gly	Gly	Gln	Gly	Gln	Glu	Pro

												COIL	CIII	ucu	
	530					535					540				
Pro 545	Pro	Glu	Pro	Arg	Ile 550	Thr	Leu	Lys	Val	Gly 555	Gly	Gln	Pro	Val	Thr 560
Phe	Leu	Val	Asp	Thr 565	Gly	Ala	Gln	His	Ser 570	Val	Leu	Thr	Gln	Asn 575	Pro
Gly	Pro	Leu	Ser 580	Asp	Lys	Ser	Ala	Trp 585	Val	Gln	Gly	Ala	Thr 590	Gly	Gly
Lys	Arg	Tyr 595	Arg	Trp	Thr	Thr	Asp 600	Arg	Lys	Val	His	Leu 605	Ala	Thr	Gly
Lys	Val 610	Thr	His	Ser	Phe	Leu 615	His	Val	Pro	Asp	Cys 620	Pro	Tyr	Pro	Leu
Leu 625	Gly	Arg	Asp	Leu	Leu 630	Thr	ГÀа	Leu	Lys	Ala 635	Gln	Ile	His	Phe	Glu 640
Gly	Ser	Gly	Ala	Gln 645	Val	Val	Gly	Pro	Met 650	Gly	Gln	Pro	Leu	Gln 655	Val
Leu	Thr	Val	Asn 660	Ile	Glu	Asp	Glu	Tyr 665	Trp	Leu	His	Asp	Thr 670	Arg	Lys
Glu	Pro	Asp 675	Val	Pro	Leu	Gly	Ser 680	Thr	Trp	Leu	Ser	Asp 685	Phe	Leu	Gln
Ala	Trp 690	Ala	Glu	Thr	Gly	Gly 695	Met	Gly	Leu	Ala	Val 700	Arg	Gln	Ala	Pro
Leu 705	Ile	Ile	Pro	Leu	Lys 710	Ala	Thr	Ser	Thr	Pro 715	Val	Ser	Ile	ГÀа	Gln 720
Tyr	Pro	Met	Ser	Gln 725	Glu	Ala	Arg	Leu	Gly 730	Ile	ГЛа	Pro	His	Ile 735	Gln
Arg	Leu	Leu	Asp 740	Gln	Gly	Ile	Leu	Val 745	Pro	Суз	Gln	Ser	Pro 750	Trp	Asn
Thr	Pro	Leu 755	Leu	Pro	Val	ГЛЗ	Lys 760	Pro	Gly	Thr	Asn	Asp 765	Tyr	Arg	Pro
Val	Gln 770	Asp	Leu	Arg	Glu	Val 775	Asn	Lys	Arg	Val	Glu 780	Asp	Ile	His	Pro
Thr 785	Val	Pro	Asn	Pro	Tyr 790	Asn	Leu	Leu	Ser	Gly 795	Leu	Pro	Pro	Ser	His 800
Gln	Trp	Tyr	Thr	Val 805	Leu	Asp	Leu	Lys	Asp 810	Ala	Phe	Phe	Суз	Leu 815	Arg
Leu	His	Pro	Thr 820	Ser	Gln	Pro	Leu	Phe 825	Ala	Phe	Glu	Trp	Arg 830	Asp	Pro
Glu	Met	Gly 835	Ile	Ser	Gly	Gln	Leu 840	Thr	Trp	Thr	Arg	Leu 845	Pro	Gln	Gly
Phe	Lys 850	Asn	Ser	Pro	Thr	Leu 855	Phe	Aab	Glu	Ala	Leu 860	His	Arg	Asp	Leu
Ala 865	Asp	Phe	Arg	Ile	Gln 870	His	Pro	Asb	Leu	Ile 875	Leu	Leu	Gln	Tyr	Val 880
Asp	Asp	Leu	Leu	Leu 885	Ala	Ala	Thr	Ser	Glu 890	Gln	Asp	Сүз	Gln	Arg 895	Gly
Thr	Arg	Ala	Leu 900	Leu	Gln	Thr	Leu	Gly 905	Asn	Leu	Gly	Tyr	Arg 910	Ala	Ser
Ala	Lys	Lys 915	Ala	Gln	Ile	Сүз	Gln 920	Lys	Gln	Val	Lys	Tyr 925	Leu	Gly	Tyr
Leu	Leu 930	Lys	Glu	Gly	Gln	Arg 935	Trp	Leu	Thr	Glu	Ala 940	Arg	Lys	Glu	Thr

-continued

_														
Val 945	Met	Gly	Gln	Pro	Thr 950	Pro L	ys T	hr P		rg G 55	ln Leı	ı Arç	g Glı	u Phe 960
Leu	Gly	Thr	Ala	Gly 965	Phe	Cys A	rg L		rp I 70	le P:	ro Gly	y Phe	∋ Ala 97!	
Met	Ala	Ala	Pro 980	Leu	Tyr	Pro L		hr L 85	ys T	hr G	ly Th:	r Lei 990		e Asn
Trp	Gly	Pro 995	Asp	Gln	Gln		la 000	Tyr	Gln	Glu		ys (205	Gln j	Ala Leu
Leu	Thr 1010		a Pro	> Ala	Leu	Gly 1015		Pro	Asp	Leu	Thr 1020	-	Pro	Phe
Glu	Leu 1025		e Val	. Asp	Glu	. Lys 1030		Gly	Tyr	Ala	Lys 1035		Val	Leu
Thr	Gln 1040		s Leu	ı Gly	Pro	Trp 1045		Arg	Pro	Val	Ala 1050		Leu	Ser
Lys	Lys 1055		ı Asp) Pro	Val	Ala 1060		Gly	Trp	Pro	Pro 1065		Leu	Arg
Met	Val 1070		a Ala	a Il∈	e Ala	Val 1075		Thr	Lys	Asn	Ala 1080		Lys	Leu
Thr	Met 1085		/ Glr	n Pro) Leu	. Val 1090		Leu	Ala	Pro	His 1095		Val	Glu
Ala	Leu 1100		L Lys	s Glr	n Pro	Pro 1105		Arg	Trp	Leu	Ser 1110		Ala	Arg
Met	Thr 1115		з Туг	Glr.	ı Ala	Met 1120		Leu	Asp	Thr	Asp 1125	Arg	Val	Gln
Phe	Gly 1130		> Val	. Val	. Ala	Leu 1135		Pro	Ala	Thr	Leu 1140		Pro	Leu
Pro	Glu 1145		g Glu	ı Ala	Pro	His 1150		Суз	Leu	Glu	Ile 1155		Ala	Glu
Thr	His 1160		7 Thr	Arg	Pro	Asp 1165		Thr	Asp	Gln	Pro 1170		Pro	Asp
Ala	Asp 1175		r Thr	Trp) Tyr	Thr 1180		Gly	Ser	Ser	Phe 1185	Leu	Gln	Glu
Gly	Gln 1190		g Arg	y Ala	Gly	Ala 1195		Val	Thr	Thr	Glu 1200		Glu	Val
Ile	Trp 1205		a Arg	g Ala	. Leu	. Pro 1210		Gly	Thr	Ser	Ala 1215	Gln	Arg	Ala
Glu	Leu 1220		e Ala	a Leu	1 Thr	Gln 1225		Leu	ГЛа	Met	Ala 1230	Glu	Gly	Lys
Lys	Leu 1235		n Val	. Tyr	Thr	Asp 1240		Arg	Tyr	Ala	Phe 1245	Ala	Thr	Ala
His	Val 1250		a Gly	/ Glu	l Ile	Tyr 1255		Arg	Arg	Gly	Leu 1260	Leu	Thr	Ser
Glu	Gly 1265		g Glu	l Il∈	e Lys	Asn 1270		Asn	Glu	Ile	Leu 1275	Ala	Leu	Leu
Lys	Ala 1280		ı Phe	e Leu	l Pro	Lys 1285	-	Leu	Ser	Ile	Ile 1290	His	СЛа	Pro
Gly	His 1295		n Lys	g Gly	' Asn	Ser 1300		Glu	Ala	Arg	Gly 1305	Asn	Arg	Met
Ala	Asp 1310		n Ala	ı Ala	. Arg	Glu 1315		Ala	Met	Lys	Ala 1320		Leu	Glu
Thr	Ser 1325		: Leu	ı Leu	l Ile	Glu 1330		Ser	Thr	Pro	Tyr 1335	Thr	Pro	Pro

-	CC	nt	in	ue	d

His	Phe 1340	His	Tyr	Thr	Glu	Thr 1345	Asp	Leu	Lys	Arg	Leu 1350	Arg	Glu	Leu
Gly	Ala 1355	Thr	Tyr	Asn	Gln	Thr 1360	Lys	Gly	Tyr	Trp	Val 1365	Leu	Gln	Gly
Lys	Pro 1370	Val	Met	Pro	Asp	Gln 1375	Ser	Val	Phe	Glu	Leu 1380	Leu	Asp	Ser
Leu	His 1385	Arg	Leu	Thr	His	Leu 1390		Pro	Gln	Lys	Met 1395	Lys	Ala	Leu
Leu	Asp 1400	Arg	Glu	Glu	Ser	Pro 1405		Tyr	Met	Leu	Asn 1410	Arg	Asp	Arg
Thr	Ile 1415	Gln	Tyr	Val	Thr	Glu 1420		Cys	Thr	Ala	Cys 1425	Ala	Gln	Val
Asn	Ala 1430	Ser	Lys	Ala	Lys	Ile 1435	Gly	Ala	Gly	Val	Arg 1440	Val	Arg	Gly
His	Arg 1445	Pro	Gly	Thr	His	Trp 1450	Glu	Val	Asp	Phe	Thr 1455	Glu	Val	ГЛа
Pro	Gly 1460	Leu	Tyr	Gly	Tyr	Lys 1465	-	Leu	Leu	Val	Phe 1470	Val	Asp	Thr
Phe	Ser 1475	Gly	Trp	Val	Glu	Ala 1480	Phe	Pro	Thr	Lys	Arg 1485	Glu	Thr	Ala
Lys	Val 1490	Val	Ser	Lys	Lys	Leu 1495	Leu	Glu	Asp	Ile	Phe 1500	Pro	Arg	Phe
Gly	Met 1505	Pro	Gln	Val	Leu	Gly 1510	Ser	Asp	Asn	Gly	Pro 1515	Ala	Phe	Ala
Ser	Gln 1520	Val	Ser	Gln	Ser	Val 1525	Ala	Asp	Leu	Leu	Gly 1530	Ile	Asp	Trp
Lys	Leu 1535	His	Сүз	Ala	Tyr	Arg 1540	Pro	Gln	Ser	Ser	Gly 1545	Gln	Val	Glu
Arg	Met 1550	Asn	Arg	Thr	Ile	Lys 1555	Glu	Thr	Leu	Thr	Lys 1560	Leu	Thr	Leu
Ala	Ser 1565	Gly	Thr	Arg	Asp	Trp 1570	Val	Leu	Leu	Leu	Pro 1575	Leu	Ala	Leu
Tyr	Arg 1580	Ala	Arg	Asn	Thr	Pro 1585	Gly	Pro	His	Gly	Leu 1590	Thr	Pro	Tyr
Glu	Ile 1595	Leu	Tyr	Gly	Ala	Pro 1600	Pro	Pro	Leu	Val	Asn 1605	Phe	His	Asp
Pro	Glu 1610	Met	Ser	Lys	Leu	Thr 1615	Asn	Ser	Pro	Ser	Leu 1620	Gln	Ala	His
Leu	Gln 1625	Ala	Leu	Gln	Ala	Val 1630	Gln	Gln	Glu	Val	Trp 1635	Lys	Pro	Leu
Ala	Ala 1640	Ala	Tyr	Gln	Asp	Gln 1645	Leu	Asp	Gln	Pro	Val 1650	Ile	Pro	His
Pro	Phe 1655	Arg	Val	Gly	Asp	Ala 1660	Val	Trp	Val	Arg	Arg 1665	His	Gln	Thr
Lys	Asn 1670	Leu	Glu	Pro	Arg	Trp 1675	Lys	Gly	Pro	Tyr	Thr 1680	Val	Leu	Leu
Thr	Thr 1685	Pro	Thr	Ala	Leu	Lys 1690	Val	Asp	Gly	Ile	Ser 1695	Ala	Trp	Ile
His	Ala 1700	Ala	His	Val	Гла	Ala 1705	Ala	Thr	Thr	Pro	Pro 1710	Ala	Gly	Thr
Ala	Trp	Lys	Val	Gln	Arg	Ser	Gln	Asn	Pro	Leu	Lys	Ile	Arg	Leu

-	CO	nt	in	ue	d

	1719	5				172	20				1'	725				
Thr	Arg 1730		y Ala	a Pro	þ											
<213 <213	L> LH 2> TY	EQ II ENGTH ZPE : RGANI	H: 53 PRT		otroj	pic M	∕luLV∙	-rela	ated	Viru	ıs VI	262				
<400)> SI	EQUEI	NCE :	41												
Met 1	Gly	Gln	Thr	Val 5	Thr	Thr	Pro	Leu	Ser 10	Leu	Thr	Leu	Gln	His 15	Trp	
Gly	Asp	Val	Gln 20	Arg	Ile	Ala	Ser	Asn 25	Gln	Ser	Val	Asp	Val 30	ГЛа	Lys	
Arg	Arg	Trp 35	Val	Thr	Phe	Суз	Ser 40	Ala	Glu	Trp	Pro	Thr 45	Phe	Asn	Val	
Gly	Trp 50	Pro	Gln	Asp	Gly	Thr 55	Phe	Asn	Leu	Gly	Val 60	Ile	Ser	Gln	Val	
Lys 65	Ser	Arg	Val	Phe	Cys 70	Pro	Gly	Pro	His	Gly 75	His	Pro	Asp	Gln	Val 80	
Pro	Tyr	Ile	Val	Thr 85	Trp	Glu	Ala	Leu	Ala 90	Tyr	Asp	Pro	Pro	Pro 95	Trp	
Val	Lys	Pro	Phe 100	Val	Ser	Pro	Lys	Pro 105	Pro	Pro	Leu	Pro	Thr 110	Ala	Pro	
Val	Leu	Pro 115	Pro	Gly	Pro	Ser	Ala 120	Gln	Pro	Pro	Ser	Arg 125	Ser	Ala	Leu	
Tyr	Pro 130	Ala	Leu	Thr	Pro	Ser 135	Ile	Lys	Ser	Lys	Pro 140	Pro	Lys	Pro	Gln	
Val 145	Leu	Pro	Asp	Ser	Gly 150	Gly	Pro	Leu	Ile	Asp 155	Leu	Leu	Thr	Glu	Asp 160	
Pro	Pro	Pro	Tyr	Gly 165	Ala	Gln	Pro	Ser	Ser 170	Ser	Ala	Arg	Glu	Asn 175	Asn	
Glu	Glu	Glu	Ala 180	Ala	Thr	Thr	Ser	Glu 185	Val	Ser	Pro	Pro	Ser 190	Pro	Met	
Val	Ser	Arg 195	Leu	Arg	Gly	Arg	Arg 200	Asp	Pro	Pro	Ala	Ala 205	Asp	Ser	Thr	
Thr	Ser 210	Gln	Ala	Phe	Pro	Leu 215	Arg	Met	Gly	Gly	Asp 220	Gly	Gln	Leu	Gln	
Tyr 225	Trp	Pro	Phe	Ser	Ser 230		Asp	Leu	Tyr	Asn 235	Trp	LYa	Asn	Asn	Asn 240	
Pro	Ser	Phe	Ser	Glu 245	Asp	Pro	Gly	Lys	Leu 250	Thr	Ala	Leu	Ile	Glu 255	Ser	
Val	Leu	Ile	Thr 260	His	Gln	Pro	Thr	Trp 265	Asp	Asp	Сүз	Gln	Gln 270	Leu	Leu	
Gly	Thr	Leu 275	Leu	Thr	Gly	Glu	Glu 280	Lys	Gln	Arg	Val	Leu 285	Leu	Glu	Ala	
Arg	Lys 290	Ala	Val	Arg	Gly	Asn 295	Aab	Gly	Arg	Pro	Thr 300	Gln	Leu	Pro	Asn	
Glu 305	Val	Asn	Ala	Ala	Phe 310		Leu	Glu	Arg	Pro 315	Asp	Trp	Asp	Tyr	Thr 320	
Thr	Thr	Glu	Gly	Arg 325	Asn	His	Leu	Val	Leu 330	Tyr	Arg	Gln	Leu	Leu 335	Leu	
Ala	Gly	Leu	Gln	Asn	Ala	Gly	Arg	Ser	Pro	Thr	Asn	Leu	Ala	Lys	Val	

-continued

			340					345					350		
Ly	s Gly	Ile 355	Thr	Gln	Gly	Pro	Asn 360	Glu	Ser	Pro	Ser	Ala 365	Phe	Leu	Glu
Ar	g Leu 370	Lys	Glu	Ala	Tyr	Arg 375	Arg	Tyr	Thr	Pro	Tyr 380	Asp	Pro	Glu	Asp
Pr 38		Gln	Glu	Thr	Asn 390	Val	Ser	Met	Ser	Phe 395	Ile	Trp	Gln	Ser	Ala 400
Pr	o Asb	Ile	Gly	Arg 405	Гла	Leu	Glu	Arg	Leu 410	Glu	Asp	Leu	Lys	Ser 415	ГЛа
Th	c Leu	Gly	Asp 420	Leu	Val	Arg	Glu	Ala 425	Glu	Lys	Ile	Phe	Asn 430	Lys	Arg
Gl	ı Thr	Pro 435	Glu	Glu	Arg	Glu	Glu 440	Arg	Ile	Arg	Arg	Glu 445	Ile	Glu	Glu
Ly	9 Glu 450	Glu	Arg	Arg	Arg	Ala 455	Glu	Asp	Glu	Gln	Arg 460	Glu	Arg	Glu	Arg
Asj 46		Arg	Arg	His	Arg 470	Glu	Met	Ser	Lys	Leu 475	Leu	Ala	Thr	Val	Val 480
11	e Gly	Gln	Arg	Gln 485	Asp	Arg	Gln	Gly	Gly 490	Glu	Arg	Arg	Arg	Pro 495	Gln
Le	ı Yab	Lys	Asp 500	Gln	СЛа	Ala	Tyr	Сув 505	LÀa	Glu	rÀa	Gly	His 510	Trp	Ala
Ly	a yab	Cys 515	Pro	Lys	LÀa	Pro	Arg 520	Gly	Pro	Arg	Gly	Pro 525	Arg	Pro	Gln
Th	530	Leu	Leu	Thr	Leu	Gly 535	Asp								
<2 <2	L2> I	EQ II ENGTI YPE : RGANI	H: 64 PRT	45	otroj	pic N	/uLV-	rela	ated	Viru	ıs VI	262			
<2 <2 <2	L1> L L2> T L3> C	ENGTI YPE :	H: 64 PRT ISM:	15 Xeno	otroj	pic 1	/uLV-	-rela	ated	Viru	ıs VI	262			
<2 <2 <2 <4	L1> L L2> T L3> C D0> S	ENGTI YPE : RGANI	H: 64 PRT ISM: NCE:	45 Xeno 42	_	-							Ile	Asn 15	Pro
<2: <2: <4: Me: 1	L1> L L2> T L3> C D0> S c Glu	ENGTI YPE : RGAN: EQUEI	H: 64 PRT ISM: NCE: Pro	45 Xeno 42 Ala 5	Phe	Ser	Гла	Pro	Leu 10	Гла	Asp	Lys		15	
<2: <2: <2: <4 Me 1 Tr]	L1> L L2> T L3> C D0> S C Glu	ENGTI YPE: RGAN: EQUEI Ser	H: 64 PRT ISM: NCE: Pro Leu 20	45 Xeno 42 Ala 5 Ile	Phe Ile	Ser Met	Lys Gly	Pro Ile 25	Leu 10 Leu	Lys Val	Asp Arg	Lys Ala	Gly 30	15 Ala	Ser
<22 <22 <4 Me 1 Trj Va	11> 1 12> T 13> C 00> S c Glu p Gly 1 Glr	ENGTI YPE: RGAN: EQUEI Ser Pro Arg	H: 64 PRT ISM: NCE: Pro Leu 20 Asp	15 Xeno 42 Ala 5 Ile Ser	Phe Ile Pro	Ser Met His	Lys Gly Gln 40	Pro Ile 25 Val	Leu 10 Leu Phe	Lys Val Asn	Asp Arg Val	Lys Ala Thr 45	Gly 30 Trp	15 Ala Lys	Ser Ile
<2 <2 <2 <4 Me ⁻ 1 Tr] Va Th:	L1> L L2> T L3> C D0> S c Glu c Gly L Glr 50	ENGTI YPE: RGAN: EQUEI Ser Pro Arg 35	H: 64 PRT ISM: NCE: Pro Leu 20 Asp Met	45 Xend 42 Ala 5 Ile Ser Thr	Phe Ile Pro Gly	Ser Met His Gln 55	Lys Gly Gln 40 Thr	Pro Ile 25 Val Ala	Leu 10 Leu Phe Asn	Lys Val Asn Ala	Asp Arg Val Thr 60	Lys Ala Thr 45 Ser	Gly 30 Trp Leu	15 Ala Lys Leu	Ser Ile Gly
<22<22<22<44 Me 1 Trj Va Th: 65	11> L 12> T 13> C 000> S Glu C Glu C Asn 50 C Met	ENGTI YPE: RGAN EQUE Ser Pro Arg 35 Leu	H: 64 PRT ISM: NCE: Pro Leu 20 Asp Met Asp	45 Xeno 42 Ala 5 Ile Ser Thr Thr	Phe Ile Pro Gly Phe 70	Ser Met His Gln 55 Pro	Lys Gly Gln 40 Thr Lys	Pro Ile 25 Val Ala Leu	Leu 10 Leu Phe Asn Tyr	Lys Val Asn Ala Phe 75	Asp Arg Val Thr 60 Asp	Lys Ala Thr 45 Ser Leu	Gly 30 Trp Leu Cys	15 Ala Lys Leu Asp	Ser Ile Gly Leu 80
<2 <2 <2 <4 Me ⁻ 1 Trj Va Th: 65 Va	11> L 12> T 13> C 00> S 00> S 100> S 100 100 100 100 100 100 100 10	ENGTH YPE: RGAN: EQUE Ser Pro Arg 35 Leu Thr	H: 64 PRT ISM: ISM: VCE: Pro Leu 20 Asp Met Asp	45 Xeno 42 Ala 5 Ile Ser Thr Thr Thr 85	Phe Ile Pro Gly Phe 70 Asp	Ser Met His Gln 55 Pro Asp	Lys Gly Gln 40 Thr Lys Pro	Pro Ile 25 Val Ala Leu Glu	Leu 10 Leu Phe Asn Tyr Pro 90	Lys Val Asn Ala Phe 75 Asp	Asp Arg Val Thr 60 Asp Ile	Lys Ala Thr 45 Ser Leu Gly	Gly 30 Trp Leu Cys Asp	15 Ala Lys Leu Asp Gly 95	Ser Ile Gly Leu 80 Cys
<2 <22 <22 <4 Me 1 Try Va Th: 65 Va Arg	11> L 12> T 13> C 00> S Glu 0 Gly 1 Gln 50 C Asn 50 C Met L Gly 3 Ser	ENGTH YPE: RGAN: EQUEL Ser Pro Arg 35 Leu Thr Asp	H: 66 PRT ISM: ISM: VCE: Pro Leu 20 Asp Met Asp Asp Asn Gly 100	45 Xend 42 Ala 5 Ile Ser Thr Thr Thr 85 Gly	Phe Ile Pro Gly Phe 70 Asp Arg	Ser Met His Gln 55 Pro Asp Lys	Lys Gly Gln 40 Thr Lys Pro Arg	Pro Ile 25 Val Ala Leu Glu Thr 105	Leu 10 Leu Phe Asn Tyr Pro 90 Arg	Lys Val Asn Ala Phe 75 Asp Leu	Asp Arg Val Thr 60 Asp Ile Tyr	Lys Ala Thr 45 Ser Leu Gly Asp	Gly 30 Trp Leu Cys Asp Phe 110	15 Ala Lys Leu Asp Gly 95 Tyr	Ser Ile Gly Leu 80 Cys Val
<2 <22 <22 <2 <2 <2 <2 <2 This 55 Va Are Cyr	11> L 12> T 13> C 13> C 100> S 100> S 100 100 100 100 100 100 100 10	ENGTH YPE: RGAN: EQUEI Ser Pro Arg 35 Leu Thr Asp Pro Gly 115 Gly	H: 64 PRT PRT ISM: NCE: Pro Leu 20 Asp Met Asp Asn Gly 100 His	45 Xend 42 Ala 5 Ile Ser Thr Thr Thr 85 Gly Thr	Phe Ile Pro Gly Phe 70 Asp Arg Val	Ser Met His Gln 55 Pro Asp Lys Leu	Lys Gly Gln 40 Thr Lys Pro Arg Thr 120	Pro Ile 25 Val Ala Leu Glu Thr 105 Gly	Leu 10 Leu Phe Asn Tyr Pro 90 Arg Cys	Lys Val Asn Ala Phe 75 Asp Leu Gly	Asp Arg Val Thr 60 Asp Ile Tyr Gly	Lys Ala Thr 45 Ser Leu Gly Asp Pro 125	Gly 30 Trp Leu Cys Asp Phe 110 Arg	15 Ala Lys Leu Asp Gly 95 Tyr Glu	Ser Ile Gly Leu 80 Cys Val Gly
<2	<pre>11> 11 > 11 12> 17 122> 7 13> C 13 13 13 13 13 13 13 13 13 13 13 13 13</pre>	ENGTH YPE: RGAN: EQUEI Ser Pro Arg 35 Leu Thr Asp Pro Gly 115 Gly	H: 64 PRT ISM: ISM: Pro Leu 20 Asp Met Asp Asp Asp Asp Lys	45 Xend 42 Ala 5 Ile Ser Thr Thr R5 Gly Thr Trp	Phe Ile Pro Gly Phe 70 Asp Arg Val Gly	Ser Met His Gln 55 Pro Lys Lys Leu Cys 135	Lys Gly Gln 40 Thr Lys Pro Arg Thr 120 Glu	Pro Ile 25 Val Ala Leu Glu Thr 105 Gly Thr	Leu 10 Leu Phe Asn Tyr Pro 90 Arg Cys Thr	Lys Val Asn Ala Phe 75 Asp Leu Gly	Asp Arg Val Thr 60 Asp Ile Tyr Gly Gly 140	Lys Ala Thr 45 Ser Leu Gly Asp Pro 125 Ala	Gly 30 Trp Leu Cys Asp Phe 110 Arg Tyr	15 Ala Lys Leu Asp Gly 95 Tyr Glu Trp	Ser Ile Gly Leu 80 Cys Val Gly Lys

-continued

				165					170					175	
Gln	Gly	Ala	Thr 180	Pro	Gly	Gly	Arg	Сув 185	Asn	Pro	Leu	Val	Leu 190	Glu	Phe
Thr	Asp	Ala 195	Gly	Lys	Arg	Ala	Ser 200	Trp	Asp	Ala	Pro	Lys 205	Thr	Trp	Gly
Leu	Arg 210	Leu	Tyr	Arg	Ser	Thr 215	Gly	Ala	Asp	Pro	Val 220	Thr	Leu	Phe	Ser
Leu 225	Thr	Arg	Gln	Val	Leu 230	Asn	Val	Gly	Pro	Arg 235	Val	Pro	Ile	Gly	Pro 240
Asn	Pro	Val	Ile	Thr 245	Glu	Gln	Leu	Pro	Pro 250	Ser	Gln	Pro	Val	Gln 255	Ile
Met	Leu	Pro	Arg 260	Pro	Pro	Arg	Pro	Pro 265	Pro	Ser	Gly	Ala	Ala 270	Ser	Met
Val	Pro	Gly 275	Ala	Pro	Pro	Pro	Ser 280	Gln	Gln	Pro	Gly	Thr 285	Gly	Asp	Arg
Leu	Leu 290	Asn	Leu	Val	Glu	Gly 295	Ala	Tyr	Gln	Ala	Leu 300	Asn	Leu	Thr	Ser
Pro 305	Asp	Lys	Thr	Gln	Glu 310	Суз	Trp	Leu	Сув	Leu 315	Val	Ser	Gly	Pro	Pro 320
Tyr	Tyr	Glu	Gly	Val 325	Ala	Val	Leu	Gly	Thr 330	Tyr	Ser	Asn	His	Thr 335	Ser
Ala	Pro	Ala	Asn 340	Cys	Ser	Val	Thr	Ser 345	Gln	His	Lys	Leu	Thr 350	Leu	Ser
Glu	Val	Thr 355	Gly	Gln	Gly	Leu	Сув 360	Ile	Gly	Ala	Val	Pro 365	Lys	Thr	His
Gln	Ala 370	Leu	Сүз	Asn	Thr	Thr 375	Gln	Lys	Thr	Ser	Asp 380	Gly	Ser	Tyr	Tyr
Leu 385	Ala	Ser	Pro	Ala	Gly 390	Thr	Ile	Trp	Ala	Сув 395	Ser	Thr	Gly	Leu	Thr 400
Pro	Cys	Leu	Ser	Thr 405	Thr	Val	Leu	Asn	Leu 410	Thr	Thr	Asp	Tyr	Cys 415	Val
Leu	Val	Glu	Leu 420	Trp	Pro	Lys	Val	Thr 425	Tyr	His	Ser	Pro	Asn 430	Tyr	Val
Tyr	Gly	Gln 435	Phe	Glu	Lys	Lys	Thr 440	Lys	Tyr	Гла	Arg	Glu 445	Pro	Val	Ser
Leu	Thr 450	Leu	Ala	Leu	Leu	Leu 455	Gly	Gly	Leu	Thr	Met 460	Gly	Gly	Ile	Ala
Ala 465	Gly	Val	Gly	Thr	Gly 470	Thr	Thr	Ala	Leu	Val 475	Ala	Thr	Гла	Gln	Phe 480
Glu	Gln	Leu	Gln	Ala 485	Ala	Ile	His	Thr	Asp 490	Leu	Gly	Ala	Leu	Glu 495	Lys
Ser	Val	Ser	Ala 500	Leu	Glu	Lys	Ser	Leu 505	Thr	Ser	Leu	Ser	Glu 510	Val	Val
Leu	Gln	Asn 515	Arg	Arg	Gly	Leu	Asp 520	Leu	Leu	Phe	Leu	Lys 525	Glu	Gly	Gly
Leu	Сув 530	Ala	Ala	Leu	ГЛа	Glu 535	Glu	Сув	Сув	Phe	Tyr 540	Ala	Asp	His	Thr
Gly 545	Val	Val	Arg	Asp	Ser 550	Met	Ala	ГÀа	Leu	Arg 555	Glu	Arg	Leu	Asn	Gln 560
Arg	Gln	Lys	Leu	Phe 565	Glu	Ser	Arg	Gln	Gly 570	Trp	Phe	Glu	Gly	Leu 575	Phe

Asn Arg Ser Pro Trp Phe Thr Thr Leu Ile Ser Thr Ile Met Gly Pro Leu Ile Val Leu Leu Leu Leu Leu Phe Gly Pro Cys Ile Leu Asn Arg Leu Val Gln Phe Val Lys Asp Arg Ile Ser Val Val Gln Ala Leu Val Leu Thr Gln Gln Tyr His Gln Leu Lys Ser Ile Asp Pro Glu Glu 625 630 Val Glu Ser Arg Glu <210> SEQ ID NO 43 <211> LENGTH: 1733 <212> TYPE: PRT <213> ORGANISM: Xenotropic MuLV-related Virus VP62 <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (537)..(537) $<\!223\!>$ OTHER INFORMATION: Xaa can be any naturally occurring amino acid <400> SEOUENCE: 43 Met Gly Gln Thr Val Thr Thr Pro Leu Ser Leu Thr Leu Gln His Trp Gly Asp Val Gln Arg Ile Ala Ser Asn Gln Ser Val Asp Val Lys Lys Arg Arg Trp Val Thr Phe Cys Ser Ala Glu Trp Pro Thr Phe Asn Val Gly Trp Pro Gln Asp Gly Thr Phe Asn Leu Gly Val Ile Ser Gln Val Lys Ser Arg Val Phe Cys Pro Gly Pro His Gly His Pro Asp Gln Val Pro Tyr Ile Val Thr Trp Glu Ala Leu Ala Tyr Asp Pro Pro Pro Trp Val Lys Pro Phe Val Ser Pro Lys Pro Pro Pro Leu Pro Thr Ala Pro Val Leu Pro Pro Gly Pro Ser Ala Gln Pro Pro Ser Arg Ser Ala Leu Tyr Pro Ala Leu Thr Pro Ser Ile Lys Ser Lys Pro Pro Lys Pro Gln 130 135 Val Leu Pro Asp Ser Gly Gly Pro Leu Ile Asp Leu Leu Thr Glu Asp Pro Pro Pro Tyr Gly Ala Gln Pro Ser Ser Ser Ala Arg Glu Asn Asn Glu Glu Glu Ala Ala Thr Thr Ser Glu Val Ser Pro Pro Ser Pro Met Val Ser Arg Leu Arg Gly Arg Arg Asp Pro Pro Ala Ala Asp Ser Thr Thr Ser Gln Ala Phe Pro Leu Arg Met Gly Gly Asp Gly Gln Leu Gln Tyr Trp Pro Phe Ser Ser Ser Asp Leu Tyr Asn Trp Lys Asn Asn Asn Pro Ser Phe Ser Glu Asp Pro Gly Lys Leu Thr Ala Leu Ile Glu Ser Val Leu Ile Thr His Gln Pro Thr Trp Asp Asp Cys Gln Gln Leu Leu

- 1	со	nt	l	n	u	е	С

Glγ	7 Thr	Leu 275	Leu	Thr	Gly	Glu	Glu 280	Lys	Gln	Arg	Val	Leu 285	Leu	Glu	Ala
Arg	1 Lys 290	Ala	Val	Arg	Gly	Asn 295	Asp	Gly	Arg	Pro	Thr 300	Gln	Leu	Pro	Asn
Glu 305	ı Val	Asn	Ala	Ala	Phe 310	Pro	Leu	Glu	Arg	Pro 315	Asp	Trp	Asp	Tyr	Thr 320
Thi	Thr	Glu	Gly	Arg 325	Asn	His	Leu	Val	Leu 330	Tyr	Arg	Gln	Leu	Leu 335	Leu
Ala	u Gly	Leu	Gln 340	Asn	Ala	Gly	Arg	Ser 345	Pro	Thr	Asn	Leu	Ala 350	Lys	Val
Lys	g Gly	Ile 355	Thr	Gln	Gly	Pro	Asn 360	Glu	Ser	Pro	Ser	Ala 365	Phe	Leu	Glu
Arg	j Leu 370	Lys	Glu	Ala	Tyr	Arg 375	Arg	Tyr	Thr	Pro	Tyr 380	Asp	Pro	Glu	Asp
Pro 385	Gly	Gln	Glu	Thr	Asn 390	Val	Ser	Met	Ser	Phe 395	Ile	Trp	Gln	Ser	Ala 400
Pro	Asp	Ile	Gly	Arg 405	ГЛа	Leu	Glu	Arg	Leu 410	Glu	Asp	Leu	Lys	Ser 415	Lys
Thi	: Leu	Gly	Asp 420	Leu	Val	Arg	Glu	Ala 425	Glu	ГÀа	Ile	Phe	Asn 430	Lys	Arg
Glu	ı Thr	Pro 435	Glu	Glu	Arg	Glu	Glu 440	Arg	Ile	Arg	Arg	Glu 445	Ile	Glu	Glu
Lys	Glu 450	Glu	Arg	Arg	Arg	Ala 455	Glu	Asp	Glu	Gln	Arg 460	Glu	Arg	Glu	Arg
Asp 465	Arg	Arg	Arg	His	Arg 470	Glu	Met	Ser	Lys	Leu 475	Leu	Ala	Thr	Val	Val 480
Ile	e Gly	Gln	Arg	Gln 485	Asp	Arg	Gln	Gly	Gly 490	Glu	Arg	Arg	Arg	Pro 495	Gln
Leu	ı Asp	Lys	Asp 500	Gln	Суз	Ala	Tyr	Cys 505	Lys	Glu	Lys	Gly	His 510	Trp	Ala
Lys	Asp	Cys 515	Pro	Lys	Lys	Pro	Arg 520	Gly	Pro	Arg	Gly	Pro 525	Arg	Pro	Gln
Thi	Ser 530	Leu	Leu	Thr	Leu	Gly 535	Asp	Xaa	Gly	Gly	Gln 540	Gly	Gln	Glu	Pro
Pro 545	Pro	Glu	Pro	Arg	Ile 550	Thr	Leu	Lys	Val	Gly 555	Gly	Gln	Pro	Val	Thr 560
Phe	e Leu	Val	Asp	Thr 565	Gly	Ala	Gln	His	Ser 570	Val	Leu	Thr	Gln	Asn 575	Pro
Glγ	/ Pro	Leu	Ser 580	Asp	Lys	Ser	Ala	Trp 585	Val	Gln	Gly	Ala	Thr 590	Gly	Gly
Lys	Arg	Tyr 595	Arg	Trp	Thr	Thr	Asp 600	Arg	Lys	Val	His	Leu 605	Ala	Thr	Gly
Lys	8 Val 610	Thr	His	Ser	Phe	Leu 615	His	Val	Pro	Asp	Cys 620	Pro	Tyr	Pro	Leu
Leu 625	ı Gly	Arg	Asp	Leu	Leu 630	Thr	Lys	Leu	Lys	Ala 635	Gln	Ile	His	Phe	Glu 640
Glγ	/ Ser	Gly	Ala	Gln 645	Val	Val	Gly	Pro	Met 650	Gly	Gln	Pro	Leu	Gln 655	Val
Leu	ı Thr	Leu	Asn 660	Ile	Glu	Asp	Glu	Tyr 665	Arg	Leu	His	Glu	Thr 670	Ser	Lys
Glu	ı Pro	Asp	Val	Pro	Leu	Gly	Ser	Thr	Trp	Leu	Ser	Asp	Phe	Pro	Gln

- 0	con	t.	11	nu	ed

		675					680					685			
Ala	Trp 690	Ala	Glu	Thr	Gly	Gly 695	Met	Gly	Leu	Ala	Val 700	Arg	Gln	Ala	Pro
Leu 705	Ile	Ile	Pro	Leu	Lys 710	Ala	Thr	Ser	Thr	Pro 715	Val	Ser	Ile	Lys	Gln 720
Tyr	Pro	Met	Ser	Gln 725	Glu	Ala	Arg	Leu	Gly 730	Ile	ГЛа	Pro	His	Ile 735	Gln
Arg	Leu	Leu	Asp 740	Gln	Gly	Ile	Leu	Val 745	Pro	Сүз	Gln	Ser	Pro 750	Trp	Asn
Thr	Pro	Leu 755	Leu	Pro	Val	Lys	Lys 760	Pro	Gly	Thr	Asn	Asp 765	Tyr	Arg	Pro
Val	Gln 770	Asp	Leu	Arg	Glu	Val 775	Asn	Lys	Arg	Val	Glu 780	Asp	Ile	His	Pro
Thr 785	Val	Pro	Asn	Pro	Tyr 790	Asn	Leu	Leu	Ser	Gly 795	Leu	Pro	Pro	Ser	His 800
Gln	Trp	Tyr	Thr	Val 805	Leu	Asp	Leu	Lys	Asp 810	Ala	Phe	Phe	Сув	Leu 815	Arg
Leu	His	Pro	Thr 820	Ser	Gln	Pro	Leu	Phe 825	Ala	Phe	Glu	Trp	Arg 830	Asp	Pro
Glu	Met	Gly 835	Ile	Ser	Gly	Gln	Leu 840	Thr	Trp	Thr	Arg	Leu 845	Pro	Gln	Gly
Phe	Lys 850	Asn	Ser	Pro	Thr	Leu 855	Phe	Asp	Glu	Ala	Leu 860	His	Arg	Asp	Leu
Ala 865	Asp	Phe	Arg	Ile	Gln 870	His	Pro	Asp	Leu	Ile 875	Leu	Leu	Gln	Tyr	Val 880
Asp	Asp	Leu	Leu	Leu 885	Ala	Ala	Thr	Ser	Glu 890	Gln	Asp	Суз	Gln	Arg 895	Gly
Thr	Arg	Ala	Leu 900	Leu	Gln	Thr	Leu	Gly 905	Asn	Leu	Gly	Tyr	Arg 910	Ala	Ser
Ala	Lys	Lys 915	Ala	Gln	Ile	Сүз	Gln 920	Lys	Gln	Val	Lys	Tyr 925	Leu	Gly	Tyr
Leu	Leu 930	Lys	Glu	Gly	Gln	Arg 935	Trp	Leu	Thr	Glu	Ala 940	Arg	Lys	Glu	Thr
Val 945	Met	Gly	Gln	Pro	Thr 950	Pro	Lys	Thr	Pro	Arg 955	Gln	Leu	Arg	Glu	Phe 960
Leu	Gly	Thr	Ala	Gly 965	Phe	Сүз	Arg	Leu	Trp 970	Ile	Pro	Gly	Phe	Ala 975	Glu
Met	Ala	Ala	Pro 980	Leu	Tyr	Pro	Leu	Thr 985	Lys	Thr	Gly	Thr	Leu 990	Phe	Asn
Trp	Gly	Pro 995	Asp	Gln	Gln	Lys	Ala 1000		r Glı	n Glu	ı Ile	e Ly: 100		ln A	la Leu
Leu	Thr 1010		a Pro	o Ala	a Leu	1 Gl 103		eu Pi	ro As	зр Le		hr 1 020	Lys I	Pro I	Phe
Glu	Leu 1025		∋ Val	l Asj	ọ Glư	1 Ly: 103		ln G	ly Ty	yr Ai		ys (035	Gly V	/al I	Leu
Thr	Gln 1040		s Leu	ı Gly	y Pro	5 Trj 104		rg Ai	rg Pi	ro Va		la ' 050	Fyr I	Seu S	Ser
Lys	Lys 1055		ı Ası	o Pro	o Val	l Ala 100		la Gi	ly Ti	rp P:		ro (065	Cys I	leu A	Arg
Met	Val 1070		a Ala	a Ile	e Ala	a Va: 10'		∋u Tł	nr Ly	ys Ai	-	la (080	Gly I	'ya I	Leu

-continued

													10.00	-
Thr	Met 1085	-	Gln	Pro	Leu	Val 1090	Ile	Leu	Ala	Pro	His 1095	Ala	Val	Glu
Ala	Leu 1100		Гла	Gln	Pro	Pro 1105	Asp	Arg	Trp	Leu	Ser 1110	Asn	Ala	Arg
Met	Thr 1115	His	Tyr	Gln	Ala	Met 1120	Leu	Leu	Asp	Thr	Asp 1125	Arg	Val	Gln
Phe	Gly 1130	Pro	Val	Val	Ala	Leu 1135	Asn	Pro	Ala	Thr	Leu 1140	Leu	Pro	Leu
Pro	Glu 1145	-	Glu	Ala	Pro	His 1150	Asp	Суз	Leu	Glu	Ile 1155	Leu	Ala	Glu
Thr	His 1160		Thr	Arg	Pro	Asp 1165	Leu	Thr	Asp	Gln	Pro 1170	Ile	Pro	Asp
Ala	Asp 1175	Tyr	Thr	Trp	Tyr	Thr 1180	Asp	Gly	Ser	Ser	Phe 1185	Leu	Gln	Glu
Gly	Gln 1190	-	Arg	Ala	Gly	Ala 1195	Ala	Val	Thr	Thr	Glu 1200	Thr	Glu	Val
Ile	Trp 1205	Ala	Arg	Ala	Leu	Pro 1210	Ala	Gly	Thr	Ser	Ala 1215	Gln	Arg	Ala
Glu	Leu 1220	Ile	Ala	Leu	Thr	Gln 1225	Ala	Leu	Lys	Met	Ala 1230	Glu	Gly	Lys
Lys	Leu 1235	Asn	Val	Tyr	Thr	Asp 1240	Ser	Arg	Tyr	Ala	Phe 1245	Ala	Thr	Ala
His	Val 1250	His	Gly	Glu	Ile	Tyr 1255	Arg	Arg	Arg	Gly	Leu 1260	Leu	Thr	Ser
Glu	Gly 1265	Arg	Glu	Ile	Lys	Asn 1270	Lys	Asn	Glu	Ile	Leu 1275	Ala	Leu	Leu
Lys	Ala 1280	Leu	Phe	Leu	Pro	Lys 1285	Arg	Leu	Ser	Ile	Ile 1290	His	Суз	Pro
Gly	His 1295	Gln	Lys	Gly	Asn	Ser 1300	Ala	Glu	Ala	Arg	Gly 1305	Asn	Arg	Met
Ala	Asp 1310	Gln	Ala	Ala	Arg	Glu 1315	Ala	Ala	Met	Lys	Ala 1320	Val	Leu	Glu
Thr	Ser 1325	Thr	Leu	Leu	Ile	Glu 1330	Asp	Ser	Thr	Pro	Tyr 1335	Thr	Pro	Pro
His	Phe 1340	His	Tyr	Thr	Glu	Thr 1345	Asp	Leu	Lys	Arg	Leu 1350	Arg	Glu	Leu
Gly	Ala 1355	Thr	Tyr	Asn	Gln	Thr 1360	Lys	Gly	Tyr	Trp	Val 1365	Leu	Gln	Gly
Lys	Pro 1370		Met	Pro	Aab	Gln 1375	Ser	Val	Phe	Glu	Leu 1380	Leu	Asp	Ser
Leu	His 1385		Leu	Thr	His	Leu 1390	Ser	Pro	Gln	Lys	Met 1395	-	Ala	Leu
Leu	Asp 1400		Glu	Glu	Ser	Pro 1405	Tyr	Tyr	Met	Leu	Asn 1410	Arg	Asp	Arg
Thr	Ile 1415	Gln	Tyr	Val	Thr	Glu 1420	Thr	Сув	Thr	Ala	Cys 1425	Ala	Gln	Val
Asn	Ala 1430	Ser	ГЛа	Ala	Lys	Ile 1435	Gly	Ala	Gly	Val	Arg 1440	Val	Arg	Gly
His	Arg 1445	Pro	Gly	Thr	His	Trp 1450	Glu	Val	Asp	Phe	Thr 1455	Glu	Val	Lys
Pro	Gly 1460	Leu	Tyr	Gly	Tyr	Lys 1465	Tyr	Leu	Leu	Val	Phe 1470	Val	Asp	Thr

Phe Ser Gly Trp	Val Glu Ala		Lys Arg Glu Thr Ala
1475	1480		1485
Lys Val Val Ser	Lys Lys Leu		Ile Phe Pro Arg Phe
1490	1495		1500
Gly Met Pro Gln	. Val Leu Gly		Gly Pro Ala Phe Ala
1505	1510		1515
Ser Gln Val Ser	Gln Ser Val		Leu Gly Ile Asp Trp
1520	1525		1530
Lys Leu His Cys	Ala Tyr Arg		Ser Gly Gln Val Glu
1535	1540		1545
Arg Met Asn Arg	Thr Ile Lys		Ihr Lys Leu Thr Leu
1550	1555		1560
Ala Ser Gly Thr	Arg Asp Trp		Leu Pro Leu Ala Leu
1565	1570		1575
Tyr Arg Ala Arg	Asn Thr Pro		Gly Leu Thr Pro Tyr
1580	1585		1590
Glu Ile Leu Tyr	Gly Ala Pro		Val Asn Phe His Asp
1595	1600		1605
Pro Glu Met Ser	Lys Leu Thr		Ser Leu Gln Ala His
1610	1615		1620
Leu Gln Ala Leu	Gln Ala Val		Val Trp Lys Pro Leu
1625	1630		1635
Ala Ala Ala Tyr	Gln Asp Gln	-	Pro Val Ile Pro His
1640	1645		1650
Pro Phe Arg Val	Gly Asp Ala	-	Arg Arg His Gln Thr
1655	1660		1665
Lys Asn Leu Glu	Pro Arg Trp		Fyr Thr Val Leu Leu
1670	1675		1680
Thr Thr Pro Thr	Ala Leu Lys		Ile Ser Ala Trp Ile
1685	1690		1695
His Ala Ala His	Val Lys Ala		Pro Pro Ala Gly Thr
1700	1705		1710
Ala Trp Lys Val	Gln Arg Ser		Leu Lys Ile Arg Leu
1715	1720		1725
Thr Arg Gly Ala 1730	Pro		
<210> SEQ ID NO <211> LENGTH: 53 <212> TYPE: PRT <213> ORGANISM:	6	LV-related Vi:	rus VP62
<400> SEQUENCE:	44		
-	Val Thr Thr P	ro Leu Ser Le	ı Thr Leu Gln His Trp
	5	10	15
Gly Asp Val Gln .	Arg Ile Ala S	er Asn Gln Se:	r Val Asp Val Lys Lys
20		25	30
Arg Arg Trp Val	Thr Phe Cys S	-	o Pro Thr Phe Asn Val
35	4		45
Gly Trp Pro Gln .	Asp Gly Thr P	he Asn Leu Gly	y Val Ile Ser Gln Val
50	55		60
Lys Ser Arg Val	Phe Cys Pro G	ly Pro His Gly	y His Pro Asp Gln Val
65	70	75	80

_	CO	nt	in	110	d
	- $ -$	11C	TTT	.uc	-0

Pro	Tyr	Ile	Val	Thr 85	Trp	Glu	Ala	Leu	Ala 90	Tyr	Asp	Pro	Pro	Pro 95	Trp
Val	Lys	Pro	Phe 100	Val	Ser	Pro	Lys	Pro 105	Pro	Pro	Leu	Pro	Thr 110	Ala	Pro
Val	Leu	Pro 115	Pro	Gly	Pro	Ser	Ala 120	Gln	Pro	Pro	Ser	Arg 125	Ser	Ala	Leu
Tyr	Pro 130	Ala	Leu	Thr	Pro	Ser 135	Ile	Lys	Ser	Lys	Pro 140	Pro	Lys	Pro	Gln
Val 145	Leu	Pro	Asp	Ser	Gly 150	Gly	Pro	Leu	Ile	Asp 155	Leu	Leu	Thr	Glu	Asp 160
Pro	Pro	Pro	Tyr	Gly 165	Ala	Gln	Pro	Ser	Ser 170	Ser	Ala	Arg	Glu	Asn 175	Asn
Glu	Glu	Glu	Ala 180	Ala	Thr	Thr	Ser	Glu 185	Val	Ser	Pro	Pro	Ser 190	Pro	Met
Val	Ser	Arg 195	Leu	Arg	Gly	Arg	Arg 200	Asp	Pro	Pro	Ala	Ala 205	Asp	Ser	Thr
Thr	Ser 210	Gln	Ala	Phe	Pro	Leu 215	Arg	Met	Gly	Gly	Asp 220	Gly	Gln	Leu	Gln
Tyr 225	Trp	Pro	Phe	Ser	Ser 230	Ser	Asp	Leu	Tyr	Asn 235	Trp	Lys	Asn	Asn	Asn 240
Pro	Ser	Phe	Ser	Glu 245	Asp	Pro	Gly	Lys	Leu 250	Thr	Ala	Leu	Ile	Glu 255	Ser
Val	Leu	Ile	Thr 260	His	Gln	Pro	Thr	Trp 265	Asp	Asp	Сүз	Gln	Gln 270	Leu	Leu
Gly	Thr	Leu 275	Leu	Thr	Gly	Glu	Glu 280	Lys	Gln	Arg	Val	Leu 285	Leu	Glu	Ala
Arg	Lys 290	Ala	Val	Arg	Gly	Asn 295	Asp	Gly	Arg	Pro	Thr 300	Gln	Leu	Pro	Asn
Glu 305	Val	Asn	Ala	Ala	Phe 310	Pro	Leu	Glu	Arg	Pro 315	Asp	Trp	Asp	Tyr	Thr 320
Thr	Thr	Glu	Gly	Arg 325	Asn	His	Leu	Val	Leu 330	Tyr	Arg	Gln	Leu	Leu 335	Leu
Ala	Gly	Leu	Gln 340	Asn	Ala	Gly	Arg	Ser 345	Pro	Thr	Asn	Leu	Ala 350	ГЛЗ	Val
Lys	Gly	Ile 355	Thr	Gln	Gly	Pro	Asn 360	Glu	Ser	Pro	Ser	Ala 365	Phe	Leu	Glu
Arg	Leu 370	Lys	Glu	Ala	Tyr	Arg 375	Arg	Tyr	Thr	Pro	Tyr 380	Asp	Pro	Glu	Asp
Pro 385	Gly	Gln	Glu	Thr	Asn 390	Val	Ser	Met	Ser	Phe 395	Ile	Trp	Gln	Ser	Ala 400
Pro	Asp	Ile	Gly	Arg 405	Lys	Leu	Glu	Arg	Leu 410	Glu	Asp	Leu	Lys	Ser 415	Lys
Thr	Leu	Gly	Asp 420	Leu	Val	Arg	Glu	Ala 425	Glu	ГÀа	Ile	Phe	Asn 430	Lys	Arg
Glu	Thr	Pro 435	Glu	Glu	Arg	Glu	Glu 440	Arg	Ile	Arg	Arg	Glu 445	Ile	Glu	Glu
Lys	Glu 450	Glu	Arg	Arg	Arg	Ala 455	Glu	Asp	Glu	Gln	Arg 460	Glu	Arg	Glu	Arg
Asp 465	Arg	Arg	Arg	His	Arg 470	Glu	Met	Ser	Lys	Leu 475	Leu	Ala	Thr	Val	Val 480
Ile	Gly	Gln	Arg	Gln	Asp	Arg	Gln	Gly	Gly	Glu	Arg	Arg	Arg	Pro	Gln

-continued

Leu Asp Lys Asp Gln Cys Ala Tyr Cys Lys Glu Lys Gly His Trp Ala Lys Asp Cys Pro Lys Lys Pro Arg Gly Pro Arg Gly Pro Arg Pro Gln Thr Ser Leu Leu Thr Leu Gly Asp <210> SEQ ID NO 45 <211> LENGTH: 645 <212> TYPE: PRT <213> ORGANISM: Xenotropic MuLV-related Virus VP62 <400> SEOUENCE: 45 Met Glu Ser Pro Ala Phe Ser Lys Pro Leu Lys Asp Lys Ile Asn Pro Trp Gly Pro Leu Ile Ile Met Gly Ile Leu Val Arg Ala Gly Ala Ser Val Gln Arg Asp Ser Pro His Gln Val Phe Asn Val Thr Trp Lys Ile Thr Asn Leu Met Thr Gly Gln Thr Ala Asn Ala Thr Ser Leu Leu Gly Thr Met Thr Asp Thr Phe Pro Lys Leu Tyr Phe Asp Leu Cys Asp Leu Val Gly Asp Asn Trp Asp Asp Pro Glu Pro Asp Ile Gly Asp Gly Cys Arg Ser Pro Gly Gly Arg Lys Arg Thr Arg Leu Tyr Asp Phe Tyr Val Cys Pro Gly His Thr Val Leu Thr Gly Cys Gly Gly Pro Arg Glu Gly Tyr Cys Gly Lys Trp Gly Cys Glu Thr Thr Gly Gln Ala Tyr Trp Lys $% \left({{\left[{{{\rm{Cys}}} \right]}_{\rm{T}}}} \right)$ Pro Ser Ser Ser Trp Asp Leu Ile Ser Leu Lys Arg Gly Asn Thr Pro Lys Gly Gln Gly Pro Cys Phe Asp Ser Ser Val Gly Ser Gly Ser Ile 165 170 175 Gln Gly Ala Thr Pro Gly Gly Arg Cys Asn Pro Leu Val Leu Glu Phe Thr Asp Ala Gly Lys Arg Ala Ser Trp Asp Ala Pro Lys Thr Trp Gly Leu Arg Leu Tyr Arg Ser Thr Gly Ala Asp Pro Val Thr Leu Phe Ser Leu Thr Arg Gln Val Leu Asn Val Gly Pro Arg Val Pro Ile Gly Pro Asn Pro Val Ile Thr Glu Gln Leu Pro Pro Ser Gln Pro Val Gln Ile Met Leu Pro Arg Thr Pro Arg Pro Pro Pro Ser Gly Ala Ala Ser Met Val Pro Gly Ala Pro Pro Pro Ser Gln Gln Pro Gly Thr Gly Asp Arg Leu Leu Asn Leu Val Glu Gly Ala Tyr Leu Ala Leu Asn Leu Thr Ser Pro Asp Lys Thr Gln Glu Cys Trp Leu Cys Leu Val Ser Gly Pro Pro

-continued

												COIL	CIII	ucu	
305					310					315					320
Tyr	Tyr	Glu	Gly	Val 325	Ala	Val	Leu	Gly	Thr 330	-	Ser	Asn	His	Thr 335	Ser
Ala	Pro	Ala	Asn 340		Ser	Val	Thr	Ser 345	Gln	His	Lys	Leu	Thr 350	Leu	Ser
Glu	Val	Thr 355	Gly	Gln	Gly	Leu	Суз 360	Ile	Gly	Ala	Val	Pro 365	Lys	Thr	His
Gln	Ala 370	Leu	Сүз	Asn	Thr	Thr 375	Gln	Lys	Thr	Ser	Asp 380	Gly	Ser	Tyr	Tyr
Leu 385	Ala	Ser	Pro	Ala	Gly 390		Ile	Trp	Ala	Суз 395	Ser	Thr	Gly	Leu	Thr 400
Pro	Cys	Leu	Ser	Thr 405	Thr	Val	Leu	Asn	Leu 410	Thr	Thr	Asp	Tyr	Cys 415	Val
Leu	Val	Glu	Leu 420	Trp	Pro	ГЛа	Val	Thr 425	Tyr	His	Ser	Pro	Asn 430	Tyr	Val
Tyr	Gly	Gln 435	Phe		Lys	Lys	Thr 440	Гла	Tyr	Lys	Arg	Glu 445	Pro	Val	Ser
Leu	Thr 450	Leu	Ala	Leu	Leu	Leu 455	Gly	Gly	Leu	Thr	Met 460	Gly	Gly	Ile	Ala
Ala 465	Gly	Val	Gly	Thr	Gly 470	Thr	Thr	Ala	Leu	Val 475	Ala	Thr	Lys	Gln	Phe 480
Glu	Gln	Leu	Gln	Ala 485	Ala	Ile	His	Thr	Asp 490	Leu	Gly		Leu	Glu 495	Lys
Ser	Val	Ser	Ala 500	Leu	Glu	Lys	Ser	Leu 505	Thr	Ser	Leu	Ser	Glu 510	Val	Val
Leu	Gln	Asn 515	Arg		Gly	Leu	Asp 520	Leu	Leu	Phe	Leu	Lys 525	Glu	Gly	Gly
Leu	Cys 530	Ala	Ala	Leu	Lys	Glu 535	Glu	Суз	Суз	Phe	Tyr 540	Ala	Asp	His	Thr
Gly 545	Val	Val	Arg	Asp	Ser 550	Met	Ala		Leu	Arg 555	Glu	Arg	Leu	Asn	Gln 560
Arg	Gln	Гла	Leu	Phe 565	Glu	Ser	Gly	Gln	Gly 570	Trp	Phe	Glu	Gly	Leu 575	Phe
Asn	Arg	Ser	Pro 580		Phe	Thr	Thr	Leu 585	Ile	Ser	Thr	Ile	Met 590	Gly	Pro
Leu	Ile	Val 595	Leu	Leu	Leu	Ile	Leu 600	Leu	Phe	Gly	Pro	Суз 605	Ile	Leu	Asn
Arg	Leu 610	Val	Gln	Phe	Val	Lys 615	Asp	Arg	Ile	Ser	Val 620	Val	Gln	Ala	Leu
Val 625	Leu	Thr	Gln	Gln	Tyr 630	His	Gln	Leu	Lys	Ser 635	Ile	Asp	Pro	Glu	Glu 640
Val	Glu	Ser	Arg	Glu 645											
<211 <212 <213 <220 <221 <222	.> LH :> T) :> OH :> OH :> NH :> LO	ENGTI (PE : RGAN) EATUI AME / I OCAT	ISM: RE: KEY: ION:	733 Xeno miso (53	otroj c_fea 7)	ature (537	e)								
					TION	: Xa	a cai	n be	any	nati	ural	ту о	ccur	ring	amin
<400)> SI	EQUEI	ICE :	46											

-continued

												COIL	υIII	ueu	
Met 1	Gly	Gln	Thr	Val 5	Thr	Thr	Pro	Leu	Ser 10	Leu	Thr	Leu	Gln	His 15	Trp
Gly	Asp	Val	Gln 20	Arg	Ile	Ala	Ser	Asn 25	Gln	Ser	Val	Asp	Val 30	Lys	Lys
Arg	Arg	Trp 35	Val	Thr	Phe	Сүз	Ser 40	Ala	Glu	Trp	Pro	Thr 45	Phe	Asn	Val
Gly	Trp 50	Pro	Gln	Asp	Gly	Thr 55	Phe	Asn	Leu	Gly	Val 60	Ile	Ser	Gln	Val
Lys 65	Ser	Arg	Val	Phe	Cys 70	Pro	Gly	Pro	His	Gly 75	His	Pro	Asp	Gln	Val 80
Pro	Tyr	Ile	Val	Thr 85	Trp	Glu	Ala	Leu	Ala 90	Tyr	Asp	Pro	Pro	Pro 95	Trp
Val	Lys	Pro	Phe 100	Val	Ser	Pro	Lys	Pro 105	Pro	Pro	Leu	Pro	Thr 110	Ala	Pro
Val	Leu	Pro 115	Pro	Gly	Pro	Ser	Ala 120	Gln	Pro	Pro	Ser	Arg 125	Ser	Ala	Leu
Tyr	Pro 130	Ala	Leu	Thr	Pro	Ser 135	Ile	Lys	Ser	Lys	Pro 140	Pro	Lys	Pro	Gln
Val 145	Leu	Pro	Asp	Ser	Gly 150	Gly	Pro	Leu	Ile	Asp 155	Leu	Leu	Thr	Glu	Asp 160
	Pro	Pro	Tyr	Gly 165		Gln	Pro	Ser	Ser 170		Ala	Arg	Glu	Asn 175	
Glu	Glu	Glu	Ala 180		Thr	Thr	Ser	Glu 185	Val	Ser	Pro	Pro	Ser 190	Pro	Met
Val	Ser	Arg 195		Arg	Gly	Arg	Arg 200		Pro	Pro	Ala	Ala 205	Asp	Ser	Thr
Thr	Ser 210		Ala	Phe	Pro	Leu 215	Arg	Met	Gly	Gly	Asp 220	Gly	Gln	Leu	Gln
Tyr 225	Trp	Pro	Phe	Ser	Ser 230	Ser	Asp	Leu	Tyr	Asn 235	Trp	Lys	Asn	Asn	Asn 240
	Ser	Phe	Ser	Glu 245		Pro	Gly	Lys	Leu 250		Ala	Leu	Ile	Glu 255	
Val	Leu	Ile	Thr 260		Gln	Pro	Thr	Trp 265	Asp	Asp	Сүз	Gln	Gln 270		Leu
Gly	Thr	Leu 275		Thr	Gly	Glu	Glu 280			Arg	Val	Leu 285		Glu	Ala
Arg			Val	Arg	Gly			Gly	Arg	Pro	Thr		Leu	Pro	Asn
	290 Val	Asn	Ala	Ala		295 Pro	Leu	Glu	Arg		300 300	Trp	Asp	Tyr	
305 Thr	Thr	Glu	Gly	-		His	Leu	Val		-	Arg	Gln	Leu		320 Leu
Ala	Gly	Leu		325 Asn		Gly	Arg		330 Pro		Asn	Leu		332 Lys	Val
Lys	Gly	Ile	340 Thr	Gln	Gly	Pro	Asn	345 Glu	Ser	Pro	Ser	Ala	350 Phe	Leu	Glu
Arg	Leu	355 Lys	Glu	Ala	Tyr	Arg	360 Arg	Tyr	Thr	Pro	Tyr	365 Asp	Pro	Glu	Asp
Pro	370 Gly	Gln	Glu	Thr	Asn	375 Val	Ser	Met	Ser	Phe	380 Ile	Trp	Gln	Ser	Ala
385	-				390					395		-			400
0	F		1	405	<i>⊐</i> ,2		<u></u> u	9	410		L		<u> </u>	415	_1 ~

_	cont	nn	1100
	COILC		aco

Thr	Leu	Gly	Asp 420	Leu	Val	Arg	Glu	Ala 425	Glu	Lys	Ile	Phe	Asn 430	ГЛЗ	Arg
Glu	Thr	Pro 435	Glu	Glu	Arg	Glu	Glu 440	Arg	Ile	Arg	Arg	Glu 445	Ile	Glu	Glu
Lys	Glu 450	Glu	Arg	Arg	Arg	Ala 455	Glu	Asp	Glu	Gln	Arg 460	Glu	Arg	Glu	Arg
Asp 465	Arg	Arg	Arg	His	Arg 470	Glu	Met	Ser	Lys	Leu 475	Leu	Ala	Thr	Val	Val 480
Ile	Gly	Gln	Arg	Gln 485	Asp	Arg	Gln	Gly	Gly 490	Glu	Arg	Arg	Arg	Pro 495	Gln
Leu	Asp	Lys	Asp 500	Gln	Сүз	Ala	Tyr	Суз 505	Lys	Glu	LYa	Gly	His 510	Trp	Ala
Lys	Asp	Cys 515	Pro	Lys	Lys	Pro	Arg 520	Gly	Pro	Arg	Gly	Pro 525	Arg	Pro	Gln
Thr	Ser 530	Leu	Leu	Thr	Leu	Gly 535	Asp	Хаа	Gly	Gly	Gln 540	Gly	Gln	Glu	Pro
Pro 545	Pro	Glu	Pro	Arg	Ile 550	Thr	Leu	Lys	Val	Gly 555	Gly	Gln	Pro	Val	Thr 560
Phe	Leu	Val	Asp	Thr 565	Gly	Ala	Gln	His	Ser 570	Val	Leu	Thr	Gln	Asn 575	Pro
Gly	Pro	Leu	Ser 580	Asp	Lys	Ser	Ala	Trp 585	Val	Gln	Gly	Ala	Thr 590	Gly	Gly
Lys	Arg	Tyr 595	Arg	Trp	Thr	Thr	Asp 600	Arg	Lys	Val	His	Leu 605	Ala	Thr	Gly
Lys	Val 610	Thr	His	Ser	Phe	Leu 615	His	Val	Pro	Asp	Сув 620	Pro	Tyr	Pro	Leu
Leu 625	Gly	Arg	Asp	Leu	Leu 630	Thr	Lys	Leu	Lys	Ala 635	Gln	Ile	His	Phe	Glu 640
Gly	Ser	Gly	Ala	Gln 645	Val	Val	Gly	Pro	Met 650	Gly	Gln	Pro	Leu	Gln 655	Val
Leu	Thr	Val	Asn 660	Ile	Glu	Asp	Glu	Tyr 665	Trp	Leu	His	Asp	Thr 670	Arg	Lys
Glu	Pro	Asp 675	Val	Pro	Leu	Gly	Ser 680	Thr	Trp	Leu	Ser	Asp 685	Phe	Leu	Gln
Ala	Trp 690	Ala	Glu	Thr	Gly	Gly 695	Met	Gly	Leu	Ala	Val 700	Arg	Gln	Ala	Pro
Leu 705	Ile	Ile	Pro	Leu	Lys 710	Ala	Thr	Ser	Thr	Pro 715	Val	Ser	Ile	Lys	Gln 720
Tyr	Pro	Met	Ser	Gln 725	Glu	Ala	Arg	Leu	Gly 730	Ile	LÀa	Pro	His	Ile 735	Gln
Arg	Leu	Leu	Asp 740	Gln	Gly	Ile	Leu	Val 745	Pro	Cya	Gln	Ser	Pro 750	Trp	Asn
Thr	Pro	Leu 755	Leu	Pro	Val	Lys	Lys 760	Pro	Gly	Thr	Asn	Asp 765	Tyr	Arg	Pro
Val	Gln 770	Asp	Leu	Arg	Glu	Val 775	Asn	Lys	Arg	Val	Glu 780	Asp	Ile	His	Pro
Thr 785	Val	Pro	Asn	Pro	Tyr 790	Asn	Leu	Leu	Ser	Gly 795	Leu	Pro	Pro	Ser	His 800
Gln	Trp	Tyr	Thr	Val 805	Leu	Asp	Leu	Lys	Asp 810	Ala	Phe	Phe	Суз	Leu 815	Arg
Leu	His	Pro	Thr	Ser	Gln	Pro	Leu	Phe	Ala	Phe	Glu	Trp	Arg	Asp	Pro

-continued

												0011	CIII			
			820					825					830			
Glu	Met	Gly 835	Ile	Ser	Gly	Gln	Leu 840	Thr	Trp	Thr	Arg	Leu 845	Pro	Gln	Gly	
Phe	Lys 850	Asn	Ser	Pro	Thr	Leu 855	Phe	Asp	Glu	Ala	Leu 860	His	Arg	Asp	Leu	
Ala 865	Asp	Phe	Arg	Ile	Gln 870	His	Pro	Asp	Leu	Ile 875	Leu	Leu	Gln	Tyr	Val 880	
Asp	Asp	Leu	Leu	Leu 885	Ala	Ala	Thr	Ser	Glu 890	Gln	Asp	Суз	Gln	Arg 895		
Thr	Arg	Ala	Leu 900	Leu	Gln	Thr	Leu	Gly 905	Asn	Leu	Gly	Tyr	Arg 910	Ala	Ser	
Ala	Lys	Lys 915	Ala	Gln	Ile	Суз	Gln 920	ГÀа	Gln	Val	ГЛа	Tyr 925	Leu	Gly	Tyr	
Leu	Leu 930	Lys	Glu	Gly	Gln	Arg 935	Trp	Leu	Thr	Glu	Ala 940	Arg	Lys	Glu	Thr	
Val 945	Met	Gly	Gln	Pro	Thr 950	Pro	Lys	Thr	Pro	Arg 955	Gln	Leu	Arg	Glu	Phe 960	
Leu	Gly	Thr	Ala	Gly 965	Phe	Сүз	Arg	Leu	Trp 970	Ile	Pro	Gly	Phe	Ala 975		
Met	Ala	Ala	Pro 980	Leu	Tyr	Pro	Leu	Thr 985	ГЛа	Thr	Gly	Thr	Leu 990	Phe	Asn	
Trp	Gly	Pro 995	Asp	Gln	Gln	Lys	Ala 1000		r Glı	n Glu	ı Ile	e Ly 10		ln A	la Leu	
Leu	Thr 1010		a Pro	> Ala	. Leu	ι Glչ 101		eu P:	ro A:	зр Le		hr 1 020	Lys (Pro	Phe	
Glu	Leu 1025		e Val	. Asp	o Glu	ι Ly: 103		ln G	ly Ty	vr Al		ys (035	Gly '	Val	Leu	
Thr	Gln 1040		s Leu	ı Gly	Pro	0 Trp 104		rg A:	rg Pi	co Va		la 050	Tyr :	Leu	Ser	
ГЛа	Lys 1055		ı Asp) Pro	val	. Ala 106		la G	ly Ti	rp Pi		ro 065	Сув	Leu	Arg	
Met	Val 1070		ı Ala	a Ile	e Ala	107 107		eu Tl	nr Ly	/s As		la (080	Gly :	Lya	Leu	
	Met 1085	5				109	90		eu Al		1	095				
Ala	Leu 1100			3 Glr	ı Pro) Pro 110		ab Y:	rg Ti	тр Le		er 1 110	Asn .	Ala	Arg	
Met	Thr 1115		; Tyr	Glr.	ı Ala	112 Met		eu Le	eu As	ap Tł		ap 1 125	Arg `	Val	Gln	
Phe	Gly 1130		> Val	. Val	. Ala	113 Leu		sn P:	ro Al	la Tł		eu 140	Leu :	Pro	Leu	
Pro	Glu 1145		s Glu	ı Ala	l Pro) His 115		ab Ci	ys L€	eu GI		le 155	Leu J	Ala	Glu	
Thr	His 1160		7 Thr	r Arg	Pro) Asp 116		eu Tl	nr Af	ap GI		ro 170	Ile	Pro	Asp	
Ala	Asp 1175		r Thr	Trp	o Tyr	Th: 118		ap Gi	ly Se	er Se		he 185	Leu (Gln	Glu	
Gly	Gln 1190		y Arg	j Ala	Gly	7 Ala 119		la Va	al Tł	ır Tł		lu 200	Thr (Glu	Val	
Ile	Trp 1205		a Arg	g Ala	. Leu	121		la G	ly Th	nr Se		la (215	Gln J	Arg	Ala	

-continued

Glu	Leu 1220	Ile	Ala	Leu	Thr	Gln 1225	Ala	Leu	Lys	Met	Ala 1230	Glu	Gly	Гуз
Lys	Leu 1235	Asn	Val	Tyr	Thr	Asp 1240	Ser	Arg	Tyr	Ala	Phe 1245	Ala	Thr	Ala
His	Val 1250	His	Gly	Glu	Ile	Tyr 1255	Arg	Arg	Arg	Gly	Leu 1260	Leu	Thr	Ser
Glu	Gly 1265	Arg	Glu	Ile	Lys	Asn 1270	Lys	Asn	Glu	Ile	Leu 1275	Ala	Leu	Leu
ГЛа	Ala 1280	Leu	Phe	Leu	Pro	Lys 1285	Arg	Leu	Ser	Ile	Ile 1290	His	Суз	Pro
Gly	His 1295	Gln	Lys	Gly	Asn	Ser 1300	Ala	Glu	Ala	Arg	Gly 1305	Asn	Arg	Met
Ala	Asp 1310	Gln	Ala	Ala	Arg	Glu 1315	Ala	Ala	Met	Lys	Ala 1320	Val	Leu	Glu
Thr	Ser 1325	Thr	Leu	Leu	Ile	Glu 1330	Asp	Ser	Thr	Pro	Tyr 1335	Thr	Pro	Pro
His	Phe 1340	His	Tyr	Thr	Glu	Thr 1345	Asp	Leu	Lys	Arg	Leu 1350	Arg	Glu	Leu
Gly	Ala 1355	Thr	Tyr	Asn	Gln	Thr 1360	Lys	Gly	Tyr	Trp	Val 1365	Leu	Gln	Gly
Гла	Pro 1370	Val	Met	Pro	Asp	Gln 1375	Ser	Val	Phe	Glu	Leu 1380	Leu	Asp	Ser
Leu	His 1385	Arg	Leu	Thr	His	Leu 1390	Ser	Pro	Gln	Lys	Met 1395	Lys	Ala	Leu
Leu	Asp 1400	Arg	Glu	Glu	Ser	Pro 1405	Tyr	Tyr	Met	Leu	Asn 1410	Arg	Asp	Arg
Thr	Ile 1415	Gln	Tyr	Val	Thr	Glu 1420	Thr	Суз	Thr	Ala	Cys 1425	Ala	Gln	Val
Asn	Ala 1430	Ser	Lys	Ala	Lys	Ile 1435	Gly	Ala	Gly	Val	Arg 1440	Val	Arg	Gly
His	Arg 1445	Pro	Gly	Thr	His	Trp 1450	Glu	Val	Asp	Phe	Thr 1455	Glu	Val	Гля
Pro	Gly 1460	Leu	Tyr	Gly	Tyr	Lys 1465	Tyr	Leu	Leu	Val	Phe 1470	Val	Asp	Thr
Phe	Ser 1475	Gly	Trp	Val	Glu	Ala 1480	Phe	Pro	Thr	ГЛа	Arg 1485	Glu	Thr	Ala
ГÀа	Val 1490	Val	Ser	Гла	Lys	Leu 1495	Leu	Glu	Asp	Ile	Phe 1500	Pro	Arg	Phe
Gly	Met 1505	Pro	Gln	Val	Leu	Gly 1510	Ser	Asp	Asn	Gly	Pro 1515	Ala	Phe	Ala
Ser	Gln 1520	Val	Ser	Gln	Ser	Val 1525	Ala	Asp	Leu	Leu	Gly 1530	Ile	Asp	Trp
ГÀа	Leu 1535	His	Cys	Ala	Tyr	Arg 1540	Pro	Gln	Ser	Ser	Gly 1545	Gln	Val	Glu
Arg	Met 1550	Asn	Arg	Thr	Ile	Lys 1555	Glu	Thr	Leu	Thr	Lys 1560	Leu	Thr	Leu
Ala	Ser 1565	Gly	Thr	Arg	Asp	Trp 1570	Val	Leu	Leu	Leu	Pro 1575	Leu	Ala	Leu
Tyr	Arg 1580	Ala	Arg	Asn	Thr	Pro 1585	Gly	Pro	His	Gly	Leu 1590	Thr	Pro	Tyr
Glu	Ile 1595	Leu	Tyr	Gly	Ala	Pro 1600	Pro	Pro	Leu	Val	Asn 1605	Phe	His	Asp

-continued

Pro Glu Met Ser Lys Leu Thr Asn Ser Pro Ser Leu Gln Ala His Leu Gln Ala Leu Gln Ala Val Gln Gln Glu Val Trp Lys Pro Leu Ala Ala Ala Tyr Gln Asp Gln Leu Asp Gln Pro Val Ile Pro His Pro Phe Arg Val Gly Asp Ala Val Trp Val Arg Arg His Gln Thr Lys Asn Leu Glu Pro Arg Trp Lys Gly Pro Tyr Thr Val Leu Leu Thr Thr Pro Thr Ala Leu Lys Val Asp Gly Ile Ser Ala Trp Ile His Ala Ala His Val Lys Ala Ala Thr Thr Pro Pro Ala Gly Thr Ala Trp Lys Val Gln Arg Ser Gln Asn Pro Leu Lys Ile Arg Leu Thr Arg Gly Ala Pro <210> SEQ ID NO 47 <211> LENGTH: 536 <212> TYPE: PRT <213> ORGANISM: Xenotropic MuLV-related Virus VP62 <400> SEOUENCE: 47 Met Gly Gln Thr Val Thr Thr Pro Leu Ser Leu Thr Leu Gln His Trp Gly Asp Val Gln Arg Ile Ala Ser Asn Gln Ser Val Asp Val Lys Lys Arg Arg Trp Val Thr Phe Cys Ser Ala Glu Trp Pro Thr Phe Asn Val Gly Trp Pro Gln Asp Gly Thr Phe Asn Leu Gly Val Ile Ser Gln Val Lys Ser Arg Val Phe Cys Pro Gly Pro His Gly His Pro Asp Gln Val Pro Tyr Ile Val Thr Trp Glu Ala Leu Ala Tyr Asp Pro Pro Pro Trp Val Lys Pro Phe Val Ser Pro Lys Pro Pro Pro Leu Pro Thr Ala Pro Val Leu Pro Pro Gly Pro Ser Ala Gln Pro Pro Ser Arg Ser Ala Leu Tyr Pro Ala Leu Thr Pro Ser Ile Lys Ser Lys Pro Pro Lys Pro Gln Val Leu Pro Asp Ser Gly Gly Pro Leu Ile Asp Leu Leu Thr Glu Asp Pro Pro Pro Tyr Gly Ala Gln Pro Ser Ser Ser Ala Arg Glu Asn Asn Glu Glu Glu Ala Ala Thr Thr Ser Glu Val Ser Pro Pro Ser Pro Met Val Ser Arg Leu Arg Gly Arg Arg Asp Pro Pro Ala Ala Asp Ser Thr Thr Ser Gln Ala Phe Pro Leu Arg Met Gly Gly Asp Gly Gln Leu Gln

- 1	со	nt	l	n	u	е	С

Tyr Trp Pro Phe Ser Ser Asp Leu Tyr Asn Trp Lys Asn Asn Asn Pro Ser Phe Ser Glu Asp Pro Gly Lys Leu Thr Ala Leu Ile Glu Ser Val Leu Ile Thr His Gln Pro Thr Trp Asp Asp Cys Gln Gln Leu Leu Gly Thr Leu Leu Thr Gly Glu Glu Lys Gln Arg Val Leu Leu Glu Ala Arg Lys Ala Val Arg Gly Asn Asp Gly Arg Pro Thr Gln Leu Pro Asn Glu Val Asn Ala Ala Phe Pro Leu Glu Arg Pro Asp Trp Asp Tyr Thr Thr Thr Glu Gly Arg Asn His Leu Val Leu Tyr Arg Gln Leu Leu Leu Ala Gly Leu Gln Asn Ala Gly Arg Ser Pro Thr Asn Leu Ala Lys Val Lys Gly Ile Thr Gln Gly Pro Asn Glu Ser Pro Ser Ala Phe Leu Glu Arg Leu Lys Glu Ala Tyr Arg Arg Tyr Thr Pro Tyr Asp Pro Glu Asp Pro Gly Gln Glu Thr Asn Val Ser Met Ser Phe Ile Trp Gln Ser Ala Pro Asp Ile Gly Arg Lys Leu Glu Arg Leu Glu Asp Leu Lys Ser Lys Thr Leu Gly Asp Leu Val Arg Glu Ala Glu Lys Ile Phe Asn Lys Arg Glu Thr Pro Glu Glu Arg Glu Glu Arg Ile Arg Arg Glu Ile Glu Glu Lys Glu Glu Arg Arg Arg Ala Glu Asp Glu Gln Arg Glu Arg Glu Arg Asp Arg Arg Arg His Arg Glu Met Ser Lys Leu Leu Ala Thr Val Val Ile Gly Gln Arg Gln Asp Arg Gln Gly Gly Glu Arg Arg Arg Pro Gln 485 490 495 Leu Asp Lys Asp Gln Cys Ala Tyr Cys Lys Glu Lys Gly His Trp Ala Lys Asp Cys Pro Lys Lys Pro Arg Gly Pro Arg Gly Pro Arg Pro Gln Thr Ser Leu Leu Thr Leu Gly Asp <210> SEO ID NO 48 <211> LENGTH: 409 <212> TYPE: PRT <213> ORGANISM: Friend Spleen Focus-Forming Virus (isolate 502) <400> SEQUENCE: 48 Met Lys Gly Pro Ala Phe Ser Lys Pro Leu Lys Asp Lys Ile Asn Pro Trp Gly Pro Leu Ile Val Leu Gly Ile Leu Ile Arg Ala Gly Val Ser Val Gln His Asp Ser Pro His Gln Val Phe Asn Val Thr Trp Arg Val

- 1	со	nt	l	n	u	е	С

Thr A 5	Asn 50	Leu	Met	Thr	Gly	Gln 55	Thr	Ala	Asn	Ala	Thr 60	Ser	Leu	Leu	Gly
Thr M 65	let	Thr	Asp	Ala	Phe 70	Pro	Met	Leu	His	Phe 75	Asp	Leu	Суз	Asp	Leu 80
Ile G	ly	Asp	Asp	Trp 85	Asp	Glu	Thr	Gly	Leu 90	Glu	Суз	Arg	Thr	Pro 95	Gly
Gly A	Arg	Lys	Arg 100	Ala	Arg	Thr	Phe	Asp 105	Phe	Tyr	Val	Сүз	Pro 110	Gly	His
Thr V	/al	Pro 115	Thr	Gly	Суз	Gly	Gly 120	Pro	Arg	Glu	Gly	Tyr 125	Суз	Gly	Lys
Trp G 1	31y 30	Cys	Glu	Thr	Thr	Gly 135	Gln	Ala	Tyr	Trp	Lys 140	Pro	Ser	Ser	Ser
Trp A 145	/ab	Leu	Ile	Ser	Leu 150	Lys	Arg	Gly	Asn	Thr 155	Pro	Lys	Asp	Arg	Gly 160
Pro C	çÀa	Tyr	Asp	Ser 165	Ser	Val	Ser	Ser	Gly 170	Val	Gln	Gly	Ala	Thr 175	Pro
Gly G	ly	Arg	Cys 180	Asn	Pro	Leu	Val	Leu 185	Lys	Phe	Thr	Asp	Ala 190	Gly	Lys
Lys A	la	Ser 195	Trp	Asp	Ser	Pro	Lys 200	Val	Trp	Gly	Leu	Arg 205	Leu	Tyr	Arg
Pro I 2	hr 10	Gly	Ile	Asp	Pro	Val 215	Thr	Arg	Phe	Ser	Leu 220	Thr	Arg	Gln	Val
Leu A 225	lsn	Ile	Gly	Pro	Arg 230	Ile	Pro	Ile	Gly	Pro 235	Asn	Pro	Val	Ile	Ile 240
Gly G	ln	Leu	Pro	Pro 245	Ser	Arg	Pro	Val	Gln 250	Val	Arg	Leu	Pro	Arg 255	Pro
Pro G	ln	Pro	Pro 260	Pro	Thr	Gly	Ala	Ala 265	Ser	Met	Val	Pro	Gly 270	Thr	Ala
Pro P	ro	Ser 275	Gln	Gln	Pro	Gly	Thr 280	Gly	Asp	Arg	Leu	Leu 285	Asn	Leu	Val
Gln G 2	3ly 290	Ala	Tyr	Gln	Ala	Leu 295	Asn	Leu	Thr	Asn	Pro 300	Asp	Lys	Thr	Gln
Glu C 305	Ç ys	Trp	Leu	Суз	Leu 310	Val	Ser	Gly	Pro	Pro 315	Tyr	Tyr	Glu	Gly	Val 320
Ala V	/al	Leu	Gly	Thr 325	Asn	Ser	Asn	His	Thr 330	Ser	Ala	Leu	Lys	Glu 335	Lys
Суз С	Ç ya	Phe	Tyr 340	Ala	Asp	His	Thr	Gly 345	Leu	Val	Arg	Asp	Ser 350	Met	Ala
Lys L	Jeu	Arg 355	Lys	Arg	Leu	Thr	Gln 360	Arg	Gln	Lys	Leu	Phe 365	Glu	Ser	Ser
Gln G 3	31y 870	Trp	Phe	Glu	Gly	Ser 375	Phe	Asn	Arg	Ser	Pro 380	Trp	Phe	Thr	Thr
Leu I 385	le	Ser	Thr	Ile	Met 390	Gly	Leu	Leu	Ile	Ile 395	Leu	Leu	Leu	Leu	Leu 400
Ile L	Jeu	Leu	Leu	Trp 405	Thr	Leu	His	Ser							
<210> <211> <212> <213>	> LE > TY	NGTH	H: 18 PRT	37	end s	Splee	en Fo	ocus-	- Fort	ning	Viru	ıs (:	isola	ate §	502)

<400> SEQUENCE: 49

-cont:	inued
--------	-------

Met Gly Gln Thr Val Thr Thr Pro Leu Ser Leu Thr Leu Glu His Trp Glu Asp Val Gln Arg Thr Ala Ser Asn Gln Ser Val Asp Val Lys Lys Arg Arg Trp Val Thr Phe Cys Ser Ala Glu Trp Pro Thr Phe Gly Val Gly Trp Pro Gln Asp Gly Thr Phe Asn Leu Asp Ile Ile Leu Gln Val Lys Ser Lys Val Phe Ser Pro Gly Pro His Gly His Pro Asp Gln Val Pro Tyr Ile Val Thr Trp Glu Ala Ile Ala Tyr Glu Pro Pro Trp Val Lys Pro Phe Val Ser Pro Lys Leu Ser Pro Ser Pro Thr Ala Pro Ile Leu Pro Ser Gly Pro Ser Thr Gln Pro Pro Pro Arg Ser Ala Leu Tyr Pro Ala Leu Thr Pro Ser Ile Lys Pro Gly Pro Ser Pro Ile Met Ala Asp Leu Ser Leu Thr Phe Ser Gln Lys Thr Leu Arg Arg Thr Glu Asp Arg Asp Arg Pro Pro Leu Thr Glu Met Ala Thr Glu Lys Arg Pro Pro Pro Leu Leu Arg Phe Leu Pro Pro Leu Pro <210> SEQ ID NO 50 <211> LENGTH: 356 <212> TYPE: PRT <213> ORGANISM: Friend Spleen Focus-Forming Virus (strain BB6) <400> SEQUENCE: 50 Met Glu Gly Pro Ala Phe Ser Lys Pro Leu Lys Asp Lys Ile Asn Pro Trp Gly Pro Leu Ile Val Leu Gly Ile Leu Ile Arg Ala Gly Val Ser Val Gln Arg Asp Ser Pro His Gln Val Phe Asn Val Thr Trp Arg Val Thr Asn Leu Met Thr Gly Gln Thr Ala Asn Ala Thr Ser Leu Leu Gly Thr Met Thr Asp Ala Phe Pro Lys Leu Tyr Phe Asp Leu Cys Asp Leu Glu Gly Lys Arg Ala Arg Thr Phe Asp Leu Tyr Val Cys Pro Gly His Thr Val Pro Thr Gly Cys Gly Gly Pro Arg Glu Gly Tyr Cys Gly Lys Trp Gly Cys Glu Thr Thr Gly Gln Ala Tyr Trp Lys Pro Ser Ser Ser Trp Asp Leu Ile Ser Leu Lys Arg Gly Asn Thr Pro Lys Asp Arg Gly Pro Cys Tyr Asp Ser Ser Val Ser Ser Gly Val Gln Gly Ala Thr Pro

	n			

Gly Gly Arg Cys Asn Pro Leu Val Leu Lys Phe Thr Asp Ala Gly Lys Lys Ala Ser Trp Asp Ala Pro Lys Val Trp Gly Leu Arg Leu Tyr Arg Ser Thr Gly Thr Asp Pro Val Thr Arg Phe Ser Leu Thr Arg Gln Val Leu Asn Ile Gly Pro Arg Val Pro Ile Gly Pro Asn Pro Val Ile Ser Asp Gln Leu Pro Pro Ser Arg Pro Ala Gln Ile Met Leu Pro Arg Pro Pro Gln Pro Pro Pro Pro Gly Thr Ala Ser Ile Val Pro Glu Thr Ala Pro Pro Ser Gln Gln Pro Gly Thr Arg Asp Arg Leu Leu Asn Leu Val Asn Lys Ala Tyr Gln Ala Leu Asn Leu Thr Ser Pro Asp Lys Thr Gln Glu Cys Trp Leu Cys Leu Val Ser Arg Pro Pro Tyr Tyr Glu Gly Val Ala Val Leu Gly Thr Asn Ser Asn His Thr Thr Leu Ile Ser Thr Ile Met Gly Leu Leu Ile Ile Leu Leu Leu Leu Leu Ile Leu Leu Trp Thr Leu His Ser <210> SEQ ID NO 51 <211> LENGTH: 409 <212> TYPE: PRT <213> ORGANISM: Friend Spleen Focus-Forming Virus (strain Lilly-Steeves) <400> SEQUENCE: 51 Met Glu Gly Pro Ala Ser Ser Lys Pro Leu Lys Asp Lys Thr Asn Pro Trp Gly Pro Leu Ile Ile Leu Gly Ile Leu Ile Arg Ala Gly Val Ser Val Gln Leu Asp Ser Pro His Gln Val Ser Asn Val Thr Trp Arg Val Thr Asn Leu Met Thr Gly Gln Thr Ala Asn Ala Thr Ser Leu Leu Gly Thr Met Thr Glu Ala Phe Pro Lys Leu Tyr Phe Asp Leu Cys Asp Leu Met Gly Asp Asp Trp Asp Glu Thr Gly Leu Gly Cys Arg Thr Pro Gly Gly Arg Lys Arg Ala Arg Thr Phe Asp Phe Tyr Val Cys Pro Gly His Thr Val Pro Thr Gly Cys Gly Gly Pro Arg Glu Gly Tyr Cys Gly Lys Trp Gly Cys Glu Thr Thr Gly Gln Ala Tyr Trp Lys Pro Ser Ser Ser Trp Asp Leu Ile Ser Leu Lys Arg Gly Asn Thr Pro Lys Asp Gln Gly Pro Cys Tyr Asp Ser Ser Val Ser Ser Gly Val Leu Gly Ala Thr Pro

			n		

GIN	/ Gly	Ara	Cvs	Asn	Pro	Leu	Val	Leu	Glu	Phe	Thr	Asn	Ala	Glv	Ara
			180					185					190		
LYs	3 Ala	Ser 195	Trp	Asp	Ala	Pro	Lуз 200	Val	Trp	Gly	Leu	Arg 205	Leu	Tyr	Arg
Sei	Thr 210	Gly	Thr	Asp	Pro	Val 215	Thr	Arg	Phe	Ser	Leu 220	Thr	Arg	Gln	Val
Lei 225	ı Asp	Ile	Gly	Pro	Arg 230	Val	Pro	Ile	Gly	Ser 235	Asn	Pro	Val	Thr	Thr 240
Asl) Gln	Leu	Pro	Leu 245	Ser	Arg	Pro	Val	Gln 250	Thr	Met	Pro	Pro	Arg 255	Pro
Leu	ı Gln	Pro	Pro 260	Pro	Pro	Gly	Ala	Ala 265	Ser	Ile	Val	Pro	Glu 270	Thr	Ala
Pro) Pro	Pro 275	Gln	Gln	Pro	Gly	Ala 280	Gly	Asp	Arg	Leu	Leu 285	Asn	Leu	Val
Asl	Gly 290	Ala	Tyr	Gln	Ala	Leu 295	Asn	Leu	Thr	Asn	Pro 300	Asp	Lys	Ile	Gln
Glu 309	r CÀa	Trp	Leu	Суз	Leu 310	Val	Ser	Gly	Pro	Pro 315	Tyr	Tyr	Glu	Gly	Val 320
Val	Val	Leu	Gly	Thr 325	Tyr	Phe	Asn	His	Thr 330	Ile	Ala	Leu	Lys	Glu 335	Lys
Cyr	в Сув	Phe	Tyr 340	Ala	Asp	His	Thr	Gly 345	Leu	Val	Arg	Asp	Ser 350	Met	Ala
LY	3 Leu	Arg 355	Lys	Arg	Leu	Thr	Gln 360	Arg	Gln	Lys	Leu	Phe 365	Glu	Ser	Ser
Arç	g Gly 370	Trp	Phe	Glu	Gly	Ser 375	Ser	Asn	Arg	Ser	Pro 380	Trp	Phe	Thr	Thr
Lei 385	ı Ile	Ser	Ala	Ile	Met 390	Gly	Ser	Leu	Ile	Ile 395	Leu	Leu	Leu	Leu	Leu 400
Ile	e Leu	Leu	Ile	Trp 405	Thr	Leu	Tyr	Ser							
-21	L0> SI			52											
<21	1> L1 1> L1 12> T1	ENGTH	H: 40												
	3> 01		DB.L.												
< 4(RGAN		Raus	schei	s spl	Leen	Focu	ıs-Fo	ormir	ng Vi	irus			
	00> SI		ISM:		chei	spl	leen	Focı	ıs-Fo	ormir	ng Vi	irus			
	00> S] : Glu	equei	ISM: NCE:	52									Ile	Asn 15	Pro
Met 1		equei Gly	ISM: NCE: Pro	52 Ala 5	Phe	Ser	Lys	Pro	Leu 10	Гла	Asp	Гла		15	
Met 1 Tr <u>i</u>	: Glu	EQUEI Gly Pro	ISM: NCE: Pro Leu 20	52 Ala 5 Ile	Phe Ile	Ser Leu	Lys Gly	Pro Ile 25	Leu 10 Leu	Lys Ile	Asp Arg	Lys Ala	Gly 30	15 Val	Ser
Met 1 Tr <u>p</u> Val	: Glu o Gly	EQUE Gly Pro His 35	ISM: NCE: Pro Leu 20 Asp	52 Ala 5 Ile Ser	Phe Ile Pro	Ser Leu His	Lys Gly Gln 40	Pro Ile 25 Val	Leu 10 Leu Phe	Lys Ile Asn	Asp Arg Val	Lys Ala Thr 45	Gly 30 Trp	15 Val Arg	Ser Val
Met 1 Tr <u>p</u> Val Thi	Glu Gly Gln Asn	EQUEN Gly Pro His 35 Leu	ISM: NCE: Pro Leu 20 Asp Met	52 Ala 5 Ile Ser Thr	Phe Ile Pro Gly	Ser Leu His Gln 55	Lys Gly Gln 40 Thr	Pro Ile 25 Val Ala	Leu 10 Leu Phe Asn	Lys Ile Asn Ala	Asp Arg Val Thr 60	Lys Ala Thr 45 Ser	Gly 30 Trp Leu	15 Val Arg Leu	Ser Val Gly
Met 1 Try Val Thu 65	: Glu > Gly L Gln : Asn 50	EQUE Gly Pro His 35 Leu Thr	ISM: NCE: Pro Leu 20 Asp Met Asp	52 Ala 5 Ile Ser Thr Ala	Phe Ile Pro Gly Phe 70	Ser Leu His Gln 55 Pro	Lys Gly Gln 40 Thr Lys	Pro Ile 25 Val Ala Leu	Leu 10 Leu Phe Asn Tyr	Lys Ile Asn Ala Phe 75	Asp Arg Val Thr 60 Asp	Lys Ala Thr 45 Ser Leu	Gly 30 Trp Leu Cys	15 Val Arg Leu Asp	Ser Val Gly Leu 80
Met 1 Try Val Thu 65 Ile	: Glu o Gly L Gln : Asn 50 : Met	EQUEN Gly Pro His 35 Leu Thr Asp	ISM: Pro Leu 20 Asp Met Asp Asp	52 Ala 5 Ile Ser Thr Ala Trp 85	Phe Ile Pro Gly Phe 70 Asp	Ser Leu His Gln 55 Pro Glu	Lys Gly Gln 40 Thr Lys Thr	Pro Ile 25 Val Ala Leu Gly	Leu 10 Leu Phe Asn Tyr Leu 90	Lys Ile Asn Ala Phe 75 Gly	Asp Arg Val Thr 60 Asp Cys	Lys Ala Thr 45 Ser Leu Arg	Gly 30 Trp Leu Cys Thr	15 Val Arg Leu Asp Pro 95	Ser Val Gly Leu 80 Gly
Met 1 Try Val Thu 65 Ile Gly	Glu Gly Gly Gln So Met So So So So So So So So So So So So So	EQUE Gly Pro His 35 Leu Thr Asp Lys	ISM: NCE: Pro Leu 20 Asp Met Asp Asp Asp 100	52 Ala 5 Ile Ser Thr Ala Trp 85 Ala	Phe Ile Pro Gly Phe 70 Asp Arg	Ser Leu His Gln 55 Pro Glu Thr	Lys Gly Gln 40 Thr Lys Thr Phe	Pro Ile 25 Val Ala Leu Gly Asp 105	Leu 10 Leu Phe Asn Tyr Leu 90 Phe	Lys Ile Asn Ala Phe 75 Gly Tyr	Asp Arg Val Thr 60 Asp Cys Val	Lys Ala Thr 45 Ser Leu Arg Cys	Gly 30 Trp Leu Cys Thr Pro 110	15 Val Arg Leu Asp Pro 95 Gly	Ser Val Gly Leu 80 Gly His

-	С	on	t	1	n	u	е	d

Trp Gly Cys Glu 130	Thr Thr Gly 135	_	Trp Lys Pro 140	Ser Ser Ser
Trp Asp Leu Ile 145				Asn Gln Gly 160
Pro Cys Tyr Asp		Val Ser Ser 170	Asp Ile Lys	
Pro Gly Gly Arg 180	Cys Asn Pro	Leu Val Leu 185	Glu Phe Thr	Asp Ala Gly 190
Lys Lys Ala Ser 195	Trp Asp Gly	Pro Lys Val 200	Trp Gly Leu 205	Arg Leu Tyr
Arg Ser Thr Gly 210	Thr Asp Pro 215		Phe Ser Leu 220	Thr Arg Gln
Val Leu Asn Ile 225	Gly Pro Arg 230	Val Pro Ile	Gly Pro Asn 235	Pro Val Ile 240
Thr Asp Gln Leu	Pro Pro Ser 245	Arg Pro Val 250		Leu Pro Arg 255
Pro Pro Gln Pro 260	Pro Pro Pro	Gly Ala Ala 265	Ser Ile Val	Pro Glu Thr 270
Ala Pro Pro Ser 275	Gln Gln Pro	Gly Thr Gly 280	Asp Arg Leu 285	Leu Asn Leu
Val Asp Gly Ala 290	Tyr Gln Ala 295		Thr Asn Pro 300	Asp Lys Thr
Gln Asp Cys Trp 305	Leu Cys Leu 310	Val Ser Gly	Pro Pro Tyr 315	Tyr Glu Gly 320
Val Ala Val Leu	Gly Thr Tyr 325	Tyr Asn His 330		Leu Lys Glu 335
Glu Cys Cys Phe 340	Tyr Ala Asp	His Thr Gly 345	Leu Val Arg	Asp Ser Met 350
Ala Lys Leu Arg 355	Glu Arg Leu	Thr Gln Arg 360	Gln Lys Leu 365	Phe Glu Ser
Ser Gln Gly Trp 370	Phe Glu Glu 375	Leu Phe Asn	Arg Ser Thr 380	Trp Phe Thr
Thr Leu Ile Phe 385	Thr Ile Ile 390	Gly Pro Leu	Ile Ile Leu 395	Leu Leu Ile 400
Leu Leu Phe Trp	Thr Leu His 405	Ser		
<210> SEQ ID NO <211> LENGTH: 1				
<212> TYPE: PRT <213> ORGANISM:	Rauscher Spi	leen Focus-F	orming Virus	
<400> SEQUENCE:	53			
Ala His Leu His 1	Ala Leu Tyr 5	Leu Val His 10	His Glu Val	Trp Arg Pro 15
Leu Ala Ala Ala 20	Tyr Gln His	Gln Leu Asp 25	Arg Pro Ile	Val Pro His 30
Pro Phe Arg Leu 35	Gly Asp Thr	Val Trp Val 40	Arg Arg His 45	Gln Thr Asn
Asn Leu Gln Pro 50	Arg Trp Lys 55	Ala Pro Tyr	Thr Val Leu 60	Leu Thr Thr
Pro Thr Ala Leu 65	Lys Val Asp 70	Gly Ile Ala	Ala Trp Ile 75	His Ala Ala 80

-continued

His Val Lys Ala Ala Thr Thr Pro Pro Ala Gly Thr Ala Ser Gly Pro Thr Trp Lys Val Gln Arg Ser Gln Asn Pro Leu Lys Ile Arg Leu Thr Arg Gly Ala Pro <210> SEQ ID NO 54 <211> LENGTH: 27 <212> TYPE: PRT <213> ORGANISM: Rauscher Spleen Focus-Forming Virus <400> SEOUENCE: 54 Tyr Asn His Thr Ser Ala Leu Lys Arg Glu Cys Cys Phe Tyr Ala Asp His Thr Gly Leu Val Arg Asp Ser Met Ala Lys <210> SEQ ID NO 55 <211> LENGTH: 408 <212> TYPE: PRT <213> ORGANISM: Rauscher Spleen Focus-Forming Virus <400> SEQUENCE: 55 Met Glu Gly Pro Ala Phe Ser Lys Pro Leu Lys Asp Lys Ile Asn Pro Trp Gly Pro Leu Ile Ile Leu Gly Ile Leu Ile Arg Ala Gly Val Ser Val Gln His Asp Ser Pro His Gln Val Phe Asn Val Thr Trp Arg Val Thr Asn Leu Met Thr Gly Gln Thr Ala Asn Ala Thr Ser Leu Leu Gly Thr Met Thr Asp Ala Phe Pro Lys Leu Tyr Phe Asp Leu Cys Asp Leu Ile Gly Asp Asp Trp Asp Glu Thr Gly Leu Gly Cys Arg Thr Pro Gly Gly Arg Lys Arg Ala Arg Thr Phe Asp Phe Tyr Val Cys Pro Gly His Thr Val Pro Thr Gly Cys Gly Gly Pro Arg Glu Gly Tyr Cys Gly Lys Trp Gly Cys Glu Thr Thr Gly Gln Ala Tyr Trp Lys Pro Ser Ser Ser Trp Asp Leu Ile Ser Leu Lys Arg Gly Asn Thr Pro Arg Asn Gln Gly Pro Cys Tyr Asp Ser Ser Ala Val Ser Ser Asp Ile Lys Gly Ala Thr Pro Gly Gly Arg Cys Asn Pro Leu Val Leu Glu Phe Thr Asp Ala Gly Lys Lys Ala Ser Trp Asp Gly Pro Lys Val Trp Gly Leu Arg Leu Tyr Arg Ser Thr Gly Thr Asp Pro Val Thr Arg Phe Ser Leu Thr Arg Gln Val Leu Asn Ile Gly Pro Arg Val Pro Ile Gly Pro Asn Pro Val Ile

-	С	01	nt	. 1	n	u	е	a

													τını						
Thr	Asp	Gln	Leu	Pro 245	Pro	Ser	Arg	Pro	Val 250	Gln	Ile	Met	Leu	Pro 255	Arg				
Pro	Pro	Gln	Pro 260	Pro	Pro	Pro	Gly	Ala 265	Ala	Ser	Ile	Val	Pro 270	Glu	Thr				
Ala	Pro	Pro 275	Ser	Gln	Gln	Pro	Gly 280	Thr	Gly	Asp	Arg	Leu 285	Leu	Asn	Leu				
Val	Asp 290	Gly	Ala	Tyr	Gln	Ala 295	Leu	Asn	Leu	Thr	Asn 300	Pro	Asp	Lys	Thr				
Gln 305	Asp	Суа	Trp	Leu	Cys 310	Leu	Val	Ser	Gly	Pro 315	Pro	Tyr	Tyr	Glu	Gly 320				
Val	Ala	Val	Leu	Gly 325	Thr	Tyr	Tyr	Asn	His 330	Thr	Ser	Ala	Leu	Lys 335	Glu				
Glu	Cya	Cya	Phe 340	Tyr	Ala	Asp	His	Thr 345	Gly	Leu	Val	Arg	Asp 350	Ser	Met				
Ala	Lys	Leu 355	Arg	Glu	Arg	Leu	Thr 360	Gln	Arg	Gln	LYa	Leu 365	Phe	Glu	Ser				
Ser	Gln 370	Gly	Trp	Phe	Glu	Glu 375	Leu	Phe	Asn	Arg	Ser 380	Thr	Trp	Phe	Thr				
Thr 385	Leu	Ile	Phe	Thr	Ile 390	Ile	Gly	Pro	Leu	Ile 395	Ile	Leu	Leu	Leu	Ile 400				
Leu	Leu	Phe	Trp	Thr 405	Leu	His	Ser												
<210 <211 <212 <212)> SI L> LI 2> TY 3> OF	EQ II ENGTH (PE :) NO H: 1: PRT ISM:	405 56 16 Rau:			Ser leen	Foci	18-F¢	ormiı	ng V:	irus							
<210 <211 <211 <211 <211	D> SI L> LI 2> TY 3> OF D> SI	EQ II ENGTH (PE : RGAN] EQUEN) NO H: 1: PRT ISM: NCE:	405 56 16 Rau: 56	schei	r Spi					-		Trp	Arg 15	Pro				
<210 <211 <211 <211 <400 Ala 1	D> SI L> LH 2> TY 3> OF D> SI His	EQ II ENGTH (PE : RGANI EQUEN Leu	D NO H: 1: PRT ISM: NCE: His	405 56 16 Rau: 56 Ala 5	schei Leu	r Spi Tyr	leen	Val	His 10	His	Glu	Val	-	15					
<210 <211 <211 <211 <400 Ala 1 Leu	D> SI L> LH 2> TY 3> OF D> SI His Ala	EQ II ENGTH (PE: RGANI EQUEN Leu Ala	D NO H: 1: PRT ISM: NCE: His Ala 20	405 56 16 Rau: 56 Ala 5 Tyr	Scher Leu Gln	r Sp: Tyr His	leen Leu	Val Leu 25	His 10 Asp	His Arg	Glu Pro	Val Ile	Val 30	15 Pro	His				
<21(<21: <212 <211 <400 Ala 1 Leu Pro)> SH L> LH 2> TY 3> OF His Ala Phe	EQ II ENGTH (PE: CQUEN Leu Ala Arg 35	D NO H: 11 PRT ISM: NCE: His Ala 20 Leu	405 56 16 8 au: 56 Ala 5 Tyr Gly	Leu Gln Asp	r Spi Tyr His Thr	leen Leu Gln Val	Val Leu 25 Trp	His 10 Asp Val	His Arg Arg	Glu Pro Arg	Val Ile His 45	Val 30 Gln	15 Pro Thr	His Asn				
<210 <212 <212 <400 Ala 1 Leu Pro Asn)> SI 1> LH 2> TY 3> OF His Ala Phe Leu 50	EQ II ENGTH (PE: CGAN) EQUEN Leu Ala Arg 35 Gln	D NO H: 1: PRT ISM: NCE: His Ala 20 Leu Pro Leu	405 56 Rau: 56 Ala 5 Tyr Gly Arg	scher Leu Gln Asp Trp Val	r Sp: Tyr His Thr Lys 55 Asp	leen Leu Gln Val 40	Val Leu 25 Trp Pro Ile	His 10 Asp Val Tyr Ala	His Arg Arg Thr Ala	Glu Pro Arg Val 60 Trp	Val Ile His 45 Leu	Val 30 Gln Leu	15 Pro Thr Thr	His Asn Thr				
<211 <211 <212 <211 <400 Ala 1 Leu Pro Asn Pro 65	0)> SF 1> LH 2> TY 3> OF His Ala Phe Leu 50 Thr	GQ III ENGTH (PE: RGANJ GQUEN Leu Ala Arg 35 Gln Ala	D NO H: 11 PRT ISM: ISM: His Ala 20 Leu Pro Leu	405 56 Raun 56 Ala 5 Gly Arg Lys	Leu Gln Asp Trp Val 70	r Spi Tyr His Thr Lys 55 Asp	Leu Gln Val 40 Ala Gly	Val Leu 25 Trp Pro Ile	His 10 Asp Val Tyr Ala	His Arg Arg Thr Ala 75	Glu Pro Arg Val 60 Trp	Val Ile His 45 Leu Ile	Val 30 Gln Leu His	15 Pro Thr Thr Ala	His Asn Thr Ala 80				
<211 <211 <212 <211 1 Leu Pro Asn Pro 65 His)> SI L> LH L> TY 3> OF His Ala Phe Leu 50 Thr Val	EQ II ENGTH (PE: CQUEN Ala Arg 35 Gln Ala Lys	D NO H: 11 PRT ISM: ISM: His Ala 20 Leu Pro Leu Ala	405 56 Rau: 56 Ala 57 Gly Arg Lys Ala 85	Leu Gln Asp Trp Val 70 Thr	r Sp Tyr His Thr Lys 55 Asp Thr	Leu Gln Val 40 Ala Gly	Val Leu 25 Trp Pro Ile Pro	His 10 Asp Val Tyr Ala 90	His Arg Arg Thr Ala 75 Gly	Glu Pro Arg Val 60 Trp Thr	Val His 45 Leu Ile Ala	Val 30 Gln Leu His Ser	15 Pro Thr Thr Ala Gly 95	His Asn Thr Ala 80 Pro				

What is claimed is:

1. A method of diagnosing a neuroimmune disease or a retroviral infection in a subject, the method comprising:

comparing a cytokine expression signature of a subject with a control, the cytokine expression signature comprising an expression level of at least three cytokines or chemokines selected from the group consisting of IL-8, IL-13, MIP-1 β , TNF- α , MCP-1, IL-7, IFN- α , IL-6, MIP-1 α , and GM-CSF; diagnosing the subject with a neuroimmune disease or a retroviral infection where the cytokine expression signature of the subject comprises at least one of

- (i) IL-8 expression of at least about 10-fold higher in the subject, as compared to the control;
- (ii) IL-13 expression of at least about 5-fold lower in the subject, as compared to the control;
- (iii) MIP-1β expression of at least about 10-fold higher in the subject, as compared to the control;

- (iv) TNF- α expression of at least about 10- or more-fold higher in the subject, as compared to the control;
- (v) MCP-1 expression of at least about 1.1-fold higher in the subject, as compared to the control;
- (vi) IL-7 expression of at least about 5-fold lower in the subject, as compared to the control;
- (vii) IFN-α expression of at least about 2-fold lower in the subject, as compared to the control;
- (viii) IL-6 expression of at least about 10- or more-fold higher in the subject, as compared to the control;
- (ix) MIP-1 α expression of at least about 2-fold higher in the subject, as compared to the control; and
- (x) GM-CSF expression of at least about 0.7-fold lower in the subject, as compared to the control.

2. The method of claim 1 for diagnosing a retroviral infection comprising diagnosing the subject with a retroviral infection where the cytokine expression signature of the subject comprises at least one of (i)-(x).

3. The method of claim 1 for diagnosing an neuroimmune disease comprising diagnosing the subject with an neuroimmune disease where the cytokine expression signature of the subject comprises at least one of (i)-(x).

4. The method of claim 1, comprising determining a cytokine expression signature of a subject.

5. A method of claim **1**, wherein the neuroimmune disease is selected from the group consisting of chronic fatigue syndrome, fibromyalgia, myalgic encephalitis, atypical multiple sclerosis, non-epileptic seizures, Gulf War Syndrome and autism.

6. The method of claim 1, wherein the cytokine expression signature comprises an expression level of at least three, at least four, at least five, at least six, at least seven, at least eight, at least nine, or all of IL-8, IL-13, MIP-1 β , TNF- α , MCP-1, IL-7, IFN- α , IL-6, MIP-1 α , and GM-CSF.

7. The method of claim 1, comprising administering an effective amount of an agent for treatment of a retroviral infection or a neuroimmune disease to a subject diagnosed with a retroviral infection or a neuroimmune disease.

- 8. The method of claim 1, comprising:
- adding a weighted value for a cytokine or chemokine (a) present in the cytokine signature and (b) having an expression level of at least one of (i), (ii), (iii), (iv), (v), (vi), (vii), (ix), or (x), to arrive at a sum of weighted values; and
- diagnosing the subject with a neuroimmune disease or a retroviral infection where the sum of weighted values is about 190 or greater, about 200 or greater, about 210 or greater, about 220 or greater, about 230 or greater, about 240 or greater, or about 250;

wherein the weighted value is selected from the group consisting of IL-8 is 100, IL-13 is 90, MIP-1 β is 80, TNF- α is 70, MCP-1 is 60, IL-7 is 50, IFN- α is 40, IL-6 is 30, MIP-1 α is 20, and GM-CSF is 10.

9. The method of claim 8, comprising diagnosing the subject with a neuroimmune disease or a retroviral infection where the sum of weighted values is about 210 or greater.

10. The method of claim **1**, wherein the retroviral infection comprises an XMRV infection.

11. The method of claim 1, wherein the cytokine expression signature is determined from a culture of plasmacytoid dentritic cells (pDCs) isolated from the subject.

12. The method of claim **1**, comprising determining a cytokine expression signature from a biological sample of the subject.

13. The method of claim **12**, wherein the biological sample comprises a blood sample, a serum sample, a plasma sample, a cerebrospinal fluid sample, or a solid tissue sample.

14. The method of claim 12, wherein the biological sample comprises a serum sample or a plasma sample.

15. A device for detecting a cytokine expression signature of a subject comprising an array, wherein the array detects the presence or expression level at least three cytokines or chemokines selected from the group consisting of IL-8, IL-13, MIP-1 β , TNF- α , MCP-1, IL-7, IFN- α , IL-6, MIP-1 α , and GM-CSF.

16. The device of claim **15**, wherein the array detects expression level of at least three of:

- (i) IL-8 expression of at least about 10-fold higher in the subject, as compared to the control;
- (ii) IL-13 expression of at least about 5-fold lower in the subject, as compared to the control;
- (iii) MIP-1β expression of at least about 10-fold higher in the subject, as compared to the control;
- (iv) TNF-α expression of at least about 10- or more-fold higher in the subject, as compared to the control;
- (v) MCP-1 expression of at least about 1.1-fold higher in the subject, as compared to the control;
- (vi) IL-7 expression of at least about 5-fold lower in the subject, as compared to the control;
- (vii) IFN-α expression of at least about 2-fold lower in the subject, as compared to the control;
- (viii) IL-6 expression of at least about 10- or more-fold higher in the subject, as compared to the control;
- (ix) MIP-1 α expression of at least about 2-fold higher in the subject, as compared to the control; and
- (x) GM-CSF expression of at least about 0.7-fold lower in the subject, as compared to the control.

* * * * *