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Rags make paper

Paper makes money

Money makes banks

Banks make loans

Loans make beggars

Beggars make rags

Author unknown, circa Eighteenth century
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Abstract

The origin of this thesis lay in the production of defects associated with manufacturing LPM

impregnated panels. The causes of these defects were unknown as was their exact nature. In

identifying the actual nature and cause of these defects, it is necessary to research the fun-

damental mechanisms of fluid flow into paper as well as identifying how certain structural

characteristics of paper, as well as characteristics of the penetrating liquids, affected fluid flow

within paper.

To understand the affect of different liquids on impregnation into porous media, simple

isotropic micromodels are used to quantify the effects of surface tension and contact angle on

the rate of fluid flow. The use of the Lucas-Washburn equation is questioned.

Using cryo-SEM and a newly developed technique of cryo 2-photon confocal laser scan-

ning microscopy, the actual mechanisms of fluid flow in unsized paper are identified. These are

due primarily to the advance of the wetting fluid in the form of bulk liquid films along channels

formed by fibre overlaps. This is in contrast to the common description of fluid penetration,

where the primary flow mechanism is based on the bulk filling of pores. These channels,

formed by fibre overlaps are shown to form a highly interconnected dense network of flow

paths which efficiently transport the wetting fluid. The flow rates associated with penetration

along a number of potential flow paths within the fibre web are calculated. The experimentally

observed penetration rate is consistent with a film flow process through inter-fibre channels

which is significantly slower than a penetration process dominated by meniscus flow through

pores. In addition the mechanism of fluid flow in internally sized papers is presented.

The effects of different fillers on paper structure, flow path morphologies and imbibition

rate are also quantified. Laboratory papers with different types and amounts of filler are studied

using SEM and cryo-SEM and a newly developed technique of high speed video microscopy

to quantify such effects.
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Chapter 1

Introduction

This chapter introduces the thesis. The background to the research is described including its

aims, practical applications, scope, methods of study as well as the structure of the thesis. An

overview of the industrial process of resin impregnation of decor paper is presented here and

the key steps in the manufacture of low pressure melamine panels are described.

From where it all comes; transverse section of softwood tracheids from Wollemi Pine, Wollemia

nobilis with alternate biseriate pitting. Photo courtesy Dr Roger Heady, Electron Microscope Unit,

ANU.
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1.1 Introduction to the thesis

Decorative melamine panels are ubiquitous in the modern interior. The durability and chem-

ical resistance of these panels is due to a 100-200µm layer of resin impregnated paper. The

surprising lack of information and depth of understanding of the production of this resin im-

pregnated paper has led to the body of work which constitutes this thesis. From the requirement

to better understand this process arose a broader need to understand the physics behind liquid

penetration in paper.

The use of amino resin impregnated and coated decor papers laminated onto wood com-

posite panels is widespread throughout the world in furniture, cabinet-making, partitioning

of offices and for flooring. The first reference to the process of manufacturing low pressure

melamine (LPM) laminates was by Seidl (1949) who described overlays for laminating veneer

and plywood including descriptions of the resins used. Decorative overlays were described as

being made from special papers of high resin content that are moulded into a dense infusible

plastic, typical of the “familiar plastic table top”. The purpose of these overlays was to produce

a highly serviceable and appealing surface of attractive color or design.

Enzenberger (1961, 1968) was the first to describe the process of impregnation of decor pa-

pers, and lamination using melamine formaldehyde (MF) resins. Adam and Kamutski (1993)

referred to the original patents for the production of melamine resins by Cassella, Ciba and

Henkel in 1935 and described in detail the attributes of MF resins in their cross-linked state

which make them suitable for LPM laminates. A good description of the manufacture and use

of UF and MF resins is given in Pizzi (1983a,b) and Jalbert (1991).

The origin of this thesis lay in the author’s industrial experience in managing a commer-

cial LPM production facility and specifically the problem that was frequently encountered, the

presence of numerous surface defects in MF coatings. This problem is commonplace through-

out the world in factories making the product. The causes and nature of these surface defects

in LPM laminates which gives them a mottled, milky appearance with poor stain and abrasion

resistance were unknown.

Little has been published on what factors control the “treatability” of decor paper. Suppli-

ers of resins, decor papers and the treating machines are unable to provide useful insights into

the physics of saturation at both a macro and microscopic level. Many raw papers, however,

perform differently and take up different amounts of resin during saturation. Some papers are

anecdotally “difficult to saturate” and tend to produce more rejects during laminating in short

cycle LPM presses.

There is a paucity of information in the public arena about the process of LPM resin im-

pregnation and most of the literature available is provided by suppliers of paper, resins or

treaters, and cannot be regarded as impartial.
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1.2 Brief overview of LPM manufacturing process

The production of LPM coated panel board occurs in three stages, firstly the manufacture of

the substrate, either particleboard or medium density fibreboard (MDF). This is followed by

treatment of the decor paper with resins (impregnation and coating) and finally pressing of the

treated paper onto the substrate (laminating). This thesis commences by investigating problems

resulting from fluid imbibition in the first stage of the treatment of the decor papers (described

below).

1.2.1 First stage of treating; impregnation of decor paper with urea formalde-
hyde resin

Initially decor paper is impregnated with a urea formaldehyde (UF) resin by passing the paper

under very slight tension over the top of a pre-wetting roller, the bottom third of which is in

a bath containing UF resin (Figures 1.1 & 1.2). The film of resin picked up on the roller is

transferred onto the bottom side of the paper, and the resin penetrates into the paper. The paper

then travels over a series of rollers to give the resin time to migrate from one side to the other

and displaces air from the paper. The paper is then completely immersed in a resin bath to wet

the top-side of the paper (Figure 1.1) and it is then dried to a specific moisture content in a

series of ovens. If the paper is dipped into the resin bath too soon after the pre-wetting rollers,

a layer of air could be trapped in the core thereby preventing the paper from being adequately

saturated with the UF resin.

This thesis relates to the part of the process where the paper comes into contact with the

pre-wetting roller to just before it is dipped into the resin bath after the first sky roller and, in

fact, probably only to the first metre of travel of the paper after contact with the pre-wetting

roller. This constitutes about 0.5 s or a fraction of a percent of the whole process time, yet it is

during this stage that the success or failure of the whole process is ordained. Surprisingly this

critical part of the process has been and remains the least understood part of the whole process

of manufacturing LPM panels.

Figure 1.1: Schematic representation of the UF resin impregnation stage of a paper treater.
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1.2.2 Second stage of treating; coating with melamine formaldehyde resins

The next stage of the treatment process involves coating the saturated and dried UF resin im-

pregnated paper with a melamine formaldehyde (MF) resin. This is usually done by applying

the resin onto the paper using gravure rollers. A gravure roller contains thousands of small

trapezoidal cells that fill when the roller passes through a resin bath. The excess resin is scraped

off the roller so that the desired quantity of resin remains in the cells of the roller. As the paper

travels over the other side of the roller, the resin is transferred to the paper. The quantity of

resin transferred is very accurately controlled by the differential between the circumferential

speed of the gravure roller and the line speed of the paper. The resin is then smoothed over

the paper by a series of wire and smoothing rollers. The paper is finally dried in a series of

accurately controlled convection ovens. The treated paper is then ready for laminating onto the

panel substrate to produce the final product.

1.2.3 Consequences of inadequate penetration of resin at first stage

The aim of the first stage of the treatment process is to fill the void spaces (pores) of the paper

with relatively inexpensive UF resin solids so that a minimal amount of the more expensive

MF resin is used in the second stage to coat the paper. The MF resin is substantially more

durable than UF resin and must contiguously cover the surface (Adam and Kamutski, 1993).

Melamine impregnated paper is ten times more impermeable than paper treated with UF resin

alone (Ebrahimzadeh, 1998). However, if MF resin flows into voids in the paper remaining

after UF resin treatment, then insufficient MF resin may remain on the surface of the paper to

effectively coat it. Defects in LPM may occur as a result of this mechanism because the MF

resin used to treat decor paper is formulated to flow just prior to full cure in order to achieve the

desired textured finish on the surface of the panel. To overcome this problem it has often been

necessary to add excess MF resin to the paper to ensure there will be enough on the surface

to provide a good protective coating. This is expensive and can lead to longer pressing cycles

with consequential lost production and possible over-cure of the coating resin.

The resulting economic loss from the production of rejects or increased use of MF resin is

considerablei.e., A$40 per board, annualised at over A$500,000 for an average sized factory

alone. This estimate does not include the cost of lost production. The industry in Australia

produces approximately 41 million square metres per annum of saleable product and a con-

servative estimate of the costs of defect production in Australia alone would be close to A$5

million, assuming a conservative defect rate of about 1%. Plants that both treat and laminate

worldwide number in the hundreds and therefore the economic losses caused by this problem

probably approaches hundreds of millions of dollars.
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Figure 1.2: Images of pre-wetting roller, closeup on the left and showing the positions of the sky rollers
on the right. Note that only the bottom third of the pre-wetting roller is in the resin bath. The roller
rotates against the travel of the paper enabling a film of resin on the roller to come into contact with the
paper. Arrows denote the direction of movement of the paper and the prewetting roller.

1.3 Aim and purpose of research

It is proposed that excessive consumption of MF resin during the process of manufacturing

laminated paper overlays, and defects in the overlay are caused by inadequate filling of paper

voids with UF resin during the first stage of the treatment process. There is a large gulf be-

tween industry practice and our current understanding of the saturation process of decor paper.

After reviewing the field it was clear that substantial progress in this area could only occur via

a greater understanding of fluid flow in paper over short time spans. Thus the thesis focusses

on the kinetics of capillary penetration of wetting liquids into porous media, after preliminary

research (in Chapters 3 & 4) which examines the inter-relationships between resin saturation

and paper properties and the generation of defects in laminated paper overlays. An under-

standing of fluid penetration processes is a prerequisite to obtaining a better understanding of

all product-converting processes which involve contact between paper and fluids. In order to

gain an understanding of fluid penetration into paper it is necessary to realistically characterize

paper pore morphology in 3D within the fibre web, and obtain a fundamental understanding of

the physical processes which dictate fluid movement and fluid-solid interactions during pene-

tration.
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1.4 Structure of the thesis

In addition to this chapter, the thesis is comprised of 8 chapters as follows;

Chapter 2 is primarily a review of the literature of treatment of decor papers, the techniques

used to study fluid flow in paper and previous research into fluid flow in paper. Most previous

research on the latter is based on the Lucas-Washburn theory (Lucas, 1918; Washburn, 1921),

of the penetration of liquids into porous materials where the rate of penetration is a function

of the balance between surface tension forces and viscous drag. Interfacial contact angle is

assumed to be constant and the pore morphology is reduced to an equivalent cylindrical pore.

It has long been recognized that Lucas-Washburn over simplifies the morphology of paper,

which, in reality, is a geometrically complex material made up of a cellulose fiber matrix in

many cases modified with a consolidated mass of pigment and binder. A critique of the Lucas-

Washburn theory also forms part of Chapter 2.

Chapter 3 discusses the experimental identification of the causes and nature of the defects

in pressed LPM is examined experimentally. The effect of level of UF resin saturation and

paper type on defects in the MF coating is examined. Scanning electron microscopy (SEM)1

was used to examine the morphology of defects and Raman microscopy was used to study the

distribution of MF resin in the paper.

Chapter 4 examines the physical characteristics and fluid imbibition behaviour (simulating

conditions at the pre-wetting roller) of nine different decor papers. The level of defects in the

pressed papers (reported earlier in Chapter 3) are related to these characteristics. Relationships

between imbibition and physical characteristics are also established.

Chapter 5 reports on studies of the effects of liquid contact angle and surface tension on

imbibition into simple model systems thus removing the confounding effect of the structural

complexity of real paper. Mechanisms of fluid transport are presented.

Chapter 6 reports on attempts to identify the actual mechanisms of fluid flow in both un-

sized and sized papers using cryo-SEM and a newly developed technique involving cryo 2-

photon confocal laser scanning microscopy (CLSM).

Chapter 7 reports on extensions of the studies covered in Chapters 3, 4, 5 & 6 into more

complex paper systems. This involves papers with different filler types and amounts, two dif-

ferent fluid types, and modifications of the surface energy of the papers using plasma treatment

to remove any chemical heterogeneity on the paper surface. This enables the determination of

the impact of fillers on the morphology of pores within the paper structure and on its effects on

fluid imbibition.

Chapter 8 discusses extensions of the work presented in Chapter 7 enabling identification

of the causes of the paper effects on saturation demonstrated with the decor papers in Chapters

1The term ’SEM’ is used to indicate both the process (i.e.scanning electron microscopy) and the equipment
(i.e. scanning electron microscope). This is in accordance with common practice in the field of electron microscopy
and is used throughout this thesis accordingly.
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3 & 4.

Chapter 9 concludes the thesis by discussing the main findings of the thesis in relation to

the aims and introduces areas of future research.

Each chapter is preceded by a concise introductory paragraph. Where new experimental

techniques have been developed, details are included as Appendices. To show fluid flow in pa-

per there are many SEM and 2-photon CSLM images of (cryo) fluid flow. A pair of anaglyphic

3D glasses are included for viewing the stereo CLSM images in Chapter 6. Also attached in

the back of the thesis is a CD containing movies of the sequences of images obtained using

2-photon CLSM, a wetting sequence obtained using high speed video microscopy from Chap-

ter 7 as well as a reconstructed micro-computed tomography data-set referred to in Chapter

9. Published and presented papers arising from the thesis are included as Appendices to the

thesis.



Chapter 2

Literature review

This chapter reviews the literature on the treatment of decor papers, the experimental methods

used to study fluid flow in paper and previous research on fluid flow in paper. Its purpose is

to allow the reader to understand material presented in subsequent experimental chapters. It is

not intended to be a comprehensive review of fluid-paper interactions.

An image of copy paper using a field emission scanning electron microscope (FESEM)
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2.1 Previous research into resin impregnation of decor papers

Arledter (1957) examined the factors affecting the penetration of paper by oil and resin. He

concluded that any penetration test method based on perception of the human eye, or any

method which did not use test solutions with precisely controlled temperatures and viscosities

could not yield reliable test data, particularly if the same paper was compared at different

times and by different observers. Arledter (1957) found that the time of resin penetration in

different papers varied between 0.5 to 1000 seconds and judgement as to when the end point of

penetration was reached varied for different observers by a wide margin. He stated that resin

solvents should be removable from the impregnated paper structure without excessive resin

migration and without leaving closed air voids. The purpose of Arledter’s insightful paper

was to firstly determine the best methods or instruments to determine the resin penetration

rate of absorbent papers in general, secondly to investigate what test solutions or test methods

were most suitable for measuring treating performance of absorbent papers and finally to inter-

relate paper structure factors, resin penetration rate and resin pick up. Even today these areas

are worthy of study as our understanding of the absorption of liquids by paper is incomplete.

Cussons (1997) in an unpublished report has provided the best outline of what happens

during the resin impregnation process of decor paper in a commercial treater. He discussed

various paper and liquid effects on treating. He stated that most decor papers had pore size

distributions of 2-50µm and that flow of resin mainly occurred in the region> 10µm. Cussons

(1997) stated that only 50% of the total void volume in decor paper is filled with resin using

standard treatment methods and pore size distribution is the most important factor affecting

resin impregnation.

Schnieder (1997a) divided resin impregnation of decor papers into four stages:

1. Phase 1-10 milliseconds when surface pores fill.

2. Phase 2; 10-80 ms, fiber walls swell after first contact with resin i.e. they absorb water.

The resin solution then penetrates the pores very quickly.

3. Phase 3; 80-400 ms, absorption slows down. After 100 ms the resin strikes through,

which means that it reaches the backside of the paper. After 400 m/s 80% of the pores

are full and paper has reached it’s final thickness.

4. Phase 4; 400-2000 ms, the rate of absorption slows down with saturation being reached

after 2000 m/s.

There were no details in the study as to how she identified within-fibre imbibition.

Defects in LPM panels occur as a result of two fluid flow problems during treating and

pressing, firstly insufficient flow of UF resin into the decor paper and secondly the excessive
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flow of MF resin into the paper during pressing (Chapter 3) Therefore the rest of this review

focusses on fluid flow and the methodology to measure and model fluid flow in paper.

2.2 Review of experimental methods used in the thesis

2.2.1 SEM in the study of liquids and paper

SEM is used to image raw and resin impregnated papers (Chapters 3, 7 & 8) and cryo-SEM,

a new technique involving freezing of the sample immediately after liquid contact, is used to

study the imbibition of aqueous solutions into paper (Chapters 6 & 7).

Oliver and Mason (1976) described the use of SEM to study stationary and moving liquid

drops on paper surfaces and demonstrated the effect of surface roughness on the morphology

of the liquid droplets. Molten drops of polythene and polymethylmethacrylate were applied

to paper and the process of spreading and solidification of the droplet was observed. Solid

droplets were mounted on a stub, gold coated and imaged. Morphological changes in droplets

were complicated by contraction in their volume during solidification. The authors concluded

that the complicated structure of paper and limitations of SEM prevented qualitative analysis

of the morphology of liquid drops applied to paper.

Forsberg and Lepoutre (1994) used environmental scanning electron microscopy (ESEM)

to observe moderate structural changes at the surface of paper fibres as water condensed onto

the surface in a high moisture environment. They stated that cellulosic fibers are sensitive to

moisture during printing with offset or water-based gravure inks, and interactions between wa-

ter and paper can lead to undesirable changes in the paper structure. The purpose of their study

was therefore to study the roughening phenomenonin-situ. They found a roughening of the

paper surface but made no comments on the distribution of fluids nor imbibition mechanisms.

Using this technique the authors were unable to obtain a “snapshot” of the mechanisms of im-

bibition in paper because as soon as the water condensed it would have imbibed into the paper

almost immediately.

Liukkonen (1997) also used ESEM to examine the interaction of water with paper surfaces

and found that the electron beam caused the water droplets to evaporate. Also the drops con-

tinued to grow and merge over time. Cryo-SEM has the potential to overcome problems of

evaporation of the imbibing fluid and could enable the study of fluid flow in unsized papers as

well as sized papers.

2.2.2 Cryo 2-photon confocal laser scanning microscopy (CLSM)

Cryo 2-photon CLSM, described in Chapter 6, was used to study the imbibition of aqueous

solutions both below the surface of paper and beneath the droplet of the imbibing fluid. It was

a new technique developed for this thesis.



§2.2 Review of experimental methods used in the thesis 11

The concepts of confocal microscopy (single photon) were first described in the original

patent for a confocal microscope by Minsky (1957). Van der Wulp (1995) gave an excellent

description of the principles of confocal laser scanning microscopy (CLSM) and stated that a

3D reconstruction of a specimen could be generated by stacking 2D optical sections collected

in a series. This was the principle behind the 3D reconstructions of the two-photon CLSM

images in Chapter 6. Other workers who have reviewed the principles and advantages of single

photon confocal microscopy are Lemasters et al. (1993); Centonze and Pawley (1995); Inoue

(1995).

Denk et al. (1989) in their patent application for atwo-photonconfocal laser scanning mi-

croscope, described some of the disadvantages of single photon CLSM which mainly centre

on photo-bleaching of samples. They described the principle of two-photon excitation which

allows accurate spatial discrimination and quantification of fluorescence from small volumes

whose locations are defined in three dimensions. This provides a depth of field resolution

comparable to that produced in confocal laser scanning microscopes (single photon) without

the problem of out of focus fluorescence. “This is especially important in cases where thicker

layers of cells are to be studied (for example paper fibres). Furthermore, two-photon excita-

tion greatly reduces background fluorescence”. Denk et al. (1995); Potter and Fraser (1999)

also described the benefits of two-photon microscopy and the reduction of photo-bleaching

throughout the specimen.

A number of workers have used CLSM to study paper. Ting et al. (1997, 2000); Lloyd and

Dickson (2000); Dickson (2000a,b) used CLSM to examine changes in the fibre network and

individual fibres as a result of direction compression. Jang et al. (1991) described a technique

for rapidly producing cross-sectional images of wood pulp fibers based on optical section-

ing using CSLM. They then used image analysis to calculate fibre properties such as cross-

sectional area, perimeter, and wall thickness. Xu et al. (1997) examined fibre distribution in

the z-direction of a handsheet using CSLM (single photon) and image analysis. They stated

that some of the most important paper properties including printability are affected by the dif-

ference in fibre distribution in the z-direction. Jang and Seth (1998) used CLSM to study loss

of lumen volume as a result of fibre processing. It is believed, however, that CLSM has not

been used to study fluid flow in paper.

2.2.3 Plasma treatment of paper

Plasma treating, described in Chapter 7, was used to reduce chemical heterogeneities at paper

surfaces in order to more accurately determine how the structure of paper affects fluid imbibi-

tion.

Many workers have studied the effect of plasma treatment on liquid imbibition into paper.

Brown and Swanson (1971) in an early study found that a cellulose surface could be made
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more hydrophilic by corona treatment. Suranyi et al. (1980) found that self sizing as proposed

by Swanson and Cordingly (1959) in aged corrugating medium could be reversed by plasma

treatment. The corona treatment caused a significant increase in the oxygen:carbon ratio of

the medium indicating that the carbon rich surface component had been either removed or

oxidised. This was consistent with the observed decrease in the wetting time after corona

treatment. Cramm and Bibee (1982) also found that plasma treatment caused oxidation of the

surface of paper, increasing surface energy and allowing better wetting by liquids. Bottin et al.

(1984); Sapieha et al. (1988); Young et al. (1994) also examined the effects of plasma treatment

on the wettability of paper.

2.2.4 Mercury intrusion porosimetry

There has been a lot of debate on the efficacy of using mercury intrusion porosimetry to de-

termine pore size distribution in paper and coatings. It is still the most widely used method to

determine “pore size” distributions in porous media such as paper. However the fundamental

assumption underpinning the determination of pore sizes from intruded mercury volumes is

that the pores are cylindrical. This of course is unfounded when the geometry of void spaces

in paper are examined closely.

Kraske (1960) found agreement in void volumes obtained using nitrogen sorption and

mercury porosimetry methods. Climpson and Taylor (1976) used transmission electron mi-

croscopy (TEM) to derive pore volume and compared the results with those obtained from the

mercury intrusion method. They found that mercury intrusion resulted in much lower (pore)

sizes suggesting that it did not give an accurate indication of pore dimensions.

Davis and Smith (1989) used NMR spectroscopy to analyze the pore structure of coatings.

They mentioned that mercury porosimetry was not an ideal technique to measure pore sizes in

paper, for the following reasons; 1, it is a destructive technique and requires assumptions about

pore shape (assuming pores to be cylindrical); 2, mercury porosimetry skews the measured

distribution to smaller pore sizes; 3, samples may be compressed, altering the calculations of

pore size distribution.

Kettle et al. (1997) commented on the problems of using mercury porosimetry at the lowest

applied pressures. At such pressures mercury is unable to correctly probe the largest pores

which is a limitation when analysing uncoated papers. They stated that these large pores were

very important since the liquids absorbed faster into the larger pores as described in the Lucas-

Washburn equation. The use of the Lucas-Washburn equation to describe fluid flow in paper is

reviewed in Section 2.4.1.

Furo and Daicic (1999) used NMR cryoporometry to investigate the pore structure of paper

and paper coatings and reviewed a number of methods for determining pore size distribution

of paper coatings and paper. They stated that mercury porosimetry was the favoured method,
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however they pointed out its limitations, including problems in measuring small pores and its

destructive effect on a soft material such as paper which could cause inaccurate determination

of pore size distribution.

2.3 Testing the rate of fluid imbibition into paper

2.3.1 Testing imbibition into decor papers

Arledter (1957) examined the impregnation properties of paper products used in the plastics

industry and evaluated different methods of assessing resin pickup. He was one of the first

to specify the performance measurements of a technical absorbent paper where a “wanted

amount of resin in the form of a solution was incorporated into a paper in such a way that

the resin shall, without excessive filter effect, penetrate and distribute in the paper structure

and uniformly cover all available individual surfaces and fibres in the shortest possible time”.

Arledter determined that none of the TAPPI (TAPPI, 1992) or American Society for Testing

and Materials (ASTM) methods were relevant to the problem of measuring resin pick-up by

paper. As mentioned above, Arledter (1957) concluded that any penetration test method based

on perception of the human eye, or any method which did not use test solutions with precisely

controlled temperatures and viscosities could not yield reliable test data.

Seiler (1957) noted there were a large number of tests available for paper, such as basis

weight, density, various strength tests, ash content, moisture content and porosity which could

be used to cull papers that were obviously unsuitable for applications where absorbency was

required. None of the methods were able, however, to select the best paper from within a

group of papers with satisfactory performance. Seiler suggested that a test based on simple

penetrability1 and saturability2 could be used to select batches or types of paper for applications

requiring saturation. He did not, however, describe such a test.

2.3.2 Review of non-optical methods to test rate of liquid imbibition into paper

Non optical methods were used in this thesis to measure rates of liquid imbibition into paper.

These were based on the standard test methods referred to above (Arledter, 1957) and measured

fluid flow in thex & y directions. The only non-optical method used to predict fluid imbibition

in thez direction was measurement of air permeability using the Gurley method, which is still

commonly used by manufacturers to predict fluid flow in saturating papers.

The most widely used non-optical fluid imbibition test over short time scales was developed

by Bristow (1967). His apparatus (the Bristow Wheel) was designed to study liquid absorption

1Penetrability refers to the rate of strike through of a resin solution through the paper from one surface to another
and as Seiler states, depends on void structure of the paper and the viscosity of the resin

2Saturability represents the total amount of resin which can be held by the paper and depends on the concentra-
tion of voids and capillary forces on the resin
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into paper during short time intervals in the range 0 - 2 s and evolved from the nip spreading

methodology of Wink and Van den Akker (1957) and Sweerman (1961) and later modified

by Hung et al. (1969). The Bristow method measures the length of track for a given liquid

volume with a paper sample over different speeds. Bristow (1967) described the wetting of

paper by aqueous fluids as a two stage process; (firstly wetting of the surface and secondly,

redistribution of the liquid away from the surface), also involving a wetting delay. The test

method itself was developed as a result of the inefficiencies of the Cobb test (Cobb and Lowe,

1934; Scandinavian Pulp Paper and Board Testing Committee, 1964) & TAPPI TM 441, which

measure water uptake over much longer time periods (Bristow, 1968).

2.3.3 Review of optical techniques for measuring liquid imbibition into paper

The test methods developed in Chapters 4 and 7 were based on measuring changes in re-

flectance of paper on the opposite side to that of an imbibing liquid. The method used in

Chapter 4 used a video acquisition rate of 30 fps and that in Chapter 7 was based on high speed

microscopy with an acquisition rate of 300 fps.

Price et al. (1953) developed a test method that measured the resistance of paper to pene-

tration by liquids based on changes in the optical properties of the sheet during penetration by a

test liquid. A specially designed photometer was used to measure changes in optical properties

(reflectance and transmission). The test method developed became known as the Hercules size

test3 and is still used as a measure of resistance of paper to penetration by liquids. The princi-

ple of measuring optical properties of a paper sheet during liquid penetration was the basis for

two test methods developed in this thesis. The Hercules test, however, measures imbibition in

papers over long time scales (for sized papers) whereas the methods developed in this thesis

measured imbibition over very short time scales as appropriate for a thesis relevant to resin

imbibition into decor paper.

Napier (1964) also developed an apparatus for measuring liquid penetration into paper

which was based on the principle that as a liquid rises under capillary forces through a sheet

of paper, the light reflectance of the upper surface of the sheet decreases. Napier (1964) stated

that the initial rapid rise of the liquid occurred due to fluid flow into the largest pores. When

the liquid in the large pores reached the top surface of the paper, the penetration rate in the

sheet as a whole decreased as smaller pores filled.

Lyne and Madsen (1964) also developed a method for measuring liquid penetration of

paper that used an oscilloscope to measure decrease in reflection of a paper surface when a

film of liquid was applied to the opposite side.

Windle et al. (1970) developed an optical technique for measuring the draining of water

from coatings. They measured capillary penetration over millisecond time intervals, rather than

3TAPPI Standard T 530
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extrapolating from long time data as had been done previously. A piece of paper was floated

on the surface of a bath of black dye and photographed at intervals through a microscope.

This idea of floating a sample of paper on a penetrating liquid for the measurement of liquid

penetration forms the basis for methodology (relative reflectance technique) developed and

described in Chapter 4.

Winspear (1979) in a study of the relationship of paper moisture and porosity on liquid

penetration referred to the difficulty in determining end points using transverse penetration

tests, especially those based on perception by the human eye. He was of the opinion that

modified capillary rise tests were probably the best replacement for transverse penetration

tests. Winspear (1979) used a reflectance meter and photo-electric cell and determined the end

point of liquid penetration by measuring the point at which liquid strike-through caused a given

drop in the reflectance of the paper surface.

Howarth and Schindler (1985) used an adaptation of the apparatus developed by Hoyland

et al. (1973) to obtain a pictorial record of the fluid penetration pattern on the top side of the

paper. A liquid surface was brought into contact with the under surface of a horizontal sheet

of paper and the penetration of dyed water through it was recorded using a cine camera. Three

measures of liquid penetration were obtained from the visual record of fluid penetration: time

to first penetration, average gradient of the main body of the curve and time to 95% penetration.

The percentage reflectance lost by the bottom surface becoming dyed related to the percentage

area penetrated. This methodology is similar to that used in Chapter 7 except the imaging rate

was slower in the previous studiesi.e. 18 vs 300 fps .

Chen et al. (2001) used a high speed CCD camera at 200 fps to record the kinetics of

droplet shape and droplet absorption based on the comparative analysis of the time needed for

the droplet to disappear (as a function of droplet volume for various yarns). This study was

relevant to direct imaging of droplet penetration into individual yarns rather than into a porous

networkper se.

2.4 Review of theories of fluid flow in paper

2.4.1 Bulk capillary flow theory and the use of the Lucas-Washburn equation

There is a large volume of work on the study of fluid flow in paper, a significant proportion

of which refers to the Lucas-Washburn equation (Lucas, 1918; Washburn, 1921) which states

that the timet required for liquid penetration into a certain capillary lengthl is proportional

to the second power of this length and the viscosity of the liquid (Equation 2.1). Time of

penetration decreases with increasing capillary radiusr, with increasing surface tensionγ of

the penetrating liquid (decreasing angle of contact) and viscosityµ. Given the complexity of

the structure of paper, earlier studies made simplifying assumptions about the geometry of
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pores. Fluid flow was represented in one-dimension through single capillary models of a given

pore radius, which were unconnected with each other.

l = 1/2[
γr
µ

]1/2t1/2 (2.1)

This section of the review describes such work. Later work reviewed in Section 2.4.3

describes three dimensional models where pores had more complex shapes, were connected

by throats of a given radius, but where however, the mechanism of imbibition was still bulk

meniscus flow.

Price et al. (1953) showed that liquid penetration into paper occurred in two stages, fast

initial penetration as being capillary flow and slower secondary penetration being penetration

into the fibres.

Bristow (1961) in a literature review of adhesion stated that paper was a network of capil-

laries between fibres. He described liquid penetration in terms of capillary flow due either to

gravitational or to capillary (surface tension) forces, or the presence of an externally applied

pressure or to the combination of all three. Liquid penetration in a capillary system could be

described by application of Poiseuille’s law for streamlined flow through a capillary.

Bristow (1961) appreciated the limitations of the Washburn equation which gives a direct

correlation between the rate of penetration and the capillary radiusr. This relationship was

complicated by three factors: a) porosity influenced the initial wetting; b)r varies due to the

swelling characteristics of cellulose and; c) the distribution of pore sizes in the network made

it impossible to ascribe a single value tor. Bristow (1971) subsequently stated that in no case

did sorption of water occur by the simple advance of liquid in the pores as described by the

Lucas-Washburn equation, although such an equation was perhaps valid for the sorption of oil

(where little or no diffusion into fibres takes place). He stated that most studies of the sorption

of liquids by paper assumed that it occurred via capillary flow, although such an assumption

neglects that portion of the liquid which migrates by diffusion or other processes.

Brecht (1962) recognised that simplifying assumptions such as circular pore cross-section,

a pore diameter or a pore length equal to paper thickness weakened the application of the

Lucas-Washburn model to describe fluid flow in paper. These problems were compounded by

fibre swelling, caused by water and water vapour. The effect of such swelling on the penetration

of fluids into the pores of paper has not been fully determined. Brecht (1962), in accord with

Bristow (1961), stated that the Lucas-Washburn equation adequately described the penetration

of oils and non-swelling liquids into paper, concluding that the only path for such penetration

was capillary flow through the pores.

Verhoeff et al. (1963) examined fluid penetration into unsized papers and stated that there

were two well-defined paths for penetration; capillary flow through the pores described by

Lucas-Washburn, and diffusional flow through fibres, both occurring simultaneously. Such
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penetration occurred so fast it was impossible to separate the two. In sized sheets they stated

that diffusion through the fibres was much quicker than capillary flow and that insufficient

attention had been paid to the effect of the structure of the paper web on liquid penetration.

This was an insightful comment because it is the complex geometry of the void space in paper

that provides the main limitation to the use of the Lucas-Washburn equation to describe fluid

flow in paper.

Van den Akker and Wink (1969) concurred that the Lucas-Washburn theory was far from

valid in terms of its ability to model liquid penetration of paper. The representation of paper as

a bundle of circular capillary tubes on which the theory rests is too different from the complex

pore system of paper (that can be visualised using optical and electron microscopy). They also

stated that contact angle was not a good indicator of water resistance because the surface pores

and surface roughness of the paper had an appreciable influence on the angle. This also affects

the use of the Lucas-Washburn equation.

Windle et al. (1970) used optical techniques to study liquid migration from coatings into

paper. They stated that regions above the average pore size were the first to wet and subsequent

liquid penetration could be attributed to sideways spreading of the liquid through the paper and

bulk migration through the paper sheet, presumably through the smaller pores.

Hoyland et al. (1973) stated that the basic shortcomings of the Lucas-Washburn theory

were that pores in paper were not thin capillaries and that swelling of the fibres was not taken

into account. They offered the following model as an alternative: After liquid had wetted the

surface of the sheet, it was absorbed into the fibres and penetration proceeded along the pores.

This resulted in a change in thickness of the sheet and the depth of penetration was less than

that which would occur if liquid were not absorbed into the fibres. The assumption was made

that the liquid advanced by bulk meniscus flow. They did not take into account, however, the

effect of complex pore geometry on flow. They stated that penetration of swelling liquids into

paper had four potential paths: 1) liquid penetration through the pores by capillary flow; 2)

liquid movement through the pores by surface diffusion; 3) liquid movement through the fibres

by various processes and; 4) vapour phase movement through the pores. The mechanism of

fluid flow in paper is examined subsequently in this thesis in Chapters 6 & 7.

Oliver and Mason (1976) found that paper surfaces often contained fibres with sharp edges

that significantly inhibited the spreading of a liquid. This was an interesting observation as it

identifies another significant problem affecting the application of the Lucas-Washburn theory

to the imbibition of liquids in paper, that of complex pore geometry (Kent and Lyne, 1989a).

Oliver and Mason (1976) also stated that surface morphology of fibres had a pronounced in-

fluence on spreading and absorption behaviour of liquids which warranted further study.

Hoyland (1977) described the complexity of paper structure and the irregular distribution

of pore volume within the sheet. He reviewed capillary flow models for paper, which at that

time were limited by the lack of a rigorous geometrical description of the porous structure of
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paper. He also found that during the initial rapid penetration of paper by liquid, little fibre

swelling took place, however, as the penetration rate decreased, so large increases in sheet

thickness were recorded. According to Hoyland (1977) this accounted for deviations from the

Lucas-Washburn equation.

Stannet and Williams (1977) stated that two general mechanisms of water transport in

cellulosic materials were possible. They were activated diffusion and capillary flow. In highly

porous materials such as paper, pore flow may be accompanied by a surface “hopping” type of

mechanism.

Winspear (1979) reviewed Hoyland’s (1977) work and stated that when liquids penetrated

paper, fibre swelling occurred and that the majority of liquid flow took place through the spaces

and pores between fibres rather than through the channels within the fibres, the latter being a

slower process than the former. Winspear (1979) stated that as liquid moved into paper, wider

channels tended to supply liquid to narrower ones having higher suction, thereby by-passing

many smaller pores. This was probably why it was thought that complete liquid saturation of

paper at ordinary pressures was difficult or impossible (Cussons, 1997). Winspear (1979) ex-

amined the applicability of the Lucas-Washburn equation to the penetration of unsized papers

by ’non-swelling’ liquids as well as by aqueous liquids which swell cellulose. He concluded

that the equation adequately described penetration of paper by “non-swelling” liquids, but it

broke down when applied to liquids that swell cellulose.

Nguyen and Durso (1983) stated that as fibre webs were porous media with interconnected

pores of various sizes, the liquid imbibition process was by diffusion flow in pores rather

than by liquid flow described by a capillary tube model (Washburn, 1921). They believed that

removing the liquid source stopped all capillary-based flow. In the case of fibre webs, however,

slow movement of fluid could still occur by a redistribution from a wetter to a drier area.

Bristow (1986a) stated that even though the square root relationship in the Lucas-Washburn

equation was a good approximation for the behaviour observed during the absorption of a non-

swelling oil by paper, a similar linear relationship was often obtained in studies of the ab-

sorption of water and other swelling liquids resulting in the general application of the Lucas-

Washburn equation for the interpretation of such behaviour. Bristow (1986a) believed this was

an incorrect interpretation as a relationship betweent1/2 and fluid flow was not sufficient to

justify the assumption that capillary flow was the physical mechanism involved. This was be-

cause the sorption of water into fibres occurred via a complex diffusion process, where vapour

phase diffusion in the pores, surface diffusion along the fibres and bulk diffusion through the

cellulosic material all played a part. Furthermore, the diffusion path was undoubtedly depen-

dent on the network structure. The boundary between the two types of liquid uptake, (pore

sorption and fibre sorption) was not strictly defined in terms of paper structure or fibre mor-

phology. One represented simple capillary flow of liquid in pores between and within fibres,

the other represented an interaction between liquid and fibre consisting essentially of sorption
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into the fibre wall and a diffusion through the cellulosic material.

Eklund and Salminen (1986, 1987) studied the absorption of water from coatings into paper

over short time intervals. The Lucas-Washburn equation did not satisfactorily explain their

experimental results in accord with the findings of other workers (Bristow, 1967; Lyne and

Aspler, 1982; Aspler et al., 1984; Aspler and Lyne, 1984). They concluded that the absorption

of water by paper over short time intervals was mainly dependent on the prevailing pressure.

Capillary migration (at zero pressure) was found to be dependent on temperature, suggesting

that the initial steps in water transport in a non-pressurized system was via the gas phase. They

stated that this occurred because the influence of temperature was of such a magnitude that

changes in the viscosity and surface tension of the water were insufficient to explain the values

obtained. Lepoutre (1989) also found that the absorption of water by paper over short term

time periods increased much more rapidly with temperature than could be accounted for by

capillary flow theory.

Eklund and Salminen (1986, 1987) also found that swelling (due to fibre sorption) would

change the value ofr (and could never be constant), and accordingly that some correction

factor needed to be added to the Lucas Washburn equation. They also suggested that there was

always air trapped in paper even in fully saturated papers. Washburn (1921) assumed that the

capillary system was open and connected at both ends, and hence pressure losses due to trapped

air were not part of the model. However Eklund and Salminen (1986, 1987) referred to the fact

that only a very small proportion of pores were connected to both sides of the paper sheet. The

authors concluded, “the counter pressure caused by compressed air at short penetration times

was of such a magnitude that the water penetration at low pressures must take place according

to mechanisms” other than by surface tension forces.

Chen and Scriven (1990) also found that the counter pressure of trapped air influenced liq-

uid penetration into paper as well as the absorption of liquid by fibres, and associated swelling.

Salminen (1988) stated that the classical Lucas-Washburn model did not adequately de-

scribe water transport in the pore system of paper for three reasons;

1. Time and velocity dependence of dynamic capillary pressure: (a) the effect of penetra-

tion velocity on the formation of an advancing interface and (b) interactions between

water (vapor phase) molecules and the fibre wall ahead of the capillary front. As a re-

sult the dynamic capillary pressure was not constant, as assumed in the derivation of the

Lucas-Washburn model, but was dependent on the transport velocity of the liquid front

as well as on the contact time between the liquid and the paper.

2. Counter pressure of air; caused by trapped air as proposed by Eklund and Salminen

(1986, 1987) and referred to above.

3. Expansion of the fibre network and fibre sorption (through swelling) caused by water.
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Salminen (1988) also found that diffusion was probably the most important transport mech-

anism in hydrophobic (sized) papers under no external pressure.4 He made no reference to

another highly significant shortcoming of the Lucas-Washburn model, caused by the effect of

the complex geometry of pores and discontinuities in pore structure on rate of fluid flow (Kent

and Lyne, 1989a) and (Kent and Lyne, 1989b).

Lyne (1993) divided liquid-paper interactions into the following phases: a) dynamic wet-

ting (an interfacial adhesion phenomenon between the liquid and a solid surface) and spread-

ing; b) capillary penetration; c) pressure penetration and; d) diffusion into the fibre wall and

swelling. It was assumed that the first occurred over short time scales and the second over

much longer time scales.

Aspler et al. (1993) and Aspler (1993) in describing ink penetration and spreading in paper

stated that the application of the Lucas-Washburn equation to the phenomenon of ink set-

ting had several shortcomings: 1) Measuring the sorption of a simple oil or solvent was not

sufficient to model the penetration of the thin fluid phase (3µl) of a pigmented ink; 2) The as-

sumption of uniform parallel capillaries did not come close to the reality of paper structure; 3)

It was unrealistic to think that fluid viscosity would remain constant during the setting process;

4) Neither the surface tension of the ink and solid were well-defined. Zang and Aspler (1995)

also questioned the use of Lucas-Washburn to describe ink flow into paper.

Marmur and Cohen (1997) investigated the rise of a liquid in filter paper and found that

a single capillary model and the Lucas-Washburn equation adequately described their results.

They stated that the cosine of the contact angleθ was far from unity, which was assumed in

many cases. Contact angle was not meant to represent the intrinsic contact angle between

the liquid and the fibres, it was the angle that would exist in a cylindrical capillary that was

equivalent to the studied porous medium in terms of the kinetics of penetration.

Kornev and Neimark (2001) stated that no theory existed to quantitatively predict the initial

stage of imbibition during the spontaneous penetration of a wetting liquid into the pore chan-

nels of paper. They concluded that the Lucas-Washburn equation adequately described uptake

of viscous fluids into capillaries and porous solids, but it failed to describe the initial stage of

penetration, which had been attributed to the neglect of fluid inertia. The authors developed

a variety of regimes for spontaneous liquid penetration of paper which were characterized by

different initial fluid velocities.

2.4.2 Effect of pore geometry

The Lucas-Washburn equation assumes that capillary systems have an average pore radius and

it takes no account of the complexities of the pore geometry in paper, as mentioned above.

4This was not defined as either inter-fibre or intra-fibre diffusion.
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Kent and Lyne (1989a,b) found that studies of the penetration of water or inks into paper

that employed smooth capillary models were inaccurate. Nevertheless they were used because

they provided information on the effective hydro-dynamic pore radius. This term was derived

by applying the Lucas-Washburn equation to experimental measurements of liquid imbibition.

The danger associated with such an approach is that it focusses attention exclusively on the

size distribution of pores, and away from factors such as shape, discontinuity and wall ru-

gosity. The authors introduced three such discontinuities: the step, bend and T-junction, and

described the different vapour pressures that develop as liquid passes through these discon-

tinuities. They stated that the major factor retarding capillary penetration of ink into paper

after printing was the influence of pore morphology on the interfacial curvature between the

advancing ink and paper. They also referred to the effect of pore geometry, especially whether

pores were divergent or convergent, on contact angles.

Danino and Marmur (1994) studied the horizontal penetration of liquid in paper and stated

that in a porous medium with non-uniform size distribution of pores5, the local capillary driv-

ing force depended on pore geometry. When the amount of liquid was limited, there was a

tendency for the liquid to redistribute itself by flowing from large pores into the smaller ones,

as liquid penetration into small pores was slower than penetration of large ones. They stated

that the Lucas-Washburn equation assumed that the rate of fluid flow was dependent onr in a

smooth capillary.

2.4.3 Complex simulated three dimensional pore models of imbibition

More recent models of capillary flow in paper attempt to take into account of how the com-

plexity of the pore structure affects imbibition rates. These models still assume bulk meniscus

flow and include the simplifying assumptions that wet pore radii is equivalent to dry pore radii,

there is an unlimited reservoir of liquid, flow is unidirectional and all pores act separately and

are completely accessible for intrusion or drainage at all pressures (Kettle et al., 1997). Ket-

tle et al. (1997) concluded that large pores dominated the absorption of fluid at short contact

times (<1s), whereas smaller pores dominate the absorption over longer contact times. No

account was taken of the inter-connectivity of the network, which may include the shielding or

shadowing of large voids by smaller connecting voids around them.

Matthews (2000) modeled fluid permeation in porous coatings and paper. He pointed out

that even in a simple capillary system where there was a well known approach to liquid flow

there were many complications that were not accounted for, such as uncertainty of dynamic

contact angle, exact meniscus shape, micro-roughness and cleanliness of tube’s inner surface.

Wetting was also affected by the development of a pre-cursive wetting film. He pointed out

that these complexities were rarely addressed because there was little benefit in refining the

5the effective capillary radius was determined using Lucas-Washburn
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mathematics of permeation into a void, if the gross dimensions of the void were wrong. To

address such complexities Matthews (2000) introduced Pore-Cor6 which was an isotropic 10

x 10 x 10 cubic lattice of cubic pores, connected by cylindrical throats subsequently modified

to become double conical. This system was used to model velocity changes for wetting fluids,

caused by geometry changes within void structures. It was assumed that they gave a represen-

tation of heterogeneity of surface energy. Even complex models such as these, however, do not

represent the true structure of the void space of paper and assume bulk meniscus flow in the

complex simulated pore shapes. Furthermore they take no account of micro-roughness of the

pore wall (fibre surface). Other workers who have used a similar approach include Schoelkopf

et al. (2000a,b) and Gane et al. (2000).

2.4.4 Intra-fibre flow

Intra-fibre flow occurs within the fibre itself. The two potential pathways for this flow are

firstly in the fibre lumen, and secondly within the fibre wall. Intra-fibre flow of liquids is not

adequately described by capillary flow models. Maloney and Paulapuro (1998) found that a

significant part of the water within cell walls melted at the same temperature as bulk water and

they suggested such water was located within fibre cell macropores formed when lignin was

dissolved during pulping. Capitani et al. (2002) confirmed this by using NMR to study the

distribution of water in fibres in dry paper. They found that water pools were surrounded by

amorphous cellulose. The average dimension of the water pools were approximately 1.5 nm

and the size of pores within the cellulose in fibres were up to 1.4 nm. These pores may provide

a pathway for the movement of water in sized paper.

2.4.5 Fluid flow in sized papers

There has been much attention focussed on the flow of liquids in sized papers. This thesis is

primarily concerned with flow in unsized and uncoated papers, but flow in sized papers was

examined because of the insights it can provide into the magnitude of intra-fibre flow and the

longer time scales over which this occurs.

Reaville and Hine (1967) stated that the primary pathway for fluid imbibition in sized

papers was through the pores. Fluid flow was controlled by surface diffusion ahead of the

water front and this was accompanied simultaneously by secondary penetration into the fibre.

Bristow (1968) found that water could not enter the pore system in sized papers, and that

the only sorption that occurred was associated with diffusion into fibres. Sizing effectively

prevented the entry of water into the pores and the uptake of water was solely due to fibre

sorption.

6referred to by Kettle et al. (1997)
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2.4.6 Effect of surfactants on imbibition into paper

A significant amount of work on the effect of surfactants on imbibition into paper has been

done based either on adding a surfactant to the paper during manufacture to reduce any hetero-

geneities caused by self sizing or by actually adding surfactants to the imbibing fluid. Lyne and

Aspler (1982) confirmed the observations by Bristow (1971) that addition of a surfactant to the

liquid had little effect on wetting time and reported that significant reductions in wetting time

could be achieved if the paper was impregnated with a surfactant. Aspler et al. (1984) found

that the addition of surfactant to paper after self sizing had occurred, could restore its wettabil-

ity and the rate of sorption of water. Aspler and Lyne (1984) found that improved wettability

was seen as a decrease in the wetting delay resulting in an increased rate of water uptake.

Surfactants added to pure cellulose fibres caused no change in wettability, whereas surfactants

greatly increased the wettability of fibers previously rendered hydrophobic by wood resins.

However, the presence of surfactant in water had little effect on wetting delay. Salminen (1988)

studied the effect of surface tension and confirmed the findings of Aspler and Lyne (1984)i.e.

high molecular weight surface active agents had virtually no influence on the transport ve-

locity because the migration time of surfactant molecules to the newly formed surface was

longer than the surface age in a wetting process. On the other hand, small alcohol molecules

were found to be effective in lowering the dynamic surface tension of an aqueous solution.

The effect of isopropanol concentration on transport was detailed and at higher concentrations

the rate was faster and there was a great difference in the saturation volume for pure water

and isopropanol. Zhmud et al. (2000) stated that thet1/2 behaviour was characteristic of a

diffusion-controlled process often observed for surfactant solutions in hydrophobic capillaries.

However, the authors showed that the physics of these phenomena were completely different,

and in the latter case, the Lucas-Washburn equation was not applicable at all.

2.4.7 Film flow

Film flow is where a thin layer of liquid advances along a surface surrounding a void under

capillary pressure. The void still contains a non-wetting fluid (usually air). A number of

workers referred to film-based-flow.

Phillip (1978) described the formation of films of liquid when he examined combined

absorption and capillary condensation on rough surfaces.

Lyne and Aspler (1982) referred to wetting films on fibres created by the surface diffusion

of water and the adsorption of water vapour. The slow production of such films on surfaces

with low surface energies was explained by the wetting delay referred to by Bristow (1967),

Eklund and Salminen (1986, 1987) and Lyne and Aspler (1982).

Ransohoff and Radke (1988) showed that in cylindrical capillaries occupied by a non-

wetting phase, wetting liquid flow occurred in thin films. In non-circular capillaries, however,
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most of the wetting liquid flow occurred in the corner regions. The two-dimensional hydro-

dynamic problem of wetting liquid flow along the corners of a predominantly gas-occupied

non-circular pore was solved numerically. The solution was quantitatively expressed in terms

of a dimensionless flow resistance, which was a function of surface viscosity, half angle of the

corner of the pore and contact angle. Their results showed that increasing the contact angle or

degree of roundedness of the corner diminished the available area for flow causing a greater

resistance to flow.

Chen and Scriven (1990) in a study of coating paper, referred to films being formed by

spontaneous imbibition through capillary action, where the interfaces were concave toward

the air ahead of the front because they merged into thin films of setting liquid. Locally, the

apparent contact angle with the matrix surface was zero or nearly so.

Blunt et al. (1992) used a three dimensional network model of a porous medium to compute

relative permeabilities and capillary pressures in drainage and imbibition. They stated that film

flow or flow along microscale roughness of the wetting phase was essential to allow the non-

wetting phase to form well-connected pathways through the system. They identified two types

of realistic displacement: 1) flow with trapping pores, where the wetting phase could not drain

from large volumes surrounded by non-wetting fluid, and 2) no trapping, where all the wetting

phase escaped along microscopic channels.

Blunt (1997) subsequently developed a three dimensional pore level network model that

computed relative permeability and capillary pressure for drainage and imbibition cycles. The

model accounted for wetting layers in crevices of the pore space, cooperative pore filling,

different contact angles and various types of pore filling mechanisms in imbibition as described

by Lenormand et al. (1983); Lenormand and Zarcone (1984); Lenormand et al. (1988). Two

distinct types of mechanisms have been developed to explain the advance of liquids during

pore filling. The first is piston-like, where the fluid advances in a connected front occupying

the centres of the pore space. The second is where the wetting fluid flows along crevices in

the pore space, filling pores in advance of the connected front. Filling of pores depends on

the number of nearest neighbours that are already filled with wetting fluid. Lenormand et al.

(1983); Lenormand and Zarcone (1984); Lenormand et al. (1988) first observed and described

these mechanisms.

Lyne (1993) in reviewing work on the dynamic interactions of liquids with solid surfaces

divided liquid-paper interactions into the following: 1) dynamic wetting, spreading and cap-

illary penetration; 2) pressure penetration and; 3) diffusion into the fibre wall and subsequent

swelling. He also stated that on a molecular level it would be improbable that a liquid would

end abruptly at the three phase line as depicted by the Young-Dupre equation. In support of

this suggestion he referred to work by Hardy (1919, 1936) who showed that a thin film of liq-

uid preceded the complete spreading of a drop or bulk liquid on a solid surface. Lyne (1993)

questioned whether these films behaved as normal liquids at all. He pointed out that spreading
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was enhanced on rough surfaces for liquid that had contact angles less that ninety degrees,

and inhibited for liquids with contact angles greater than ninety degrees. Furthermore it was

suggested that spreading was enhanced along grooves and inhibited across them.

Bico and Quere (2003) mentioned that the progression of liquid inside a porous medium

such as paper involves two macroscopic fronts; a main one which saturates the medium and

a thinner one which could be in the form of a film, which propagates ahead of the main front

using the fine structures of the porous material. This precursor being the front which pumps

the liquid inside the larger ones.

Manufacturers of decor papers have always assumed that the Lucas-Washburn model can

adequately describe fluid penetration into the papers. One of the fundamental aspects of this

model is that time of penetration of a liquid decreases with increasing capillary radius. Thus

manufacturers have long believed that a decor paper with larger pores will perform better as it

will imbibe resin much more quickly than one with smaller pores. Other areas that have been

taken for granted is that the air permeability of paper as measured by the Gurley method relates

to how well a paper will imbibe a liquid and thus perform in a treater. In general, however,

manufacturers of decor papers have been unable to relate the physical characteristics of paper

to their impregnating performance. Thus this thesis focusses on these areas in order to improve

the process of manufacturing decor papers for decorative underlays.



Chapter 3

The Cause of Surface Defects in Low

Pressure Melamine Panels

In this chapter the nature of the defects in LPM panels is described and related to two fluid

flow problems; firstly, inadequate impregnation of paper by UF resin during the first stage of

treating; secondly, flow of MF resin away from the surface of the paper into voids created by

inadequate impregnation of paper with UF resin. Treatment (level of saturation) effects and

paper type were found to have a strong effect on the level of surface defects in LPM panels.

Image of the edge of Kraft underlay paper used in low and high pressure laminates.



§3.1 Introduction 27

3.1 Introduction

In Chapter 1 it was proposed that excessive consumption of MF resin during the process of

manufacturing laminated paper overlays, and defects in the overlay were caused by inadequate

filling of paper voids with UF resin (hereafter referred to as saturation) during the first stage of

the treatment process. After the impregnation of paper with UF resin, MF resin is applied to

the upper surface of the saturated paper. The MF resin is formulated to flow during pressing in

order to achieve the desired finish as determined by the pattern on the particular caul plate in

use before final cure (Pizzi, 1983a,b). Therefore any flow of MF resin away from the surface

of the paper could result in the presence of uncoated areas or voids on the surface of papers.

The degree to which this occurs during the manufacture of paper overlays is not known.

Assuming some migration of MF resin into paper, differences in the surface quality of paper

overlays should reflect levels of saturation of papers by UF resin during the first stage of the

treatment process. This would also mean that paper types which are more completely saturated

with UF resin should have fewer open pores in the surface caused by the migration of MF resin

into the core of the paper.

It is therefore hypothesised that if pores in paper are not completely filled with UF resin,

then during hot pressing, the MF resin applied to the surface will flow into unfilled sub-surface

pore spaces before curing has been completed, creating unfilled surface voids. It is further

hypothesised that different papers will saturate to varying degrees reflecting differences in

their structure, and develop different levels of surface defects. The aims of this Chapter are to

test these hypotheses by determining the extent to which the level of treatment of decor papers

with UF resin and paper type influences the surface quality and distribution of the MF coating

on laminated pressed paper overlays.

3.2 Materials and Methods

3.2.1 Justification of techniques used

Quantification of the levels of surface defects in paper overlays was achieved using SEM. It

was also possible using SEM to obtain information on the degree to which the core of the

paper samples was filled by UF resin. It was more difficult, however, to determine the extent to

which MF resin migrated into the paper because both cured UF and MF resins are transparent

and therefore could not be visualised using either SEM or optical microscopic techniques.

Labeling of resins and their subsequent identification with EDXA analysis was one possible

approach to the problem, however, there was the possibility that labeled compounds could

migrate away from the base resin during pressing and curing (Schnieder, 1997a). Various other

techniques have been used to determine the distribution of MF resins in various substrates.

Rapp et al. (1999) used Electron Energy Loss Spectroscopy (EELs) to quantify the penetration
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of a melamine resin into wood cell walls. Kohl et al. (1996) described the use of differential

scanning calorimetry to characterise the curing of MF resin. Gindl et al. (2002) used UV-

microscopy to investigate the diffusion of melamine urea formaldehyde (MUF) resin in wood

cell walls. Jayme and Rohman (1965) used infra-red microscopy and base-line evaluation

of subsequent spectra to quantify the level of amino-plastic polymers in paper. A similar

technique is used in this thesis to evaluate Raman spectra.

Raman microscopy has been used to identify melamine distribution in UF/MF copolymers

(Schnieder, 1997a). This is possible because Raman microscopy can identify characteristic

peaks in MF resins thus distinguishing them from those present in the spectra of UF resins

(Hill et al., 1984; Scheepers et al., 1993, 1995).1

3.2.2 Selection of paper samples

Nine different saturating kraft2 decor papers were selected from over 100 different types of

paper used for the commercial production of resin impregnated overlays (Table A.1). The nine

papers (identified by colour) that were selected were representative of all the different types

of papers currently being treated commercially in Australia. The papers varied in their ash

content, density, thickness and whether they were calendered or not (Biermann, 1996; Lyne,

1976; Lepoutre, 1976), (Table A.2). They also varied in their ease of treatment in terms of resin

demand and percentage of rejects ex treater and subsequent defects after short cycle pressing

(laminating). During experimentation it was crucial that all samples were correctly identified

by paper type and batch as it was difficult to re-identify samples. Samples for each type were

obtained from two different batches of paper, and if this was not possible, they were obtained

from different paper rolls. Samples were also randomly chosen from within batches or rolls of

paper. Figures 3.18, 3.19 & 3.20 show SEM images of the wetting (rough) side of all of the

untreated decor papers used in experimental work in this thesis.

Figures 3.18, 3.19 & 3.20 show that all of the papers with the exception of Kraft (which

is an unfilled paper) have particles of filler that impart the necessary opacity and colour to the

papers. The SEM images were all taken at the same scale so it can be seen that some of the

papers for example Black, Storm and Streetlight have very large open pores on the surface;

compared to the very tight surface structures of Alpine White and Beech. The impact of filler

on liquid uptake of the decor papers is examined further in Chapter 8.

3.2.3 Resins

In order to minimise experimental error caused by variation in the physical or chemical charac-

teristics of resins, the same batches of UF and MF resins were used throughout the experiment.

1A very good description of the principles behind Raman microscopy is given by Fredericks (1996).
2Type of pulping process involving the use of sodium sulphate invented by Dahl in 1879 (Biermann, 1996).
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Fresh resin mixes were used to treat all samples in order to eliminate any possible effects

arising from ageing of the resin (Tables 3.1 & 3.2).

Table 3.1: Composition of the UF resin used to treat papers.

Components of saturating resin mix Weight

Borden BR110 UF resin 207g
Fentak CT12 UF catalyst (Ammonium chloride) 0.64g
Fentak F25T wetting agent (non ionic surfactants)1.0g
Water 31.0g

Table 3.2: Composition of the MF resin used to treat papers.

Components of coating resin mix Weight

Borden BD829 MF resin 230g
Fentak CT218 MF catalyst
(Morphylene paratoluene sulphonic acid0.70g
Fentak F306 release agent 1.20g
Water 5.0g

3.2.4 Treatments

Paper samples measuring 300 x 300 mm square were randomly selected from each replicate

with the first replicate being treated before samples from the second replicate were selected

and treated.

The selected sample was placed on a clean glossy surface3 with the decorative (smooth)

side of the paper facing down. The sample was divided into three equally-sized sections;

the first section was not treated with any UF resin. The second section was only given two

brush coats of UF resin, approximately 25 g/m2. The third section was brush coated with UF

resin until it was completely saturated,i.e. when there were no visible dry spots in the paper,

approximately 50 g/m2. The paper was then turned over so that the decorative side faced up

and the treatments were repeated. The sheet of Aqua Panel was cleaned and dried between

each treatment.

The UF treated paper was then hung vertically in an oven (Thermoline Laboratory Oven

model 060FD) at 125◦C for 85 s. The paper was placed on a sheet of release paper to cool

and given one brush coat of MF approximately 40 g/m2 resin taking care to apply the same

quantity of resin by using the same number of brush strokes to all of the different sections. The

3Laminex Aqua Panel (a high pressure laminate)
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MF resin was first applied to the sections that did not contain UF resin to reduce the chance

of any cross-contamination of paper with UF resin. This was, however, considered unlikely

because the UF resin was fully cured before the MF resin was applied to paper sections. All

hand treating was done along the machine direction of the paper. The fully treated paper was

then placed in an oven (as above) and dried for 85 s. Each of the treatments was identified

prior to resin saturating and coating by numbering each section with pencil.

All of the treated paper samples were then pressed on 3 mm thick MDF in a Siempelkamp

test press at a temperature of 182◦C for 45 s. The system hydraulic pressure used during

pressing was 100 bar and given that the area of the board being pressed was 0.5 x 0.5 m the

specific pressure was 0.03Nm−2.

The pressed samples were then prepared for surface and edge imaging by SEM, and for

analysis of the distribution of MF resin in the paper by Raman microscopy.

3.2.5 Sample preparation for SEM; treated and pressed paper

A 10 mm strip was cut from each pressed sample using an 8 mm band-saw. The underside of

each strip was then sanded using a 150 mm belt sander to remove as much of the underlying

MDF as possible. The purpose of this was to reduce the time taken to achieve vacuum when

the samples were subjected to sputter coating(1x10−4Torr) and SEM analysis(1x10−5Torr).

Individual samples measuring 10 x 10 mm were cut at random from within each of the

treatment areas using hand-held, hard-backed, single-edged razor blades (GEM Stainless Steel

uncoated single edge industrial blades). Samples were fixed to 12 mm diameter aluminium

SEM stubs using double-sided carbon tape. All samples were individually identified with

sample numbers ranging from 1 to 54, each of which represented a unique batch, paper type

and resin treatment.

As pressed treated paper is a poor conductor of electricity, the specimens were rendered

fully conductive by coating them with a 250̊A film of gold in order to prevent “charging”

distortions of SEM images (Smith, 1959; Buchanan and Lindsay, 1962). The gold coating not

only provided a conduction path to earth for beam electrons but also had the effect of improving

secondary electron emission (hence improving the signal-to-noise ratio) (Heady, 1997). Gold

coating was carried out in an argon gas sputter coating unit (Polaron Model E5000) (Figure

3.1) using 20 mA ion current for approximately 240 s. Electrical contact between stub and

specimen was enhanced by brushing silver conducting paint (Balzers 8010 14020) around the

edge of each specimen taking care not to affect specimen surfaces of interest.

3.2.6 Sample preparation for Raman microscopy

Samples measuring 10 x 5 mm were cut from the same pressed resin impregnated paper sam-

ples used for SEM examination. Preparation of samples for Raman microscopy was the same
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Figure 3.1: Polaron Model E5000 sputter coater

as for SEM except that the gold coating step was omitted. Glass knives made with a LKB

model 7800 knifemaker (Figure 3.2) and attached to a Reichert-Jung Ultracut microtome (Fig-

ure 3.3) were used to prepare the edges of specimens. This minimised damage to the paper

structure which was particularly important for samples containing little or no UF resin. 1.0

µm thick sections were microtomed from the edges of specimens until a section at least 3 mm

in length had been produced. Prepared samples were attached to glass slides usingBluetac

which was left for about 5 minutes to reduce the chance of elastic movement of the material

before samples were examined under the Raman microscope. It was important to avoid touch-

ing prepared edges of samples as contamination from skin oils could have caused considerable

fluorescence during imaging. After the samples had been examined with the Raman micro-

scope they were fixed to SEM stubs and sputter coated with gold for edge imaging with SEM.

3.2.7 SEM imaging and data acquisition

The surfaces and edges of pressed, treated paper samples were examined using a Cambridge

Instruments S360 Stereoscan scanning electron microscope fitted with a high brightness lan-

thanum hexaboride(LaB6) electron source (Figures 3.4 & 3.5). Secondary electron and backscat-

tered electron images were obtained (Figure 3.21).4 The latter had the most contrast between

the resin-filled and unfilled pores and hence was used for subsequent image analysis. A fila-

4Heady (1997) described in detail the use of the SEM used in this thesis.
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Figure 3.2: LKB model 7800 knifemaker

Figure 3.3: Reichert-Jung Ultracut microtome
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ment current of 1.9 A, a probe current of 1.21 nA and an electron accelerating voltage (EHT)

of 20kV was used during imaging. All samples were viewed at magnifications of x100 for

data analysis and x400 for detailed study of pore morphology. The contrast and brightness of

individual images were adjusted to maximize the contrast between the unfilled pores and other

areas within each image. Images were digitally recorded using a slow-scan (160 s) image ac-

quisition system and converted to a 1024 x 768 pixel 8-bit grey scale image (PC TIFF Tagged

Imaged File Format). These were then stored digitally using a PC5 for later analysis.

One field of view was examined for each of the 54 different resin-treated and pressed

samples consisting of 9 paper types, 3 resin treatments with 2 replicates. Each field of view

measured 1.210 mm, x 0.905 mm. Kallmes and Corte (1960) used 1 mm paper squares dur-

ing their examination of the structure of paper because the sample was of the same order of

magnitude as the basic structural unit of paper, the fibre. Thus a 1 mm field of view was con-

sidered appropriate here to characterise the different treatment/paper combinations. A total of

over 5,000 individual unfilled pores or voids in the surface of MF resin coated samples were

analysed. The sizes of unfilled pores were quantified using Scion Image6. Variables measured

were length, width and area of the individual unfilled pores, total unfilled pore area and num-

ber, and the ratio of the long and the short axes of the unfilled pores. The depth of the unfilled

pores could not be accurately determined using SEM.

Imaging of the edges of resin impregnated paper samples was done at magnifications of

300 - 600 x depending on the thickness of the paper (Table 3.3). For edge imaging, two fields

of view were selected at random for each paper/treatment combination because of the smaller

fields of view compared to surface images. Figure 3.23 shows a good example of an edge image

of paper with no UF treatment. Edge imaging of unfilled pores in backscattered mode did not

require manual manipulation of the images within the image analysis program, providing the

image had good contrast. The total area of unfilled pores to the total area of the field of view

was measured for each paper type/treatment combination using the density slice function of

Scion Image.

5ImageSlave version 2.11 1995, Meeco Holdings Pty. Ltd., Sydney
6An image processing and analysis program for PC’s release Beta 3B, US National Institutes of Health, Scion

Corporation Maryland USA 1998
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Figure 3.4: Cambridge Instruments S360 Stereoscan scanning electron microscope

Figure 3.5: Closeup of the specimen chamber in the Cambridge S360 SEM
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Table 3.3: SEM magnifications for edge imaging of papers

Paper type SEM magnification

Alpine White 600
Beech 600
Black 600
Fog 600
Folkstone Grey 600
Kraft 300
New England Elm 450
Storm 500
Streetlight 400

3.2.8 Experimental design and statistical analysis of data

The aims of this Chapter are to determine the extent to which the level of treatment of decor

papers with UF resin and paper type influences the surface quality and distribution of the MF

coating on laminated pressed paper overlays. The effect of such fixed factors on the following

response variables was examined;

1. number and proportion of unfilled pores

2. their dimensions including average, total area and variance of area, length of the major

axis and ratio of major/minor axis

3. The relative intensity of the melamine peak at 975cm−1 to the two titanium dioxide

peaks at 448 and 610cm−1, giving the ratio of melamine toTiO2.

The design of the experiment involved factorial principles. Random effects included roll

to roll variation in paper and within paper variability and it was necessary to know whether

the selection of the sample area using SEM or Raman had any effect on the results. Analysis

of variance (ANOVA) for a randomised block design was used to analyse data. Some data

were transformed into natural logarithms to ensure that it complied with the assumptions of

ANOVA, i.e. normality with constant variance. Statistical computation was carried out using

Genstat (Lawes Agricultural Trust). The factorial design of the experiment allowed data to

be averaged across non-significant(p > 0.05) effects thereby giving the experiment greater

precision. Significant results are presented graphically and individual means can be compared

using least significant differences(p < 0.05).
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3.2.9 Raman microscopy and data acquisition

3.2.9.1 Introduction

Raman microscopy has been used to study the curing of UF resin by Hill et al. (1984) who

identified several spectral regions for distinguishing critical structural differences in cured and

uncured UF resins (Tables A.3 & A.5). These peaks are used to identify UF resins in this

Chapter.

Scheepers et al. (1993) characterized the curing of MF resins using Fourier transform (FT)

Raman spectroscopy. They confirmed that MF resin formation consisted of two stages. Dur-

ing the first stage water insoluble melamine dissolves in formalin under alkaline conditions

undergoing a series of addition reactions (Pizzi, 1983a) to create various methylolmelamines.

Condensation reactions then take place to create a low molecular weight resin. At this stage,

the resin is both soluble and fusible. During the second stage, the resin cures with the applica-

tion of heat or an acid catalyst. During curing, further chain extension and cross-linking takes

place to form an insoluble, infusible three-dimensional network. Scheepers et al. (1993) were

the first to assign bands and interpret Raman spectra of MF resins and their changes during

cure. All spectra of melamine-containing compounds showed an intense band at 975cm−1

which was attributed to the ring breathing vibration of the triazine ring. They also found that

the band at 975cm−1 was not influenced by degree of methylolation. Hence it can be used

to identify and examine the distribution of MF resin in impregnated and pressed decor papers.

Scheepers et al. (1993) found that “MF resins have significant absorptions in the Raman range,

but the absorbtions at a specific wavelength are the same for various samples. Therefore, rel-

ative band areas are not affected in a different way to the MF resins studied.” Scheepers et al.

(1993) claim to be the first to identify this peak, however, their claim can be challenged as

Dollish et al. (1973) identified 8 frequencies for s-triazine (1,3,5-triazine) and assigned the fre-

quency 676cm−1 to “in-plane ring deformation”, and ring “breathing” at 1132 and 992cm−1.

They also found ring “breathing” vibrations at 1000-980cm−1 for various 2,4,6 s-triazines (Ta-

bles A.4 & A.6). It was these peaks that were used to determine the level of MF resin migration

and to answer the questions posed by Schnieder (1997b).

Scheepers et al. (1995) also identified the 676cm−1 raman spectral band in melamine

resins. The authors suggested that “it might be possible to use the intensity of the 676cm−1

band for determination of the free melamine content of MF resins.” “The 676cm−1 ring mode

vanishes upon methylolation, whereas the 975cm−1 band retains constant intensity” (dur-

ing and after methylolation). Both bands were assigned to deformations of the triazine ring

(Scheepers et al., 1995). The authors concluded that “Raman spectroscopy can be used to

determine the free melamine content in MF resins. Consequently confocal Raman microspec-

troscopy is able to obtain spectral information on MF resin from a small volume element” (µm

scale).
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Figure 3.6: The Renishaw model 2000 Raman microscope

3.2.9.2 Experimental

A Renishaw model 2000 Raman microscope7 using a near infrared laser (780 nm at 6.8 mW at

100% power output) was used to assess the distribution of melamine through treated pressed

paper. Scanning was done using a 50 x objective with a scanning time of 50 s and an accumu-

lation of 5 full scans to obtain the final spectrum (Figure 3.6).

In order to compare the amount of MF resin in the paper sample by position, paper type

and UF resin treatment, the ratio of melamine to titanium dioxide within each paper was de-

termined. This was quantified by measuring the area under the melamine peak at 975cm−1

and expressing this as a ratio of the area under the twoTiO2 peaks at 448 and 610cm−1

(Otieno-Alego, 2000). A similar technique was used by Sun et al. (1997) to determine the

lignin to cellulose ratio in pulp samples and predict pulp Kappa numbers. Peak areas here

were obtained using Igor Pro.8 The extents of the twoTiO2 peaks were from 395-490cm−1

and 545-655cm−1, and for melamine from 950-1000cm−1. The baseline was interpolated

between these points for all peaks. Initially peaks were analysed with and without baseline

correction (Sun et al., 1997), however, subsequently base line correction was used to remove

7Renishaw Raman Imaging Microscope Windows - based Raman Environment Users Notes M-8012-1894 01
Issue 1.0 Renishaw plc New Mills, Wotton-Under-Edge Gloucestershire, GL12 8JR

8v. 3.1.4 (1988-1998) Wavemetrics Inc).
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background fluorescence as it did not affect the melamine orTiO2 profiles for the corrected

Raman spectra.

Two papers were not analysed. These were Black, because it had no detectableTiO2 peak,

and Kraft, because all samples fluoresced strongly and hence it was impossible to identify any

peaks. The fluorescence in Kraft originated from the lignin because the pulp used in this paper

was unbleached.

The purpose of experimentation was to determine whether there was a difference in the

distribution of MF resins in papers treated with different levels of UF resin. Raman spectra

were all obtained in the same plane, on the surface, half way to the middle of the paper and

in the middle of the paper. The location of the line of scanning was random and orthogonal

to the surface of the paper. Some dyes in the printed papers fluoresced making acquisition of

data more difficult even using neutral density filters which reduced the intensity of the laser

by 25%. Fluorescence even occurred when the back (non printed) side of such papers were

scanned, showing that some of the ink dyes (or their solvents) had penetrated a substantial

distance from the surface of the papers. It was still possible, however, to quantify the relevant

melamine and titanium peaks from poorer quality spectra. The spectroscopic data (in ASCII

format) were analysed using the wave analysis program Igor.

To determine whether UF resin flowed during LPM pressing, potentially resulting in inter-

mixing with the curing MF resin, discs of paper treated only with UF resin were removed

from the sample sheets and pressed. The distance that the resin flowed out from the discs was

measured.

3.2.10 SEM examination of edges of raw paper

Imaging of the edges of paper was undertaken to get an estimation of porosity (pore volume)

and pore structure, which was then related to the saturation performance of the paper. It was

essential that the preparation of the samples was done in such a way as to minimise distortion

of fibres and pore spaces. The edge imaging of paper is experimentally challenging due to its

delicate structure. The technique used here was based on one developed by Williams et al.

(1994) who described it as a “technique enabling imaging of raw paper edges with a SEM

while avoiding the effect of dislocation or damage of fibres during normal cutting and sample

preparation process”. This technique was further developed by Kibblewhite and Bailey (1988)

who used a similar embedding technique with BEEM9 capsules to study fibre cross-sections,

and Williams and Drummond (2000) who developed a modified technique for viewing much

larger or greater numbers of samples.

James et al. (1998) used SEM to study paper cross-sectional structure. They adopted the

technique described by Kibblewhite and Brookes (1977) where samples were clamped in per-

9Registered trade mark
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spex and cut at an angle of 45◦ with a razor blade resulting in significant fibre damage. Dickson

(2000a,b) also used resin embedding to examine cross sections of paper, however, they did not

erode the resin away, but abraded sections of the whole sample and imaged samples using

confocal laser scanning microscopy (CLSM), which is the technique used in Chapter 6 of this

thesis.

Samples (10 x 5 mm) of all of the different papers were randomly selected from large

rolls of paper. They were placed into gelatine capsules which were filled with low viscosity

embedding media, (C035 Spurr’s Embedding Mixture) and warmed to room temperature. In

order to maximise saturation with embedding media, samples were agitated for 24 h on a

IKAO Schuttler MTS 4 agitator set at 100 rpm. They were then held at 4◦C for 10 days and

cured at 60◦C for 12 h. After curing, the resinated paper blocks were trimmed with GEM razor

blades to remove excess resin and then microtomed using a Reichert Ultra Cut microtome. One

micron (1.0µm) sections were cut from the blocks, trying to produce a very smooth surface

on the paper sample. The blocks were then agitated in a 1:1 solution of saturated sodium

hydroxide and 100% ethanol to erode the embedding resin from the pore spaces and improve

the definition of the SEM images as recommended by Williams et al. (1994). The sodium

hydroxide solution was replaced after each sample to minimise contamination of subsequent

samples with dissolved embedding resin. In order to erode sufficient resin from the pore spaces

and to minimise the re-deposition of the resin onto the fibres, the samples were immersed and

agitated in the eroding solution for at least 5 minutes. The samples were secured with tweezers

with the microtomed edge of the block orientated away from the point of the tweezers. The

tweezers were clamped to the block using electrical tape so that the microtomed section of the

sample was protected while allowing the eroding solution access to the rest of the sample.

After erosion of the embedding resin, the samples were washed in 100% ethanol and then

examined under a Nikon SM2-2T stereo microscope at 30 x magnification to determine if

sufficient embedding resin had been eroded away to enable effective imaging of the void spaces

below the surface of the paper. If insufficient resin had been eroded away, the cut edges of the

fibre would appear rounded and smooth and for such samples the erosion process was repeated.

This was necessary for the high ash papers such as Alpine White, Beech, Folkstone Grey and

Fog, as the filler material found on and between the fibres appeared to make it more difficult to

remove the embedding resin. This observation was relevant to the results of imbibition studies

into various fillers in Chapter 7.10 After drying the eroded samples were mounted on SEM

stubs, gold coated and examined using SEM as previously described.

10It is shown that imbibition occurred preferentially in paper with spherical type fillers due to higher capillary
pressures in the narrow channel morphologies created by adjacent filler particles. It could be inferred that the
removal of resins from such paper fillers would therefore be more difficult.
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3.3 Results

3.3.1 Overall effects of treatment & paper type on surface quality of paper

The significant effects of level of resin treatment and paper type, and interactions between level

of resin treatment and paper type on the surface characteristics of pressed LPM are summarised

in Table 3.4. In addition a graphical summary is presented for each analysis (below) clearly

showing each significant effect. Each graph shows mean values plus a LSD bar(p < 0.05)that

can be used to assess significant differences between means.

Table 3.4: Significant effects of, and interactions between, saturation treatment and paper type on
surface defects of treated pressed samples.

Experimental factors Response variables

Number of Variance of Total area Average area of Length of the Ratio of
pores areas of unfilled pores major axis major/minor axis

individual pores
Treatment *** * *** *** *** ***
Paper type * ** ** * * **
Interaction T x P NS NS NS *** * NS

(* = p < 0.05, ** = p < 0.01, *** = p < 0.001, NS = not significant p> 0.05)

3.3.2 Treatment effects

3.3.2.1 Surface

There was a significant effect(p < 0.001)of UF resin treatment on the number of unfilled

pores in the different papers (Figure 3.7). With increased levels of UF saturation there were

fewer unfilled pores on the surface of paper samples, irrespective of paper type (Figure 3.7).

This effect is clearly shown in a series of SEM images (Figures 3.24, 3.25, 3.26 and 3.27),

each of which show three images representing no UF, low UF and normal UF resin treatment

levels, respectively. Figure 3.28 shows surface voids in paper at higher magnification. Also

noticeable in Figure 3.28 are “caps” of MF resin that had formed as thin lenses over surface

voids during treating and had become dislodged during the process of pressing. This is a

common cause of dusting in both treating and pressing and is a phenomenon that has hitherto

not been well understood. Such material forms a dust that is a sensitising irritant to humans. It

was previously believed that this material arose from bubbles formed due to excessive heating

during the curing of the resin in the second stage ovens in the treater.

There was also a significant effect(p = 0.012)of treatment on variance of areas of indi-

vidual pores. With increased levels of saturation the variance of pore size was smaller (Figure

3.8).
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Figure 3.7: The effect of UF saturation treatment on the total number of pores in paper samples. Error
bar (LSD) represents the least significant difference (p< 0.05).

Figure 3.8: Effect of UF saturation treatment on variance of areas of individual pores.

Figure 3.9: Effect of level of UF saturation on total area of unfilled pores.
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There was a significant effect(p< 0.001)of treatment on the log of the total area of unfilled

pores (Figure 3.9). SEM images for Alpine White subjected to different levels of UF saturation

(Figure 3.29) also suggest that with increased levels of saturation with UF resin the area of

unfilled pores in papers became lower. The total area of unfilled pores is probably related to

visual defects that can be observed in pressed low pressure melamine sheets, as unfilled pores

on the surface would reduce the transparency of the melamine coating and also change it’s light

scattering characteristics. Thus the larger the area of unfilled pores in the coating the greater

the probability that the panel would be rejected.

There was a significant effect(p < 0.001)of treatment on the ratio of the major to the

minor axis of pores (Figure 3.10). This was a measure of symmetry of unfilled voidsi.e. the

lower the ratio the greater the symmetry. This effect was also apparent in SEM images for

Kraft paper samples subjected to different levels of UF treatment (Figure 3.30).

3.3.2.2 Subsurface

There was a significant effect(p < 0.001)of UF resin treatment on the proportion of unfilled

pores beneath the surface of the paper (Figure 3.11). It was clear that the greater the level of UF

treatment the lower the amount of unfilled pores beneath the surface of the paper. For example,

there was more than double the proportion of unfilled pores in paper that had received no UF

treatment compared to normally treated paper. This is clearly shown in the SEM images of the

edges of Streetlight pressed paper (Figure 3.38), which received no UF, low UF and normal

UF saturation treatments, respectively.
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Figure 3.10: Effect of level of UF saturation on the ratio of the major to minor axis of unfilled pores.

Figure 3.11: Effect of level of UF saturation on the ratio of the proportion of unfilled pores beneath the
surface of paper in treated and pressed LPM.

Figure 3.12: Effect of paper type on variance of areas of individual pores.
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3.3.3 Paper effects

3.3.3.1 Surface

There was a significant effect(p = 0.008)of paper type on the variance of area of unfilled pores

(Figure 3.12), but no significant interaction of paper type and treatment on variance of unfilled

pore area..

Irrespective of the levels of UF saturation, unfilled pore size was less variable in some

papers than in others, for example Beech. Conversely unfilled pore size was more variable

in Black than in all other paper types, except for Kraft (Figure 3.12). Black was the most

difficult of all papers to treat and press and it was the paper that contained the lowest amount

of inorganic filler. There was considerable variability in the data as is reflected by the large

LSD bar, (Figure 3.12).

There was also a significant effect of paper type(p = 0.014)on the number of unfilled pores

(Figure 3.13). Beech had significantly lower numbers of unfilled pores than all other papers

except for Folkstone Grey which in turn had significantly lower numbers of unfilled pores than

papers such as Fog, Kraft, New England Elm, Streetlight and Storm.
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Figure 3.13: Effect of paper type on total numbers of unfilled pores.

Figure 3.14: Effect of paper type on total area of unfilled pores.

Figure 3.15: Effect of paper type on the ratio of the major to minor axis of unfilled pores.
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There was a significant effect(p = 0.008) of paper type on the log of the total area of

unfilled pores. Beech and Folkstone Grey had significantly lower total areas of unfilled pores

that the other papers (Figure 3.14).

There was also a significant effect(p = 0.008)of paper type on the ratio of the major to

the minor axis of unfilled pores (Figure 3.15). Unfilled pores in Beech, Alpine White and

Streetlight were significantly more symmetrical than pores in all other paper types. Unfilled

pores in Kraft and Storm were significantly less symmetrical than pores in all other papers

except for Folkstone Grey and New England Elm. From Table A.2 it appears that the symmetry

of unfilled pores may be related to the ash content,i.e. amount of inorganic filler, of the

different paper types. Those papers whose unfilled pores were more symmetrical tended to

have more filler than those with less symmetrical unfilled pores (Table A.2). This suggestion is

supported by the images of raw papers showing the shapes of unfilled pores in Beech (Figure

3.39) and Streetlight (Figure 3.40) compared to Black (Figure 3.41) and Kraft (Figure 3.42).

These images also show the effect of the distribution of filler on pore symmetry of the larger

open pores on the surface of paper.

There appeared to be a relationship between the depth of unfilled pores and the level of

UF saturation. The number of un-resinated fibres visible in an unfilled pore was used as a

qualitative indication of pore depth. For example, where four such fibres crossed in an unfilled

pore, the depth of the unfilled pore was clearly greater than that of an unfilled pore containing

only two un-resinated fibres. Increasing levels of UF saturation reduced the number of un-

filled pores containing un-resinated fibres. This can be seen in the SEM images of Storm and

Streetlight, (Figures 3.34, 3.35 & 3.36), which were not treated or had low levels of UF resin

saturation. The images in Figure 3.28 are of Streetlight with a normal UF loading. There are

large unfilled voids below the surface, which were covered by resin during treatment. However

subsequently it appears that the resin covering the voids was dislodged. The bottom image also

shows un-resinated fibres at a significant depth from the surface.

3.3.3.2 Subsurface

There was a weak effect(p = 0.1) of paper type on the total proportion of unfilled pores

beneath the paper surface. Earlier it was hypothesised that with less than full saturation with

UF resin, MF resin would migrate away from the paper surface filling the pores below the

surface and creating voids in the resin coating on the surface. Raman microscopy, described

below, confirmed this suggestion. However, Beech had the highest level of unfilled pores

beneath the surface (Figure 3.37 almost twice the average number of unfilled pores) but had

the lowest number of unfilled pores on the surface (Figures 3.13, 3.14 & 3.32). This was

contrary to expectations in that there was less than complete saturation of this paper with UF

resin but very effective surface coating with MF resin. This suggests that the UF resin formed
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Figure 3.16: Effect of paper type and treatment on the average unfilled pore area after pressing.

an impenetrable barrier just below the surface of the paper preventing MF resin from migrating

away from the surface. The possible reasons for this are outlined in the Section 3.4.

3.3.4 Interactions of treatment & paper type on surface defects & subsurface
pores

3.3.4.1 Surface defects

There was a significant two-way interaction(p < 0.001)between paper type and treatment on

average area of unfilled pores, where the effect of level of UF treatment on average area of

unfilled pores varied with paper type (Figure 3.16). This occurred because the average area

of unfilled surface pores in untreated New England Elm was significantly lower compared to

the other papers receiving no UF resin treatment (Figure 3.22). It is possible that so much MF

resin migrated from the surface of New England Elm that even the smallest pores were unfilled,

thus reducing the average area of unfilled pores. One might have expected that with increasing

levels of saturation the average area of unfilled pores would be reduced for each paper type,

however, this was not always the case (Figure 3.16). In fact only Alpine White, Beech, and

Streetlight showed a significant reduction in the average area of unfilled pores with increasing

levels of UF treatment as illustrated in the images of treated Beech (Figure 3.32).

There was no significant interaction of treatment and paper type on the total area of unfilled

pores. There was no significant difference in average pore size in Black, Fog, Folkstone Grey,

Kraft and Storm with different levels of UF treatment.

In Folkstone Grey and Kraft there was no significant effect of UF treatment on average pore

size. SEM images clearly show that in Kraft with no UF treatment there was a full range of
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Figure 3.17: Effect of paper type and treatment on the length of the major axis of unfilled voids after
pressing.

unfilled pores from ones which were very large (200µm in the long direction) to ones less than

5 µm in length (Figure 3.30, top). In contrast in Folkstone Grey with no UF treatment (Figure

3.24, top) there appeared to be a much more even spread of average area of unfilled pores.

Higher levels of saturation with UF resin resulted in less variation in pore size however, the

average pore size was unaffected. This presumably occurred because fewer of the very large

or very small unfilled pores were present compared to those in papers receiving low and higher

levels of treatment. With papers such as Fog, the level of UF saturation did not significantly

affect the average pore size, however the number of unfilled pores became smaller. This can

be seen in the SEM images of Fog in Figure 3.33. Figure 3.16 shows that the areas of unfilled

pores in Beech treated with normal UF saturation were significantly less than for all other paper

types.

There was also a significant two-way interaction(p = 0.01)between treatment and paper

type on the length of the major axis of the unfilled pores (Figure 3.17). This was as a result

of the response of New England Elm to resin treatment. In this paper the shortest pores were

found in paper that had received no resin treatment whereas in the other papers the shortest

pores were found in papers that had received low or normal UF treatment. The reason for this

effect is explained more fully in Chapter 8 and is related to the type and distribution of filler

used in the paper and resulting pore size distribution.

With Beech there was a significantly(p = 0.01)greater reduction in the length of the major

axis of the unfilled pores with each increasing level of UF saturation treatment. In the case

of Black, Folkstone Grey, Kraft, Storm, and Streetlight there was also a significant difference

in the length of the major axis of unfilled pores in samples subjected different UF saturation
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levels. This is clearly shown in the SEM images of Storm, Figure 3.25. With Alpine White

there was a significant difference in the length of the major axis of pores in samples subjected

to low UF saturation and normal UF saturation. With New England Elm and Fog there was no

significant effect of level of treatment on length of the major axis of the unfilled pores.

Figure 3.17 also shows that the unfilled pores of Beech were on average shorter than in

all other paper types, and that with normal UF treatment the unfilled pores in Alpine White

and Beech were significantly shorter than in all other paper types as seen in the first images in

Figures 3.29 & 3.32.
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Figure 3.18: SEM images of untreated decor papers, top: Alpine White, middle: Beech and bottom:
Black.
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Figure 3.19: SEM images of untreated decor papers, top: Fog, middle: Folkstone Grey and bottom:
Kraft.
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Figure 3.20: SEM images of untreated decor papers, top: New England Elm, middle: Storm and
bottom: Streetlight.
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Figure 3.21: Secondary electron (left) and backscattered (right) images of Black, Kraft, Storm and
Streetlight with no UF resin treatment.
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Figure 3.22: SEM image of MF coating on New England Elm which was not subjected to preliminary
UF treatment. Note the small size of the pores.

Figure 3.23: SEM image of the edge of the treated decor paper Streetlight with no UF treatment show-
ing large unfilled voids in the centre of the paper.
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Figure 3.24: SEM images of the MF coating on the surface of pressed Folkstone Grey showing the rela-
tionship between treatment level and numbers of unfilled pores, top to bottom; no UF resin, deliberately
under resinated and normal resin treatments.
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Figure 3.25: SEM images of the MF coating on the surface of pressed Storm showing the relationship
between treatment level and numbers of unfilled pores, top to bottom; no UF resin, deliberately under
resinated and normal resin treatments.
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Figure 3.26: SEM images of the MF coating on the surface of pressed New England Elm showing
the relationship between treatment level and numbers of unfilled pores, top to bottom; no UF resin,
deliberately under resinated and normal resin treatments.
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Figure 3.27: SEM images of the MF coating on the surface of pressed Streetlight showing the relation-
ship between treatment level and numbers of unfilled pores, top to bottom; no UF resin, deliberately
under resinated and normal resin treatments.
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Figure 3.28: Higher magnification SEM images of MF coating on Streetlight showing details of unfilled
surface voids caused by migration of MF resin even though normally treated with UF resin. Note also
the presence of MF ”caps” dislodged from the unfilled surface voids during pressing.
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Figure 3.29: SEM images of the MF coating on the surface of pressed Alpine White showing the
relationship between treatment level and the number of unfilled voids on the surface, top to bottom; no
UF resin, deliberately under resinated and normal resin treatments.
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Figure 3.30: SEM images of the MF coating on the surface of pressed Kraft showing the relationship
between treatment level and the symmetry of unfilled voids on the surface, top to bottom; no UF resin,
deliberately under resinated and normal resin treatments.
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Figure 3.31: SEM images of the MF coating on the surface of Black, from top to bottom; showing
no, low and normal UF saturation respectively demonstrating the considerable variability in individual
unfilled pore area.
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Figure 3.32: SEM images of the MF coating on Beech showing a reduction in average unfilled pore
area with no, low and normal UF saturation respectively.
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Figure 3.33: SEM images of the MF coating on Fog showing average pore sizes in paper with top to
bottom; no, low and normal UF saturation respectively.
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Figure 3.34: The appearance of the decor paper Storm not treated with UF resin prior to MF resin
application.

Figure 3.35: The appearance of the decor paper Storm deliberately under treated with UF resin prior
to MF resin application.
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Figure 3.36: The appearance of the decor paper Streetlight not treated with UF resin prior to MF resin
application

Figure 3.37: Edge image of normally treated Beech after pressing showing a high level of unfilled voids
below the surface
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Figure 3.38: SEM images of the edge of MF coated Streetlight showing the relationship between treat-
ment level and the proportion of unfilled voids below the surface of pressed paper, showing top to
bottom; no UF resin, deliberately under resinated and normal resin treatments.
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Figure 3.39: SEM image of the rough side of the untreated decor pa-
per Beech showing high filler content. The unfilled pores are more
symmetrical after pressing (Figure 3.32).

Figure 3.40: SEM images of the rough side of the untreated decor
paper Streetlight, showing high filler content. The unfilled pores are
more symmetrical after pressing (Figure 3.28).

Figure 3.41: SEM images of the rough side of the untreated decor
paper Black, showing very low filler content. The unfilled pores are
less symmetrical after pressing (Figure 3.31).

Figure 3.42: SEM images of the rough side of the untreated decor
paper Kraft, which has no filler. The unfilled pores are less symmetrical
after pressing (Figure 3.30).
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Figure 3.43: SEM image of the edge of Beech raw paper showing a heterogeneous distribution of filler
material resulting in a significant increase in pore sizes away from the surface of the paper.

Figure 3.44: SEM image of the edge of Folkstone Grey raw paper showing a homogeneous distribution
of filler material resulting in a more even distribution in pore sizes below the surface of the paper.
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3.3.5 Melamine distribution

3.3.5.1 Preliminary studies of Raman spectra of resins

Examination of UF resin impregnated discs after pressing showed that there was no flow of UF

resin once discs were cured in the oven before coating with MF resin. As expected cured and

uncured MF resin had strong Raman peaks at around 975cm−1 and at 676cm−1 (Figures 3.46

& 3.47). Raman spectra for cured and uncured UF resin were also obtained and there were no

peaks that coincided with the peaks at 975 or 675cm−1 (Figures 3.46 & 3.47). This finding is

in accord with those of Hill et al. (1984) who used Raman spectroscopy to characterize various

UF resins and model compounds and found no peaks near 975cm−1. The MF peak at 975

cm−1 was also used by Schnieder (1997b) in her study of melamine distribution in industrial

low pressure melamine impregnates. The results of her study are summarised in Section 3.2.9

In addition to characterising resins, three different raw papers, Storm, Streetlight and Black

were analysed using Raman spectroscopy. Figure 3.48 is the Raman spectra for Streetlight, a

very light coloured paper with very strongTiO2 peaks at 447 and 610cm−1, and Storm a darker

paper with strong carbon signals at 1328 and 1599cm−1 as well as the strongTiO2 peaks at 447

and 610cm−1. TheTiO2 peaks at 447 and 610cm−1 swamp the melamine peak at 675cm−1

but there is noTiO2 peak at 975cm−1. Therefore the detection of melamine in treated pressed

paper was based around the peak at 975cm−1.11 Raman analysis of Black paper, showed no

detectableTiO2 peaks and therefore this paper was not used in subsequent experiments.

3.3.5.2 Melamine distribution in treated and pressed paper

There was a significant interaction(p < 0.001)between position within the paper and level

of UF resin treatment on concentration of melamine detected in paper by Raman microscopy

(Figure 3.45). In papers with either no UF resin treatment or low levels of treatment there was

no significant difference in the concentration of MF resin at the surface and in the core of the

papers. In contrast, the concentration of melamine in the core of the papers was significantly

lower when the papers were pre-treated with a normal level of UF resin (Figure 3.45). This

suggests that MF resin flows away from the surface of the paper during pressing if the level of

saturation of paper with UF resin is below normal.

Figure 3.49 shows the spectrum for unsaturated (i.e.no UF treatment) Fog at the surface,

halfway to the centre and in the centre of the paper. Melamine was present throughout the

paper and its concentration is particularly high in the centre of the paper. With Fog which

had been pre-treated with a low level of UF resin, there was a reduction in the intensity of the

melamine peak toward the centre of the paper, but melamine could still be detected (Figure

3.50). In the case of paper treated with a normal level of UF resin, melamine was virtually

11In one instance it was possible to identify on the shoulder of theTiO2 peak at 610cm−1 the melamine peak at
675cm−1 (in Fog), however this peak was not used in any subsequent analyses.



§3.3 Results 71

Figure 3.45: Effect of treatment and position in the paper on the concentration of melamine in the
treated pressed paper.

undetectable away from the surface of the paper,i.e. it was only present on the surface (Figure

3.51). Similar trends were also observed for Streetlight (Figures 3.52, 3.53 & 3.54) and all

other resin impregnated and pressed papers analysed.
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Figure 3.46: Raman spectra for uncured MF and UF resins.

Figure 3.47: Raman spectra for cured MF and UF resins.

Figure 3.48: Raman spectra for untreated Storm & Streetlight raw paper
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Figure 3.49: Raman spectra for Fog paper samples treated with MF, but not subjected to a preliminary
UF resin treatment showing a strong melamine peak in the centre of the paper.

Figure 3.50: Raman spectra for Fog paper samples treated with MF, and a low preliminary UF treat-
ment showing detectable melamine in the centre of the paper.

Figure 3.51: Raman spectra for Fog paper samples treated with MF, and a normal preliminary UF
treatment showing no detectable melamine in the centre of the paper.
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Figure 3.52: Raman spectra for Streetlight paper samples treated with MF, but not subjected to a
preliminary UF resin treatment. Melamine is detectable at all positions in the paper.

Figure 3.53: Raman spectra for Streetlight paper samples treated with MF and a low UF preliminary
UF resin treatment. Melamine is detectable at all positions within the paper.

Figure 3.54: Raman spectra for Streetlight paper samples treated with MF and a normal preliminary
UF resin treatment. No melamine is detected away from the surface of the paper.
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3.4 Discussion

A strong relationship was established between level of UF resin treatment and the quality of the

MF coating on pressed low pressure paper laminates. No UF saturation and less than complete

UF saturation led to larger total numbers of unfilled pores (Figure 3.7) and a larger total area of

unfilled pores on the surfaces of treated pressed papers (Figure 3.9). These microscopic voids

were present on the surface of the paper after pressing. For these “defects” to be present on

the surface of paper, the MF resin would have had to migrate away from the surface either by

combining with the UF resin already present in the paper after the first stage of the treatment

process or by flowing into pore spaces not saturated with UF resin. MF resins are formulated to

flow during pressing prior to full cure in order to achieve the desired surface finish (governed

by the texture of the caul plate) so that during pressing MF resins have the potential to migrate

into voids (Pizzi, 1983a). In general it was also found that the amount of unfilled pores beneath

the surface of the paper was related to the level of UF saturation (Figure 3.11). This clearly

supported the first hypothesis in Section 3.1. There were exceptions to this, however, and in

some cases most notably for Beech, defect free coatings were observed in papers that were not

fully saturated with UF resin. This indicates that the structure of paper has a significant effect

on the level of defects in MF coatings on LPM panels.

Accordingly paper type had a significant effect on the presence of surface defects and

migration of MF resin in treated paper. Beech and Folkstone Grey had significantly lower total

numbers of unfilled pores than all other paper types tested (Figure 3.13). This was also the

case for the total area of unfilled pores (Figure 3.14). Folkstone Grey appeared to saturate and

coat better than the other papers tested and it had the lowest amount of defects. Conversely

Storm and Black had the highest level of defects and therefore it can be concluded that they did

not saturate as well as the other papers. These paper types showed a high frequency of unfilled

pores even with normal levels of UF saturation as shown in the third image in Figure 3.25.

Some papers that had lower levels of unfilled pores after pressing such as Alpine White

and Beech also had the highest amount of filler or ash content (Table A.2) and papers that

were more difficult to treat such as Storm, Black and Kraft had less filler. The papers with the

highest defects such as Black, Kraft, New England Elm, Storm and Streetlight (Figures 3.18,

3.19 & 3.20) also had the largest surface pores. This will be examined further in Chapter 8.

One paper type, Beech, behaved differently to all of the other papers. It had the lowest

number of unfilled pores (defects) on the surface (Figure 3.32 bottom) and had the highest level

of unfilled pores beneath the surface when normally saturated with UF resin. There appeared

to be less than complete saturation with UF resin but very effective surface coating with MF

resin. Raman spectroscopy confirmed that there was no melamine in the centre of the normally

UF saturated Beech. This suggested that the UF resin was able to prevent the migration of MF

resin into the centre of the paper, despite the fact that the paper was not completely saturated
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with UF resin and hence contained large numbers of voids in the centre of the paper. In all

other papers where there were voids in the centre of paper there was detectable melamine in

the core, and higher levels of unfilled pores on the surface, (this being related to lower levels

of UF saturation).

This behaviour was contrary to expectations, as the behaviour of the majority of the decor

papers was that they developed large numbers of defects only when there was less than com-

plete saturation of the paper by UF resin. Hence there was at least one exception to the hy-

pothesis proposed in the introduction to this Chapter. The SEM photomicrograph Figure 3.43

reveals that there is a heterogeneous distribution of pore sizes beneath the surface of Beech,

with very small sub-surface pore spaces just below both surfaces and larger pores towards the

centre of the paper. This appears to be caused by an uneven distribution of filler, which is

concentrated immediately below the surface of the paper. It is proposed that this distribution

of pore sizes may account for the anomalous behaviour of Beech during resin treatment. In

comparison a paper such as Folkstone Grey had a more even distribution of filler and pore

sizes throughout the paper (Figure 3.44) and also developed fewer defects, but had few if any

unfilled voids below the surface at normal levels of UF saturation.

Kent and Lyne (1989a,b) stated that “the rate-determining factors for penetration of liquids

into paper may be the distribution of divergence and convergence in pore wall geometry and

the presence of discontinuities.” Such a divergence occurs when a small pore connects with a

larger pore as observed in Beech. In this case one could expect a reduction in the interfacial

pressure as described by Kent and Lyne (1989a,b) resulting in a slowing of liquid flow without

any externally applied pressure. The paper may therefore have behaved like a “hard sized”

paper where normally hydrophobic additives are added to the surfaces of the paper at the dry

end of a paper machine (Biermann, 1996) to reduce the size of surface pores. Kent and Lyne

(1989a,b) explained that when water is introduced to the surface of a sized fine paper it fills the

surface voids in less than a millisecondi.e. they believed that the pores on the surface would

be predominantly convergent and would be filled rapidly. After filling the convergent surface

pores in the paper, the progress into divergent capillaries in the bulk of the paper was halted.

This aspect of fluid flow is dealt with in greater detail in Chapter 6.

The fact that the UF resin created an effective barrier in Beech to migration of MF resin was

unexpected. This observation does not support the hypothesis proposed above, and could lead

to an alternative hypothesis that in certain papers UF saturating resins create an impenetrable

barrier preventing MF resin migration and associated production of defects. However, in all

other papers there was a strong relationship between level of UF treatment and reduction in

surface defects in the MF coating. Therefore subsequent work in this thesis assumes that it is

necessary to achieve full saturation of paper with UF resin in order to prevent MF migration

and reduce the level of defects in the MF coating. The effect of filler on pore size and paper

structure on fluid flow is discussed in much more detail in Chapter 7.
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Raman microscopy provided evidence contrary to the suggestion (Schnieder, 1997b) that

MF resin combined with UF resin. Raman spectra of treated paper showed that with full UF

saturation there was little (if any) MF resin located in the centre of treated papers (in two papers

Fog & Streetlight there was no detectable melamine at all (Figures 3.51 & 3.54). With less than

complete saturation, MF resin was detected in the centre of papers (Figures 3.49, 3.50, 3.52 &

3.53). If MF resin had combined with UF resin then melamine would have been detected in

the centre of papers fully saturated with UF resin.

Raman microscopy was a useful technique to determine the final distribution of MF resin

in paper however it was not possible to use it in confocal mode with thick paper samples

due to the quenching of laser. Thus imaging using Raman microscopy had to be done on

specially prepared edge sections involving a large amount of sample preparation including

ultra-microtoming to ensure no contamination of the MF resin from the surface into the core

of the paper occurred. Thus the technique is not suitable for use in an industrial situation. It

may not be necessary however to examine the distribution of MF resin in order to measure the

quality of treated paper. Direct determination of surface voids on paper would be more practical

and could be done using an optical system with as little sample preparation as rubbing coloured

wax over the surface of the laminate and wiping off the excess. The wax would remain in the

unfilled voids on the surface giving a very good indication of the effectiveness of saturation

with UF resin and the quality of the MF coating.

Schnieder (1997b) suggested that Raman microscopy offered new opportunities to further

examine the distribution of MF resin in industrial paper laminates and this work confirms her

suggestion. Raman microscopy revealed trends in the distribution of MF resin in laminates

such as its presence or absence in the centre of paper, or changes in concentration from the

centre to the surface of paper. Schnieder (1997b) stated that where impregnates showed ev-

idence of melamine in the core, a mixing of UF and MF occurred during the impregnation

process. Such distribution of the resins, it was argued, could not be related to the structure or

porosity of the paper because melamine was found in the core of both compressed and open-

structured papers. The interpretation by Schnieder (1997b) that MF resins combine with UF

resin is rebutted as is her suggestion that the distribution of resins could not be related to the

structure or porosity of the paper (a very strong paper effect on the production of defects was

found in this chapter). The papers studied in this Chapter were both open-structured and com-

pressed and while there was a paper effect which is examined in greater detail in Chapters 4, 7

& 8 it was clear that the presence of melamine in the core of the paper was primarily a function

of the degree of saturation of UF resin during the first stage of treatment.

The results obtained here help to answer the following questions posed by Schnieder

(1997b) a) “Are melamine and urea separate phases? Urea in the core and melamine on the

edges; b) Do urea and melamine mix together during the second impregnation? and; c) Will

the liquid melamine resin penetrate the already solidified urea?” In answer to the first question,
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it was clear that, given effective saturation of paper by UF resin there was significantly less

melamine in the centre of the paper than on the surface. For example, in the case of papers

such as Beech and Fog, MF resin did not penetrate into the centre of the paper at all. This

suggested that melamine and urea are separate phases, and melamine only penetrated into the

paper when there was less than effective saturation with UF resin. Further evidence supporting

the suggestion that both UF and MF resins remained as separate phases was provided by an

experiment that showed that after UF resin was impregnated into samples of paper and sub-

sequently pressed, (before coating with MF resin and after the first stage oven), there was no

flow of the UF resin beyond the edge of the paper. Hence it can be concluded that if there

is effective saturation of paper with UF resin, MF resin penetration into paper appears to be

minimal, and the MF resin certainly does not combine with UF resin.

In answer to the second question posed by Schnieder (1997b), results also indicate that urea

and melamine did not mix during the MF coating stage when the paper was fully saturated with

UF resin. Findings here also answer the third question, as the presence of melamine away from

the surface of the paper appeared to be related to the effectiveness of UF resin saturationi.e.

if high levels of UF resin were applied to the paper there was no detectable melamine in the

core. Therefore the presence of solid UF resin probably acted as a barrier to the migration of

MF resin into the paper, the effectiveness of such a barrier being dependent on how effectively

the UF resin imbibed into the paper and blocked flow paths into the centre of the paper. Thus

it appears that MF resin could not penetrate cured UF resin.

The inadequate saturation of decor papers by UF resins and the redistribution of MF resin

away from the surface during pressing both involve flow of fluids in paper, either too little flow

in the case of the saturating UF resin, or too much flow in the case of the MF resin. Therefore a

more complete study of the fluid imbibition characteristics of the papers studied in this chapter

is described in the next chapter. In subsequent chapters the mechanisms of fluid flow in paper

as well as the factors affecting fluid flow in paper are explored.

3.4.1 Conclusion

The hypothesis proposed in the introduction to this Chapter that defects in the surface of LPM

panels after pressing are caused by inadequate saturation of papers by UF resin resulting in

the flow of MF resin from the surface into the unfilled voids in the paper needs to be slightly

modified. In the majority of cases effective saturation was necessary to significantly reduce

the level of defects in MF coatings on decor paper. However it was demonstrated in one

paper, Beech, that even though UF resin saturation was less than complete, it was sufficient

to prevent significant migration of MF resin from the surface thereby reducing the level of

surface defects. Thus an effective barrier of UF resin just below the surface could prevent MF

migration, however, this might be difficult to achieve in practice. Thus complete saturation of
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decor paper with UF resin is still required in the majority of cases to minimize surface defects

in the MF coating on LPM panels and work in the rest of the thesis is based on this premise.

The hypothesis that the type of paper influences the quality of the MF coating can be

supported by the results in this Chapter although in some cases there were interactions of level

of resin treatment and paper type on defects in the MF coating.



Chapter 4

Relationship between the physical

properties of decor papers and surface

defects in LPM overlays

An effect of paper type on level of surface defects in resin impregnated paper on MDF was

demonstrated in the previous chapter. The purpose of this chapter is to determine whether

this effect can be related to any of the standard measures of paper properties and also to the

imbibition performance of the papers.

A reconstructed image of an unfilled laboratory paper obtained using x-ray micro-CT.
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4.1 Introduction

One of the main aims of this thesis is to better understand the factors that affect the impreg-

nation of thermosetting resins into decor papers in order to improve the treatment process and

performance of the resin impregnated papers when they are pressed onto wood based compos-

ites.

A strong effect of paper type on the level of defects in MF coatings on decor paper was

observed in Chapter 3. The generation of such defects may be related to certain physical

characteristics of paper that influence the flow of resin into the paper. Accordingly the rate

of liquid imbibition of different decor papers should be related to generation of defects and in

turn the physical properties of decor papers.

There are many methods of measuring the physical and imbibition characteristics of decor

paper. They can be described in terms of their Gurley porosity (measure of air permeability),

Klemm wicking (rate of water movement in the machine and cross directionsi.e. in plane),

total resin uptake (g), bulk density (g/cm3 which includes void volume, Mark et al. (2002)),

paper weight (g/m2) and thickness (µm).

There is very little information in the literature, however, about the effect of these charac-

teristics on the performance of decor papers. Arledter (1957) showed how the capillary rise

of a solution in a paper (Klemm test) might give supporting evidence for the treatability of

an absorbent paper with aqueous solutions, and Verhoeff et al. (1963) used the Klemm test to

measure the velocity of capillary rise in papers subjected to different levels of beating. Seiler

(1957) looking at penetrability examined the saturation of kraft papers for resin impregnation

and concluded that rate of penetration on its own does not define the overall impregnating and

saturating qualities of paper. Neither he or others have looked at the relationship between the

saturating of paper and the quality of the finished products, especially the relationship between

resin saturation, subsequent resin flow and defects. Cussons (1997) stated that the Klemm test,

although widely used did not relate well to resin penetration. A detailed review of work on

measuring fluid flow into paper was given in Chapter 2.

It was therefore important to develop an accurate method of determining the uptake of

liquid into decor papers. The majority of applications of papereg. printing require liquid

penetration resistance rather than enhanced penetration properties. Thus most tests of liquid

penetration into paper have been developed to assess degree of sizing; or water resistance of

paper (Biermann, 1996). As such these test methods are designed to measure penetration of liq-

uids into paper over periods of many minutes rather than fractions of a second. However, resin

penetration into decor paper occurs rapidly (<2 s) (Cussons, 1997) and hence test methods

described in the literature and reviewed in Chapter 2 may not accurately assess the suitability

of decor paper for resin treatment. Arledter (1957) in his study of the penetration of resins and

oils into absorbent papers stated “for most of their history the paper makers were concerned
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with trials to reduce the unwanted natural absorbency of paper. The invention of blotting paper

probably started the paper industry to devote time to improve the natural ability of cellulose

fibers and the paper structure to absorb water or ink, and the industry is still working on this

problem”. The development of test methods for measuring resin uptake in decor papers has re-

ceived little attention and better test methods are required to measure rates of liquid penetration

into decor paper over short time scales.

The aim of the work described in this chapter is to determine whether standard properties

measured by paper manufacturers to describe decor papers could be related to the level of

defects that were found to occur in treated papers (Chapter 3). Secondly, to develop a new

method for quantifying liquid imbibition into decor papers and determine whether it would be

a better guide to the performance of decor papers than those currently used.

4.2 Materials and methods

4.2.1 Sampling

During examination of the physical characteristics of the different decor papers, it was essential

to correctly identify them by replicate number and location with each large sheet. A represen-

tative number of samples were required to comprehensively sample all of the papers tested.

The order of sampling and experimentation was randomised. All samples were obtained just

prior to experimentation from paper rolls stored in a conditioning room at 20± 1◦C and 50±

5% r.h. Samples were transferred in zip-lock bags and handled with cotton gloves or tweezers

to eliminate contamination of samples with skin oils.

As paper is very heterogeneous, due to variation in fibre and filler properties, (Biermann,

1996) and structure (Bristow, 1986a; Cutshall, 1990) it was essential that representative sam-

ples were obtained. Before sampling, three full rounds (approximately 8m2) was unwound

from each roll of the different decor papers and discarded to ensure that uncontaminated paper

was used for experimentation. For each decor paper there were two replicates, each obtained

from a separate roll of paper. 10 samples were obtained from each of the rolls. In the case

of one of the paper types (Black), which was supplied as a 1200 mm wide roll, two groups

of 5 samples were obtained 240 mm apart along each row and 600 mm between each row.

The remaining papers were supplied as 1800 mm wide rolls. The distance between samples

within a row for these paper types was 365 mm, and the distance between each row was 600

mm. Samples were selected from each replicate using a random number generator, the number

referring to the type of paper that was selected. All samples were identified using replicate

(roll no.) and a number denoting their sampling position and paper type. The sampling scheme

that was used is shown in Figure 4.1. The size of the test sample depended on the type of test,

and is fully described in the relevant sections below. Where a published test method was used,
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however, the sample size was in accordance with the test method.

Figure 4.1: Sampling diagram for all paper tests including the imbibition test.

4.2.2 Standard paper testing

The following basic paper tests were carried out; Klemm liquid wicking in the machine direc-

tion, Klemm liquid wicking in the cross-direction, resin demand as used by industry to predict

total resin pickup, Gurley porosity, thickness and density.

4.2.2.1 Klemm testing

This test was based on TAPPI T441 om-90 and measures the distance a liquid (usually water)

wicks up a strip of paper in 10 minutes. It is a test of liquid imbibition of paper that is still

commonly used by both paper makers and end users. The sample size for the Klemm test

method was 200 mm x 15 mm (TAPPI T402 om-88). Samples were placed in a beaker of

water as shown in Figure 4.2. They were left in the test solution for 10 minutes, removed and

the distance the water had moved up the strip of paper was measured in millimetres (mm).
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Figure 4.2: Klemm testing apparatus

Klemm tests were repeated (as above) for each paper using diethylene glycol, (which has

a similar viscosity to UF resins, as tested by a No. 4 Flow cup) as the test liquid.

4.2.2.2 Resin demand

This is a test method commonly used by manufacturers of decor papers (and modified by

industry) to estimate the total amount of UF and MF resin a new decor paper will absorb. It

estimates resin uptake from the water absorbency of a paper. 100cm2 samples (circles) of

paper were obtained using an AP Lever 3M paper circle cutter and weighed to the nearest

0.001 g. The sample was dipped in clean tap water at 25± 1◦C for 30 seconds. Each disc was

carefully removed from the water using tongs and excess water was wiped off using two glass

rods acting as squeeze rollers. The disc was re-weighed and uptake of water calculated. Resin

demand was calculated as follows (Equn. 4.2):

UF = ((ww−dw)∗1.2sg∗0.8(se))∗sc− ((ww−dw)∗0.8(se)∗0.38(d)) (4.1)

UF = UF resin demand, ww = wet weight, dw = dry weight, sg = specific gravity of resin, se

= scraping efficiency of the glass rods, sc = solids content of the resin, d = the effect of drying
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4.2.2.3 Gurley porosity

The Gurley porosity test was carried out according to TAPPI test method T-460. The Gurley

porosity test measures the time taken to the nearest 0.1 s for 100 mL of air to pass through a

paper sample, 6.45cm2 (1 in2) in area. The Gurley test is widely used in the paper industry for

determining the porosity (air permeability) of paper, and it is also used as an indirect indicator

of the ease of penetration of paper by liquids.

4.2.2.4 Thickness and density

Thickness of paper samples was measured on the same samples used for testing Gurley poros-

ity. A sample measuring 50 mm x 62 mm was cut from the paper using a small guillotine. A

British Indicators micrometer (a standard paper testing tool) was used to measure the thickness

of each corner of the sample to the nearest micron, and the weight of the samples was deter-

mined using a digital laboratory balance accurate to 0.001 g. Density was calculated as (air

dry mass (g))/(air dry vol.cm3).

4.2.3 Measuring rate of saturation

4.2.3.1 Inverted Bottle Test

The inverted bottle method used in this thesis to measure rate of saturation of paper was similar

to that developed by Cussons (1997). 125 mL of diethylene glycol at 25◦C is placed into a 250

mL test bottle. Liquid Turquoise dye (Oxford Chemicals) was added to the diethylene glycol

(DEG) at a concentration of 0.3% w/w to assist in the visual determination of the endpoint,

as this proved to be difficult to assess when using undyed DEG particularly with the lighter

coloured papers. To minimise the effect of variation in temperature and viscosity on liquid

uptake, test bottles and the test liquid were stored in a water bath at 25◦C prior to use. The

rough sides of the paper were orientated toward the liquid in accord with the orientation of

paper in a commercial treater (Figures 1.1 & 1.2). All experiments and visualisations on paper

in this thesis were carried out using the rough (wire) side of the paper. The rough side of the

paper was identified by observing the fibre raise on the paper surface using a Nikon 8x hand

lens. Saturation time was determined by stopwatch and started when the bottle was inverted,

and finished when the endpoint,i.e. total saturation, was reached. This was estimated visually

as being the point when the whole disc area was saturated.

4.2.4 Relative reflectance method

As UF resin penetrates decor paper from one side to the other during treatment in an industrial

paper treater in a process that lasts only a few seconds, a new method was developed to simulate

the initial penetration of resin at the pre-wetting roller of a treater. The test method also had
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to avoid the weakness of the ambiguity of end point determination inherent in visual based

methods. The principle behind the method developed, the “relative reflectance technique” was

that the amount of light reflected off the top surface of paper changes as liquid was imbibed

through and from the bottom surface of the paper sample. Changing light reflectivity was

measured against a constant to ensure that even the most subtle changes in reflection resulting

from liquid penetration over very short time intervals were detected and measured. Materials

such as squares of Teflon, thin shimming steel as well as paper correcting fluid were tried as the

constant standard, however, an 8 mm stainless steel washer that had been sanded perfectly flat

and sand blasted to provide even and constant reflection of light proved to be the most suitable

material to use as a reflectance constant (Figure 4.4). The use of a stainless steel washer as a

reflectance constant resulted in a much more accurate determination of the start and the end

point, (when saturation was deemed to be complete). The former was important in determining

whether or not a “wetting delay” (Bristow, 1967) existed for decor papers. A detailed review

of optical methods for determining rate of liquid imbibition was presented in Chapter 2. Most

of the methods developed were used to determine sizing efficiency and therefore only measure

rates of liquid uptake by paper over longer time scales.

The paper sample with the washer in the middle held with tweezers was placed into a Petrie

dish containing DEG. The video recorder and video timer were started and not stopped until

at least 10 seconds after it appeared that saturation had been completed. This was necessary

because full saturation could not be determined by eye alone.

Between 20 and 50 images were obtained for each sample depending on their rate of liq-

uid uptake. Reflectance values were saved as an ASCII delimited text file which was then

converted into a graph of reflectance ratios versus time. Data measured in seconds were trans-

formed into natural logarithms. The end point had to be determined first by plotting an asymp-

tote and smoothing data points after full saturation had been achieved. This enabled time from

first contact of the paper with the saturating liquid to the endpoint to be calculated. Thex axis

on the graph (Figure B.1 in Appendix B) was corrected back to zero by subtracting the time in

seconds from when the sample was placed on the DEG. The saturation ratio was normalised

by first offsetting the point of full saturation to zero by subtracting they value of each data

point from the final reflectancey value when complete saturation was achieved. This final re-

flectance value at full saturation was calculated by averaging out the last fewy values in Figure

B.1. The data then was divided by the difference of the value of the reflectance ratio of dry

paper by the offset. This resulted in reflectance values from 1 for dry paper to 0 when the pa-

per was completely saturated. This can be seen by comparing the axes in the graphs (Figures

B.1 & B.2), which were obtained from the same samples. The data analysed were the rate to

50% saturation and rate to 95% saturation (calculated by dividing the time in seconds by 100

times the thickness in microns). These parameters were calculated as 50% and 95% of the total

change in reflectivity from dry paper to totally saturated paper (the time when the reflectance
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value on the y axis in Figure B.2 was 0.5 and 0.05, respectively). This approach minimised

the effects of potential error in end point determination on measured values,i.e. small differ-

ences in saturation near the end point occurred over longer time intervals. Full details of the

development and use of the relative reflectance method are attached as Appendix B.
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Figure 4.3: Experimental set-up for relative reflectance measurements

Figure 4.4: Images showing position of CCD camera in relation to paper samples in the relative re-
flectance measurement apparatus and closeup of paper sample in temperature controlled bath showing
“standard” washer.
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4.2.5 Statistical analysis of data

Statistical analysis of data was undertaken to determine the effect of paper type on density, ash

content, thickness, Gurley porosity, Klemm test (both in machine and cross direction), resin

demand, inverted bottle saturation test, and rates to both 50% and 95% saturation. The number

of runs in each experiment was 10 samples within a replicate. There were two replicates with

9 different paper types,i.e each experiment had 180 different observations.

The design of all of the experiments involved factorial principles where the aim was to

examine the effect of the fixed factors (paper type), on the response variables listed above.

Random effects that were identified included; between roll variation, between row variation

(machine direction effects), between column variation (cross direction effects) and the sam-

pling position within the paper sheeti.e. row; column effect.

Analysis of variance (ANOVA) for a randomised block design was used to analyse data as

the units were divided into homogeneous blocks (replicates) and the treatments were allocated

at random within the blocks. Some data were transformed into natural logarithms to ensure

that they complied with the assumptions of ANOVA,i.e. normality with constant variance.

Statistical computation was carried out using Genstat 5 (Lawes Agricultural Trust).

The factorial design of the experiment allowed data to be averaged across non-significant

(p > 0.05) effects thereby giving the experiment greater precision. Significant results are

presented graphically and individual means can be compared using least significant differences

(p < 0.05). In addition significant effects are tabulated.

To determine how effectively the standard paper or the saturation tests predicted the ten-

dency of decor papers to develop defects during LPM pressing, linear regression analyses were

carried out on paper properties and measures of imbibition (explanatory variables) and defects

in decor papers (response variables), measured in Chapter 3. Regression analyses were carried

out using Genstat 5 (Table 4.1). Where regression analyses were used, the probability (pvalue)

is given along with a percentage variance accounted for by the regression equation 4.2 where

rms= residual mean square andtms= total mean square.

100(1− (rms)/(tms)) (4.2)

When expressed as a proportion rather than a percentage, this statistic is called the adjusted

R2; and has the advantage over the statisticR2 (the squared coefficient of correlation, often used

in regression) in that it takes account of the number of parameters that have been fitted in the

model. The regression equations are also annotated onto each of the graphs.
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4.3 Results

Results are presented in 3 sections; a) heterogeneity of paper and the relationship between the

physical characteristics of paper and suitability of decor papers for LPM, b) heterogeneity of

paper and the relationship between rates of imbibition of decor papers and their suitability for

use in LPM panels and c) relationship between physical characteristics of paper and imbibition

of liquids. Table 4.1 summarises the significant relationships between all experimental factors

and response variables including liquid imbibition and pressing performance.

Table 4.1: Significant effects of, and interactions between the physical characteristics of papers, the
level of defects and the imbibition characteristics of decor papers.

Experimental Response
factors variables

Klemm Klemm Resin Saturation rate 50% Total area Total no. of Average
MD MD demand Inverted bottle saturation of unfilled of unfilled unfilled

DEG test method rate pores pores pore area

Density *** ** * *** * *** * *
Gurley ** * ** *** NS NS NS *

Klemm MD x x *** *** NS * * NS
Klemm DEG *** x *** * NS NS NS NS

MD
Resin x x x NS NS * *** NS

demand
Inverted x x x x NS NS NS NS

bottle test
50% x x x x x * * NS

saturation
(reflectance)

95% x x x x NS NS NS NS

(* = p < 0.05, ** = p < 0.01, *** = p < 0.001, NS = not significant p> 0.05)

Areas marked x indicate tests not carried out due to similarityi.e. the reversal of response and experimental factors and due to

the very close relationship between Klemm in the machine and cross directions with both water and DEG.

4.3.1 Heterogeneity of paper and the relationship between the physical charac-
teristics of paper and suitability of decor papers for LPM

4.3.1.1 Density

There were significant differences(p< 0.001)in the densities of the decor papers tested (Figure

4.5). The densities of the papers varied from 1.04g/cm3 for Alpine White to 0.71g/cm3 for

Kraft. There was a significant relationship between density and ash content(p < 0.001)of the

papers and the regression equation explained 73.6% of the variance (Figure 4.6). The density

of the papers increased with increasing ash content. Figure 4.7 shows a significant inverse

relationship between density and thickness (p = 0.003) with the regression equation explaining
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40.2% of the variance. Clearly ash content is a better explanatory variable for density than

thickness (Figure 4.6).

There was a significant inverse relationship(p < 0.001) between total area of unfilled

pores in pressed treated LPM decor paper and the density of the papers (Figure 4.8). The

regression equation explained 48.1% of the variance. There was a significant relationship(p

= 0.03) between the number of unfilled pores and the density of the decor papers, but the

regression equation only accounted for 21.5% of the variance (Figure 4.9). Increasing paper

density resulted in a decrease in the total number of unfilled pores in the decor papers after

pressing. There was a significant relationship(p = 0.003)between density and the average

area of unfilled pores (Figure 4.10), with the regression equation explaining 40.9% of the

variance. In accord with the results for total area of unfilled pores and numbers of pores, there

was a reduction in average pore area with increasing paper density.

Figure 4.5: Densities of the papers tested, the error bar (LSD) represents the least significant difference
(p < 0.05).
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Figure 4.6: Relationship between density and ash content.

Figure 4.7: Relationship between density and thickness.
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Figure 4.8: Relationship between paper density and total pore area.

Figure 4.9: Relationship between paper density and total number of unfilled pores.
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Figure 4.10: Relationship between paper density and the average area of unfilled pores.

4.3.1.2 Paper thickness

There were significant differences(p < 0.001)in the thickness of the decor papers tested (Fig-

ure 4.11). The thickness of the papers varied from 70µm for Alpine White and Beech to 300

µm for Kraft. There was a significant relationship between the total area of unfilled pores and

paper thickness (p = 0.003), the relevant regression equation explaining 39.8% of the variance

(Figure 4.12). There was a significant relationship(p = 0.001)between the number of unfilled

pores and paper thickness, the regression equation explaining 50.5% of the variance (Figure

4.13). If this analysis had included Kraft the relationship would have been much weaker(p

= 0.04) with the explained variance reduced to 18.5%. There was no significant relationship

between the average unfilled pore area and the thickness of paper.
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Figure 4.11: Thickness of the papers tested measured on a log scale.

Figure 4.12: Relationship between paper thickness and total area unfilled pores (on a log scale).
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Figure 4.13: Relationship between thickness of paper and total number of unfilled pores (measured on
a log scale).
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4.3.1.3 Gurley porosity

There was a significant effect of paper type(p < 0.001)on Gurley porosity (Figure 4.14).

There was a very strong relationship between paper density and Gurley porosity(p < 0.001).

The regression equation developed explained 84.2% of the variance (Figure 4.15) and showed

that with increasing density the air permeability of decor papers decreased. There was also

a significant relationship(p < 0.001)between Gurley porosity and ash content (Figure 4.16).

Regression analysis indicated that 56.7% of the variability in Gurley value was explained by

variation in ash content. There was a negative correlation between ash content and the air

permeability of the decor papers.

There was a significant relationship(p = 0.004)between the average area of unfilled pores

in papers after pressing and the Gurley porosity of the papers (Figure 4.17) with the relevant

regression equation explaining 38.4% of the variance. The average area of unfilled pores de-

creased as the Gurley porosity value increased (air permeability decreased). There was no

significant relationship between total number of unfilled pores or the log of total unfilled pore

area and Gurley porosity.

Figure 4.14: Effect of paper type on Gurley porosity.



§4.3 Results 98

Figure 4.15: Effect of density on Gurley porosity.

Figure 4.16: Effect of ash content on Gurley porosity.
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Figure 4.17: Relationship between Gurley porosity and average area of unfilled pores.

4.3.2 Heterogeneity of paper and the relationship between fluid imbibition and
suitability of decor papers for LPM

4.3.2.1 Klemm test

When the Klemm test was conducted with water there was a significant difference(p < 0.001)

in the wicking of water between paper types (Figure 4.18). Higher density, high ash, papers

such as Alpine White, Beech and Folkstone Grey wicked up the smallest amount of water

followed by New England Elm, Storm, Streetlight, Fog, Black and Kraft. Black and Kraft are

the lowest density papers. In accord with the results for water wicking there was a significant

difference(p < 0.001)in the amount of DEG taken up by different paper types (Figure 4.19),

but less DEG was taken up, irrespective of paper type (compare Figures 4.18 and 4.19). There

was also less variation in the wicking of DEG compared to the wicking of water. The Klemm

test was performed over a period of 10 minutes which might be insufficient for differences in

the wicking of DEG by papers to develop.

There was a very strong relationship(p < 0.001)between the results of the Klemm test

carried out in the machine (MD) and cross-directions (CD) when water was used as the test

liquid. The regression equation developed explained 99% of the variance (Figure 4.21). The

relationship was not as strong(p < 0.001)when DEG was used (Figure 4.22), the regression

equation only explaining 63.7% of the variance. MD permeability was 0.73 x CD permeability,
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i.e. the degree of anisotropy was greater with DEG. The relationship was considered strong

enough, however, to use results of Klemm tests in the machine direction for further analyses.

There was a significant relationship(p < 0.001)between the wicking of water and DEG

between the different papers (Figure 4.20) with the variance explained by the regression equa-

tions being 72.4%.

There was a significant positive relationship(p = 0.01)between the wicking of water in the

machine direction measured using the Klemm test (Figure 4.23) and the total area of unfilled

pores. The regression equation explained 30.6% of the variance. There was also a significant

positive relationship(p = 0.03)between the wicking of water in the machine direction and the

number of unfilled pores (Figure 4.24). The regression equation explained 24.1% of the vari-

ance. With the inclusion of Kraft paper there was no significant relationship between the two

variables. There was no significant relationship between the wicking of DEG in the machine

direction measured using the Klemm test and the total area of unfilled pores, the total number

of unfilled pores or the average unfilled pore area.
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Figure 4.18: Effect of paper type on the wicking of water in the machine direction as measured by the
Klemm method

Figure 4.19: Effect of paper type on the wicking of diethylene glycol in the machine direction as mea-
sured by the Klemm method
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Figure 4.20: Relationship between Klemm with diethylene glycol and the standard Klemm test in the
machine direction.
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Figure 4.21: Relationship between Klemm tests carried out with water in the machine and cross direc-
tions.

Figure 4.22: The relationship with Klemm tests carried out in the machine and cross directions with
diethylene glycol.
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Figure 4.23: Relationship between Klemm MD and total area of unfilled pores.

Figure 4.24: Relationship between Klemm MD and number of unfilled pores.
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4.3.2.2 Resin demand

There were significant differences in resin demand (p< 0.001)between the different paper

types (Figure 4.25). There was a significant relationship(p = 0.01)between resin demand and

total unfilled pore area with the regression equation explaining 28.7% of the variance (Figure

4.26). Papers with increased resin demand tended to have a greater total area of unfilled pores

after pressing. There was a significant relationship(p < 0.001)between the resin demand of

papers and total number of unfilled pores (Figure 4.27) The regression equation between the

two variables explained 52.9% of the variance. Papers with a higher resin demand tended to

have more unfilled pores after pressing, in accord with results shown in Figure 4.26. There

was no significant relationship between the resin demand of paper and the average unfilled

pore area after pressing.

Figure 4.25: Effect of paper type on resin demand.
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Figure 4.26: Relationship between resin demand and total area of unfilled pores.

Figure 4.27: Relationship between resin demand and total number of unfilled pores.
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4.3.2.3 Inverted bottle test

There was a significant difference(p < 0.001)between paper types with the saturation times

of different paper types as determined by the inverted bottle test (Figure 4.28). Beech and

Black saturated fastest followed by Alpine White, Fog, Folkstone Grey, New England Elm

and Storm, Kraft and Streetlight. The data is untransformed and expressed in seconds. When

results are corrected for paper thickness (s/100µm) the ranking of papers completely changed,

however the effect was still significant(p < 0.001)(Figure 4.29).

When uncorrected saturation data was plotted there was no difference between papers such

as Fog and Folkstone Grey. Correcting data for thickness resulted in a significant and substan-

tial decrease in saturation time for Folkstone Grey compared to Fog. Furthermore, differences

between Alpine White and Beech and Black became more pronounced when corrected data

was used for the comparison. Alpine White, Folkstone Grey and Streetlight saturated slowly.

Saturation values for Black and Beech when uncorrected for thickness were similar, but when

data was corrected for thickness the rate of saturation of Beech was significantly and substan-

tially lower than that of Black. Kraft saturated slowest on the basis of uncorrected data, but

when corrected for thickness it saturated fastest. All subsequent imbibition data in the z direc-

tion is corrected for thickness and is presented as seconds per 100 microns (s/100µm), which

is close to the average thickness of decor papers.

There was no significant relationship between the rate of saturation determined by the

inverted bottle test and the number of unfilled pores, total unfilled pore area and average area

of unfilled pores.
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Figure 4.28: Effect of paper type on the rate of saturation of DEG using the inverted bottle test, uncor-
rected for thickness (s).

Figure 4.29: Effect of paper type on the rate of saturation of DEG using the inverted bottle test, cor-
rected for thickness (s/100 µm).
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4.3.2.4 Rate of saturation to 50% & 95% using relative reflectance method

There was a significant effect of paper type on rate of imbibition to 50%(p = 0.02, Figure

4.30) and rate of imbibition to 95%(p = 0.03, Figure 4.31) when results were corrected for

thickness. There was no relationship however between these two measures of saturation. Fog,

Kraft and Storm were significantly slower than other papers to saturate to 50%. Beech, Black,

New England Elm and Storm were significantly slower than the other papers to saturate to

95%. Interestingly Beech was one of the fastest papers to saturate to 50% and the slowest to

saturate to 95%.

There was a significant relationship(p = 0.033) between the rate of imbibition to 50%

saturation and total area of unfilled pores (Figure 4.32). The regression equation explained

20.7% of the variance. As the rate of saturation (50%) decreased, the total area of unfilled

pores increased after pressing. There was a significant relationship between total number of

unfilled pores and rate of imbibition to 50% saturation(p = 0.011). The regression equation

explained 29.7% of the variance (Figure 4.33). As the rate of saturation to 50% decreased, the

total number of unfilled pores increased after pressing. There was no relationship between the

rate of saturation to 50% and average pore area. There was no relationship between the rate

of saturation to 95% and any of the measures of defects in resinated pressed paper, total pore

area, total number of pores, or average pore area.
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Figure 4.30: Effect of paper type on time taken to saturate to 50% of the decor paper sample as deter-
mined by the relative reflectance method corrected for thickness. Measure is seconds/100µm measured
on a log scale.

Figure 4.31: Effect of paper type on time taken to saturate to 95% of the decor paper sample as deter-
mined by the relative reflectance method corrected for thickness. Measure is seconds/100µm measured
on a log scale.
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Figure 4.32: Relationship between the rate of imbibition to 50% saturation and the log of total number
of pores.

Figure 4.33: Relationship between the rate of imbibition to 50% saturation and the log of total number
of pores.
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4.3.3 Relationship between the imbibition of liquids into decor papers and their
physical characteristics

4.3.3.1 Klemm tests

There was a significant relationship(p < 0.001)between Klemm MD using water and density

(Figure 4.34), the regression equation explained 73.5% of the variance. Clearly, reducing paper

density resulted in increasing levels of wicking of water. There was a relationship between

wicking of DEG (Klemm) MD and density(p = 0.005)(Figure 4.35) however it was not strong

with the regression equation only explaining 36.1% of the variance, but again the trend was

similar to that observed with water.

There was a significant relationship(p = 0.002)between water wicking in the machine di-

rection measured using the Klemm test and Gurley porosity. The regression equation explained

42.1% of the variance. These findings suggest, as might be expected, an inverse relationship be-

tween the Gurley value and the wicking of water,i.e, the greater the air permeability the larger

the wicking of water (Figure 4.36). There was a significant relationship (p = 0.03) between

wicking of DEG (Klemm) in the machine direction and Gurley porosity with the regression

equation explaining 21.7% of the variance (Figure 4.37). This relationship was similar to that

observed for the water-based Klemm tests.

Figure 4.34: Relationship between the Klemm test with water in the machine direction and density, the
higher the density the lower the Klemm wicking of either water or DEG.



§4.3 Results 113

Figure 4.35: Relationship between the Klemm test with DEG in the machine direction and density, the
higher the density the lower the Klemm wicking of either water or DEG.

Figure 4.36: Relationship between Klemm MD and Gurley porosity, without Kraft showing that in-
creasing air permeability increases Klemm wicking.
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Figure 4.37: Relationship between Klemm MD with DEG and Gurley porosity showing a similar trend
to that of water where with increasing air permeability the Klemm wicking increases.
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4.3.3.2 Resin demand

There was an inverse relationship(p = 0.01)between density and resin demand (Figure 4.38).

The regression equation explained 30% of the variance. There was a statistically significant but

not very strong relationship(p = 0.007)between resin demand and Gurley porosity with the

regression equation explaining 33.2% of the variance (Figure 4.39). Resin demand decreased

as the Gurley values of the paper increased.

There was a significant relationship(p< 0.001)between resin demand and Klemm wicking

of water in the machine direction, the regression equation explaining 82.9% of the variance

(Figure 4.40). Increasing Klemm wicking resulted in increasing resin demand.

There was a significant relationship(p< 0.001)between resin demand and Klemm wicking

of DEG in the machine direction with the regression equation explaining 74.4% of the variance

Figure 4.41 shows the same trend as for the uptake of water. If Kraft was removed from the

analysis, however, there was no relationship between the two variables.
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Figure 4.38: Relationship between resin demand and density.

Figure 4.39: Relationship between resin demand and Gurley porosity.
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Figure 4.40: Relationship between resin demand and wicking of water in the machine direction using
the Klemm test.

Figure 4.41: Relationship between resin demand and wicking of DEG in the machine direction using
the Klemm test.
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4.3.3.3 Rate of saturation to 50% using relative reflectance method

There was a significant relationship between rate to 50% saturation and paper density(p =

0.017) the regression equation explaining 26.6% of the variance (Figure 4.42). Increasing

density increased the imbibition rate to 50% saturation. There was no relationships between a)

the rate to 50% saturation and the Klemm wicking of water or DEG in the machine direction,

b) between the rate to 50% saturation and the rate of saturation as determined by the inverted

bottle test, c) between the rate to 50% saturation and resin demand of the papers and d) between

air permeability as measured by the Gurley method and rate of imbibition to 50%.

Figure 4.42: Relationship between log of the rate to 50% saturation as measured on a log scale with
density.

4.4 Discussion

4.4.1 Relating measures to defect levels

It was shown in this Chapter, as expected, that there was considerable heterogeneity in the

physical characteristics of decor papers. Measures of these physical characteristics are used

commonly by both manufacturers and end users of decor papers to predict the suitability of the

papers for resin treatment and pressing. These characteristics were found here to be weakly

related to the pressing performance of the decor papers. There were relationships between den-

sity, thickness and Gurley porosity and the presence of defects in decor paper but the strength
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of the relationships are not sufficient to accurately predict performance of decor paper in an

industrial situation.

It was demonstrated in Chapter 3 that defects in LPM panels were caused by two fluid

flow problems; firstly flow of MF resins into unfilled voids in the resinated decor papers during

pressing and secondly by insufficient flow of UF resins into the paper during the impregnation

process. It was shown here that there was considerable heterogeneity in the imbibition charac-

teristics of the different decor papers. The pressing performance of decor papers was found to

be related, by varying degrees to the physical and imbibition characteristics of the paper.

The presence of defects in resinated pressed decor papers was related to their density.

Higher density papers showed fewer defects than lower density papers. Density was the only

factor commonly used by manufacturers and end users which was related to all three measures

of surface defects in MF coatings,i.e. total unfilled pore area, total number of unfilled pores

and average unfilled pore area. Density of paper is a function of the proportion of inter-fibre and

intra-fibre void space present after manufacture (Biermann, 1996; Mark et al., 2002). Higher

density papers would have a lower proportion of void space than lower density papers. From

this one could infer that papers with less void spacei.e. smaller pores would generate less

defects. However, density and hence the proportion of void space in a paper is primarily a

function of two characteristics, firstly how much inorganic filler has been added to the papers

and secondly how effectively are the fibres crushed in the paper making process. The addition

of filler would increase density by replacing air in void spaces and so reducing the volumes

of the void spaces in the paper structure available to imbibing resins. Thinner or calendared

papers would also be expected to have smaller void spaces than thicker and uncalendared

papers. However from the data in this chapter it is not possible to determine what characteristic

of densityi.e. the addition of filler or how much a paper is pressed affected the generation of

defects because the highest density papers such as Alpine White, Fog and Beech not only

had high ash contents, but were also calendared. The effect of the addition of filler on paper

structure is dealt with at length in Chapter 7 and in particular the effect of fillers on decor

papers is detailed in Chapter 8.

One of the most widely used measures of the efficacy of decor papers is Gurley porosity

(air permeability). It is a measure of air resistance of paper and can be used as an indirect

measure of absorbency by liquids such as oils and water, but is most useful as a control test

for machine production (TAPPI, 1992). The air permeability measured by Gurley was found

here to be closely related to density and ash content however it was only weakly related to the

generation of defects in pressed LPM panels. Specifically Gurley porosity was found to be

inversely related to average unfilled pore area. This is still consistent with the relationship of

density to defects.

Another widely used method to determine the efficacy of decor papers is the Klemm test

which measures fluid flow (water) in thex & y directions (notwithstanding the fact that im-
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pregnation of resins occurs in thez direction). There was a consistent relationship between

the wicking of water and DEG in the machine direction and it was shown that papers with

increased rates of fluid flow in thex & y directions showed greater total area and greater num-

bers of unfilled pores in decor papers after pressing. Imbibition rates in thex & y directions

measured using the Klemm test were also shown to be related to density. Higher density papers

wicked up less water and DEG and tended to be the ones with the fewest unfilled pores.

Eklund and Salminen (1987) related air permeability to fluid flow and introduced the con-

cept of the counter pressure of air on fluid uptake by paper. They suggested that air trapped

in the pore system of paper could cause a high counter pressure that would restrict penetration

of liquids into paper over short time scales. Furthermore they suggested that the counter pres-

sure was so high that water penetration at low pressures must take place as a result of other

mechanisms other than that caused by surface tension forces. The Gurley value is a measure of

specific air resistance and therefore at higher Gurley values (lower air permeability) one would

expect reduced rates of fluid imbibition. This was the case here. The wicking of both water and

DEG measured with the Klemm method with the results followed the same trend. Higher den-

sity papers had lower wicking distances which appears to accord with the findings of Eklund

and Salminen (1987). However when looking at flow in thezdirection with saturation to 50%,

increasing density resulted in anincreasedrate of imbibition. This finding puts into question

the validity of using fluid imbibition measures in thex & y dimensions for predicting flow in

thez dimension which is the dimension for the flow of resin during decor paper treatment. In

addition there was no relationship between the Gurley value and the rate of saturation to 50%.

This raises significant doubts about the value of using air permeability to predict fluid flow in

thezdirection.

Similar trends were observed for the overall resin demand of a paperi.e. the total capac-

ity of decor papers to absorb a liquid. Papers that absorbed more liquid were the ones that

developed higher levels of unfilled pores after pressing and also were the ones that had lower

densities.

When rate-based measures of fluid flow in thezdirection were investigated the relationship

between presence of defects in treated paper and rate of fluid flow was not so clear. There were

significant differences in rates of saturation as determined by the inverted bottle test when

corrected for thickness, however the presence of defects was not related to rate of saturation.

This was related in part to the shortcomings of this visually based method and specifically to

problems in accurately determining the end point of saturation.

There was, however a clear relationship between imbibition rate to 50% saturation mea-

sured by relative reflectance and the amount of defects present in pressed resinated paper. This

is one of the most significant findings of this chapter. Interestingly there was no relationship

between level of defects and imbibition rate to 95% saturation. This is illustrated by Beech

which saturated very rapidly to 50% and then very slowly to 95%. It had a heterogeneous
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distribution of filler as shown in Chapter 3 (Figure 3.43), resulting in very small pores on and

just below the surface and much larger pores toward the centre of the paper. According to Kent

and Lyne (1989a,b) who discussed in detail the effects of divergent pores on fluid flow, pores

close to the surface would saturate rapidly and the larger pores in the centre of the paper would

saturate more slowly. Other papers that were slow to saturate to 95%, Black, New England

Elm and Storm also had the largest surface and subsurface pores as can be seen in the relevant

SEM images of the raw papers (Figures 3.18 & 3.19). The papers that saturated fastest to both

50% and 95% appear to have a much narrower distribution of pore sizes and in particular had

smaller pores on and below the surface. This suggests that the structure of paper influences the

performance of decor papers and in particular the nature of the sub-surface void space. This is

examined in more detail in Chapters 7 & 8. Yamazaki and Munakata (1993) also examined the

effect of paper structure on liquid absorption. They developed a liquid absorption model which

included tortuosity and mean pore radius, and found that a reduction of pore volume brought

about by calendering decreased the porosity and the mean pore radius (on the surface of pa-

per), but increased the tortuosity resulting in a slowing of imbibition. This contradicts Kent

and Lyne (1989a,b) and results here which showed that higher density papers, with smaller

void volumes saturated faster.

There was no relationship between the rate to 50% saturation and the Klemm wicking of

water or DEG in the machine direction. This is in contrast to Winspear (1979) who found a

moderate correlation between capillary rise using the Klemm test and transverse penetration

rate for unsized papers. As mentioned above this puts into question the use of imbibition

measures in thex & y dimensions predicting flow in thezdimension. This finding is noteworthy

as the Klemm test is probably the most commonly used method of determining the efficacy of

decor papers.

Ketoja et al. (2001) also found that density affected the rate of fluid flow. They measured

the variation in light transmittance values of saturating paper using a high speed CCD in order

to determine the rate of imbibition of liquids from the inter-fibre pore space into fibres. They

found that as density and total fibre surface area increased, the rate of fibre sorption increased.

The amount of water in the inter-fiber pores was sorbed faster if paper density was high. They

concluded that it takes only a few microseconds for water to fill the topmost pores of an un-

coated paper. This was followed by much slower water sorption into fibers, which lasted over

a few seconds. The importance of fluid flow into fibres at short time scales is discussed in

Chapter 6.

An interesting outcome of the development and use of the relative reflectance method was

that both Black and Kraft were the only papers to exhibit a wetting delay, both taking 0.1 s

& 0.3 s respectively to register changes in reflectance on the top surface of the paper (Figures

B.1a & c & B.2a & c). The concept of a wetting delay was introduced by Bristow (1967) and

subsequently referred to by others (Hoyland, 1977; Pan et al., 1988; Kent and Lyne, 1989a,b;
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Lepoutre, 1990). They thought that the wetting delay was caused by the time taken for large

open pores on the surface of paper to fill up with liquid. Both Black and Kraft had very low

inorganic ash contents and had very open pore structures, however the delay for Black and

Kraft is believed to be an artifact of the reflectance test method. Even though wetting may

have taken place immediately upon contact of liquid with the paper, it took a short period of

time before any changes in reflectance could be measured on the other side of the papers. Black

has a high carbon black content and Kraft is a thick unbleached paper resulting in both papers

being strongly opaque. Thus the initial wetting on the bottom of the paper would not have

resulted in any change in reflectance on the top surface of those papers. This supports Eklund

and Salminen (1987) who refuted the idea of a wetting delay.

4.5 Conclusion

There are three main findings from this Chapter. The first is that of all the measurements

used by paper makers to determine the suitability of decor papers for the production of LPM

only density was found to be related to the level of defects produced as a result of inadequate

treatment. Therefore it seems reasonable to conclude that the “paper effect” in fact is related

to the density of the decor papers. From this Chapter it was not possible to determine exactly

whether the density effect was related to fibre density or whether papers had been calendared or

not, or the amount of filler. However as the correlation between ash (filler) content and density

was so strong it seems reasonable to conclude that the density effect was probably related to

the amount of filler in a paper. This will be looked at in much more detail in Chapters 7 & 8.

Secondly, measures of air permeability, and fluid flow in thex ydimensions were unable to

predict fluid flow in thezdimension which casts doubt on whether they are useful for predicting

the performance of decor paper, yet they are commonly used.

Thirdly there was a reasonable relationship between the rate of imbibition to 50% satura-

tion and the production of defects. Given this relationship and the fact that it was shown that

defects in LPM panels were caused by two fluid flow problems, the remainder of this thesis

will deal with the issue of the kinetics of fluid flow in paper.

Finally, the relative reflectance method developed here is an improvement over existing

test methods in giving an indication of the performance of decor papers.



Chapter 5

Mechanisms of Liquid Imbibition

The proposed mechanisms of liquid imbibition in porous media are presented in this chapter. In

particular the role of surface tension and pore morphologies on imbibition in idealised systems

will be presented. Although simplified as two-dimensional porous systems all the relevant

mechanisms are demonstrated without the confounding effect of the structural complexities of

paper.

Cryo-SEM image of fluid imbibing into tissue paper.
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5.1 Introduction

In Chapter 4 relationships between the physical characteristics of decor papers and their per-

formance during liquid impregnation were examined. These were also related to the pressing

performance of the decor papers detailed in Chapter 3. It was shown that different decor pa-

pers imbibed resin like liquids at different rates. Additionally, the physical characteristics of

decor papers commonly used by industry did not bear any real relationship to either the imbi-

bition performance of papers or their performance in the actual short cycle laminating pressing

operation.

Qualification of the effect of different liquids on the rate of liquid imbibition into model

porous media has been studied without the complexity of real paper structure (Rye et al., 1966;

Dong and Chatzis, 1995; Senden et al., 2000). The purpose of the models used was to ob-

serve droplet penetration and rate of imbibition into a porous structure that had a generalised

topology. There was no direct geometric similarity with paper as it was an attempt to under-

stand phenomena associated with droplet penetration into well defined systems. Overall liquid

penetration rate, surface and sub-surface spreading rates could be determined from the use of

these micromodels. This approach allowed the direct study of the liquid-type effect without

the complications of using real paper.

Therefore the aims of the work described in this chapter were to determine the effect sur-

face tension and contact angle have on the rate of penetration, and spread in simple isotropic

porous networks by looking at different classes of liquids ranging from simple liquids to a

variety of surfactant solutions using simple micromodels. The purpose of the physical models

was to observe droplet penetration and rate of imbibition into a porous structure that had a gen-

eralised topology. More specifically the microscopic detail of fluid advance could be studied

at the pore-scale.

Theoretical models of imbibition could be tested experimentally. The Lucas-Washburn

equation (Lucas, 1918; Washburn, 1921) is still the most widely used model to describe fluid

flow in paper (equation 5.1), whereγ is the surface tension,r is the pore radius,t is time,

µ the kinematic viscosity andl is the distance penetrated. It is a purpose built equation that

has been used for decades to describe fluid flow in paper. It assumes capillaries of cylindrical

cross-section, where surface tension drives flow, and that surface energy is measured on flat

surfaces. Most importantly however, it ignores capillary morphology and connectivity. It is

therefore proposed that it is inadequate in fully describing fluid penetration even in simple

model systems.

l2 =
γrt cosθ

µ
(5.1)

Rye et al. (1966) in the study of wetting kinetics on rough surfaces stated that a rough

surface can be thought of as a three-dimensional network of connected, open capillaries and can
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be viewed as a network of contiguous valleys through which liquid is drawn by capillary forces.

They constructed a network of systematically varying straight V-shaped grooves machined into

copper sheet. They showed experimentally for a wide range of surface tension to viscosity

ratios, groove angles and depths that the spreading length of liquids in open surface V-grooves

follows a square root of time dependence with the same basic form as for closed cylindrical

capillaries. They concluded that the basic Washburn approach was fully capable of capturing

the essential interdependence on surface chemistry involved in capillary flow in open triangular

grooves.

Lenormand et al. (1983); Lenormand and Zarcone (1984) presented results for the time

scales of the mechanisms of flow through the roughness of surfaces, along the edges of ducts,

or in the bulk of the capillaries during the displacement of one fluid by another in a two dimen-

sional etched network. They presented four mechanisms of meniscus displacement (Figure

5.1); A. piston flow, B. snap-off, and two types of imbibition C & D. They described “piston-

type” motion where the frontal meniscus completely occludes the capillary and the wetting

fluid (typically water) displaces the non-wetting phase (typically air) when the pressure be-

comes smaller than the capillary pressure of the capillary. “Snap-off” is where initially the

frontal meniscus does not completely occlude the capillary, and the interface moves along the

edges as long as its configuration remains stable. This wetting fluid continues to move along

the capillary as films which eventually completely line the capillary wall, separating the air

from the wall. The result is the creation of an unstable filament of the air. This spontaneously

thins and “snaps-off”, disconnecting the air, as is shown in Figure 5.1. The first imbibition

mechanism,I1, is where the air is only in one capillary and when the meniscus from the three

adjacent filled ducts no longer contacts the walls of the capillary an instability appears and the

air is rapidly displaced. The second type of imbibition,I2, is where the air is in two adjacent

capillaries and once the meniscus reaches the corner of the two adjacent capillaries containing

the air, it collapses and the wetting fluid rapidly displaces the air in the two capillaries.
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Figure 5.1: Different imbibition mechanisms as described by Lenormand et al. (1983) A) piston dis-
placement, B) snap-off, C) I1 imbibition and D) I2 imbibition. The most important of which in the
micromodels used in this study being piston flow and snap-off as depicted in A & B.

5.2 Materials and methods

5.2.1 Experimental design

Micromodels used were similar to those in Senden et al. (2000). The micromodels were smooth

and of uniform surface energy. The choice of a compressible material of the model was im-

portant as a glass plate was placed over the model and compressed onto the model to ensure

no leakage of the wetting fluid into adjacent pores. Prospective liquids had to be suitable for

video microscopy and the use of dyes to aid contrast in visualisation was favoured. Once cho-

sen their surface tension was measured and their macroscopic contact angle on a flat sample of

the micromodel material determined.

Isopropanol/water combinations were used as surface tensions and contact angles could be

manipulated by changing their relative concentrations and it was possible to get similar contact

angles to the liquids with surface active solutions for direct comparison. The micromodels were

a 2D representation of a simple porous system where a drop was represented by a disc of liquid,

a surface a simple linear boundary and the porous network by a flat mono-continuous maze.

The purpose of this experiment was to determine the effect of different liquids on penetration

into simple micromodels and thus simulate the action of a freely falling liquid drop impacting

on a porous substrate.
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5.2.2 Determination of contact angle

The determination of contact angle of all the liquids used was done by recording fluorescence

enhanced video microscopy of a droplet of the test liquid on a flat surface of the same material

as used to make the micromodels. Sodium fluorescein (Sigma-Aldrich), was added to all liq-

uids to improve contrast between the liquid and micromodel. This had no discernable effect on

contact angle (see Table 5.1). Under UV light in a darkroom, profiles of the drop were recorded

using a CCD camera (Cohu model 5152) and an image enhancer (Model 305 Colorado Video

Inc).

Table 5.1: Static advancing contact angles and their corresponding air-liquid surface energy.

Liquid type Contact angle Air liquid surface energy
in aqueous solution θa mJ/m2

31.5% isopropanol 52 24.7
67% isopropanol 45 21.8
84% isopropanol 35 21.4
89% isopropanol 30 20.1
94% isopropanol 25 19.8
100% isopropanol 15 21.6
Teric* N1 & N9 @ 0.08% 52 27
Zonyl** @ 0.1% 30 18.3
Zonyl @ 0.2% 30 18.1

5.2.3 Determination of surface tension

The surface tension was measured using the Wilhelmy Plate method (Wilhelmy, 1863; Adam-

son, 1960). It is one of the most popular techniques to measure surface tension and is the

force required to detach an object of known cross-section from the surface of a liquid. In

this case paper was suspended from a balance in a Langmuir Minitrough (Loebl, 1985) into

a liquid. As the liquid level is lowered and the maximum weight on the balance is recorded,

noting the breadth of the slide (b) and the liquid surface tension (γ). Adamson (1960) states

this measurement to be accurate to around 0.1% (Equation 5.2).

Wtot = Wslide+2bγ (5.2)

A contact angle of zero was assumed, as was the absence of fibre swelling in the paper. Samples

30 x 10 mm of Whatman No. 1 Filter paper were used, with about 20 ml of the test liquid

placed in a Petri dish beneath the paper strip. Table 5.1 lists the surface tensions of all the

liquids tested. Isopropanol was chosen over ethanol as the Marangoni effect was negligible,

particularly in the confined space of the micromodel where the vapour pressure was high.
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5.2.4 Use of micromodels

The fabrication of the micromodels used was described in Senden et al. (2000). The three

isotropic model types used were one dimensional square section parallel capillaries about 0.5

mm per side, two dimensional crossed capillary network with the same vertical capillaries as

the 1D model (i.eorthogonal to the inlet) and with capillaries parallel with the inlet about 7

mm apart and two dimensional crossed capillary network rotated 45◦ to the inlet (Figure 5.3).

No attempt was made either to introduce any heterogeneity into the models, or in any way to

represent the structure of paper. The micromodels were inclined at 35◦ to encourage all fluids

to flow into the capillary network especially for liquids with higher surface tension to penetrate

the models. The surface of the micromodels themselves were smooth and of uniform surface

energy. The choice of a compressible material of the model was important as a glass plate was

placed over the model and compressed onto the model to ensure no leakage of the wetting fluid

into adjacent pores. .

The silicone moulding material was hydrophobic. The simple wetting fluids were solutions

of isopropanol (Aldrich), which had a contact angle of about 15◦, which could be altered by

the addition of water (see Table 5.1). It also had low volatility and readily dissolved the sodium

fluorescein. The surfactant based solutions were Teric N1 & N9 (Orica Pty Ltd.) both nonionic

surfactants nonylphenol ethoxylates(C9H19C6H4(OCH2CH2)nOH) and Zonyl FSO-100 a Dow

Chemicals nonionic fluorosurfactant(RfCH2CH2O(CH2CH2O)xH). The concentration of the

Teric based surfactants was similar to that used in the UF resin mix in Chapter 3 and in an

industrial treater and the concentrations of Zonyl were 0.1% & 0.2%.

A 0.05 ml volume of fluorescent liquid was injected with a 1.0ml syringe into the space

above the network. Removing the syringe caused the liquid disk to migrate towards the net-

work. The process was recorded in a dark room under UV light. The high contrast afforded

by the fluorescence meant that with simple thresholding of the video image the map of liquid

distribution could be obtained as a function of time down to 40 ms resolution. Each frame was

time stamped to 1 ms. All video data was digitised through a PCMIA card at 30 fps. Figure 5.2

shows the complete experimental setup. The image dimensions were 240 x 180 pixels and the

image format was 8-bit monochrome. Using Igor Pro v. 3.1.4 (Wavemetrics Inc.) the digital

video was thresholded and the pattern of liquid distribution was mapped automatically frame

by frame. The algorithm recorded the evolution with time of the apparent contact angle, lateral

spread of the drop along the surface, below the surface and overall depth of penetration in the

network. Finally a graph containing information on penetration rate, surface spreading and

apparent contact angle, subsurface spreading and the resultant distribution of the penetrating

liquid (see Figure 5.5) as a function of time was obtained. The graph details actualt on the

lower axis, normalisedt on the upper axis to enable comparisons between models, and the

penetration rate on the graphs is in reduced units of droplet volume att/initial droplet volume
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(see Figure 5.4). Rate of imbibition was the depth of penetration into the micromodel divided

the time taken.

5.2.5 Experimentation

The experimental design was based on two replicates for each liquid type in each micromodel.

The order of models used in both replicates was, simple capillary, then cross capillary and

finally diagonal cross capillary. The order of liquids used was randomly determined for each

experiment (replicatex micromodelx liquid). The starting contact angle of 52◦ was selected

as the highest angle as liquids with higher contact angles did not move through the micro-

model at the angle of incline selected. Some treatments were terminated after 30 minutes if

it became apparent that penetration was not proceeding. The properties studied in this experi-

ment were time and rate of imbibition of different types of liquids into three different isotropic

micromodels described above.

Figure 5.2: Complete setup of micromodelling experiments showing A: timer, B: video enhancer, C:
video recorder, D: inclined platform, E: UV light source, F: micromodel and G: CCD camera.
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Figure 5.3: Photographs of the actual models used; Top: Capillary micromodel, Middle: Cross capil-
lary micromodel, Bottom: Diagonal micromodel. Scale bar represents 10 mm.
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5.2.6 Statistical analysis of data

The design of the experiment involved factorial principles where the aim was to examine the

fixed effects of liquid type including contact angle and surface tension and type of micromodel

on the response variables of droplet spread on the surface and subsurface, and penetration rate.

Some data were transformed to a natural logarithm form to ensure that it complied with the

assumptions of ANOVA,i.e. normality with constant variance. Statistical computation was

carried out using Genstat 51. Random effects identified were variation within micromodels

(position of droplet placement on the micromodel) and replicate (micromodel to micromodel

variation). The design of experiment led to maximum precision for treatment effect (type of

liquid) within each model. All data were analysed using REML (residual maximum likelihood)

Variance Components Analysis because the treatments were not fully orthogonal. A General

Linear Mixed Model Analysis was conducted to determine the degree to which contact angle

and surface tension alone could explain variation in imbibition rates. In addition, all video

images were subjectively analysed for liquid behaviour.

5.3 Results

5.3.1 One-dimensional model

Results for a typical experiment for the one-dimensional model is shown in Figure 5.5 and

all results summarised in Figure 5.4. The penetration rates were scaled approximately ast1/2.

Solving fort using the Lucas-Washburn equation (Eqn 5.3) showed very similar results to what

was observed experimentally for simple wetting fluids except those with higher contact angles

where the predicted rates were slightly higher than those experimentally derived.

t =
l2µ

γr cosθ
(5.3)

With isopropanol based wetting fluids, the rate varied with the amount of water in the

solution, the higher the water content the lower the rate of imbibition, relating to contact angle

and surface tension as will be shown later with the mixed linear model analysis. Spreading

of the drop on the surface of the model was minimal and subsurface spreading coincided with

surface spreading. The rate of imbibition was constant for the simple wetting fluids.

The general observation of sub-surface penetration was that imbibition occurred more

quickly at the centre of the droplet as evidenced by Figure 5.5. Also noticeable with the im-

bibition of simple wetting fluids was the advancing of the bulk liquid by flow in typically one

or two corners of the capillary. This advanced film flow was very small in magnitude but was

affected by the concentration of water in the isopropanol such that the higher the concentration

1Lawes Agricultural Trust
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of water, the less the flow in the corners in advance of bulk flow.

The pattern of imbibition of a surfactant based fluid was completely different from that

of the simple isopropanol based wetting fluids even with similar contact angles. Firstly, the

rates of imbibition were much slower and were defined by a stick/slip advancement of the

piston displacement down the pore as can be clearly seen in Figure 5.6 and briefly referred to

by Senden et al. (2000). Also the partial wetting of the pores in the corners was much more

pronounced than with the simple wetting fluids. This partial wetting was much faster than the

piston flow and can be observed in the insert of Figure 5.6. The penetration rate for surfactant

based fluids was one order of magnitude lower than that predicted by the Lucas-Washburn

equation.
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Figure 5.4: Differences in imbibition rate between: top: simple wetting fluids and bottom: surfactant
based wetting fluids for one-dimensional capillary micromodels observed experimentally and using the
Lucas-Washburn equation. Error bars lsd, p = 0.05
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Figure 5.5: Measurement of imbibition into a one dimensional capillary network with 31.5% iso-
propanolθ = 52◦. Inset is a thresholded image of the solution immediately as the drop impacts and
the final fluid distribution with the model. Surface and sub-surface spread is in mm and drop area and
spread have a normalised scale of 0-1 where 0 is the minimum value and 1 the maximum.

Figure 5.6: Measurements of a one dimensional capillary network with the surfactant Zonyl at 0.1%
θ = 30◦ including actual thresholded image of the solution in the micromodel showing preferential
imbibition down the pores at the edge of the droplet as well as partial pore filling in advance of piston
flow. Also shown is snap-off occurring at the bottom of the left hand capillary which would fill to the
surface and cause the droplet to spread on the surface.
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5.3.2 Two-dimensional models: capillaries aligned with inlet

Results for simple isopropanol based fluids imbibing into the two-dimensional models with

capillaries aligned with inlet (cross capillary model) are summarised in Figure 5.7. The main

result is that imbibition rates are slightly slower than predicted by the Lucas-Washburn equa-

tion, especially for fluids with higher contact angles. The difference was due to the time taken

for the fluid to pass all the discontinuities (“snap-off”). This compared with the close ap-

proximation found with the predicted values for the one-dimensional capillaries when using

the Lucas-Washburn equation. With lower contact angle fluids, the penetration rates scaled

approximately ast1/2, however, with decreasing isopropanol content, the predicted rate over-

estimated actual rates, the difference being the time taken for the fluid to pass a discontinuity.

For a liquid to pass a discontinuity snap-off had to occur which was then followed by anI2
imbibition event (Figure 5.1) as the liquid imbibed across the lateral capillaries. This is seen in

Figure 5.8 (inset). As a result penetration intermittently stopped at these discontinuities which

can be clearly seen in Figure 5.9. The Lucas-Washburn equation could not have predicted

this. Figure 5.8 shows a typical plot of a simple liquid (containing isopropanol) penetrating the

two-dimensional cross capillary micromodel. From Figure 5.7 it can be seen that the contact

angle effect was more substantial than with the one dimensional micromodel. There was also

a greater rate of reduction of imbibition with higher contact angles and a greater difference

between the calculated and actual penetration rates.

Results for surfactants in the imbibing fluid can be seen in Figures 5.10 & 5.11 where the

longer penetration times for surfactant based liquids were evident even with similar contact

angles to those of the simple fluid combinations. Note again the thresholded image of the

imbibing surfactant showing preferential imbibition at the edges of the droplet as compared

with the simple wetting fluid where clearly the penetration was more pronounced from the

centre of the droplet. As occurred in the 1D micromodels film flow with the simple wetting

fluids was much less pronounced than with the surfactants and was not at all evident at higher

concentrations of isopropanol.

With simple wetting fluids snap-off occurred in discrete sections less than the full width

of the penetrating drop and always near the centre (Figure 5.8). With surfactant based fluids

snap-off occurred over the full width of the droplet starting at the edges of the lateral pore

and moved towards the centre very rapidly, with penetration starting at the edge of the lateral

pores directly underneath the edge of the droplet (Figure 5.11). Film flow which was very

apparent with surfactant based fluids could go back up an unfilled pore after snap off had

occurred filling a lateral pore resulting in piston flow up through the same pore. There was no

sub-surface spreading with the simple wetting fluids, however with the surfactant based fluids

there was slight sub-surface spreading due to the mechanism just described.

There was a clear trend both with type of surfactant and concentration of the Zonyl surfac-
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tant in the two-dimensional models capillaries aligned with inlet. At the same concentration,

the rate of imbibition with Zonyl was at least three times that of the Teric surfactants and at

the higher concentration, there was an order of magnitude difference in the rate of penetration,

compared to the Teric based surfactants.

5.3.3 Two-dimensional models: capillaries not aligned with inlet

Results for the two-dimensional model: capillaries not aligned with inlet (diagonal capillary

model) with pore inlets at 45◦ to the surface of the model are summarised in Figure 5.12.

Figure 5.13 shows a typical plot of a simple wetting fluid containing isopropanol penetrating

the two-dimensional diagonal micromodel. Similar to the two dimensional models where the

capillaries were aligned with the inlet, the Lucas-Washburn equation gave a reasonable ap-

proximation of the rate of flow of isopropanol/water solutions at lower contact angles however

at higher contact angles it significantly overestimated flow rates (Figure 5.12). With surfac-

tant solutions it predicted rates nearly three orders of magnitude greater than that observed

experimentally showing that the equation was not able to take into consideration any complex-

ity in the models used, especially with surfactant based fluids. The large error bars observed

in the prediction of rate using Lucas-Washburn for surfactant based solutions were based on a

variation in the actual length of imbibition within some surfactant treatments and that some liq-

uids only penetrated a small distance into the diagonal micromodel. This caused a significant

variation in the value of”l” when using the Lucas-Washburn equation.

From Figure 5.12 it can be seen that the effect of increasing contact angle with the iso-

isopropanol based solutions was far greater for the diagonal micromodel than for the other two

micromodels in that there was a greater reduction of rate of imbibition with increasing contact

angle.

The pattern of penetration into the micromodel was only symmetrical with pure isopropanol

(Figure 5.13). As the concentration of isopropanol was reduced and with all surfactant based

solutions there was a marked skew in the distribution of the penetrating liquid (Figure 5.14)

which showed more rapid penetration on the side of the droplet where the contact angle was

lowest. Where skewed penetration occurred, snap-off occurred at the bottom of the penetration

area irrespective of liquid type. With the diagonal micromodels there was very little evidence

of any film flow ahead of the bulk piston type flow with any of the penetrating fluids. The

effect of surfactant type and concentration was greatest with the diagonal micromodel. Only

one of the Teric based solutions actually penetrated the model and it was substantially slower

than the fluid made from an equivalent concentration of Zonyl. There was a large increase in

rate of imbibition with an increase in the concentration of Zonyl to 0.2%.

For this model as with the other 2D model the overall imbibition rate was primarily de-

termined by the slowest or rate limiting mechanisms which was snap-off. However unlike the
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other 2D model there was no evidence ofI1 or I2 imbibition mechanisms (Lenormand et al.,

1983) in the diagonal 2D model either with the simple wetting fluids or with surfactant-based

imbibition liquids.

The significant reduction in rates of imbibition of the non-aligned compared with the

aligned models is due to the fact that with the aligned models the films can spread much

further (up to 7 mm) before reaching a vertical discontinuity enabling film thickening to occur.

This as has been described is followed by snap-off then piston flow rapidly filling that section

of the capillary. However with the non-aligned model the film can only spread about 1 mm

before reaching a discontinuity not allowing much film thickening to occur. This of course

would limit the probability of snap-off.
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Figure 5.7: Showing the difference in imbibition rate between top: simple wetting fluids and bottom:
surfactant based wetting fluids for two-dimensional cross-capillary micromodels observed experimen-
tally and using the Lucas-Washburn equation, error bars lsd p = 0.05.
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Figure 5.8: Measurements of a two-dimensional cross-capillary micromodel using 100% isopropanol
(θ ≃ 15◦). Inset is a thresholded image of the solution illustrating the pattern of fluid movement.

Figure 5.9: Measurements of a two-dimensional cross-capillary micromodel using 31.5% isopropanol
(θ ≃ 52◦) showing the times where penetration rate is actually zero while films spread and thicken prior
to snap-off when the liquid front jumps the discontinuity.
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Figure 5.10: Measurements of a two-dimensional cross-capillary micromodel using 0.1% Zonyl (θ≃

30◦) showing image of imbibing liquid.

Figure 5.11: Measurements of a two-dimensional cross-capillary micromodel using 84% isopropanol
(θ ≃ 35◦) showing image of imbibing liquid.
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Figure 5.12: Showing the difference in imbibition rate between top: simple wetting fluids and bottom:
surfactant based wetting fluids for two-dimensional diagonal micromodels observed experimentally and
using the Lucas-Washburn equation, error bars lsd p = 0.05.
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Figure 5.13: Measurements of a two-dimensional diagonal micromodel using 100% isopropanol (θ≃

15◦) showing image of penetrating liquid and it’s symmetrical distribution.

Figure 5.14: Measurements of a two-dimensional diagonal micromodel using 0.2% Zonyl (θ≃ 30◦)
showing image of penetrating liquid and it’s asymmetrical distribution1.
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5.3.4 Explaining rates of fluid imbibition into micromodels

Using a Restricted Maximum Likelihood (REML) Variance Components Analysis, time as a

function of length of imbibition was analysed. There was a significant interaction between

micromodel and treatment (p< 0.001) (Figures 5.15 & 5.16). These graphs show that with

increasing isopropanol content the imbibition rate increased. However, the use of surfactant

based fluids with similar contact angles significantly reduced the imbibition rates as had been

previously shown. The chart shows that at the lowest concentration of isopropanol (at a con-

tact angle of 52◦) there was a significant difference between the imbibition rates for the one-

dimensional capillary micromodel and both of the two-dimensional micromodels, there be-

ing no difference between the two-dimensional micro-models. For the remaining isopropanol

solutions there was no significant difference between the one-dimensional capillary and two-

dimensional cross capillary micromodels. Overall penetration rates were significantly slower

(p < 0.001) with the diagonal micromodel with the largest differences in the mid range con-

centrations of iso-isopropanol. At 100% isopropanol there was no difference in imbibition

rates between any of the models. When surfactants were used however, substantially different

responses occurred. With the one-dimensional capillary micromodel there was no difference

with type of surfactants used only their concentration. However with the two-dimensional

cross capillary and diagonal micromodels there was a significant effect caused by both the

type and concentration of the fluorosurfactant Zonyl. Interestingly at the higher concentra-

tion of 0.2% there was no difference between the one-dimensional and two-dimensional cross

capillary micromodels, however there was a substantial difference with the two-dimensional

diagonal micromodel.



§5.3 Results 144

-6

-4

-2

0

2
Lo

g 
of

 im
bi

bi
tio

n 
ra

te
 c

m
/s

26242220
Surface tension mJ/m^2

31.5% PrOH

67% PrOH

84% PrOH

89% PrOH

94% PrOH
100% PrOH

0.08% Teric

0.1% Zonyl
0.2% Zonyl  Capillary

 'Cross capillary'
T  'Diagonal capillary'

Error bars lsd p = 0.05

Figure 5.15: Plot showing effect of liquid type and associated surface tension with imbibition rate for
all micromodels.
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Figure 5.16: Plot showing effect of liquid type and associated contact angles with imbibition rate for
all micromodels.
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A general linear mixed model analysis was carried out to try to determine the degree to

which contact angle and surface tension could explain the variation in imbibition rates over

all micromodels. While contact angle (p< 0.001) and surface tension (p< 0.001) explained

a considerable amount of the variation in imbibition rates there was still unexplained factors

affecting rates of imbibition as explained by the magnitude of the remaining between treatment

variation after removing the linear effects of contact angle and surface tension. This was most

clearly demonstrated by the difference in imbibition rates between surfactant based and sim-

ple wetting solutions of similar contact angles. From the model, contact angle was better in

explaining variation in imbibition rates than did surface tension. As contact angle and surface

tension are normally very closely related, this effect could have been due to the fact that the

data was pooled over all models for analysis. In addition the complexities of the surfactant

based solution with the more complex models could also have added to this result.

5.4 Discussion

In using isotropic micromodels the complexity of the structure of paper was removed, and

this simplified the identification of the effect of liquid contact angle and surface tension on

imbibition. In addition, the examination of the mechanisms of fluid flow as a function of

channel morphology was undertaken. Using the linear mixed model analysis it was shown that

as the Lucas-Washburn equation predicted, both surface tension and contact angle were highly

significant in determining the rates of imbibition into porous networks. There was, however,

a considerable amount of variation in imbibition rates that could not be explained by either

surface tension or contact angle (given that viscosity of all the treatment liquids was almost the

same). This unexplained variation in imbibition rates could be explained in part by the effect

of fluid flow at discontinuities which was dealt with at length by Lenormand et al. (1983); Kent

and Lyne (1989a). In addition, the presence of surfactants affected imbibition rate as will be

discussed below. Note that the discontinuities present in the model system are considerably

less complex than those found in actual paper, which only further demonstrates the weakness

of using the Lucas-Washburn equation in this system.

The results clearly showed that in some cases the Lucas-Washburn equation gave area-

sonableapproximation of flow rates with thet1/2 relationship, particularly with simple wetting

fluids. It is reasonable only to the extent that the small size of the networks precluded measure-

ments of very large areas. This was particularly the case with the one-dimensional model and

with strongly wetting fluids in the regular two-dimensional model. For poorly wetting liquids

and where there was an element of complexity in the porous systems, the Lucas-Washburn

equation overestimated flow rates. This was due to the fact that in more complex systems, the

rate of flow down a capillary was much faster than where a discontinuity was encountered.

This was because the rate of film spreading and thickening prior to snap-off was much slower
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than the piston flow down a capillary.

Also demonstrated was that imbibition mechanisms even in simple porous networks were

not always in the form of piston or bulk meniscus flow (Lenormand et al., 1983). This was also

well demonstrated with the imbibition of surfactant based fluids. This was due to the fact that

the rate of flow of these surfactant solutions was not constant, being limited by the diffusion of

the surfactant to the wall of the capillary. This depletes the surfactant molecules at the surface,

and results in penetration slowing down until more surfactant molecules diffuse to the surface.

This was described by Elftonson and Strom (1995); Tiberg et al. (2000); Ridgway and Gane

(2002) who showed that the rate of imbibition is limited by the rate of replenishment of sur-

factant molecules at the liquid/vapour interface and results in a stick/slip imbibition behaviour.

This was in contrast to simple wetting fluids where vapour phase adsorption occurs prior to the

formation of precursor wetting films and results in a more constant rate of fluid flow.

With two-dimensional models the differences between imbibition rates of simple and sur-

face active liquids were much more marked and the differences between actual flow rates and

those predicted by Lucas-Washburn were even greater. With surfactant based solutions the

penetration of the droplet occurred from the edge of the droplet and with the simple fluids

from the middle. This could be explained by the fact that displacement down pores at the

edge of the droplet was far greater than in the middle of the droplet as these pores were only

partially occluded and the initial flow was by partial wetting through films. Additionally the

greater surface area meant more surfactant was available to diffuse to the 3-phase line. These

films occurred in the corners of the capillary pores and this film flow was much faster than any

piston flow observed. In some instances, partial wetting went down the full length of the pore,

sometimes down all four corners then into a corner of an adjacent pore and up to the surface

of the pore (Figure 5.6). This then would cause the droplet on the surface of the network to

spread to that pore. The films would then thicken and snap-off filling the capillary. The dif-

ference between the predicted rate using Lucas-Washburn and the observed experimental data

for surfactant-based liquids was very significant, the calculated imbibition rate averaging one

order of magnitude faster than that observed experimentally. The only clear trend was that at

the higher concentration of 0.2%, Zonyl based solutions had the fastest penetration rates, there

being no significant differences between the Teric and Zonyl surfactants at the same concen-

tration.

There was no wetting delay (Kent and Lyne, 1989a; Bristow, 1986b; Lyne and Aspler,

1982) observed with any liquid in any of the micromodels. Therefore, the results concur with

Eklund and Salminen (1987) who rejected the concept of a wetting delay as penetration down

capillaries with all solutions occurred as soon as the disc of liquid contacted the capillaries.

This is shown in Figure 5.5 where it can be seen that surface contact angle immediately reduced

after time zero when the liquid contacted the capillaries. In addition, it can also be seen that

spread below the surface began immediately, obviously simultaneously with drop penetration.
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5.5 Conclusion

Although thet1/2 dependency of rate seems universal, it has been demonstrated that even in

simple pore networks the main parameters of the Lucas-Washburn model do not satisfacto-

rily explain fluid imbibition rates overall. Therefore, in more complex random porous media

such as paper the Lucas-Washburn approach seems poorly predictive. Thus armed with an

understanding of pore-scale imbibition mechanisms, the following chapter is devoted to the

exploration of the kinetics of fluid flow in paper.



Chapter 6

Mechanisms of Fluid Flow in Paper

Cryo-SEM was used to visualise the penetration of a wetting fluid into various bleached soft-

wood kraft papers. The results indicated that the fluid movement was primarily due to the

advance of the wetting fluid in the form of bulk liquid films along channels formed by fibre

overlaps. This was in contrast to the common description of fluid penetration where the pri-

mary flow mechanism was based on the bulk filling of pores.

High magnification cryo-SEM image of film thickening around a large pore in tissue paper.
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6.1 Introduction

6.1.1 Background

The kinetics of capillary penetration of wetting liquids into porous media is of particular in-

terest due to its applications in the paper and textile industries and in printing technologies.

An understanding of fluid penetration processes is necessary in understanding all converting

processes where contact between paper and fluid plays a role. The potential mechanisms of

these processes were presented in Chapter 5.

Lucas-Washburn theory (Lucas, 1918; Washburn, 1921) is commonly used to model the

penetration of liquids into porous materials where the rate of penetration is a function of the

balance between surface tension forces and viscous drag. Interfacial contact angle is assumed

to be constant and the pore morphology is reduced to an equivalent cylindrical pore. It has

long been recognized that this was a gross over simplification of the true morphology of paper,

which, in reality is a material made up of a cellulose fiber matrix in many cases coated with a

consolidated mass of pigment and binder. It has been noted before that important differences

exist between penetration of a liquid into a capillary and penetration into a more complex

porous medium (Kent and Lyne, 1989a; Marmur, 1988). The development of tools to more

realistically describe the pore morphology of real porous materials is an emerging discipline

of recent interest (Larson et al., 1977; Lindquist et al., 1996, 2000; Sok et al., 2002; Goel et al.,

2001).

To gain a better understanding of fluid penetration into paper one must not only effec-

tively characterise the morphology of the pores within the fibre web. One must also obtain a

fundamental understanding of the physical processes which affect fluid movement and fluid-

solid interactions during fluid penetration. Penetration models, including the classical Lucas-

Washburn equation, assume that the major mechanism for fluid penetration into paper was via

capillary transport within pores. Eklund and Salminen (1987) considered a number of water

transport mechanisms including liquid capillary transport through pores, diffusion of vapour,

surface diffusion in pores and intra-fibre flow; they observe that bulk capillary transport in

pores remains the most important mechanism. Recent work Schoelkopf et al. (2000a) has in-

cluded the study of inertial effects on fluid penetration. In all descriptions of fluid penetration,

pores are considered to be occupied by a single fluid and the pore filling mechanism was by

meniscus movement down the pore center.

In this chapter cryo-SEM was used to visualise the fluid phase as it penetrated into a range

of paper types. Paper types studied include fully bleached softwood kraft paper and a number

of saturating kraft papers used as low pressure melamine laminates. It was observed that the

fluid flow cannot be characterised by an advancing wetting front moving along the bulk of the

pores. One observes a large and diffuse zone, where fluid occupies only the edges of pores

and forms films along channels formed by fibre overlaps. The results indicated that the fluid
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movement was primarily due to the advance of the wetting fluid in the form of bulk liquid films

along these channels.

To understand the observed behaviour the 3D structure of a paper web was considered. One

observes that a number of potential flow paths for the wetting fluid exist within the fibre net-

work at different length scales; these include flow within the pores, flow along channels formed

by fibre overlap, flow along the fibre indentations caused by fibre collapse during pressing and

fibre roughness, and intra-fibre flow. The relevant length scale associated with each flow path

is defined and the continuity and representative morphology of the pathways is discussed. A

description of pore-scale mechanisms for fluid penetration is given for the pore morphologies

associated with each potential flow path. It was found that the continuous displacement of a

meniscus along bulk pores was highly unlikely due to the presence of discontinuities in the

pore morphology. The preferential displacement mechanism was via film flow along the chan-

nels formed by fibre overlaps. These channels form a highly interconnected and dense network

of flow paths which efficiently transport the wetting fluid. The flow rates associated with pen-

etration along each transport pathway are calculated; the experimentally observed penetration

rate was consistent with a film flow process through channels and significantly slower than a

penetration process dominated by meniscus driven flow through pores.

6.2 Materials and methods

6.2.1 Introduction

The experimental method had to ensure that 1) droplets were maintained in a frozen state

for long periods, 2) samples had to be frozen quickly and 3) a high contrast liquid had to be

used to ensure differentiation with fibres. Cryo-SEM was chosen as it would satisfy all of these

requirements. Cryo-SEM is the use of scanning electron microscopy under freezing conditions,

normally below -130◦C. Cryo-SEM had two advantages over optical microscopy, firstly one

cannot keep samples frozen using optical microscopy and secondly it is easier to differentiate

between the paper fibres and the imbibing liquid. A brief review of work done using SEM

on fluid interactions with paper was presented in Section 2.2.1, Chapter 2. The Cambridge

Instruments S360 Stereoscan SEM described in Chapter 3 fitted with an Oxford CT1500B

Cryotrans coldstage/coating unit was used for the imbibition experiments. Secondary electron

and backscattered electron images were obtained. The latter enabled high contrast images to

be obtained which clearly identified the presence of the penetrating liquid due to the use of an

2M aqueous solution of caesium iodide (CsI) as a tracer.

SEM enabled visualisation only on the surface of paper. It was essential to confirm imbi-

bition mechanisms throughout the paper structure. Therefore another method was developed

to image liquid flow below the paper surface and underneath the fluid droplet. The success
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of cryo-SEM encouraged the parallel development of another cryogenic application, this time

using laser confocal laser scanning microscopy (CLSM) which provides comparable spatial

resolution to SEM.

A novel cell was designed, and in concept duplicated the cryogenic facility of the SEM.

Samples were prepared in an identical fashion except that CsI was replaced with a fluorescent

dye, Rhodamine B. This dye showed no chromatographic separation and did not adsorb onto

the paper fibres. The paper sample was maintained in a frozen state by circulating chilledN2

gas through a porous sample mount.

Even though the thesis concentrates on fluid imbibition into unsized papers the techniques

used to identify mechanisms of fluid flow in unsized papers were also used to identify the

mechanisms of fluid flow in sized papers.

6.2.2 Paper samples

Samples of paper approximately 15 x 5 mm for use with SEM and 19.5 mm discs for CLSM

were selected from the following paper types:

1. Bleached unfilled & unsized pure cellulose paper type BL control 5, 75 gsm, 70% hard-

wood pulp and 30% softwood pulp pressed at 0.5 Bar, then 1 Bar and dried at 114

degrees C for 5 minutes, (International Paper)

2. Bleached unfilled pure cellulose paper BL 8-2 , same as BL 5 however sized with

1.6kg/tonne of alkyl ketene dimer (AKD) (International Paper).

3. Corporate Express Exp 2000 Laser/Copy paper, 80 gsm sized with 1kg/tonne AKD

(Australian Paper No. 3 paper machine, Maryvale Mill)

4. All the decor papers described in Chapters 3 & 4

6.2.3 Cryo-SEM imaging

6.2.3.1 Sample preparation for SEM

The samples of paper were fixed to a CR101 standard specimen holder used in the Oxford

CT1500B Cryotrans coldstage/coating unit using the tissue freezing medium made up of equal

proportions of G. 303 Colloidal Graphite (Aquadag) (Agar Aids) and Tissue-Tek OCT Com-

pound 4583 embedding medium (Miles Scientific). Aqueous solutions of different heavy metal

ions of approximately 2µl were placed onto the rough side of paper samples by glass pipette.

Rapid sample freezing was achieved by placing the drop of the penetrating liquid onto the pa-

per which was then immediately plunged into nitrogen slush at -230◦C. Freezing was achieved

in less than half a second after droplet placement. The use of nitrogen slush (SN2) rather than

liquid nitrogen (LN2) ensured liquid rather than gas to sample contact (Robards and Sleytr,
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Figure 6.1: An example of an SEM image of fluid penetration into kraft paper in (a) secondary electron
mode and (b) backscattered mode.

1985; Echlin, 1992; Duchesne and Daniel, 1999) ensuring the reduction of artifacts and the

avoidance of crystallisation.

Three aqueous solutions of metal ions were tried in order to enhance the detection of the

wetting fluid with the backscattered electrons in the SEM; uranyl acetateU(CH3COO)3 (6%

& 50% w/w), sodium chloride NaCl (1.85M) and caesium iodide CsI (2M, 1.85 atom%). The

caesium iodide solution gave good images with the SEM both with secondary and backscat-

tered electrons (Figure 6.1). Uranyl acetate solution appeared to chromatographically separate

and was discarded. Diethylene glycol was used as an imbibing liquid on one paper type and

proved too viscous and was also discarded.

The stub with the attached sample was then inserted into the preparation chamber of an Ox-

ford CT1500B Cryotrans coldstage/coating unit and into the SEM chamber and slowly warmed

to - 80◦C in order to remove the small amount of ice crystals that formed on the surface of the

sample due to condensation. The progress of this was followed by observing the specimen on

the SEM screen (at a low 5 kv accelerating voltage).

The frozen sample was then transferred from the SEM chamber back to the Oxford CT1500B

Cryotrans coldstage/coating unit (Figure 6.2), sputter coated with a 10nm layer of gold and

then transferred back to the SEM chamber which was then cooled to about -130◦C using the

cold sample stage inside the SEM chamber. The sample stage was cooled by dry nitrogen gas

which was itself pre-cooled through a heat exchanger immersed in liquid nitrogen. The gas

was conducted to and from the stage by flexible Teflon tubes thus permitting free movement in

thex, y andz-axes. Stage temperature was monitored by a built-in thermocouple with temper-

ature regulation obtained by an internal heater permitting temperature regulation from - 80◦C

during ice crystal ablation before gold coating, to -130◦C for imaging.
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Figure 6.2: Left; controller for Oxford CT1500B Cryotrans coldstage/coating unit for use with the
Cambridge Instruments S360 SEM, Right image of the SEM showing cryo chamber which was on the
left of the beam tower which was in use as seen by the funnel used for placement of liquid nitrogen into
the heat exchanger for the cold stage.
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Sample preparation for sized papers was exactly as for saturating papers except the time

allowed between droplet placement and freezing was extended to as much as 30 minutes.

The SEM was used to examine the specimen and for the production of micrographs both

in secondary electron and backscattered mode. The electron optics system of the SEM was

optimised for high resolution, ensuring sufficient depth-of-field to enable the entire selected

field of view to be in focus. This involved the use of a 30 mm diameter final aperture, a

working distance of approximately 23 mm, electron beam current of 1.94 na, a probe current

of 1.05na and an accelerating voltage of 20 kV.

6.2.4 Imaging using cryo-two-photon confocal laser confocal microscopy

While cryo-SEM allowed one to visualize liquid flow on the surface of the papers at the edge

of the droplet, one could not image below the surface or below the bulk liquid droplet. A

cryo-two-photon confocal microscopic technique was introduced which enables one to obtain

quantitative 3D images of the fluid penetration into paper at arbitrary depth within the sheet

and to visualise penetration below the droplet.

A review of the principles and use of two-photon confocal laser confocal microscopy is in

Section 2.2.2 in Chapter 2.

6.2.4.1 Development of cryo-cell for CLSM

As with cryo-SEM, the experimental method had to ensure that 1) droplets were maintained in

a frozen state for long periods, 2) samples had to be frozen quickly and 3) a fluorescent liquid

had to be used to ensure differentiation from fibres.

A cryo stage was developed for a 2-photon confocal laser scanning microscope enabling

very cold dry nitrogen to be passed in close proximity to the frozen sample for long periods

of time. Image capture could take up to 45 minutes, each image taking about 5 minutesi.e.

15 seconds per slice two acquisitions per slice (to improve signal to noise ratio) and up to

40 slices for each completed acquisition. Up to six separate acquisitions were obtained from

each sample to ensure the imaging of the full dynamics of wetting. Temperature stability was

therefore essential to minimise thermal expansion and contraction of the frozen sample. If

temperatures varied by more than± 5◦C during each individual image acquisition, distortion

would occur between consecutive image sections ruining the acquisition sequence.

Full details of the design, construction and use of the cryo-cell used with the CLSM are

attached in Appendix C.

6.2.4.2 Sample preparation for CLSM

Samples of 19.5 mm diameter were produced so they could be placed rapidly into the cryo-

cell after liquid placement and freezing. The sample preparation method was identical to that
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carried out for cryo SEM (Section 6.2.3.1). However the SEM had a purpose built unit that

created (SN2) enabling sample freezing and placement onto the SEM. For the cryo 2-photon

confocal experiments, a vacuum sample preparation chamber had to be constructed to create

the (SN2) needed for sample preparation (Figure 6.3).

The cryo-cell consisted of aKel-F cryo-cell insert containing a sintered bronze ring onto

which the frozen sample was placed (see Appendix C). The insert was placed inside aDelrin

base plate which was fixed to the microscope slide. The insert was removed from the base

plate and the bottom window and rubber spacing washer removed from the insert. The dewar

containing the copper cooling coil was filled with liquid nitrogen. A regulated supply of gas

was passed through the double copper coil to the base plate of the cryo-cell. The sample of

paper to be imaged plus a piece of 0.05mm thickTeflonsheet punched to the same size was

placed in a surgical arterial clamp. TheTeflonstopped any potential hydraulic interference

between the liquid nitrogen and the liquid in the paper sample. A Styrofoam cup full of liquid

nitrogen was placed into the chamber connected to a vacuum pump, the acrylic lid (seen in

the top left hand side of Figure 6.3) was then placed onto the chamber and a vacuum applied.

When the liquid nitrogen solidified the chamber was opened and the slush stirred. The cryo-cell

insert was partially placed into a container of liquid nitrogen in order to maintain the sample

in a frozen state after placement for the few seconds it took for the cryo-cell to be inserted into

the base plate through which cold gas was being passed.

Using a Gilson P200 Pipetman micro pipette in the left hand and holding the sample in

the right just above the nitrogen slush, a 5µl aliquot of the fluorophore solution was placed on

the rough surface of the paper sample. Immediately after droplet placement the sample was

plunged into the SN2 Teflon side down ( Figure 6.3). Freezing was achieved in less than half a

second after droplet placement.
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Figure 6.3: Vacuum chamber for preparation of (SLN2) and placement of droplet onto paper sample
immediately prior to freezing in the chamber. This technique was exactly the same as that used for
cryo-SEM except with the purpose built Oxford cryo chamber.

After removal from the SN2, the sample was separated from theTeflondisc and placed onto

the bronze sinter in the cryo-cell which had been cooled withLN2. The rubber spacing washer

was placed onto the sample and the assembly completed by fitting the stainless steel disc with

the viewing window onto the bottom of the cryo-cell (Figure C.1a, Appendix C). The cryo-cell

was immediately placed into the baseplate attached to the microscope stage, enabling the cold

gas to immediately flow through the cryo-cell and around the sample. A lug in the baseplate

corresponding to a notch in the cryo-cell ensured the gas ports were perfectly aligned (Figure

C.1b, Appendix C). The thermocouple wire was placed into one of the exhaust ports and the

flow of gas regulated to ensure the desired temperature of between - 60◦C and - 70◦C at the

sample.

Given the very cold temperatures, the rapid build up of condensation and ice on the cell

assembly had to be prevented in order to enable imaging over long periods. This was achieved

by passing dry nitrogen gas at room temperature onto the viewing window of the cryo-cell

using a length of 6mm copper pipe, the end of which was flattened to a fan shape, increasing

the velocity and spread (see Figure 6.4). The top window was kept ice free using ethanol to

enable positioning and focussing of the laser.
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Figure 6.4: Nitrogen gas nozzle used to remove condensation from bottom window of cryo-cell

6.2.4.3 Obtaining images

Images were obtained using a Leica DM IRB/E inverted microscope1, fitted with a Leica N

PLAN L 40 x objective lens with a long working distance (2.0 mm) and a numerical aperture

(NA) of 0.55. The long working distance was essential as the distance between the sample and

the objective was over 1.0 mm due to the position of the bottom viewing window. A Coherent

Mira 900 Titanium sapphire infra red laser with a wavelength of 800 nm was used. It had a

path width of 15 nm, a pulse rate of 150 femto seconds, a peak power of 100 kW, pulse width

of < 2 psec, a repetition rate of 76 mHz and a beam diameter of 0.8 mm (see Figure 6.5).

1The controlling software used was Leica Confocal Software Version 2.00 Build 0858 1997 - 2001 from Leica
Microsystems Heidelberg GMBH.
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Figure 6.5: Leica inverted 2-photon confocal laser scanning microscope used to obtain all images.
Note the thermocouple temperature in image b: showing a temperature of -40.4◦C, showing that this
was during the cooling phase before imaging as the temperature was not stable below - 50◦C. Note the
cryo cell positioned on the microscope stage.
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The power of the laser could only be altered by the use of neutral density filters. However

due to the extremely low temperatures at which images were obtained there was no photo-

bleaching of the chosen fluorophore even when neutral density filters were not used (whereas

at room temperatures photo-bleaching occurred rapidly).

Three fluorophores were tried; Cascade Blue hydrazide C-3239, a trilithium salt from

Molecular Probes, Inc., sodium fluoroscein and Rhodamine B each at various concentrations.

They were tested by placing a droplet of the fluorophore solution onto a microscope slide

to determine the strength of the fluorescence under similar excitation conditions and also to

determine the optimum solution strength, given quenching could occur with higher solution

strengths. The fluorophores were also absorbed into paper and imaged to determine how

strongly the fluorophore adsorbed onto the paper fibres. As the aim was to highlight the fluid

(ice) phase not the fibrous material within the papers, it was essential that the fluorophore

did not adsorb onto the fibres at all. The fluorophore selected as giving the best definition

was 0.01% w/v Rhodamine B,C28H31N2O3Cl, 2-[6-(Diethyl amino)-3-(diethyl amino)-3H-

xanthen-9-yl] benzoic acid. It did not adsorb onto the fibres at all.

To test for background fluorescence of dry fibres, a dry piece of paper was imaged. It

was found that only very slight fluorescence was achieved at the maximum photo multiplier

setting. At the photo-multiplier settings used during imaging of liquid imbibition, there was

no background fluorescence of the fibres at all. Therefore if fluorescence occurred it indicated

the presence of the fluorophore and hence the liquid.

Once the sample was in place and the temperature stabilized at - 60◦C and - 70◦C ± 2◦C

(which usually took about 2 minutes), the laser was turned on and the photo-multiplier was set

to maximum and the offset to minimum. The laser and lens were coarse focused by observing

the clarity of the beam passing through the sample and then fine focused by looking at the

projected image on the computer screen (see Figure 6.6). After focussing, the photo-multiplier

gain and offset were adjusted for each image with the aim of getting a slight level of photo-

bleaching at the high end of fluorescence to ensure sufficient detail through the image. The

image size was 250 x 250µm (1024 x 1024 pixels) and the voxel size was 0.02 x 0.02µm (x,

y) x 2.5µm (z).
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Figure 6.6: Computer station controlling two-photon microscope showing image acquisition on right
screen and microscope and laser configurations on the left screen.

Samples were imaged droplet side up, or down, depending on the nature of the experi-

ment, however the droplet was always applied onto the rough (wire) side of the papers imaged.

The maximum depth of imaging through the paper was about 70-80µm as attenuation of the

detected fluorescence signal usually occurred beyond this depth. Two scans per section and

scanning at a low speed were used to improve the signal to noise ratio of the image (Tsien and

Waggoner, 1995; Xu and Parker, 1999).

To ensure accurate identification of the position of the region of interest being imaged,

it was necessary to locate the drop surface with the high magnification lens. Changing the

objective lens in order to locate the region of interest was not possible given the positioning of

the gas nozzle required to remove condensation from the bottom of the cryo-cell (Figure 6.4).

Positioning was achieved by reducing the photo-multiplier gain so the focus was on a narrow

ring of fluorescence on the droplet. By slightly moving the focus, the side of the droplet being

imaged could be determined, by then focusing towards the sample and continually shifting the

sample, the interface of the droplet and the saturated zone on the paper was found.
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6.2.5 EDXA analysis of sized papers

Energy Dispersive X-ray Analysis (EDXA) (Echlin, 1992) was used to identify the distribu-

tion of caesium iodide (CsI) using the Cambridge S600 scanning electron microscope. X-ray

spectra were generated by focusing onto a pre-selected area of a specimen. Sampling volumes

were around 10µm3 and clearly distinguished between fibre walls and fibre lumen. Where it

appeared that CsI was present using backscattered electrons, EDXA was used as confirmation

for the presence of CsI2. Even in normal imaging mode, using secondary electrons, the CsI

rich zones showed enhanced contrast.3

Figure 6.7: Reichert Jung FC4 Ultracut cryo-microtome.

Sample preparation for EDXA analysis was the same as for cryo-SEM analysis however

the samples were cryo-microtomed (Duchesne and Daniel, 1999) using a Reichert Jung FC4

Ultracut cryo-microtome (Figure 6.7) at -90◦C). Apart from the use of the cryo-microtome the

microtoming technique including preparation of glass knives was identical to that described in

Chapter 3.

2Normally when using EDXA one coats the sample with carbon, however as the samples were being imaged as
well, gold coating was used hence the strong peaks for gold in the EDXA spectra in Figures 6.37 & 6.39. However
the Cs peaks were clearly discernable.

3X-ray spectra were analysed using Moran Scientific Energy Dispersive Analysis System V 9.3.
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6.3 Results

6.3.1 Unsized & unfilled bleached kraft papers

Figure 6.8 shows a low magnification image which illustrates the typical penetrating fluid con-

figuration at the paper surface emanating from near the drop edge (upper left corner) radially

outwards. Two regions can be observed in the image; near the droplet edge where pores seem

completely saturated; this region extended≃ 500 µm from the drop edge (blue shading in

Figure 6.8). The remaining region was only partially saturated by the penetrating fluid. The

degree of saturation decreased as one moves further from the drop edge. The penetrating fluid

was now present only in the form of films in the regions between the fibres. Here large pores

remained unsaturated in the midst of smaller filled pores (red shading).

Figure 6.8: Low magnification image showing the fluid configuration at the paper surface. A region
of saturation exists (shaded blue) near the droplet (upper left of the image). The remaining regions
exhibiting the presence of fluid are partially saturated. Red shading shows regions where pores exhibit
partial filling. Green shading illustrates regions where the surface pores diverge to large openings.

Figure 6.9 shows a typical fluid distribution in the midst of the completely saturated region.

One observes that pores at the surface were not all filled and fibres at depth were still visible

from the surface. The fluid did not tend to wet the upper surface of the paper fibre; the fluid

interface instead seemed to preferentially wet the fibre edges and became pinned along the

fibre edge.
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Figure 6.9: The typical fluid distribution in the midst of the saturated zone. One observes that pores at
the surface are not all filled and fibres at depth are still visible to the surface.
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Figure 6.10 is a higher resolution image showing a fluid configuration just outside the

partially saturated region. The fluid primarily filled the pores which lay between the edges

of fibres (red shading) and did not wet the upper fibre surface. The presence of films can be

observed along channels formed by fibre overlap (blue shading) which interconnect many of

the filled pores. Larger surface pores remained unfilled (yellow shading), however some edges

of the large pores exhibited a presence of a liquid wetting film.

Figure 6.10: Higher magnification image of the fluid configuration inside the partially saturated zone.
This image appears on the front cover of the Journal of Pulp and Paper Science Vol. 29 No. 4 (123 -
131) April 2003 (Roberts et al., 2003)

Further away from the droplet edge a number of interesting fluid configurations within the

pore space can be observed. In the top image of Figure 6.11 completely filled pores between

fibre edges can be observed (red shading), and the presence of seemingly disconnected fluid

films along channels formed by fibre overlap scattered throughout the rest of the image (green

shading). The bottom image in Figure 6.11 shows pore filling from thickening films on the

edges of pores. A curious fluid configuration (yellow) within a pore lying 3 - 4 fibres below

the paper surface can be observed where the pore was mostly filled, but a partial disk of air

punctures the center of the pore. Several of these partially filled pores are visible, recall Figure

6.8 red shaded area. A close up of this configuration is shown in Figure 6.12. Figures 6.10

& 6.11 show filling of a pores from films at three different layers indicating that film flow

occurred throughout the paper sheet.
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Figure 6.11: Fluid configurations within the partially saturated zone. The top image has been
colourised to highlight the fluid flow. The yellow section highlights the metastable state just prior
to snap off, the red shows filled pores and the green shows film flow along inter-fibre channels. The
bottom image shows films thickening on the edge of a pore leading to pore filling.



§6.3 Results 166

In Figure 6.13 shows a smaller pore (red) with a pore size of≃ 10 µ m completely filled

with the wetting fluid and a larger neighbouring pore of size≃ 20 µ m (green) which only

exhibited a presence of films along the edges.

Figure 6.14 was taken further out from the drop edge. In this region the wetting fluid was

present solely as films along channels formed by fibre overlaps (blue) and as films wetting

edges and corners of the pore (red).

At the outer edge of the partially saturating zone film flow occurred only along fibre in-

tersects (Figure 6.15). Only a small amount of flow could be seen along the fibre surface

roughness and no flow into fiber pits (arrow in the top image).

From the experimental results it could be concluded that film flow was a major mechanism

for transport of the wetting fluid. Bulk flow through the pores was not generally observed.

6.3.1.1 Cryo-2-photon laser confocal microscopy

Although SEM gave some indication of fluid imbibition at depth, it was only away from the

droplet. It was necessary to investigate fluid flow under the droplet as well as below the surface

of paper. To do this required the use of CLSM.

The images presented in this section are stereo composite images from all the slices ac-

quired in a complete acquisition and should be viewed with green/red anaglyphic glasses in-

cluded in the back of this thesis (Appendix??) to give a 3D effect. Full movies of the sequen-

tial slices are also attached in a CD (Appendix??). The interpretation of the CLSM images

is more complex than those of cryo-SEM as fibres do not attenuate and all that is seen is the

fluorescence of the liquid.

To help in interpreting the CLSM data an image is shown at the edge of the partially

saturated zone approximately 200µm from the edge of the droplet (Figure 6.16) a fibre is

indicated by the arrow marked ”A”. Note there is no strong fluorescence on the surface of the

fibre and also it is not possible to discern any detail on the fibre surface. This indicated that

there is no liquid actually within the fibre itself. This particular fibre was about 35µm below

the surface of the paper. Note the strong lines of fluorescence shown by the arrow marked ”B”.

This fluorescence came from films of liquids along the edges of fibres indicating fluid flow

in fibre overlap channels. The arrow marked ”C” in this image shows an unfilled void space

surrounded by thickened films of liquid. The depth of this void space was between 12 and 20

µm below the surface of the paper. An equivalent SEM image albeit on the surface is the top

image of Figure 6.14. The movie of this CLMS image is #109.

The middle image in Figure 6.16 is now under the droplet and also shows strong fluores-

cence along the edges of fibres (arrow marked ”A”) as well as thickening of these films (arrow

marked ”B”) lying 28µm under the surface of the paper. Note there was no clear detail of

the fibre surface again indicating that there was no flow within the fibre itself. The fluores-
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Figure 6.12: Close up of a partially filled pore exhibiting pinning of the meniscus on the pore wall. As
a result it was unlikely that snap-off would have occurred in this particular pore.
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cence seen along edge of fibres was actually visualised from underneath the fibres where they

contacted adjacent fibres creating overlap channels. One can also observe unfilled void spaces

below the droplet (arrow marked ”C”). The movie of this image is #106 in the attached CD.

The bottom image in Figure 6.16 is at the edge of the droplet where the arrow ”A” shows

a small amount of fluorescence on the droplet surface which was about 10µm above the paper

surface at this particular point. The arrow marked ”B” highlights the scenario observed in the

top image of Figure 6.12i.e. pinning of the meniscus of a thickening film onto the pore wall.

This occurred approximately 15µm below the surface of the paper. The arrow marked ”C”

shows thickening of films out from the fibres. The movie of this particular image is #94 and is

in the attached CD.

The top image in Figure 6.17 is located at the edge of the droplet which can be seen with

the arrow marked ”A”. The droplet was 15 sections deepi.e. 38 µm thick. It clearly shows

strong fluorescence along the edges of fibres indicating film flow in fibre overlap channels

(arrow marked ”B”) and film thickening (arrow marked ”C”) in exactly the same manner as

that shown in red shading in the SEM image Figure 6.11. The movie of all the sections of this

image is #114.

Figure 6.17 shows a number of lenses in different pores with trapped air in between them

as shown by the arrow marked ”A”. This is analogous to that observed in the SEM image

Figure 6.12. Note that the fibre was actually 10µm below the lens of liquid highlighted by the

arrow further emphasising the fact that filling of pores can occur at many different levels. The

movie of this image is #167.

This result leads to the conclusion that even under the droplet and below the paper surface,

the primary mechanism of fluid penetration into unsized papers was through liquid films along

channels formed by fibre overlaps. The fibres themselves could not be clearly distinguished

indicating that the fluid had not penetrated the fibres. What was particularly significant was

that film flow, film thickening and large unfilled pores could be seen underneath the droplet as

well as away from the droplet below the paper surface.
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Figure 6.13: A small pore (red) with a pore size of≃ 10 µm completely filled with the wetting fluid and
a larger neighbouring pore of size≃ 20 µ m (green) which only exhibits a presence of films along the
edges.
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Figure 6.14: Two examples of fluid configuration in regions far from drop edge. The wetting fluid was
present solely as films along channels formed by overlapping fibres (blue) and as films wetting corners
of the pores (red).
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Figure 6.15: At the outer edge of the fluid only film flow was observed along fibre intersects. The
top image has been colourised to highlight film flow and is a closeup of the bottom image. The arrow
highlights a bordered pit that appears to have no visible liquid beneath it.
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Figure 6.16: Stereo images showing, Top: film flow occurring along edges of fibres analogous to that
seen in Figure 6.14, Middle: thickening of films as seen in Figure 6.11 and Bottom: pinning of the
meniscus and pore filling away from the droplet edge as seen in Figure 6.12.
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Figure 6.17: Stereo images showing, Top: film flow adjacent to the droplet and Bottom: pore filling
occurring from films from interfibre channels at different depths in the paper. Note the lenses of liquid
forming at the different levels
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6.3.2 Decor papers

6.3.2.1 Cryo-SEM

Decor papers are designed to saturate. They are unsized and unlike the laboratory paper sam-

ples considered previously, contained large amounts of various organic and inorganic fillers

and dyes. They are much more complex in structure than the laboratory papers imaged in Sec-

tion 6.3.1 and can use fibrous material other than that originating from wood. Decor papers

can vary considerably in weight, and density as was established in Chapter 4. In this section

fluid penetration processes into the range of decor papers studied in Chapter 4 were visualised.

It was observed as with laboratory papers that the primary mechanism of imbibition was via

film flow in inter-fibre channels.

Figure 6.18a is the decor paper Beech clearly showing film thickening about to result in

the filling of a pore in exactly the same manner as is shown in the SEM image of imbibition

into a laboratory paper Figure 6.13 . Figure 6.18b is the decor paper Black. The image shows

film flow along fibre overlap channels as well as clear evidence of film thickening and large

unfilled pores as was observed in the bottom image of Figure 6.11. Figure 6.18c is the decor

paper Folkstone Grey showing pore filling as a result of film thickening as well as unfilled

voids as shown in the SEM image Figure 6.8. Figure 6.18d is of the decor paper Fog showing

film thickening and pore filling in the partially saturated zone. Note the pores between the

fibres were mostly filled, however some of the larger pores were not. In these cases note that

the meniscus of the imbibing liquid had pinned to the edge of the pore thus it was unlikely that

these pores would ever have filled. This is analogous to the image of fluid imbibing into the

laboratory paper in the bottom image in Figure 6.11. Note the very large differences in the sizes

of individual fibres some appearing to be softwood and others hardwood fibre and how this had

no effect on the imbibition mechanisms described. Figure 6.18e is a high magnification image

of the decor paper Storm showing incomplete pore filling. This was similar to those unfilled

pores in Figure 6.18a and again shows clearly how the meniscus of the liquid was pinned to

the sides of the pore wall. Figure 6.18f is the decor paper Alpine White. As was discussed

in Chapter 4 this paper had the highest ash (filler) content and was very different in structure

to the laboratory papers discussed in Section 6.3.1. All of these images show typical fluid

distribution away from the droplet similar to that shown in Figure 6.8.
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Figure 6.18: Images of decor papers at various stages of wetting:a); Beech showing pore filling from
adjacent interfibre films in the fully saturated zone,b); Black at the edge of the partially saturated zone
showing transition from film thickening to pore filling,c); Folkstone Grey showing pore filling at the
edge of the partially saturated zone from interfibre films,d); Fog showing edge of saturating zone, note
pore filling from film flow notwithstanding the very small pore sizes,e); a closeup of film thickening
surrounding a pore in Storm andf); Alpine White a highly filled very dense paper in the saturating zone
showing interfibre film flow and unfilled pores.
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6.3.2.2 Cryo two-photon confocal microscopy

The top image in Figure 6.19 is a cryo CLSM image of the decor paper Streetlight which was a

high ash paper (Table A.2) with most of the image being under the droplet. This is also clear if

one scans through the movie #134 where one can quite clearly see the surface and extent of the

droplet. From both the 3D composite image and from the movie one can clearly see that under

the droplet there were unfilled voids that had films of liquid surrounding them (arrows marked

”A”). One can also see film thickening that had progressed to a certain stage but would not fill

the pore (arrow marked ”B”). One can also see that smaller pores had been filled underneath

the droplet (arrow marked ”C”). This is exactly what is seen in the top image of Figure 6.11.

The middle image in Figure 6.19 is also the decor paper Streetlight showing fluid distri-

bution in the partially saturated zone about 150µm from the edge of the droplet. This shows

small filled pores (arrow marked ”A”) and larger unfilled pores resulting from various stages of

pore filling resulting from film thickening (arrows marked ”B”). The fluid distribution shown

was analogous to that shown in the cryo-SEM images in Figure 6.11. The movie of this image

is #143.

The bottom image in Figure 6.19 is also the decor paper Streetlight at the transition from

the fully saturated to the partially saturated zoneunder the droplet. This image has most of

the mechanisms demonstrated with cryo-SEM (Figure 6.11) including film thickening (arrow

marked ”A”), pore filling (arrow marked ”B”) and larger unfilled pores (arrow marked ”C”),

under the droplet. The movie of this acquisition sequence is #144.

The top image in Figure 6.20 is the decor paper Alpine White in the saturated zone below

bulk liquid which is 30µm thick showing a large unfilled pore surrounded by a thick film of

fluid (arrow marked ”A”) analogous to that shown in the bottom image in Figure 6.11. It also

shows a film of liquid (arrow marked ”B”) whose meniscus was pinned to a fibre wall as was

shown in Figure 6.12. The movie of this image is #122. The bottom image in Figure 6.20

is the decor paper Beech showing large unfilled pores at the edge of the droplet shown by

arrows marked ”A”. It also showed that fibres coming out from underneath the droplet had no

evidence of surface flow (arrow marked ”B”) which was demonstrated in the cryo-SEM image

Figure 6.9. The movie of this image is #141.

Some of the decor papers could not be imaged due to the fluorescence of their dyes. How-

ever cryo CLSM of all the decor papers imaged confirmed that the mechanisms of fluid flow is

by films.
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Figure 6.19: Stereo images of the decor paper Streetlight showing, Top: unfilled voids below edge of
droplet, Middle: unfilled voids below edge of droplet and film flow just out from droplet edge, Bottom:
all morphologies of fluid flow underneath the middle of the un-depleted droplet.
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Figure 6.20: Stereo images of decor papers showing, Top: Alpine White showing pore filling from
thickening films & unfilled voids below 30 µm of bulk liquid, Bottom: Beech showing unfilled voids
below edge of droplet and film flow just out from droplet edge.
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6.3.3 Pore-scale modelling of observations

In this section two phase flow modelling is reconciled with the experimental observation that

the capillary penetration into a range of unsized papers was primarily associated with the flow

of the wetting fluid in the form of bulk liquid films along channels formed by fibre overlaps

and was not observed as bulk flow in the pores. A description of the pore morphology is

given for all potential flow paths within paper. Then a mechanistic description of two-phase

flow is developed within each pore morphology. Calculation of the flow rates associated with

penetration down fibre overlap channels is shown to be consistent with the film flow mechanism

observed experimentally.

6.3.3.1 3D Pore Morphology of Paper

The following are descriptions for the potential flow paths for the wetting fluid which exist

within the fibre network at different length scales;

• flow within the bulk pores,

• flow along channels formed by fibre overlaps,

• flow along crevices formed by indentations and surface roughness of the fibres, and

• flow within the intra-fibre pores.

In this section the images in Section 6.3.1 are used to help describe these various fluid pathways

on a paper fibre network, to define the length scale associated with these different pathways,

and to discuss the continuity of the pathways within the sheet.

The size of pore openings within unfilled paper was highly variable. A number of different

pore sizes are evident at the surface of the paper in Figure 6.8 and range from≃ 20 - 50µm.

Moreover, the cross section along a single pore can vary enormously. On penetration down 1

- 2 fibres into the paper sheet≃ 10 µm in depth, the pore size suddenly diverges. This pore

morphology is evident in the regions shaded green in Figure 6.8. One also observe the presence

of sharp dislocations in the pore openings when considering a cross-sectional view of a paper

sheet; see, for example, Figures in Hasuike et al. (1992); Samuelsen et al. (2001).

Fluid penetrating from small pores at the surface must bridge across large pore openings;

bulk penetration of fluids into the pore space was therefore characterised by converging and di-

verging pores, and pores exhibiting large discontinuities Kent and Lyne (1989a,b). A schematic

of the inter-fiber pore space is given in Figure 6.21 (a). Due to the large number of fibre over-

laps which partition the pore space into many domains, the pores are highly interconnected.

A second potential flow path for the wetting fluid was along channels formed by fibre over-

laps. The morphology of these potential flow paths was not simple to determine. Hasuike et al.

(1992) performed a very careful geometric evaluation of a paper sheet in 3D based on serial
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sections at 2µmspacing (Hasuike et al., 1992). Statistics on the number of fibres contacting

each fibre was calculated for 138 fibres over a 200µm2 area. They observed a huge degree of

entanglement and interconnection of fibres. The fibres, and therefore the channels generated

via fibre overlaps, lie almost exclusively parallel to the sheet. Hasuike et al. (1992) observed

minimal migration of fibres perpendicular to the sheet axis. They observed that almost all of

the upper and lower surface of a paper fibre was in contact with other fibres and they measured

approximately 80 fibres contacting the surface of a fibre for every 1mm in length. As most

fibres are 1mmin length or longer, this represents a huge degree of fibre entanglement. With

respect to the fibre cross section they observed often more than 2 fibres bonded to each fibre

(Figure 10 of Hasuike et al. (1992)). This high degree of fibre overlap which is evident in

all the experimental figures shown in Section 6.3.1 is sketched schematically in Figure 6.21(b)

and (c). From these sketches in 3D and in cross-section one can identify thepore geometrythat

emerges due to fibre overlap in Figure 6.21(d). From the cross section it can be observed that

the overlap of fibres leads to the formation of many small channels. Flow along these channels

can be approximated as a corner flow problem down an open channel of angleα < 90o. The

exact size and channel angleα was not given explicitly in Hasuike et al. (1992) and they are

difficult to discern from the SEM images. Based on the cross-sectional images and given that

the fibre thickness was≃ 5-10µm and the fibre width was≃ 15µm, an estimate of the channel

depth wasr ≃ 1−3µm. The flow channels formed by fibre overlap form anextremely dense

interconnected network of potential flow paths (see Figure 6.21(b)).

A third potential flow path was based on flow along the roughness or curvature on the

surface of a fiber. A typical fibre does not exhibit a purely convex shape, but can exhibit both

an indentation due to fibre collapse and roughness in the cross section (Figure 6.21(e)). One

can approximate this flow path by an open channel flow. Here the angleα associated with

indentationsαi >> 90o and roughness,αr ≃ 90o are both large, with the crevice size small,

r < 1 µm. These potential flow pathways, which one observes along most fibres, intersect with

the fibre overlap channels; the pathways however are quite long, and do not exhibit the strong

degree of interconnectivity observed in the fibre overlap channels.

A schematic of an intra-fibre pore is shown also in Figure 6.21(e). An estimation of< 0.5

µm for the intra-fibre pore size can be given by consideration of cross sectional images of the

fibre web. The pore geometry can be approximated as eye-shaped. These pores do not form

a continuous pore systems throughout the fibre web; the ends of each fibre do not intersect.

Flow through a fibre pore would reach the end of the pore and to continue to penetrate would

need to penetrate across the pores; this is analogous to flow along a small pore reaching a large

discontinuity.
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Figure 6.21: (a) A schematic of the typical pore geometry in paper sheet; a (small) surface pore opening
which opens up to a significantly larger pore. (b) Illustration of the fibre bonding state observed in 3D;
note the large degree of entanglement and interconnection of the fibres. Flow channels formed by fibre
overlap therefore form a highly interconnected pore space. (c) illustrates a typical fibre cross section
picture. The high degree of fibre overlap was reinforced. (d) The open channel pore geometry that was
generated by fibre overlap. (e) Illustration of the indentations (A) and roughness (B) that are observed
on a fibre surface and (C) the intra-fibre pore.
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6.3.3.2 Mechanisms of displacement in porous networks

Pore scale mechanisms observed during penetration of a wetting fluid may be described using

the terminology first introduced by Lenormand et al. (1983). There are two distinct types of

advance. The first is piston-like where the fluid advances as a meniscus occupying the centers

of the pore space. In the second, the wetting fluid flows along crevices in the pore space

filling pores in advance of the wetting front. Based on the simplified pore descriptions the two

types of advance are illustrated (Figures 6.22 & 6.23). Although the pore scale morphology of

paper is much more complex, these simple illustrations give one a better understanding of the

penetration mechanisms observed experimentally.

The simplest type of fluid motion in a network of pores is piston-type motion; the meniscus

is inside a channel and the wetting (fluid) phase displaces the non-wetting phase (air) Fig

(6.22(a)). The filling of a network of intersecting channels of variable aspect, as is the case for

paper webs (Figure 6.21(a)), is more complex than flow down a single channel. In particular,

the presence of pores at junctions of flow channels and sharp dislocations in the network,

lead to very different flow processes. As discussed in Lenormand et al. (1983); Senden et al.

(2000) the filling of these junctions and discontinuities depends on the capillary (displacement)

pressures associated with meniscus advancement. This includes the fluid distribution within

the pores (e.g., the number of neighbouring channels filled with wetting fluid) and the contact

angle and pore size (Lenormand et al., 1983; Senden et al., 2000). The primary result is that

only when the majority of pores at a junction are filled with a wetting fluid can the meniscus

continue to penetrate via a frontal advance (Figure 6.22(b)). In other configurations where

neighbouring pores at the junctions remain filled with non-wetting fluid (air) (Figure 6.22(c))

or the meniscus reaches a discontinuity (Figure 6.22(d)), the fluid configuration remains stable

and continued displacementcan only take place by a film-flow mechanism. For example, a fluid

meniscus advancing down the smaller pores in Figure 6.21(a), a fluid configuration similar to

that illustrated in Figure 6.22(d), will not advance beyond the junction to the large pore opening

(discontinuity) (Kent and Lyne, 1989a,b). The principal radii of curvature at a discontinuity

are infinite, therefore the capillary pressure or driving force for further advancement is zero.

The only mechanism for fluid to advance beyond discontinuities like those illustrated in

Figure 6.22(c-d) is via film flow. If the frontal meniscus cannot advance down a pore the

wetting fluid will flow as a film along the edges of the pores. Based on the illustration in

Figure 6.21(d), Figure 6.23(b) illustrates a representative pore cross-section that includes a

pore of radiusR and open channels of depthd. A simple schematic of the channel with a

uniform cross section and partially filled with the wetting fluid is given in Figure 6.23(b).

Assuming the capillary is sufficiently long compared to its diameter, the capillary pressure

across the liquid meniscus in the edge can be calculated as

Pc = σ/rccos(θ+α/2), (6.1)
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whereθ is the contact angle of the fluid at the solid interface,α is the opening angle of the

crevice andrc is the distance between the liquid/solid contact lines. This implies that for fluid

to advance down the crevicePc > 0, 0o ≤ (θ + α/2)≤ 90o. As the channels formed by fibre

overlaps haveα < 90o, it can be expected that most wetting fluids will spontaneously penetrate

along these flow paths. Progressive penetration of the wetting phase along a channel is driven

by the interfacial configuration; if the film is thinner, the curvature of the liquid meniscus in the

edge is increased, and consequently the capillary pressure is higher. Figure 6.23(c) illustrates

the penetration of the wetting liquid along a channel of depthd formed by the fibre overlaps

(similar to that observed experimentally in Figure 6.15). If fluid is available the films will

continue to thicken until the channel fills completely,r1
c = r2

c = d in Figure 6.23 (c).

At the channel/pore interface (Figure 6.23(d - f)), depending on the edge configuration, the

films will either continue to swell or become pinned. An angleαe is defined as the angle formed

by the edges of the pore near the pore/channel interface. If the channel geometry associated

with a fibre overlap opens to a flat discontinuity (αe = 180o) or to an angle (αe > 180o), one

would expect the fluid interface to be pinned and observe no thickening of the film beyond the

channel depthd, (rc ≤ d) as illustrated in Figure 6.23(d - e). However, if the opening at the

pore edge has anαe < 180o (Figure 6.23(f)), continued, albeit slower, film thickening into the

pore may be observed.
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Figure 6.22: Interfacial configurations corresponding to different fluid penetration mechanisms; (a)
piston displacement, (b-d) penetration across pore boundaries and discontinuities. In case (b) the fluid
can continue to advance, but in cases (c) and (d) the fluid configuration will remain stable.
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Figure 6.23: (a) A simple illustration of a pore with two small fibre overlap channels; (b) gives a
more detailed view of the channel geometry. In (c) the free penetration of a film along a channel was
illustrated; a gradient in the thickness of the film along the edge of uniform cross-section is illustrated
(r2

c > r1
c). Because of this variation in thickness the capillary pressure at location (1) is greater than at

location (2) P1
c > P2

c via Eqn. (1). Since the pressure of the non-wetting phase (air) is the same at the
two locations the fluid will tend to penetrate along from (2) to (1). (d - f) show the fluid configuration
at the edge of a channel after filling is complete. In (d - e)αe ≥ 180o and the interface will not thicken
beyond the channel depth rc and will instead remain pinned at the channel/pore edge. In (f) as the
effective channel angleαe < 180o, one would observe a continued thickening mechanism.
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It was expected that the typical pore/channel interface would exhibit an angleαe < 180o.

Hasuike et al. (1992) showed that the average number of fibre bonds expressed with respect

to the fibre cross section was≥ 2. A cross sectional view of the pore geometry at the edge

of a fibre in cross-section can therefore exhibit channels which lie in close proximity (Figure

6.24(a)-(b)). Since fibres viewed in cross section exhibit primarily a convex shape and are

aligned perpendicular to the sheet axis, the pore/channel interface was highly likely to exhibit

αe < 180o. As shown in Figure 6.23(f), for a pore/channel interface exhibiting anαe < 180o,

the films will continue to thicken beyond the channel edge. The advancement of the wetting

fluid via thickening films can therefore lead to the intersection of the menisci in the two chan-

nels; Configuration (2) in Figure 6.24(b) results. The merged menisci will now accumulate as

a growing collar within the channel cross section and will only stop at a new discontinuity in

the pore morphology (Configuration (3) in Figure 6.24(b)). This partial pore filling along the

edge of a pore via films was observed in several experimental images (see e.g., some regions

shaded blue in Figure 6.14).

If the pore cross section was small enough and/or the advancing films within a pore are

thick enough, eventually, the wetting fluid can come into complete contact with the channel

wall and an unstable non-wetting fluid (air) filament was created within the pore which spon-

taneously thins andsnaps-off(Lenormand et al., 1983). The wetting fluid now completely fills

the pore (Figure 6.24(c)). The experimental images illustrate this mechanism in progress. The

partially saturated pores highlighted in Figure 6.8 (red shading), 6.11 (yellow shading) and

6.12 are allveryclose to having become completely filled; only one fibre edge remains in con-

tact with the air (non-wetting phase) and the pore exhibits a small circular hole near the pore

center. On continued film advancement the pore would be completely filled. Numerous pores

completely filled via film flow are evident in Figure 6.8; a close up of a pore that has filled via

film flow is shown in Figure 6.13 (red shading).

In Figure 6.13 it is noted that the small pore (shaded red) is filled, while the larger pore

(green) has only fluid films along the edges of the pore. This observation is completely con-

sistent with a fluid displacement pattern mediated by film flow. Pore filling fed by films that

gradually thicken, via snap-off, is heavily weighted to the smaller pores; schematically, it is

shown in (Figure 6.24(d)) that a larger pore with the same film thicknesses as the pore in (c)

doesnot form an unstable air filament and instead remains partially wet along the pore edges.

This is observed experimentally in Figure 6.13. The pore shaded green is very near the smaller

filled red pore and would have similar film thickness. This pore however has not been com-

pletely filled. This can be observed on a larger scale in Figure 6.8 throughout the partially

saturated zones where smaller pores can be seen being filled while the larger pores remain

only partially wet along the edges.

It is important to note that the pores filled by a snap-off (film flow) mechanism donothave

to be connected to the main wetting front via filled pores. While still connected to the droplet,
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they are instead fed via films flowing along the dense interconnected network of fibre overlap

channels. The filled (red) pore in Figure 6.13 is surrounded by many unfilled pores, and can

only have filled via a film flow mechanism.

This scenario, that the primary pore filling mechanism in the paper network is via fluid

films, allows a reconciliation of flow modelling with the experimental observations given in

Section 6.3.1. Nearer the droplet edge, within the saturated zone (see upper left of Figure6.8

and Figure 6.9), films along inter-fiber channels will be thicker; this enables even the largest

pores to fill via a film flow (snap-off) mechanism. That the filling of the pores originates from

channels formed by fibre overlap, which lie almost exclusively parallel to the sheet, is consis-

tent with the fluid configuration observed in the saturated zone. Here the apparent pinning of

the wetting fluid to the edge of the fibres can be observed with no tendency to wet the upper

surface of the fibre. In the region of partial saturation, it can be observed that the smallest pores

are filled while the larger pores remain partially wet by films. Far from the droplet edge the

genesis of pore filling, films alone, are observed.
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Figure 6.24: (a) A schematic of a fibre cross section with two neighbouring fibres; this leads to two
fibre overlap channels being close to each other. (b)shows a wetting fluid configuration where in (1),
the fluid fills the two fibre overlap channels and in (2), the menisci have merged. This wetting fluid
can advance down the inter-fiber pore as a growing collar and will stop when reaching a discontinuity
within the pore (3). For a small pore (c) the advancement of one or two growing collars (2) can lead to
the wetting fluid forming a film around the full circumference of the pore (3). When this occurs the pore
will spontaneously fill with the wetting fluid (snap-off). (d)illustrates a large pore which exhibits the
same degree of film thickening as the small pore in (c). In this case the same amount of film thickening
leads to only partial wetting of the pore edges but no pore filling was observed (compare two pores in
Figure 6.13.)
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Only a minimal amount of flow was observed along the roughness of the paper fibre. Fig-

ure 6.15 shows a small film advancing down an indentation in the cellulose fibre cross-section.

The advancement is very small (≃10 µm) compared to the advancement along the fibre over-

laps≃ 1 mm. The reason for this small advancement can be due to several factors. Firstly,

the indentation in a fibre due to collapse exhibits a large angleα which greatly reduces the

driving forcePc for flow (Eqn. 1). As discussed in Senden et al. (2000), there is no simple

relationship betweenPc and fluid advance, so one cannot predict the relative advance along

different (coupled) flow paths. However, a reducedPc can have a significant retardation effect

on the local flow mechanisms. There is no flow observed down intra-fibre pores; Figure 6.8

exhibits no qualitative evidence of fibre swelling and at higher magnifications (Figure 6.15) no

flow is observed into the fibre pits or any liquid present beneath the pits.

6.3.4 Relative flow rates along flow paths

This section discusses the relative flow rates that could be observed along different flow path-

ways. It could be expected from simple fluid mechanical considerations that film flow through

small channels formed by fibre overlaps rather than meniscus displacement via bulk pores

would significantly limit the volume imbibed and the spatial extent of fluid advance into the

paper sheet. It is shown here that the experimentally observed rate of penetration was in fact

consistent with a film flow process along the inter-fiber pores and was significantly slower than

expected if the primary flow mechanism is based on meniscus flow down the bulk pores.

The prediction of two-phase liquid flow in a chaotic network of interconnected pores with

channels was still an enormously challenging problem. Even studies of liquid flow along a

singlechannel of arbitrary openingα can only be solved numerically (Ransohoff et al., 1987).

Consider first the simplest flow solution; a conventional prediction based on Lucas-Washburn

theory. Here one approximates the pores or channels as cylindrical capillaries of diameterr.

The pressure of the wetting fluid at the paper surface is constant, and the capillary pressure in

each pore is given by Laplace’s equation:Pc = 4γ/r. The volume flow rateq in each capillary is

related to the pressure drop and the lengthl of imbibition of the wetting fluid along a capillary

by Poiseuille Law, which leads to the classical result of Washburn:

l = 1/2[
γr
µ

]1/2t1/2 (6.2)

According to this classical result the distance of fluid imbibition along an inter-fiber capil-

lary of radiusR, lR should be considerably further than the fluid penetration along the fibre-fibre

crevice with spacingd, ld; lR/ld =
√

R/d. For the paper fibre web, there are bulk inter-fiber

pores with R≃ 20 - 50µm. It was assumed experimentally that a dynamic snapshot of im-

bibition over the first second of fluid contact time was being observed. Using Eqn. 6.2, and

assuming that flow in the inter-fiber pores is not hindered by the presence of discontinuities,
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it is expected the fluid would have advanced a distancel ≃ 2−3 cmover that one second of

fluid contact. However this degree of advance was not observed experimentally; in fact the

fluid advances only≃ 1-2 mm from the drop edge in the first second of fluid contact. This

observation further reinforces that flow along the inter-fiber pores cannot be the major flow

path for the penetrating fluid.

As discontinuities hinder bulk flow, the flow of films along channels becomes most favourable.

From Equation 6.2 and assuming the fibre overlap channels can be approximated by a cylinder

of diameterr ≃ 1-3 µm, the fluid advance via film flow would be expected to extendl ≃ 4-7

mmover the first second of contact. This was still faster than observed experimentally but

much closer to experimental observations. A better prediction for the fluid advance down fibre

overlap channels will come from solving for the flow of the wetting phase along an edge or

intersection of two planes at a crevice angleα (see Figure 6.23(c)).

Predictions based on a hydraulic diameter approximation for flow of a wetting fluid at a

sharp corner have been made previously (Lenormand et al., 1983). It was assumedα = 90o,

and that the pressure drop in the non-wetting phase was negligible, that the radius of curvature

along the axial direction, the plane parallel to the fluid film, was very large, and that the shape

of the meniscus in the cross section was circular. The solution for this geometry was given by

Lenormand et al. (1983):

l = .056[
γr
µ

]1/2t1/2, (6.3)

Eqn. 6.3 predicts a penetration depth an order of magnitude smaller than predicted by Eqn.

6.2. For channels of r≃ 1-3 µm a fluid advance of≃ .5-.8 mm would be expected. This

was slightly less than the extent of fluid penetration observed experimentally. Ransohoff et al.

(1987) numerically solved the full Navier-Stokes equations along a corner channel as a func-

tion of corner geometry, angle and roundedness, contact angle, and surface fluid-air shear

viscosity at the gas-liquid interface. They found that the hydraulic radius method could over-

estimate flow resistances somewhat and also showed that flow along corners atα < 90o could

be faster by a factor of 2 - 3. This result would give a prediction ofl completely consistent

with experimental observations.

Given that the fibre overlaps form a dense network of interconnected channels, and the

experimentally observed flow rate was accurately matched by a film flow scenario, it was clear

that these fibre overlap channels form the major conduits for flow in the paper fibre network.

6.3.5 Sized papers

6.3.5.1 Introduction

Sized papers were studied in order to visualise fluid flow over much longer time scales. In

doing so it was possible to visualise a mechanism of imbibition that would not have been
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possible with unsized papersi.e. intra-fibre flow.

It is a daunting task for a paper maker to provide a paper that will print well with all ink

jet printers on the market. Even if this were confined to four-color dye-based ink jet systems,

ink surface chemistry varies considerably from one manufacturer to another. The paper must

absorb the aqueous vehicle rapidly without allowing dye penetration or spread. Similarly, with

fountain solution in offset lithographic printing, surface chemistry varies from one supplier to

another, but it is important that the paper absorb the fountain solution before the following color

is laid down to avoid ink refusal. The use of water based inks in flexography requires papers

with controlled ink holdout in order to achieve optimum print density without smear or set off.

For uncoated papers this requires an accurate understanding of the mechanism for penetration

of aqueous liquids into the surface pore structure, with a particular need to understand the role

of sizing agents used in the paper industry to make paper more hydrophobic.

Cellulose fibres used for paper making are naturally hydrophilic and can be rapidly wetted

by water and aqueous liquids such as water-based printing inks. Most paper and paperboard is

sized, or made more hydrophobic, because of end-use requirements regarding interaction with

aqueous liquids. For example, sizing is required to prevent wicking and bleeding of water-

based inks when printed on plain paper, and sizing is used to prevent penetration of milk or

juice into the otherwise unprotected internal edge in a liquid packaging carton. Alkyl ketene

dimer (AKD) is widely used as a sizing agent in the paper industry. In this section cryo-SEM

technique and cryo-confocal techniques were used to visualize water penetration into papers

sized with AKD.

6.3.5.2 Cryo-SEM

SEM observations showed that when droplets had 20 minutes to penetrate the sized paper

before freezing there appeared to be no flow of any magnitude in any of the SEM images

analysed (Figure 6.25). Figures 6.26− 6.29 clearly show no film or any other form of flow at

all after droplet placement on the rough side of the 80 gsm photocopy paper. The images show

the distribution after a short interval of 2 seconds prior to freezing (Figure 6.27), and a longer

interval of 30 seconds (Figures 6.26, 6.28 & 6.29). There is no qualitative difference between

images. The images provided no evidence of flow along the fibre overlap channels nor along

surface roughness of the fibres. The fluid remained pinned at the surface of the paper, along

the edges of fibre overlaps and on the rough surface of the fibres. There was no flow at all in

the pores.

However when the droplets were placed on the paper for even longer, (30 min) there was

evidence of the beginning of film flow in interfibre channels (Figure 6.30B). This indicates that

there was very little surface flow with sized papers and there was no evidence of other flow

mechanisms. This was in strong contrast to flow mechanisms previously described for unsized
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Figure 6.25: High magnification image of an unfilled sized laboratory kraft paper BL-8 with the droplet
of fluid in the bottom left quadrant of the image which was frozen 30 seconds after placement. Note the
apparent high contact angle of the liquid on the surface of the fibres.

papers.
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Figure 6.26: SEM secondary electron image of fluid droplet frozen 30
seconds after placement onto sized copy paper.

Figure 6.27: SEM secondary electron image of fluid droplet frozen 2
seconds after placement onto sized copy paper.

Figure 6.28: SEM secondary electron image of fluid droplet frozen 30
seconds after placement onto sized copy paper.

Figure 6.29: SEM secondary electron image of fluid droplet frozen 30
seconds after placement onto sized copy paper.
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Figure 6.30: Images of sized copy paper with droplets left 30 minutes prior to freezing. Image B shows
the beginnings of film flow in interfibre channels.
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Figure 6.31 are SEM images of droplets frozen 20 minutes after placement on sized paper

in secondary electron and backscatter mode where evidence was seen of the slow movement

of fluid away from the droplet edge within fibres. In Figure 6.31(b) a “halo” of CsI can be

observed within the liquid from backscattered electrons from within the fibres that extend

about 100 - 200µm from the edge of the droplet. In Figure 6.31 the images give no evidence

for either bulk or film flow within the pores.

Figure 6.31: SEM images of fluid penetration into BL-8 after 20 minutes of contact, left: secondary
electron mode and right: backscattered electron mode.

This is illustrated more clearly in Figure 6.32, which shows a magnified subsection away

from the droplet edge. This highly magnified image provides no evidence of bulk meniscus

liquid flow in an area where there appeared to be liquid present within the fibres. These results

indicated that fluid did advance, albeit very slowly, from the droplet edge. The mechanism of

fluid advance was, unlike unsized papers, based on flow within the fibres themselves. This is

confirmed in Figure 6.33 which is an edge image of the paper near the droplet showing that no

fluid was present within the inter-fibre pore space.
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Figure 6.32: Higher magnification images of Figure 6.31 at higher magnifications. The two right
handed figures are in secondary and backscattered mode respectively. No presence of bulk fluid or film
flow in pores was observed.

Figure 6.33: Further evidence that there was no presence of fluid within pores. Here an edge image
with the droplet shown on the far right in Figure 6.32 in secondary electron and backscattered modes.
This edge image clearly shows that within the pores no fluid was present.
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6.3.5.3 Cryo two-photon laser confocal microscopy

Due to the background fluorescence of commercial laser copy paper, all cryo-confocal mi-

croscopy studies on sized papers were performed on BL-8, a sized unfilled laboratory paper.

Droplets were placed on the paper for 10 minutes prior to freezing. In Figure 6.34 three stereo

cryo-confocal images of the fluid distribution within BL-8 near the edge of the fluid droplet

are shown. The fibre structure is clearly shown in the image and even the roughness on the

fibre surface was clearly evident. This was in complete contrast to the CLSM images shown

in Figure 6.16 illustrating the penetration of liquid imbibition into saturating papers where the

only fluorescence came from films and where the fibres could not be distinguished (Figure

6.34). The movies of these images are #155, #154 & #153 respectively on the attached CD.

As there was no natural background fluorescence from the raw paper fibres it is concluded that

the fluorescence was due to liquid having penetrated into the fibres. As the surface definition

of the fibre is excellent (e.g., the roughness of the fibre is observed), it could also be concluded

that the fibre walls were penetrated and that there was no surface flow. The movement of the

fluid away from the edge of the droplet was very slow so that after 10 minutes the fluid front

was only 200µm from the droplet. This is also shown in the cryo-SEM image Figure 6.31.

It is also observed that only the surface fibres fluoresced. Confocal images at depth within

the paper and under the droplet (>2 - 3 fibres deep) exhibit no fluorescence indicating that

the liquid penetration was limited to surface fibres. This is the same as shown in cryo-SEM

image Figure 6.33 where the presence of liquid in fibres appears not to completely penetrate

the sample.
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Figure 6.34: Stereo cryo confocal images of BL-8 laboratory made sized paper near the droplet edge
showing fluid flow of a length scale up to 200 µm within the fibre especially in the top image. The droplet
of the penetrating liquid was in the top left hand quadrant in all images. The image size is 250 x 250
µm.
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As flow within the fibres is the only mechanism of fluid penetration being observed in the

sized paper, it remained to be determined where in the fibres the fluid was located. Figure 6.35

is a stereo 3D reconstruction showing that no fluid was present within the fibre lumen as there

was no strong fluorescence observed through the bordered pits. However viewing the bordered

pit in 3D, the wall of the fibre on the other side of the pit can be discerned in clear detail

indicating that the fluid was actually in the adjacent fibre wall itself and not lying between the

pit and the adjacent fibre walli.e. not within the lumen or on the surface of the fibre wall. The

movie of this image is #156.

Figure 6.35: Stereo cryo confocal images of BL-8 laboratory sized paper where one can observe the
opposite wall of the fibre through an unaspirated bordered pit, showing that there was not bulk liquid
present in the lumen of the fibre
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6.3.5.4 EDXA analysis

EDXA analyis conducted on the sample imaged in Figure 6.31b confirmed that the “halo”

observed was in fact CsI indicating the presence of the imbibing liquid. It further confirmed

that there was no CsI beyond the “halo” which extended 200µm from the droplet edge.

The presence of liquid flow in fibres only near the surface was also confirmed by analysing

a cryo-microtomed edge of sized paper with EDXA using SEM. This showed CsI distribution

in the same penetration study of BL-8. Figure 6.36 illustrates an edge image of BL-8 with

surface fluid (upper surface) and fibres near surface (X) and at depth (Y). EDXA analysis of

the fibres indicated the presence of CsI in fibre X, while the deeper fibre Y exhibited no CsI

peak at all. The EDXA spectra are shown in Figures 6.37 top (point X) and bottom (point Y)

respectively.

Figure 6.36: SEM image of the edge of sized paper near the droplet edge. EDXA analysis confirmed
the presence of CsI within the fiber near the surface(X), but no presence of CsI within the lower fiber
(Y).
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Figure 6.37: EDXA spectra, Top: in wall of surface fibre just underneath droplet (X in Figure 6.36),
and Bottom: in wall two fibres below surface (Y in Figure 6.36). The caesium peaks at point X are
clearly illustrated in the top image.
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Further evidence of the presence of liquid occurring only in the fibre wall as opposed to

the fibre lumen was provided by the cryo-SEM edge image Figure 6.38. Here EDXA indicated

the presence of CsI in the fibre walls (X) and in the edge of the lumen (Y). However there

was no evidence of bulk liquid flow at all in the particular lumen itself that would have led to

the presence of CsI at point Y in Figure 6.38 other than through flow in the walls of the fibre.

These results showed that any liquid that penetrated into the fibre walls in sized paper did not

flow through the lumen. The EDXA spectra are Figure 6.39 top (point X) and bottom (point

Y) respectively.

Figure 6.38: Edge cryo-SEM image of BL-8. EDXA analysis confirmed the presence of CsI within the
fiber wall at(X), and on the edge of the lumen(Y) however there was no evidence of bulk liquid in the
lumen itself.
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Figure 6.39: EDXA spectra, Top: in wall of fibre just underneath droplet (X in Figure 6.38), and
Bottom: on the edge of the lumen of the fibre just below the droplet (Y in Figure 6.38)
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6.4 Discussion

The structure of the pore space of paper together with local surface energy considerations are

the chief determinants of fluid penetration processes. Understanding these relationships and

their implications for paper performance will help in the design of products and troubleshoot-

ing problems. In this section the limitations of the work and implications of film flow processes

to industrial problems of interest will be discussed.

6.4.1 Viscous effects

In all the cases observed experimentally the penetration into unsized paper was determined by

capillary forces. Fluid penetration would be strongly effected if fluid was applied to the sheet

under pressure (e.g., printing nip, etc.). One would in this case expect the wetting fluid to be

driven down the pores. However, when pressure was released capillary transport would again

dominate the flow mechanisms, and any excess fluid and fluid within pores would continue to

penetrate via films.

6.4.2 Implications to fluid distributions within sheets

Flow along channels and the filling of pores away from the wetting front into unsized papers

had a dramatic effect on the resultant fluid phase distribution. This is of great interest as the

optimisation of resin penetration into decor paper was a major focus of this thesis. Experi-

ments on a range of industrial decor papers which exhibited a wide range of pore structure and

variations in their fibre and filler content were performed. The fluid penetration observed was

similar to that shown previously for pure cellulose paper (see Figure 6.18). Flow down the

inter-fiber channels and partially filled pores were all evident.

As discussed previously the fluid penetration that resulted from the filling of pores originat-

ing solely from fibres aligned parallel to the sheet would lead to a wetting fluid configuration

that was made up of lenses, with the fluid films oriented preferentially along the fibre edges

(e.g., the fluid configuration as shown in Figure 6.13). Therefore an understanding of fluid flow

mechanisms in paper could then lead to an understanding of what aspects of paper structure

affect the rate of fluid flow. The effect of fillers is dealt in for more detail in Chapter 7.

6.4.3 Implications to printing interactions

The identification of the mechanisms of fluid movement in paper is important not just in the

application of the knowledge to just decor papers. Even though this thesis did not consider the

penetration of very small amounts of liquids into paper, the mechanisms of fluid movement

will be the same for much smaller volumes commonly found in printing. In most printing

applications the amount of fluid added is significantly less than that considered in the cryo
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Figure 6.40: Figure showing the presence of films in an unfilled unsized laboratory paper only both
near the droplet center (a) whole droplet (b) after a 3 µl droplet penetrated paper.

experiments described in this thesis. In Figure 6.40 examples of fluid penetration of a small

droplet of 3µl into paper are shown. In this system the whole droplet penetrated within the≃ 1

second of fluid contact time. The penetration of fluid exhibited similar film flow characteristics

as seen previously; one now observesno zone of complete saturationright across the depleted

droplet. Even in the original center of the droplet, flow was observed solely along inter-fiber

channels and no filling of the smallest pores is observed. Given that most printing applications

use orders of magnitude less fluids, one might expect that in many printing applications the

imbibing fluid will never fill pores. This has been noted previously by Gregerson et al. (1994,

1995) who studied ink distribution on and around surface fibres for flexography printed news-

paper. They observed (Figure 10 in (Gregerson et al., 1995)) no ink spreading into voids, but

significant penetration of the surface structure via ink absorption into the inter-fiber voids.

6.4.4 Sizing effects

The penetration of droplets onto commercial copy (sized) paper was also considered. It was

thought (Garnier et al., 1999) that the sizing agent preferentially sits at the intersections of

fibres within sized paper; given that film flow down channels formed by fibre overlap was

the preferred flow mechanism. The presence of sizing agents within channels would certainly

impede the advancement of the wetting fluid. Experiments on sized paper illustrated this. In

Figures 6.26, 6.28 & 6.29 the droplet edge on sized paper was observed30 secondsafter drop

application. The fluid did not advance and stayed on the fibre surface and no channel flow was

observed.

The results given in Section 6.3.5 illustrated the dramatic effect sizing had on the pene-

tration of aqueous liquids into paper. While unsized paper exhibited fast penetration of fluid

primarily along channels formed by fibre overlaps and more slowly along crevices and surface
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roughness of the fibres, in sized paper only a single potential flow path was observed; flow

within the fibre walls. The implications of the current work to a better understanding of the

effect of sizing on fluid penetration are discussed.

AKD must be present on all fibre surfaces:Where the AKD sits within the fibre web is

an important question that has been debated for many years in the literature. Sizing takes

place after the AKD is exposed to elevated temperatures in the dryer section of the paperma-

chine. In order for sizing to be effective it is universally accepted that AKD must sinter and

spread on the fibre surfaces. The extent and physical/chemical reason for this redistribution

remains controversial. Garnier et al. (1999) found that AKD did not completely spread and

wet model cellulose surfaces and concluded that AKD vapours adsorb on the surface of fibres

during papermaking . Isogai (1999) found that sizing increased with heat treatment and related

this to melting and spreading of the sizing compounds over the fibre surfaces. Seppanen et al.

(2000) found that AKD only partially wetted cellulose in kraft pulp handsheets and that fur-

ther spreading of AKD molecules occurred by surface diffusion in the form of an autophobic

monolayer precursor from the foot of the AKD particle, the rate of spread being temperature

dependent and was shown to be quite slow (10−11m2/s). The results in this chapter lead to the

conclusion that whatever the mechanism for the spread and anchoring of AKD on the fibre

surfaces, it was present over the entire fibre surface and was not simply present as randomly

placed hydrophobic patches within the web. This was true for both the sized laboratory sheets

and the commercial copy paper.

Senden et al. (2000) showed that in unsized paper, there are many potential flow paths for

the wetting fluid; it was shown that the two mechanisms primarily observed are flow along

channels formed by fibre overlaps and to a lesser extent, flow along crevices formed by inden-

tations and surface roughness on the fibre walls. It was also shown, based on work by Hasuike

et al. (1992) that the flow channels formed by fibre overlaps form an extremely dense inter-

connected network of potential flow paths. If the AKD was randomly present within only a

fraction of the fibre overlap regions this would in no way impede the flow of fluids along this

network of channels. This can be illustrated by considering an analogy based on percolation

theory (Sahimi, 1994).

Imagine first that all the bonds of the paper fibre network are potential channels for the

flow of the fluid from the surface into the sheet. Consider a simple case, where the fibre net-

work is approximated by a highly connected network of these potential channels based on a

12-connected lattice (the cubic-close-packed network). This network is illustrated in Figure

6.41. Now suppose that some of these fibre channels have the presence of AKD in them,

while others are free to conduct water films. It would be desirable to know what proportion

of the fibre channels would have to be sized in order to stop flow of the fluid from the surface

across and into the paper sheet. In other words what sizing efficiency in terms of proportion of

overlap channels made hydrophobic is required to stop flow from occurring into the full sheet.
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Figure 6.41: Illustration of (a) a highly interconnected network of channels and (b) the same network
with 80% of the channels removed. Here only the remaining channels which span the system are shown;
i.e., those that could conduct fluid from top to bottom of the sheet. Clearly having a large proportion of
channels hydrophobised randomly would not lead to effective sizing.

It is assumed that the AKD is randomly placed on a proportion x of the channels;i.e., x are

hydrophobised, while (1-x) channels remain open to flow (hydrophilic). Percolation theory

enables the exact proportion x required to be closed to flow to stop the droplet from spreading

within the sheet. The proportion x required to be closed to flow is 88%. If, for example 20

percent of the channels remained water wetting, these wetting channels would remain inter-

connected and the inter-fibre channel flow would continue unabated; Figure 6.41(b)shows an

example of the system of Figure 6.41(a)with 80% of the (hydrophobic) channels removed.

There remains a strongly interconnected network of hydrophilic pores within the network. If

one considered a system where 95% of the channels were removed it would no longer conduct

fluid throughout the sheet. However, the hydrophilic regions while disconnected on the scale

of the full sheet,wouldexhibit small regions where the fluid, on contact, may penetrate locally

into the sheet (e.g., locally in patches to 2 - 3 fibres in depth). While it is certainly an oversim-

plification to consider a paper sheet as a highly ordered network of channels, similar results

were obtained on completely random networks (e.g., Voronoi tessellation Voronoi (1908)).

Given the experimental results where no penetration away from the droplet front was ob-

served for the sized papers, it is believed that this strongly indicated that there was effectively

100 percent coverage of the fibres on the mesoscopic length scale (≃1 micron). Recall Figures

6.26, 6.27, 6.28 & 6.29 where the dramatic pinning of the fluid droplet was observed along the

surface of fibres after20 minutesof contact time. All fibres exhibited crevices formed by in-

dentations due to fibre collapse and surface roughness of the fibres. Thousands of these small
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channels were in contact with the droplet and were potential pathways for the fluid penetra-

tion along the fibre surface. Again, no indication was seen of surface flow alonganyof these

channels. This indicated that all these potential pathways must be hydrophobised. Given that

the majority of the fibre surface was either rough or part of an overlapping channel, it can be

concluded that the hydrophobic AKD must be effectively present on the whole surface.

The results and observations discussed above are limited to a mesoscopic (>micron) scale.

Clearly there are molecular scale processes occurring which are not addressed. One problem

that should be considered is why the fluid seems to penetrate the fibre walls after sizing. Re-

gardless how the AKD is deposited, there will be defects present. Defects exist at all length

scales, from molecular to microscopic. They may be as subtle as chain disorder, or be repre-

sented by macroscopic voids. Their size and prevalence can lead to increased vapour diffusion

or bulk fluid transport across the sizing barrier.



Chapter 7

Effects of filler on the rate of

imbibition in paper

The effect of fillers on the the mechanism of fluid imbibition are presented in this chapter.

Low magnification cryo-SEM image showing complete wetting sequence of Black decor paper

showing liquid droplet through to dry paper.
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7.1 Introduction

In the previous Chapter the mechanisms of fluid imbibition for simple cellulosic sheets were

identified along with the potential morphologies for flow paths. The mechanism of fluid flow

was shown to be by films in channels formed by fibre overlaps. Many papers include the ad-

dition of fillers. Fillers are added to paper for opacity and brightness improvement especially

for papers used for printing (Biermann, 1996; Laufmann, 1998; Phipps, 2001). While there

has been much study of the effect of coating layers on fluid flow into paper (Gate and Win-

dle, 1973; Gate et al., 1973; Garey et al., 1973; Gane et al., 2001; Groves et al., 2001; Grant

et al., 1974; Huang and Lepoutre, 1998; Elftonson and Strom, 1995; Lepoutre, 1976; Lepoutre

and Rezanowich, 1977; Lepoutre, 1978; Lepoutre and de Grace, 1978; Lepoutre et al., 1979;

Lepoutre and Inoue, 1985; Lepoutre, 1989; Lafaye et al., 1987), there have been few studies

of the effect of fillers on fluid flow in unsized filled papers. The aim of this chapter is to deter-

mine how the modification of paper structure by the inclusion of fillers affects the rate of fluid

imbibition in unsized laboratory papers.

Two filler types are studied, precipitated calcium carbonate (PCC) and talc. A range of

filler loadings are considered. All papers were made with the same pulp type, manufacturing

conditions and basis weight. Two liquids were used in combination with the use of plasma

treatment of the papers to identity any possible liquid/paper effects. All papers were examined

using SEM and cryo-SEM, and with a new high speed video microscopy method.

It is shown that the major flow path for fluid imbibition remains the fibre overlap channels.

It is further shown that the addition of fillers can affect the pore structure and impact on the

rates of imbibition of liquids into paper. The major effects of the addition of PCC filler to paper

is the enhancement of the connectivity between inter-fibre channels at different depths within

the paper. This led to faster flow in thez direction. In the case of the addition of talc filler to

paper flow was reduced in thex & y directions. This may be due to the poorer wettability of

the talc.

7.2 Materials and methods

7.2.1 Experimental materials

7.2.1.1 Paper samples

Two replicates of laboratory sheets with a bleached furnish of 70% hardwood and 30% soft-

wood blend pulp refined to 500 CSF1 were made at International Paper’s laboratory at Tuxedo

Park NY using a Canpa Dynamic Sheet Former to a target basis weight of 75 GSM. The sheets

were pressed at 0.5 and then 1 bar between 2 blotters and dried under restraint at 114◦C. The

1Canadian Standard Freeness, a measure of the drainage rate of water from pulp



§7.2 Materials and methods 211

different types of filler incorporated were scalenohedral PCC and talc with variable amounts

of filler; 0%, 7.5%, 15% and 30%. Paper samples for the high speed saturation experiments

were randomly taken from within and between each paper type using a 25mm diameter wad

punch. The paper samples were stored in a room of fixed temperature and humidity (20◦C and

50% rh).

7.2.1.2 Liquid types

Two liquids were used, water with 0.1% w/w ammoniacal copper sulphate, and isopropanol

(Aldrich) with 0.1% w/w iodine (the dyes added to increase contrast). The surface tension of

the isopropanol solution with iodine dye was 21.2mJm−2 and the water solution with copper

sulphate was 70.6mJm−2, both being almost identical to the surface tensions of the undyed

liquids.

7.2.2 High speed video microscopy

The relative reflectance method for determining rates of liquid penetration into decor papers

used in Chapter 4, was only effective in determining rates of saturation of fairly viscous liquids

such as DEG (having a similar rheology to UF resin) where saturation rates were measured at

30 fps. Quantifying imbibition rates of low viscosity liquids into unsized papers required faster

rates. A new method was developed that was suitable for imbibition of aqueous solutions and

other wetting liquids of similar viscosity. The technique involved placing a 15µl droplet on

a Tefloncylinder with a diameter of 4.5 mm using a Gilson micro-pipette (1− 200 µl) and

raising the droplet very slowly until it touched the bottom side of the paper. Imaging was

carried out using a CCD camera at 300 fps, the image was split by a triangular prism so that

two images could be obtained. One image was of the cross section of the spreading droplet on

the bottom side of the paper, enabling the exact moment of fluid contact with the paper to be

determined and the second view is of the top side of the paper where changes in reflectance

during saturation were measured (Figure 7.1). The video sequence was acquired until the

droplet was depleted, usually 4− 5 seconds. The variables analysed were rate of saturation

and rate of subsurface spread. Rate of saturation was determined by counting the number of

frames till the droplet had penetrated to the other side of the paper, but before strike through

of the liquid occurred on the other side of the paper. Stills from the video output and graphs

in Figure 7.1 show the full sequence of wetting; before the droplet touches the paper (Figure

7.1 a & f), as soon as droplet touch occurs (Figure 7.1 b & g), full saturation but before the

beginning of subsurface spread (Figure 7.1 c & h), immediately after saturation when strike-

through of liquid begins to occur on the top surface of the paper (Figures 7.1 d & i) and at

the end of the sequence and liquid has spread below the surface nearly all the way across the

sample (Figure 7.1 e & j). As the paper sheet begins to saturate, the light intensity decreases.
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Table 7.1: Average thicknesses for all papers.

Paper type Thickness
(µm)

No filler 126
Talc 7.5% 124
Talc 15% 120
Talc 30% 112
PCC75% 127
PCC15% 128
PCC30% 122

After complete saturation, fluid pools up on the top side of the paper within the droplet spread

area. Where pooling occurs one now observes an increase in light intensity. Time to saturation

was determined by manually advancing each frame until the increase in light intensity shown

in Figure 7.1 ix = 130 became apparent due to pooling. This time was defined as the full

saturation time. The data was then corrected for the thickness of the paper samples (Table 7.1)

and converted into a rate (mm/s).

The rate of sub-surface spread was the rate of spread of liquid in the plane of paper after

saturation had occurred (analogous to wicking of a liquid) and is described in Figure 7.2. The

fast rate initially is associated with the rapid rate of imbibition in thezdirection. The subsurface

rate was determined by using a fitted polynomial curve with the first order coefficient being

the rate of spread (mm/s) (Equation 7.1 & Figure 7.2). Full details of the development of the

method are attached as Appendix D. It would have been desirable to measure the volume loss

of the droplet as a function of time by measuring the sectional area of the droplet below the

paper. However this was not possible as the paper warped during saturation as can be seen in

Figure 7.1 j and as such the relative droplet area potentially visible from the side was obscured.

No accurate measure of droplet cross-section could therefore be obtained.

A similar approach to the one describe above was used by Oliver et al. (1994) using a

dynamic sorption apparatus which enabled study of individual ink jet drops as they spread and

penetrated various porous substrates. In that case the side and top of a penetrating drop was

imaged with two cameras and presented through a screen splitter to enable both drop views to

be captured side by side but with a video acquisition rate of only 30 fps.
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Figure 7.1: Sequence of images (left) and light intensity profiles (right) showing: a & f just before
droplet touch, b & g at droplet touch, c & h full saturation, d & i just after saturation showing strike-
through of liquid on top surface note spike in graph at about point 130 showing increased reflection
from strike-through liquid and e & j full spread after droplet depletion. Note the changing reflectance
values at the point “130” on the x axis. The “halo” visible in the top image is a shadow cast by the
collar from one of the light sources. The y axis of the graphs is the intensity of the light reflected off
the top side of the paper the scale being 0 = black and 255 full white. The x axis is the number of
pixels in the image. The line on the graph is 4.5 mm long and is equivalent to the diameter of the Teflon
collar. The changing amount of reflected light was calculated for each frame by subtracting the light
intensity of the dry paper before droplet touch from the light intensity of each consecutive frame during
the complete wetting sequence giving a graph of droplet spread and change of reflectance over time.
The time between consecutive images was 0.003 s.
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y = K0 +K1x+K2x2 (7.1)

Figure 7.2: Fitted curve (2nd order polynomial) (red) of the wetting sequence of PCC30 (30% PCC)
imbibed with water (blue). The initial steep section on the graph relates to the saturation within the
droplet edge and hence is extremely rapid. K1 in Equation 7.1 is the coefficient used to determine
average subsurface spread.

7.2.3 Plasma treatment

One of the aims of this chapter was to determine the effect of different fillers on the rate

of liquid imbibition and to identify the mechanisms causing the differences. Plasma treatment

(Shohel, 1987) was used in an attempt to remove the effects of any chemical heterogeneity from

either fibres or filler. This would have allowed the investigation of the role of pore structure

alone in fluid penetration studies. However as is shown later plasma treatment strongly affected

the wettability of fibres but seemed to minimally affect the fillers. A brief review of the effect

of plasma treatment on fibres was presented in Section 2.2.3 in Chapter 2.

The plasma reactor used was powered by a ENI Power Systems HPG2 RF generator using

a microwave plasma of 135 kHz at a power of 30W (Figure 7.3). A vacuum in the chamber

of 0.15 Torr was achieved and water vapour admitted into the plasma reactor. The length of

treatment was 60 s. Extending the treatment had no affect on the rates of imbibition. Imme-
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Figure 7.3: Plasma reactor setup including chamber and RF generator

diately after treatment the chamber was allowed to equilibrate to atmospheric conditions and

the samples which had been treated in a Petri dish were covered by glass and transferred to the

high speed video microscopy apparatus.

All samples within each treatment were plasma treated together to ensure there was no

variability in the plasma treatment effect. The order of the wetting experiments themselves

was randomised to ensure no bias due to ageing. To determine if an ageing effect after plasma

treatment affected the rate of imbibition, a batch of the same paper type, Control A (an unfilled

paper) was plasma treated. Half of the samples were wetted as soon as possible after plasma

treatment and the other half were kept one hour before wetting. There was no significant dif-

ference in the rate of imbibition between the two batches. This confirmed results by Chan Tang

and Bosisio (1980); Carlson et al. (1995). As all wetting experiments were conducted within

15 minutes of plasma treatment ageing was not considered a factor in the results.

7.2.4 Mercury intrusion porosimetry

The mean pore diameter of a porous material is often considered the primary indicator of liquid

penetration rates. Mercury intrusion porosimetry (MIP) (Rucinski et al., 1986; Webb and Orr,

1997; Johnson et al., 1999) was used to determine average pore diameter. From the volume

of mercury intruded into the paper sample and using the Lucas-Washburn equation the pore

volume and diameter can be inferred.

The instrument used was a Micromeritics Mercury Intrusion Porosimeter Autopore III
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model 94102. The sample of 300 mm x 20 mm which had been weighed was rolled up with

nylon mesh3 and placed in a No. 11 P5 bulb penetrometer having a stem volume of 1.836 mL.

The penetrometer was then sealed, weighed and placed into the vacuum port of the porosime-

ter. A final vacuum of 50µmHg was applied to the sample for 15 min. Mercury was allowed to

flood into the penetrometer at a pressure of 0.004 mPa. The assembly plus mercury was then

weighed. The sample was then placed into the high pressure port of the porosimeter. The high

pressure regime was limited to 11.15 mPa to avoid any risk of damaging or dislocating fibres.

Each pressure setting between 0.004 mPa to 11.15 mPa (40 steps in logarithmic increments)

was held for 10 seconds to determine incremental intruded volume. Schoelkopf et al. (2003)

used an equilibration time of 60 s for throat diameters down to 0.004µm.

7.2.5 SEM imaging

The techniques to image the raw papers using SEM were the same as described in Chapter 3

and the techniques for cryo-SEM were fully described in Chapter 6.

7.2.6 Statistical analysis of data

Design of experiments and statistical analyses are as detailed in Chapters 3 & 4. Significant

results are presented in tabular form (Tables E.1, & E.2) and for ease of interpretation in line

graphs.

The treatment structure affecting rate of imbibition into paper in this chapter was; liquid

type, water or isopropanol, plasma treated or not, whether filler was present or not, if filler

present the type, talc or PCC and filler amount, 0, 7.5, 15 & 30%.

7.3 Results

7.3.1 Macro effects of filler and plasma treatment on fluid flow

Data for saturation rate is summarised in Figure 7.4 and Table 7.2. One significant effect

is that the addition of PCC increased the saturation rate of water in both the plasma treated

and untreated samples. There was a dramatic increase in the penetration rate for PCC-loaded

paper (>100% increase with increasing filler content). In contrast the addition of talc had no

significant effect on the saturation rate of water in either plasma treated or untreated talc filled

papers. Plasma treating led to an increase in water saturation for all papers.

The data also shows the addition of PCC enhanced the saturation rate of isopropanol

whereas the addition of talc had little effect. Plasma treating had no effect on the imbibition

rate of isopropanol with increasing levels of PCC. Plasma treating appeared to have a negative

2The software controlling the equipment was Micromeretics Instrument Corporation 9410 version 2.0.
3As used in retail fruit packaging to enable the mercury to penetrate within the roll of paper in the penetrometer.
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effect on saturation rate of isopropanol in talc filled papers at 30% addition rate and no effect

in unfilled papers.

Figure 7.6 shows a series of video still images at 0.015 seconds after droplet contact for

both isopropanol and water in unfilled, 30% PCC and 30% talc filled papers, none of which

had undergone plasma treatment. The images clearly show that after this time delay, liquid had

only saturated across a limited number of regions for all the paper types except for 30% PCC

filled paper saturated with water which had almost fully saturated the paper which is consistent

with Figure 7.4.

Data for subsurface spread is summarised in Figure 7.5 and Table 7.3. The major signifi-

cant effect was that the addition of talc slowed down the rate of subsurface spread of water in

both plasma treated and untreated papers. The spreading rate of water in the PCC filled paper

exhibits a slight increase (∼10%). At higher addition levels of PCC plasma treatment had very

little effect on the subsurface spread rates of water. Plasma treatment appeared to affect the

rate of subsurface spread of isopropanol at the highest rate of addition of talc. There were no

other affects on the rate of subsurface spread of isopropanol.

Table 7.4 shows that the addition of fillers reduces average pore diameter as determined

by MIP and that for an equivalent amount of filler addition the pore sizes in PCC papers are

substantially smaller than those filled with talc.
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Figure 7.4: Graphs showing the effect of plasma treatment, filler type and amount on the saturation
rates of a) water and b) propanol. The graphs show standard error bars between replicates.

Figure 7.5: Graphs showing the effect of plasma treatment, filler type and amount on the rate of sub-
surface spread of a) water and b) propanol. The graphs show standard error bars between replicates.
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Table 7.2: Saturation rate raw data (mm/s)

Liquid type Plasma treatment Filler type Filler amount

0 7.5% 15% 30%
Propanol Yes None 0.77
Propanol Yes PCC 1.2 1.26 1.75
Propanol Yes Talc 0.87 0.98 0.68
Propanol No None 0.74
Propanol No PCC 1.38 1.26 1.76
Propanol No Talc 0.73 0.88 0.91

Water Yes None 2.76
Water Yes PCC 5.07 5.81 5.766
Water Yes Talc 3.37 2.86 2.55
Water No None 1.62
Water No PCC 3.24 4.30 4.66
Water No Talc 1.86 2.01 2.06

Table 7.3: Sub surface spread raw data (mm/s)

Liquid type Plasma treatment Filler type Filler amount

0 7.5% 15% 30%
Propanol Yes None 0.55
Propanol Yes PCC 0.53 0.60 0.57
Propanol Yes Talc 0.65 0.57 0.46
Propanol No None 0.56
Propanol No PCC 0.60 0.59 0.54
Propanol No Talc 0.63 0.57 0.55

Water Yes None 1.15
Water Yes PCC 1.21 1.06 1.00
Water Yes Talc 1.03 0.99 0.73
Water No None 0.86
Water No PCC 0.92 1.01 0.97
Water No Talc 0.89 0.71 0.62
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Figure 7.6: Series of images showing the degree of saturation after 0.015 seconds. Note the differences
in level of saturation and hence rate of imbibition in thez direction. Scale bar is 4.5 mm
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Table 7.4: Average and predicted pore diameter obtained from mercury intrusion porosimetry.

Paper type Average pore Predicted pore
diameter (µm) diameter (µm)

No filler 4.12 n/a
Talc 7.5% 3.86 4.06
Talc 15% 3.54 4.01
Talc 30% 3.47 3.9
PCC75% 3.64 4.06
PCC15% 2.95 4.01
PCC30% 2.20 3.9

Figure 7.7: Images of water droplets on talc before and after plasma treatment showing that plasma
treatment had very little effect.
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Wettability can be associated with the apparent contact angle of a liquid on a surface such

that the more wettable the surface the lower the liquid contact angle. To test the effects of the

wettability of both fillers on fluid imbibition in filled papers, a large crystal of calcite (calcium

carbonate) and a piece of metal chalk (talc) were wetted with both isopropanol and water and

contact angles determined. Both water and isopropanol spread very rapidly on the calcite

crystal such that there was no measurable contact angle. It was assumed that the contact angle

for plasma treated calcite would also be close to 0◦. Isopropanol also spread very rapidly over

the talc with no measurable contact angle and plasma treating was found to have no effect.

Water however did give a measurable contact angle on talc and plasma treating was found only

to have little effect on it (Figure 7.7). The surface energies of calcium carbonate, talc and

cellulose are detailed in Table 7.5 (Yildirim, 2001).

Plasma treating of unfilled papers resulted in a higher degree of pore infilling as evidenced

by there being fewer unfilled pores (Figure 7.8) than in untreated unfilled paper (Figure 7.19).

From Figures 7.4 & 7.5 one can see the significant positive effect on imbibition rates of plasma

treating of cellulose fibres in unfilled papers.

Table 7.5: Surface energies.

Material Surface energy
(mJm−2)

Cellulose 44
PCC 48
Talc 31.7
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Figure 7.8: Low magnification image of wetting of an unfilled plasma treated paper. Note that there
are fewer unfilled pores than in untreated papers (Figure 7.19).

7.3.2 SEM observations of the distribution of filler

Figures 7.9 & 7.10 show high magnification images of particles of PCC and talc in paper. PCC

is smaller 2 - 3µm and has a more complex scalenohedral like shape, whereas talc is plate-like

and being up to 20µm in extent and (1µm) in thickness.

Figures 7.11, 7.13 & 7.15 are SEM images of papers filled with 7.5%, 15% & 30% PCC

respectively and Figures 7.12, 7.14 & 7.16 are SEM images of papers filled with 7.5%, 15%

& 30% talc respectively. It is clear that the distribution of the fillers differs. With PCC filled

papers the filler tends to aggregate into large clumps up to 30µm in diameter and is heteroge-

neously distributed throughout the paper (Figure 7.15). Many fibre surfaces exhibit no filler

coverage while others show a complete coverage. In some cases these large aggregated clumps

of PCC are located in larger pores and could bridge across pores. The effect of this is to “break”

up these larger pores. This was not the case for talc filled papers where the filler tended to be

concentrated around the edges rather than within the pores (Figure 7.16). Figure 7.18 is a

schematic of the distribution of fillers at a larger scale.As a result it had a much lower impact

on changing pore sizes (Table 7.4).

Table 7.4 also shows the impact of fillers on pore diameter by predicting the pore sizes if

the filler is distributed around the edge of the pores such as occurred with talc. This assumes

that the pores are spherical in shape and that the filler is distributed homogeneously around

edges of the pores. For talc filled papers the assumption of even coverage of filler agrees with
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the data. However the predictions for PCC filled pores strongly overestimate the actual sizes.

This reinforces the observation that PCC aggregates in pores and tends to break the pore up

into much smaller volumes. Figure 7.17 shows a schematic diagram of the way the different

filler particles distribute at a pore scale.

7.3.3 SEM observations of the effect of filler on the spreading of liquids

To better understand the effect of fillers on imbibition in paper a study was undertaken using

cryo-SEM. Figures 7.19 - 7.22 are images of unfilled paper. Only data for untreated paper with

water as the saturating fluid are shown. One notes that in unfilled paper the fluid is present

in the form of films in the inter-fibre channels as was seen in Chapter 6. One also notes that

the fluid does not completely invade the largest pores. As described in Chapter 6, in unfilled

papers the advancing fluid invades all pores via films and a pore saturates by the thickening

of these advancing films. The smaller pores are therefore completely invaded, but the largest

pores remain only partially wetted along the edges.

With filled papers irrespective of the type or amount of filler, fluid advanced in the form

of films along inter-fibre channels. Figures 7.23 - 7.26 show imbibition of fluid in paper filled

with 7.5% PCC. Unlike unfilled paper, very few pores remain unfilled behind the wetting front.

In the top left hand corner of Figure 7.25 one can see a pore containing PCC particles being

invaded with the wetting fluid (arrow marked A). Note the difference between the filling pore

in Figures 7.25 (arrow A) and the filling pore in the centre of Figure 7.22. The former is being

invaded through filler whereas the latter is being invaded through thickening films on all the

edges surrounding the pore. Figure 7.26 further shows how readily particles of PCC wet. A

clump of particles on thesurfaceof a fibre has been completely imbibed (arrow A). Note the

adjacent areas on the surface of the same fibre are dry.

Figures 7.27 - 7.30 show imbibition of fluid in a paper filled with 7.5% talc. There are less

unfilled pores behind the wetting front than unfilled paper. Figure 7.29 shows an almost filled

pore where the liquid appears to be pinned on a large particle of talc within the pore (arrow

marked A). Note also a thickening film in an inter-fibre channel that appears to be pinned on

a large particle of talc (arrow B). Figure 7.30 also shows the phenomenon of the wetting fluid

appearing to pin on talc particles.

Figures 7.31 - 7.34 show wetting of a paper filled with 15% PCC. As with papers filled

with 7.5% PCC, there are almost no unfilled pores between the edge of the droplet and the

wetting front (Figure 7.33). Where PCC is in a pore that is in contact with the wetting fluid,

one observes penetration into the filler (arrow A). Where there are particles of PCC in an inter-

fibre channel there seems to be no pinning of the film of wetting fluid as with talc (arrow B).

Figure 7.33 shows detail of pore filling immediately behind the wetting front. Figure 7.34

shows again the wetting liquid imbibing into the clump of PCC (arrow A).
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Figure 7.9: High magnification image of individual PCC particles in a
paper with 15% PCC. Note complex scalenohedral but overall roughly
spherical shape.

Figure 7.10: High magnification image of individual talc particles in a
paper with 15% talc. Note the plate-like structure of the particles with
relatively smooth surface and very rough edges.

Figure 7.11: SEM images of laboratory paper with 7.5% PCC. Figure 7.12: SEM images of laboratory paper with 7.5% talc.
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Figure 7.13: SEM images of laboratory paper with 15% PCC. Figure 7.14: SEM images of laboratory paper with 15% talc.

Figure 7.15: SEM images of laboratory paper with 30% PCC. Note
tendency for the PCC particles to aggregate into clumps in pores.

Figure 7.16: SEM images of laboratory paper with 30% talc. Note
tendency for the talc particles to be distributed around and not in the
larger pores.
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Figure 7.17: Schematic showing the distribution of filler particles at a pore scale; a) unfilled paper,
b) paper filled with talc and c) paper filled with PCC. Note distribution of PCC particles in clumps in
larger pores and the distribution of talc particles around the edges of larger pores.
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Figure 7.18: Schematic showing the distribution of filler particles at a larger scale; a) unfilled paper,
b) paper filled with talc and c) paper filled with PCC.
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Figures 7.35 - 7.38 show wetting of a paper filled with 15% talc. In Figure 7.35, unfilled

pores are evident behind the fluid front. Figure 7.37 is a higher magnification image at the

wetting front and shows what appears to be pinning of a film by a particle of talc (arrow A).

The particle of talc appears completely surrounded by the wetting fluid yet the liquid has not

spread over the particle. This is also shown in Figure 7.38 (arrow A) where it can be clearly

seen that a particle of talc is stopping the spreading of a film prior to pore filling.

Figures 7.39 - 7.42 show wetting in a paper filled with 30% PCC. Figures 7.41 and 7.42

show the influence that the particles of PCC have on the filling of pores by the wetting fluid.

Note that in Figures 7.41 & 7.42 the invading liquid follows the distribution of the particles of

PCC. Note also in Figure 7.42 that where there are PCC particles on the surface of the fibre

they imbibe the wetting fluid.

Figures 7.43 - 7.46 show wetting in a paper filled with 30% talc. There are still larger

unfilled pores behind the wetting front. Figure 7.44 shows what appears to be the impeding

pore filling (arrows marked A). Figure 7.45 shows a large pore with talc distributed around the

edge remaining empty. Figure 7.46 shows a thickening film being pinned on particles of talc.

Flow along films is evident as the main mode of fluid advance in all of the papers imaged,

irrespective of filler type or amount.
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Figure 7.19: Low magnification image of wetting of a paper with no
filler. Figure 7.20: Higher magnification image of a paper with no filler.

Figure 7.21: High magnification image of an unfilled paper. Figure 7.22: Higher magnification image of an unfilled paper.
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Figure 7.23: Low magnification image of wetting of paper filled with
7.5% PCC. Arrows marked A show unfilled pores.

Figure 7.24: Higher magnification image of a 7.5% PCC filled paper
showing infilling of pores.

Figure 7.25: Wetting of a 7.5% PCC filled paper showing showing few
unfilled pores. Note impact of filler on filling of pores (arrow marked
A).

Figure 7.26: Wetting of a 7.5% PCC filled paper showing showing
pore filling right at edge of wetting area. Note wetting of particles of
PCC on fibre surface (arrow marked A)
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Figure 7.27: Low magnification image of wetting of paper filled with
7.5% talc. Note unfilled pores in comparison to Figure 7.23. Arrows
show unfilled pores behind wetting front.

Figure 7.28: Higher magnification image of a 7.5% talc filled paper
showing more detail of pore filling.

Figure 7.29: High magnification image of a 7.5% talc filled paper
showing pore filling only at edge of wetting area. Fluid filling a pore
appears to be pinned on a talc particle (arrow A) and a thickening film
in an inter-fibre channel also appears pinned on a talc particle (arrow
B). Figure 7.30: 7.5% talc filled paper showing fluid propagation by films.
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Figure 7.31: Low magnification image of wetting of paper filled with
15% PCC.

Figure 7.32: Higher magnification image of a 15% PCC filled paper
showing film flow at edge of wetting area. Arrow A shows particles of
PCC being readily wet and arrow B shows particles in a fibre overlap
channel where pinning of fluid flow is evident.

Figure 7.33: High magnification image of a 15% PCC filled paper
showing pore filling at very edge of wetting area.

Figure 7.34: Higher magnification image of a 15% PCC filled paper
showing film flow at very edge of wetting area. Arrow A shows the
influence of aggregated PCC particles in the filling of pores.
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Figure 7.35: Low magnification image of wetting of paper filled with
15% talc.

Figure 7.36: Higher magnification image of a 15% talc filled paper
showing more detail wetting.

Figure 7.37: High magnification image of a 15% talc filled paper
showing few unfilled pores. Arrow A shows liquid filling a pore pinned
on the edge of a particle of talc.

Figure 7.38: Higher magnification image of a 15% talc filled paper
showing unfilled pores near edge of wetting area. The arrow marked A
again shows the effect of a particle of talc impeding pore filling.
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Figure 7.39: Low magnification image of wetting of paper filled with
30% PCC.

Figure 7.40: Higher magnification image of a 30% PCC filled paper
showing few unfilled pores .

Figure 7.41: High magnification image of a 30% PCC filled paper
showing more detail of imbibition into clumps of particles. Note the
pattern of imbibition exactly follows the distribution of particles.

Figure 7.42: Higher magnification image of a 30% PCC filled paper
showing more detail of imbibition of clumps of particles.
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Figure 7.43: a) Low magnification image of wetting of paper filled
with 30% talc.

Figure 7.44: Higher magnification image of a 30% talc filled paper
showing the edge of the wetting area.

Figure 7.45: High magnification image of a 30% talc filled paper
showing more detail of pore filling.

Figure 7.46: Higher magnification image of a 30% talc filled paper
showing more detail of filling of pores. Arrows marked A show the
impact of particles of talc on impeding pore filling.
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7.4 Discussion

A number of conclusions can be drawn from the data;

1. Whether a paper is filled or not and irrespective of the type of filler added to the paper,

the mechanism of liquid imbibition in paper is by capillary pressure driven films in fibre

overlap channels Figures 7.23, 7.30, 7.31, 7.36, 7.40 & 7.44 are examples of both of the

filler types and all of the amounts and represent what was observed in all SEM images.

2. The type of filler significantly affected the paper structure. PCC aggregated into clumps

heterogeneously distributed throughout the paper and could break up pores (Figure 7.15)

Talc was more homogeneously distributed in the paper and was not seen to aggregate in

clumps, and was often located around the edges of pores (Figure 7.16). As a result for

an equivalent amount of filler, the sizes of pores in a PCC filled paper were considerably

smaller than those in papers filled with talc (Table 7.4). In fact the pore morphology

of a talc filled paper and an unfilled paper were similar. The distribution of both fillers

is demonstrated schematically in Figure 7.17 showing the impact of the two fillers at a

pore scale and Figure 7.18 showing the impact on a larger scale.

3. The Lucas-Washburn equation, cannot describe fluid imbibition rates in filled paper.

The addition of PCC to paper resulted in smaller pores, but also faster rates than unfilled

and talc filled papers (Figures 7.4 & 7.5). The Lucas-Washburn equation would have

predicted the opposite.

4. The addition of PCC increased rates of imbibition of water in all directions but partic-

ularly in thez direction. It also increased the rate of imbibition of isopropanol in thez

direction. In PCC filled papers most pores behind the wetting front are infilled (Figures

7.39 - 7.42).

5. The addition of talc in papers reduced rates of imbibition of water in thex & y directions

in paper and had no effect on the rate of imbibition of water in thez direction (Figures

7.4 & 7.5).

To explain the observed differences in the fluid penetration results for the talc and PCC-

filled papers, the differences in the pore morphology and surface energy characteristics are

examined. The increase in rates in thez direction due to PCC addition and the filling of the

pores behind the fluid front for both water and isopropanol can be both attributed to the change

in the pore morphology. Fluid invaded the larger inter-fibre pores because of the tendency of

PCC to aggregate into clumps and breakup the larger pores into smaller pores (Figure 7.15).

This is further verified by MIP data for PCC filled paper where the mean pore size is 50% that

of unfilled paper. These clumps of PCC form a sub-network of small interconnected channels
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within the larger inter-fibre pores. These inter-particle channels would be approximately∼ 2

microns in diameter given that the particles themselves are∼ 2 - 3 microns in diameter. These

are significantly smaller than the pores formed by the fibre web structure (∼50 microns).

The resultant capillary pressure for invasion into these smaller porous regions is extremely

favourable according to the Laplace equationPc = 2λ/r. Thus the capillary pressure in these

small voids would be at least one order of magnitude greater than that formed by inter-fibre

pores themselves and may compete with the penetration of inter-fibre channels (dependent of

course on the local morphology on the channel). This explains the observation that regions

rich in PCC are quickly and completely invaded by the wetting fluid (Figures 7.4, 7.41 &

7.42). Smaller pores can then be completely invaded by thickening films (Figure 7.47C).

The tendency for fluid to saturate quickly through a PCC filled sheet in thez direction is

then explained by considering the effect of this local pore bridging on the potential flow path

of the wetting fluid at the scale of the full sheet. For an unfilled sheet, it is well known that

the fluid path through the sheet is extremely tortuous due to the strong preferred alignment

of fibres in plane (Figure 7.48A). The bridging of the pores by PCC greatly decreases the

tortuosity of the flow path in thez direction (Figure 7.48C) by connecting inter-fibre channels

at different depths in the paper. As PCC loading is increased, the tortuosity further decreases.

This is consistent with the data in Figure 7.4. PCC also decreases the tortuosity of the flow

path laterally, but due to the fibre alignment the effect is only minimal (Figure 7.5).

The effects of talc on imbibition of water cannot be attributed to pore morphology. Particles

of talc were primarily distributed around the edges of pores and did not aggregate in clumps

within pores thus there would have been little impact on the resultant pore morphology. Thus

there was no opportunity for the formation of sub-networks of potential flow paths in larger

pores as was the case with PCC. Therefore the connectivity between different levels of inter-

fibre channels would not have been enhanced with the addition of talc. One can see the effect

of the distribution of talc on the tortuosity of flow paths for unfilled and talc filled papers are

similar. This is shown at a pore scale in Figure 7.47B and on a larger scale in Figure 7.48B.

This is consistent with the data in Figure 7.4 showing no increase in imbibition rates in thez

direction.

There are two potential reasons for this reduction in subsurface flow rate with talc filled

papers to have occurred (Figure 7.5). The first is that with increasing levels of talc, the density

of fibre in the paper would have been reduced. This would have resulted in a lower density of

fibre-overlap channels which could have had an effect on the rate of lateral flow.

The second and most probable cause for this reduction in subsurface imbibition rate with

the addition of talc is related to the wettability of the talc particles themselves. It was shown in

Figures 7.29, 7.36, 7.38 & 7.46 that the wetting liquid appeared to pin on particles of talc and

not wet as effectively as fibres. The flat surface of talc particles are uncharged and are slightly

hydrophobic and have a lower surface energy than either cellulose or PCC (Table 7.5). Thus
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some particles of talc located in fibre-overlap channels may impede the rate of spreading of

films (Figure 7.38 arrow marked A) explaining the reduced rate of subsurface spread of water.

When isopropanol was placed on a solid talc surface, it spread spontaneously with no

apparent contact angle. This would explain why in Figure 7.5 there was no change in the

rate of subsurface spread of isopropanol in talc filled papers with increasing levels of filler in

contrast to the rate of subsurface spread of water reducing.
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Figure 7.47: Schematic comparing the effects of different fillers with the infilling of large pores, A: no
filler, B: talc and C: PCC. The schematic is of a vertical section through paper.
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Figure 7.48: Schematic of potential flow paths of liquid in A) unfilled, B) papers filled with talc and C)
papers filled with PCC showing little difference in the tortuosity of flow paths between talc filled and
unfilled papers and a significantly reduced tortuosity for PCC filled papers.



Chapter 8

Discussion on decor papers

This chapter interprets the behaviours of the decor papers tested in Chapters 3 & 4 with the

findings of Chapter 5 - 7. In this discussion chapter the initial industrial problem is analysed

in terms of the new vision of paper gained.

High magnification image of an unfilled pore in Streetlight caused by migration of MF resin away

from the surface of the paper. Note unresinated fibre.
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8.1 Introduction

From this thesis one now has sufficient understanding to tackle the “paper effect” identified

between the different decor papers studied in Chapters 3 & 4. The effect that fillers have on

both pore morphology and rate of fluid imbibition in decor papers is summarised here. The

fillers used in the decor papers are identified and their effects on pore structure determined.

These are then related to the imbibition performance of the decor papers established in Chapter

4, the mechanism of imbibition having been established in Chapter 6. The key is to consider

the way film flow is influenced by inter-fibre channels, filler morphology and distribution.

The decor papers were analysed using mercury intrusion porosimetry to determine average

pore diameter, visualised using SEM to examine filler distribution and pore morphology, and

analysed using EDXA to identify the types of filler used. Fluid imbibition data used was based

on the rate of imbibition of diethylene glycol to the point of 50% saturation.

8.2 Structure of decor papers and implications for imbibition

Initially the rate to 50% saturation appears to be related to the average pore diameters of the

decor papers (Figure 8.1)i.e. the paper with the smallest pore size, Alpine White, saturated

fastest and the papers with the largest average pore diameter, Black, Fog and Storm saturated

slowest. However, there are some interesting inconsistencies. Folkstone Grey, New England

Elm and Streetlight have small average pore diameters, however, they also have relatively slow

rates of imbibition to 50% saturation. This reinforces the point made in Chapter 7 that pore

size alone is too simplistic in predicting the rate of fluid imbibition.

In Chapter 4 the density of decor papers was found to relate to both the rate of fluid imbi-

bition (Figure 4.42) and the production of defects in pressed LPM panels (Figure 4.8). Density

was also very strongly related to the filler content of the decor papers (Figures 4.6). The

filled decor papers studied (Kraft being the only unfilled decor paper) were re-examined under

high magnification SEM and with EDXA analysis1 in order to determine the type of fillers in

the paper. This showed that all the papers containedTiO2 except for Black, confirming the

findings in Chapter 3 obtained using Raman microscopy. Figures 8.3, 8.5 & 8.9, show that

particles ofTiO2 have a spherical or block-like shape and are< 1 µm in size. It has a very high

surface energy (90mJm−2) making it hydrophilic. In addition, EDXA analysis showed that

all papers except for Folkstone Grey and Streetlight also contained kaolin (aluminium silicate

Al2Si2H4O9) which has a similar surface energy (Yildirim, 2001; Burry and Keller, 2002) to

TiO2, and a plate like structure similar to talc (Figures 8.5 & 8.13). It is proposed that the

different amounts ofTiO2 and kaolin,2 but most importantly their distribution affected rates of

1Voillot et al. (1990) also used EDXA and SEM to report on the distribution of fillers and pigments in thez
direction in paper.

2as measured by their filler contents
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imbibition (Table 8.1).

Papers that imbibed fastest to 50% saturation (Figure 8.1), Alpine White and Beech had

the highest filler contents, 41% and 33% respectively and had very few large open voids on

their surfaces (Figures 8.2 & 8.4). These papers also had very small average pore diameters,

0.77 and 1.05µm respectively. High magnification images of these papers (Figures 8.3 & 8.5)

show that the filler is distributed as clumps in pores of the paper. It is believed that the effect of

the addition ofTiO2 filler would have been analogous to the addition of PCC to the laboratory

papers investigated in Chapter 7, bearing in mind theTiO2 particles being smaller. The small

voids between the particles in the clumps of aggregatedTiO2 would have been readily invaded

by the imbibing fluid due to higher capillary pressures, enhancing fluid flow in thez direction

due to the increased connectivity of inter-fibre channels at different depths in the paper.

Storm was one of the slowest to saturate to 50% (Figure 8.1). This is readily explainable by

the largeunfilledpores, (Storm having the largest average pore diameter 1.63µm Figure 8.14

& 8.15) and a relatively low amount of filler (22%). This would have resulted in relatively poor

connectivity between inter-fibre channels at different depths within the paper, which as shown

in Chapter 7 would not enhance fluid flow in thez direction.

Two papers had very similar filler contents, Fog; 26% and New England Elm; 29%, how-

ever, there was a large difference in the rate of imbibition to 50% saturation (Figure 8.1), with

New England Elm saturating faster than Fog. The filler in Fog is primarily located on the fibres

andnot in the inter-fibre pores (Figures 8.8 & 8.9). This explains the larger average pore diam-

eter (1.25µm). The filler distribution in New England Elm appeared to be more concentrated

within the pores and this could result in and a reduction of the average pore diameter (1.03µm)

and more importantly greater connectivity between inter-fibre channels and so explaining the

greater rate of imbibition in thez direction (Figures 8.12 & 8.13).

Folkstone Grey and Streetlight also had very similar amounts of filler (34 & 35% respec-

tively) and yet had different average pore diameters, (0.86µm & 1.06µm respectively). They

saturated at different rates, Folkstone Grey being faster (Figure 8.1). Folkstone Grey had

fewer larger pores that contained little filler (Figures 8.10, 8.11), than did Streetlight which

had a much higher occurrence of large pores that contained little filler (Figures 8.16 & 8.17).

Folkstone Grey therefore could have had greater connectivity of inter-fibre channels in thez

direction than Streetlight. This reinforces the argument of the importance of fillers on pore

morphology affecting connectivity of the inter-fibre channel network.

The fact that pore size alone is not a good determinant of rates of imbibition can be il-

lustrated by comparing Streetlight and Beech. They have almost identical filler amounts as

well as average pore diameters yet Beech saturated much faster. This is again attributed to

the distribution of fillers, in Beech being located in the larger pores (Figures 8.4 & 8.5) and

in Streetlight on the fibre surfaces and not in the larger pores (Figures 8.16 & 8.17). It also

appears as though Folkstone Grey and Streetlight saturated more slowly due to the absence
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of kaolin which is highly wetting. It is interesting to note that even though similarly shaped

to talc, it appears to have had the opposite effect on imbibition due to the wettability of the

particles.

The identification of film flow in papers, followed by thickening and snap-off which de-

pend on the local geometry of the channels and adjacent void space, enabled the solution of a

puzzling result from Chapter 4. There it was shown that some papers initially saturated rapidly

to 50% saturation (Figure 4.30) and then slowly to 95% saturation (Figure 4.31), and there

appeared no obvious relationship between the two. Papers in this category, Black, New Eng-

land Elm and Beech had particular morphological characteristics that were different from the

other decor papers tested. Black and New England Elm had a wide range of pore diameter

distributions caused by the presence of very large voids throughout the paper. As was shown

in Chapter 6 the smaller pores would have filled rapidly resulting in rapid saturation to 50%.

The larger pores would have filled much more slowly, resulting in the slower saturation rate to

95%. This can also be seen by examining the SEM micrographs of saturating decor papers in

Figure 8.18, where it is shown that the papers that were the slowest to saturate to 95% had large

unfilled surface and subsurface pores in the fully saturated zone (Black & Storm), compared

to those that saturated much faster to 95% saturation (Alpine White, Folkstone Grey and Fog)

which had very few.

Beech on the other hand had a similar saturation behaviour, but in this case caused by an

entirely different morphological feature. Due to the heterogeneous distribution of filler which

was concentrated just below the paper surface (shown in the edge image of the paper in Chapter

3 Figure 3.43), there were quite small pores on and just below the surface which would have

filled rapidly explaining the very fast initial rates of saturation to 50%. Toward the centre

of the paper, however, the pores were much larger due to the absence of filleri.e. pore size

varied in thez direction as opposed to the larger pores being spread throughout the paper like

those described immediately above. These larger pores would have filled much more slowly

resulting in a slower rate of imbibition to 95% saturation.

The results relating aspects of paper structure with the addition of filler were very sig-

nificant as they enable one to determine what factors make a decor paper suitable for resin

impregnation and LPM pressing, which was one of the original aims of the thesis. The elim-

ination of larger pores due to the distribution of fillers, which was shown in Chapters 7 & 8

to increase connectivity in the inter-fibre channel network (thus enhancing fluid flow in thez

direction) is important as rate of fluid imbibition was found in Chapter 4 to be directly related

to the generation of LPM defects (i.e.open surface voids on pressed LPM). The fillers should

aggregate into clumps, and should be hydrophilic and of a shape to enable the close associa-

tion of filler particles to create higher capillary pressures for imbibing liquids. Therefore the

particle shape should be spherical or close to it. The other recommendation made for the man-

ufacture of decor papers, is that calendaring should be totally avoided because this operation
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Figure 8.1: Graphs showing the relationship between average pore diameter determined by mercury
intrusion porosimetry and saturation rate to 50%.

creates smaller pore sizes on the surface of the paper compared to those in the core of paper

creating discontinuities which would require external pressures for fluids to penetrate (Lyne,

1976). Ideally the pore sizes should reduce with paper depth which conflicts with Schnieder

(1997a) who discussed the advantages of calendering to reduce resin uptake. This is totally

refuted and backs up the author’s personal experience in an industrial situation where it was

shown that these papers are not at all suitable for the production of LPM panels.

Table 8.1: Filler content of decor papers.

Paper type Filler content (%)

Alpine White 41
Beech 33
Black 14
Fog 26

Folkstone Grey 34
New England Elm 29

Storm 22
Streetlight 35
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Figure 8.2: Low magnification SEM image of unresinated Alpine White showing distribution of filler.
Note even distribution of pore sizes with no large pores.

Figure 8.3: High magnification SEM image of unresinated Alpine White (x 3K) showing filler particles.
The particles of filler do not appear clumped.
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Figure 8.4: Low magnification SEM images of unresinated Beech showing distribution of filler. Note
larger pores.

Figure 8.5: High magnification SEM images of unresinated Beech showing filler particles. The parti-
cles appear aggregated on fibre surfaces.
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Figure 8.6: Low magnification SEM images of unresinated Black showing distribution of filler. Note
very open structure of the paper with large pores.

Figure 8.7: High magnification SEM images of unresinated Black showing filler particles. The particles
appear aggregated on fibre surfaces.
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Figure 8.8: Low magnification SEM images of unresinated Fog showing distribution of filler. Note very
heterogeneous distribution of filler and the higher frequency of larger pores.

Figure 8.9: High magnification SEM images of unresinated Fog showing filler particles. Particles
appear clumped in the pores.
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Figure 8.10: Low magnification SEM images of unresinated Folkstone Grey showing distribution of
filler. Note presence of larger pores and concentration of filler near the surface.

Figure 8.11: High magnification SEM images of unresinated Folkstone Grey showing filler particles.
Particles appear clumped in the pores.
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Figure 8.12: Low magnification SEM images of unresinated New England Elm showing distribution of
filler. Note presence of larger pores and concentration of filler near the surface.

Figure 8.13: High magnification SEM images of unresinated New England Elm showing filler particles.
Note plate-like kaolin particles and concentration of filler particles in pores.
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Figure 8.14: Low magnification SEM images of unresinated Storm showing distribution of filler and
the very open structure of the paper.

Figure 8.15: High magnification SEM images of unresinated Storm showing filler particles, which
appear heterogeneously distributed.
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Figure 8.16: Low magnification SEM images of unresinated Streetlight showing distribution of filler
and the presence of very large pores.

Figure 8.17: High magnification SEM images of unresinated Streetlight showing filler particles, which
appear heterogeneously distributed.
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Figure 8.18: Cryo-SEM images in the saturated zone showing the comparison of papers with no large
unfilled voids: from top-bottom; Alpine White, Folkstone Grey, and Fog.
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Figure 8.19: Cryo-SEM images in the saturated zone showing the comparison of papers with large un-
filled voids: from top-bottom; Beech, Black, and Storm. These papers had the slowest rates of imbibition
to 95% saturation.
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8.3 Conclusion

The “paper effect” determined in Chapters 3 & 4 appeared to be most closely linked to the

distribution of fillers within decor papers. While filler content and average pore diameter can

in some cases relate to rate of fluid imbibition, it is the distribution of the filler, the affect pore

morphology and consequently the connectivity of the inter-fibre channel network that is the

key factor in determining rates of fluid imbibition in decor papers.



Chapter 9

Conclusions

This Chapter discusses the main findings of the thesis in relation to the aims and introduces

areas of future research.

Reconstructed image obtained using x-ray micro computed tomography showing the void space of

an unfilled laboratory paper. The image is of mercury intruded into paper after undergoing mercury

intrusion porosimetry.
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The project had its genesis in an industrial process problem that was costing the author’s

company millions of dollars each year in lost revenue, namely the production of defects in

LPM. In trying to solve the problem locally, help was sought from suppliers of the decor paper,

resins and even the equipment suppliers themselves. As this proved fruitless an extensive

literature search was undertaken with the result that there was little information available on

how to solve the problem or even the exact nature of the problem.

Through research in this thesis, the nature of the problem was identified, and also its causes,

these being related to two fluid flow issues of the resins used in the impregnation of decor

papers. Insufficient flow of the saturating urea formaldehyde resins resulting in unfilled voids

in the centre of the paper followed by excessive flow of the melamine formaldehyde resins into

these unfilled pores in the centre of the paper leading to unfilled voids on the surface of the

pressed papers.

This then led to the bulk of the research in the thesis, that being to identify the kinetics

of fluid flow in paper, a topic that has been studied for decades. By far the majority of this

research has revolved around the Lucas-Washburn (Lucas, 1918; Washburn, 1921) equation

where the mechanism of fluid imbibition is by bulk meniscus flow through the pores in paper

and where surface tension drives flow. The pores were described as being equivalent to cylin-

drical capillaries with an average size in order for the model to work. This of course is far from

the reality of the geometrical complexity of paper. The Lucas-Washburn model would thus

predict a greater rate of flow in larger pores and that these as a result would fill first (Windle

et al., 1970). However, it was demonstrated in this thesis that the initial rapid liquid penetra-

tion in paper described by Napier (1964) was actually filling of the smallest pores first. The

research in this thesis also refuted the fundamental assumption of the Lucas-Washburn model,

that of bulk meniscus flow, by demonstrating that in fact fluid imbibition in paper is dominated

by capillary pressure driven film flow through channels formed by overlapping fibres. These

channels form a dense and connected network and as such provide preferential pathways for

fluid flow throughout the paper.

As part of the research in this thesis insights have been gained into the mechanisms of flow

in certain internally sized papers which has led to the refuting of a long held belief that flow

within fibres occurs in fibre lumens in the form of bulk meniscus flow. In fact flow was found

to occur in the walls of fibres.

Previously, it had been believed that the primary purpose of the addition of fillers to paper

was only to increase the opacity of the paper (Biermann, 1996; Phipps, 2001). However, it

was also demonstrated in this thesis that the addition of fillers had an effect on the morphology

of the pores in paper as well as on the rate of fluid imbibition into paper. It was found they

have no effect on themechanismof fluid flow, but dependent on filler type, had an effect on

firstly, the degree to which the inter-fibre channels were connected and as a consequence, on

therateof film flow in these channels. The mechanism of flow was still dominated by capillary
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pressure driven films. The research on the effect of fillers also led to an understanding of the

behaviours of the decor papers studied earlier in the thesis.

Therefore as a result of the research conducted for this thesis, we now have a greater un-

derstanding of the kinetics of fluid flow in paper and this has ramifications for fundamental

research on the physics of fluid flow in porous media in general. We also now know exactly

what happens in that first half a second in the impregnation process of decor papers that pre-

viously was unknown and now understand what makes an effective saturating decor paper and

conversely what it is that makes one less effective. Research from this thesis has relevance for

most areas of paper use,i.e. printing, personal products, packaging, and barrier type products

such as food containers given that most uses of paper involve some interaction with a liquid.

Using the techniques described in this thesis it would be possible to study the imbibition

of complex fluids (including resins and inks) into paper. The use of the X-ray micro-computed

tomography (CT) apparatus developed in the laboratory at Applied Mathematics would be

an invaluable tool in this research. The following image, reconstructed from the x-ray micro

CT acquisitions involving saturating papers, shows the potential of the technique for future

research (Figure 9.1).

An example of serial tomographic sections of dry paper is attached asPCC75A coro-

nal.mpgand a rendered simulated 3D movie of laboratory paper is attached as the filepa-

per.avi.
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Figure 9.1: Images reconstructed from the x-ray micro CT of wetting an unfilled laboratory paper with
1-eicosene doped with OsO4 showing trapping of air in the saturated zone as well as liquid in the form
of films in unfilled saturating kraft paper, confirming what was seen in Chapter 6 using CLSM. The
brighter areas in the image show the distribution of the liquid. The left image is the coronal section,
the right image is the sagital section and the bottom image is the transverse section of the same sample.
Note the filled paper has less trapping than the unfilled paper.
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Table A.1: Details of papers analysed

Paper type Supplier Classification Weight (gsm) Roll no.

Alpine White Munksjo Calendered, high density 72 70350/26
Alpine White Munksjo Calendered, high density 71 70350/29

Beech Interprint/Arjo Calendared print high density 69 80241/4
Beech Interprint/Arjo Calendared print high density 69 80286/5
Black Technocell Twin wire formed 72 138541/21
Black Technocell Twin wire formed 71 138541/12
Fog Munksjo Non calendared 89 68448/3
Fog Munksjo Non calendared 91 68448/2

Folkstone Grey Munksjo Calendared 80 69670/7
Folkstone Grey Munksjo Calendared 82 69670/2

Kraft Westvaco 100% wood pulp absorbent paper 210 (spec) 7528/108
Kraft Westvaco 100% wood pulp absorbent paper 210 (spec) 6578/96

New England Elm Toppan Heavy high density calendared 100 (spec) 189513/4
New England Elm Toppan Heavy high density calendared 100 (spec) 189513/5

Storm Devon Valley Industries Non calendared 92.6 172490/5
Storm Devon Valley Industries Non calendared 93 172490/1

Streetlight Devon Valley Industries Non calendared heavy medium density 121.6 195262/1
Streetlight Devon Valley Industries Non calendared heavy medium density 119 183588/5



278

Table A.2: Physical property data from suppliers

Paper type Ash content pH Gurley porosity (seconds) Klemm (mm/10min) Resin pickup (g) Bekk Smoothness

Alpine White 41.1 7 28 22 95 293
Alpine White 41.5 6.6 30 21 89 297

Beech 33 6.8 17 22 n/a 163
Beech 34 6.9 19 22 n/a 162
Black 14 7.2 14 n/a n/a n/a
Black 13 7.1 14 n/a n/a n/a
Fog 26 7.2 11 28 130.0 54
Fog 26.1 7.2 16 29 130 60

Folkstone Grey 34 6.1 27 18 113 198
Folkstone Grey 35.6 6.8 31 21 101 205

Storm 22.5 7.0 17 n/a n/a n/a
Storm 22.5 7.2 20 n/a n/a n/a

Streetlight 35 7.4 19.2 n/a n/a n/a
Streetlight 34.5 7.0 19.4 n/a n/a n/a

Kraft 0.7 n/a n/a n/a n/a n/a
New England Elm 28.8 n/a n/a n/a n/a n/a
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Table A.3: Summary of identifiable compounds in uncured UF resin using Raman spectroscopy identi-
fiable in Figure 3.46 (Hill et al., 1984).

Compound Wave number
Formalin 906cm−1

Trimethylene tetraurea 1119cm−1

Dimethylolurea 1284 & 1648cm−1

Methylenediurea 1430cm−1

Table A.4: Summary of identifiable compounds in uncured MF resin using Raman spectroscopy identi-
fiable in Figure 3.46 (Scheepers et al., 1993, 1995).

Compound Wave number
Melamine in-plane ring deformation676cm−1

Melamine triazine ring breathing 975cm−1

Methylolmelamine 1460cm−1
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Table A.5: Summary of identifiable compounds in cured UF resin using Raman spectroscopy identifi-
able in Figure 3.47 (Hill et al., 1984).

Compound Wave number
Dimethylolurea 904cm−1

Penta methylene hexaurea 955cm−1

Formalin 1313cm−1

Dimethylolurea dimethylether 1633cm−1

Table A.6: Summary of identifiable compounds in cured MF resin using Raman spectroscopy identifi-
able in Figure 3.46 (Scheepers et al., 1993, 1995).

Compound Wave number
Melamine in-plane ring deformation 676cm−1

Melamine triazine ring breathing vibration975cm−1

Hexamethylolmelamine 1450cm−1



Appendix B

Details of relative reflectance method

from Chapter 4

The saturation tests were done using diethylene glycol (C4H10O3) (DEG) which has a similar

viscosity and pH to that of UF resin, (18.4 s measured with a No 4 flow cup at 25◦C) and a

pH of 8.4. Seiler (1957) when investigating the principle effects of penetration of resins into

paper ruled out the use of resins because they varied from day to day in viscosity, molecular

weight distribution, and in polarity and affinity to cellulose. However although DEG does

not age (unlike UF resin), it was very hygroscopic and therefore absorbed moisture from the

atmosphere. For this reason the DEG was completely changed every 30 minutes during testing.

Additional DEG also had to be added to the Petri dish to replace the DEG that penetrated the

paper samples. In order to ensure that the viscosity of the DEG was constant it was placed

in an accurately machined brass holder which was then placed in a water bath at 25± 0.5◦C

(Figure 4.4). The temperature of the water bath was controlled by a B. Braun Frigomix-U with

a Julabo VC temperature controller. Therefore any change in the rates of saturation would be

due to paper effects (either chemical or physical). The sample of paper was placed on the DEG

within the Petri dish. The paper sample floated on the liquid therefore there was no physical

pressure on the penetrating liquid beside the weight of the sample. The Petri dish was placed

on top of black cloth so as to minimise reflections.

A Cohu solid-state video camera1 was fitted with a 25 mm 1:1.4 Cosmicar/Pentax lens with

a 7 mm extension tube and attached to a retort stand. A Junkel and Kunkel retractable plate

was placed beneath the camera so that the distance between the camera lens and plate was 155

mm. A 50 mm Petri dish containing 15 ml of DEG was placed on the base plate (Figure 4.4).

Images of the Petri dish (and saturating paper) were recorded using a Sony Beta cam Umatic

professional video recorder. A FOR-A VTG-33 video timer imprinted of each image with the

elapsed time in hundredths of seconds. If the captured (still) images were not perfectly frozen,

distortions in the image affected reflectance values, thus only new video cassettes were used to

record images. It was also found that advancing the frames forwards rather than in reverse gave

1acquiring at 30 fps and with the automatic gain turned off
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better frozen images. To eliminate changes in reflectance of samples caused by movement of

the paper sample and hence washer, a thumbtack was placed upside down in the middle of the

Petri dish which prevented samples (and washer) moving while floating on the liquid.

The aperture on the camera lens was adjusted to maximise the different reflected light

intensity between the paper and the steel washer. Light papers such as Alpine White needed

a higher f-stop and darker colours such as Black and Storm needed lower f-stop Table B.1.

Setting the correct aperture was also important because too much light would cause complete

saturation of the imagei.e. no definition between washer and the saturating paper. To ensure

repeatable results the intensity of the light had to be kept constant over the whole sample

without any effects of shadowing. The stand onto which the camera and fibre optic source

was attached could only close to an angle of about 35◦ so there was a significant decrease in

lighting intensity from any concentrated source across the paper and most significantly across

the washer that was used for the reference reflection. This problem was solved by simply using

the fluorescent lights in the laboratory that provided an even illumination across the sample.

Still images of the saturating papers were obtained from the video camera and converted

into a digital format for analysis with an Apple G3 Powerbook computer using Igor Pro2.

The rate of saturation was determined by measuring the light intensity of the saturating paper

surface and dividing it by the constant value of the reflected light from the washer every .03s

and plotted against time (Figure B.2).

2v.3.1.4 Wavemetrics inc.
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Figure B.1: Plot of uncorrected changing reflectance ratio vs. time for a) Black, b) Folkstone Grey &
c) Kraft.
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Figure B.2: Plot of normalised changing reflectance ratio vs. time for a) Black, b) Folkstone Grey & c)
Kraft.
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Table B.1: Aperture and calibration details for papers for reflectance method testing.

Paper type f-stop calibration dry or saturated

Alpine White f11 dry
Beech f8 dry
Black f5.6 dry
Fog f11 dry
Folkstone Grey f11 dry
Kraft f8 saturated
New England Elm f11 dry
Storm f5.6-f8 dry
Streetlight f11 dry

Paper samples were cut from paper sheets using a 32 mm circular wad punch, with the

washer in the middle, then placed in the Petri dish by hand, using tweezers with the rough

side of the paper orientated toward the penetrating liquid. Care was taken to ensure that the

sample was placed onto the penetrating liquid as horizontally as possible. It was essential

that the washers were always dry and clean before use, so they cleaned after each run with

ethanol. The reflectivity of the paper and the washer had to be calibrated for each sample to

maximise the difference in intensity of the reflected light from the paper and that from the

washer. On all papers except for Kraft, a normalising image was obtained just prior to contact

with the saturating liquid. This image was used for calibration purposes however with Kraft

where there was relatively little contrast between reflected light from the washer and that from

unsaturated paper, so calibration had to occur after full saturation. The video recorder was

stopped at least 10 seconds after it appeared that saturation had been completed. This was

necessary because full saturation could not be determined by eye.



Appendix C

Details on design and construction of

cryo-cell used in CLSM from Chapter

6

Figure C.1: Copper cooling coil placed in dewar of liquid nitrogen showing needle valve on the supply
side of the nitrogen gas and the vacuum pump used for generating nitrogen slush

C.1 Cell design

The cryo-cell is based around a ring made from 180 to 250µm sintered bronze spheres pressed

into a housing machined fromKel-F 81 (3M) a homopolymer of chlorotrifluoroethylene (CTFE)

(Figure C.1a). The material is dimensionally stable at cryogenic temperatures, well suited to
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the large changes in temperature that in the experiment could be up to 100◦C. The cryo-cell

unit was fitted into a base plate made fromDelrin (Dupont) an acetal resin, that was perma-

nently fixed to the translational stage of a Leica DM IRB/E inverted CLSM (Figure 6.5). The

cryo-cell was removed from the base plate to enable placement of the sample (Figure C.1b).

To enable laser excitation and imaging of the sample, a magnetic stainless steel disc which

was held in place by rare earth magnets (to enable easy removal and replacement during sample

placement) covered the bottom of the cell. The hollow centre of the disc was covered by a glued

piece of 0.15mm optical quality microscope glass slide to contain the cold gas around the

sample. In order to be able to position and focus the laser, the cryo-cell had a viewing window

at the top which also had to effectively contain the cold nitrogen gas around the sample. This

was made from two magnetic stainless steel hollow discs, both covered with a section cut from

a microscope slides (Figure C.1c). Figure C.3 shows an assembly diagram of the cryo-cell and

base plate and the engineering diagram is shown in Figure C.1.
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Figure C.2: a: Image of the cryo-cell insert showing the sintered bronze ring, the rubber washer to keep
sample still under high gas flow and the removable magnetic stainless steel viewing window. Note the
rare earth magnets embedded in theKel-F. The insert is actually upside down in the image. b: Cryo-cell
insert on top ofDelrin base, c: cryo-cell insert placed inDelrin base with Luer No. 12 syringe in place
for N2 cold gas input, showing top viewing port enabling laser positioning and focussing.
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Figure C.3: Assembly diagram of cryo-cell for 2-photon laser confocal microscope
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Figure C.4: Engineering diagram of cryo-cell for 2-photon laser confocal microscope a:Kel-F cryo-
cell insert, b:Delrin base.
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C.2 Use of cryo-cell

To ensure that the necessary cold temperatures were achieved and maintained within a narrow

range of -60◦C and -70◦C ±2◦C, a thermocouple wire from a Digital Multimeter Thermocou-

ple (Omega) was placed into one of the gas exhaust ports that passed through the assembly

originating from the sintered bronze ring. A gas tube was connected to the cryo-cell with a no.

12G, 50 mm steel syringe (see Figure C.1c) using a male luer fitting made ofKel-F. The gas

tube was 6 mm OD, 4.2 mm ID nylon pipe covered by neoprene for insulation. Given the very

cold temperatures of theN2 gas (down to -120◦C) a 6.5 mm OD 321 stainless steel high vac-

uum flexible tube (wall thickness 0.15 mm and insulated with neoprene) was used to connect

the nylon pipe to the base of the cryo-cell (Figure C.2). This enabled movement of the transla-

tional stage of the microscope when locating the required fields of view which would not have

been possible had nylon pipe been used as it became rigid with the temperatures associated

with the cold gas. The temperature of the coldN2 gas passing through the cell was controlled

manually by a needle valve to adjust the flow achieving temperature variation during imaging

of only± 2◦C.

Figure C.5: The cryo-cell in the base plate on the microscope stage, note the incoming cold gas on the
R.H.S. and the thermocouple wire going into an exhaust port on the L.H.S.

Cooling of theN2 gas was achieved by passing the gas through a double coil made with

copper pipe that was immersed in liquid nitrogen see Figure C.1. It was important to ensure that

the copper cooling coil was completely covered by a large volume of liquid nitrogen. It was

observed that as the liquid nitrogen in the dewar was allowed to boil off too far, the temperature

of the liquid nitrogen and consequently the cold gas stream to the cryo-cell was reduced by as
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much as 20◦C. When the liquid nitrogen was replaced in the dewar, the temperature of the

cold gas consequentially increased. Frequent topping up with small volumes of liquid nitrogen

minimised temperature variation resulting in much more stable cooling gas temperatures.
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Development of method for

determination of liquid flow using high

speed visualisation from Chapter 7

The apparatus developed was based around a precision dovetail slide (Figure D.1) onto which

was placed a 4.5 mm Teflon. Teflon was used as it has a very low surface energy minimising

the footprint of the droplet giving water a contact angle of>90◦ enabling the droplet to be

stable both before and during imbibition. This was especially important for containing the

droplet of isopropanol which had a much lower contact angle on the stub. stub that held the

droplet of experimental liquid. This was driven toward the paper sample by a Philips MB 14

variable speed DC geared motor powered by a GW Laboratory DC power supply Model - GPS

− 3030D at a speed of 6.5 mm/min, the column being immediately stopped upon liquid contact

with the bottom of the paper sample enabling the liquid to penetrate through capillary pressure

alone. As the liquid penetrated the paper, the amount of reflected light off the paper changed

in relation to that prior to the droplet touching the paper.

The paper sample was mounted in a 12mm wide ”C” shaped clamp, fixing the paper on

three sides ensuring the paper was as flat and orthogonal to the droplet axis (Figure D.2). In

order to image the top surface of the paper concurrently with the spreading droplet on the

bottom surface, a 25 x 25 x 32 mm triangular prism was placed over the paper so that the

image obtained was split. The long side of the prism was covered with black paper to reduce

any reflected light affecting the imaging of the top surface of the paper. Half of the field of

view of the camera. The high-speed digital CCD camera (Roper Scientific MegaPlus ES310

Turbo) was set up (Figure D.2) with the centre of the image being aligned with the paper

sample. The camera was connected to a PIXCI D2X imaging board installed in a Windows

Pentium based PC through a RS232 cable. The software used for video capture was XCAP

Interactive Image Analysis Version 2.21. The video rate was set at 300 fps and acquisition data

1EPIX Incorporated Buffalo Grove IL USA
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was stored directly into the computer RAM. It was then converted into a .AVI movie format

for later analysis using the wave analysis programme Igor v 4.0. (Wavemetrics Inc.) The light

source was a Fiber-Lite M1 150 which had two flexible outputs, one orientated to the top side

and the other to the bottom side of the paper sample (Figure D.2). was the top side and half

the bottom (droplet) side of the paper sample (Figure D.2). This enabled the rate of saturation

within the penetrating droplet edge as well as the rate of subsurface and droplet spread to be

measured concurrently. Figure 7.1 shows the complete sequence; before the droplet touches

the paper (Figure 7.1 a & e), as soon as droplet touch occurs (Figure 7.1 b & f), saturation but

before the beginning of subsurface spread (Figure 7.1 c & g) and at the end of the sequence

where the droplet is nearly depleted and liquid has spread below the surface nearly all the way

across the sample (Figure 7.1 d & h). Soon after saturation fluid actually pooled up on the top

side of the paper within the droplet spread area.

A similar approach was used by Oliver et al. (1994) using a dynamic sorption apparatus

which enabled study of individual ink jet drops as they spread and penetrated various porous

substrates. In that case the side and top of a penetrating drop was imaged with two cameras

and presented through a screen splitter to enable both drop views to be captured side by side

but only had a video acquisition rate of 30 fps.
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Figure D.1: The experimental apparatus with camera, controlled voltage supply and light source.

Figure D.2: Images showing the relationship of the high speed CCD camera to the position of the
sample clamp. The lights were directed above and below the sample. The sample clamp and position of
the prism to split the image is also shown.



Appendix E

Tables of data from Chapter 7
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Table E.1: Identification of significant relationships.(* = p < 0.05, ** = p < 0.01, *** = p < 0.001, NS = not significant p> 0.05)

Experimental factors Response variables

Saturation rate Subsurface spreadSaturation efficiency Droplet spread Printing efficiency
Liquid type *** *** *** *** ***

Presence of filler *** NS *** ** ***
Filler type *** *** *** NS ***

Plasma treating * *** NS *** NS
Filler amount NS *** *** NS NS

Liquid x plasma * *** NS *** NS
Filler type x Filler amount ** * NS NS NS
Liquid x presence of filler *** NS ** * *

Plasma treating x presence of filler * NS NS * NS
Liquid x filler type *** *** NS * ***

Liquid x filler amount NS NS NS *** NS
Liquid x plasma x filler amount NS NS NS * NS
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Table E.2: Summary of significant relationships for rates of imbibition, the data being untransformed.

Experimental factors Response variables

Saturation rate (mm/s) Subsurface spread (mm/s)
Liquid type Water Isopropanol Water Isopropanol

3.275 1.046 0.951 0.572

Presence of filler Yes No Yes No
2.388 1.475 NS NS

Filler type None PCC Talc None PCC Talc
1.475 3.126 1.65 0.784 0.805 0.704

Plasma treating Yes No Yes No
2.456 1.864 0.804 0.719

Filler amount 7.5% 15% 30% 7.5% 15% 30%
NS NS NS 0.811 0.767 0.685

Presence of filler Yes No Yes No
Propanol NS NS NS NS

Water NS NS NS NS

Presence of filler Yes No Yes No
Plasma yes NS NS NS NS
Plasma no NS NS NS NS

Plasma Yes No Yes No
Propanol 1.037 1.054 0.565 0.576

Water 3.874 2.675 1.044 0.859

Filler type None PCC Talc None PCC Talc
Plasma yes NS NS NS NS NS NS
Plasma no NS NS NS NS NS NS

Filler amount 7.5% 15% 30% 7.5% 15% 30%
PCC 2.727 3.162 3.490 0.819 0.82 0.775
Talc 1.712 1.686 1.554 0.763 0.723 0.676

Filler type None PCC Talc None PCC Talc
Propanol NS NS NS 0.561 0.576 0.576

Water NS NS NS 1.007 1.034 0.832

Filler type None PCC Talc None PCC Talc
Propanol plasma NS NS NS NS NS NS
Propanol plasma NS NS NS NS NS NS

Propanol no plasma NS NS NS NS NS NS
Propanol no plasma NS NS NS NS NS NS

Water plasma NS NS NS NS NS NS
Water plasma NS NS NS NS NS NS

Water no plasma NS NS NS NS NS NS
Water no plasma NS NS NS NS NS NS

Plasma Yes Yes No No Yes Yes No No
Presence of filler Yes No Yes No Yes No Yes No

Propanol NS NS NS NS NS NS NS NS
Water NS NS NS NS NS NS NS NS


