

DRINKING WATER

Amanda Ames, PE Chief Engineer 225-342-8138 amanda.ames@la.gov

Safe Drinking Water

- Infrastructure Challenges
 - U.S. vs Louisiana
- Water Quality Challenges
 - U.S. vs Louisiana

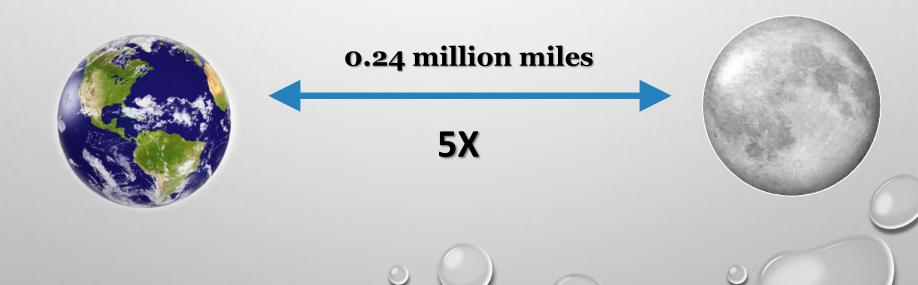
Safe Drinking Water Program

- LDH has primacy from EPA ~ 1320 public water systems (PWS)
 - Community vs. Non-Community
- Staff comprised of engineers, sanitarians, and other professionals
- Drinking Water Revolving Loan Fund
 - 2.45% over 20 years
 - Changes to come this year
- Operator Certification
 - ~4500 operators in LA

90% of americans

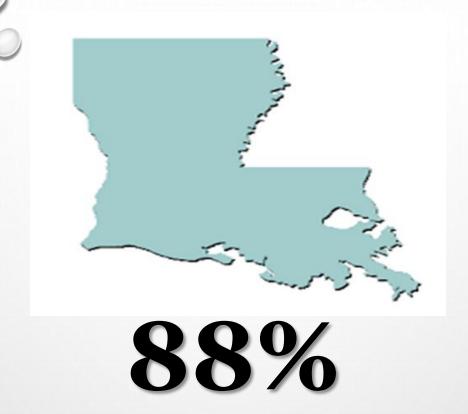
receive their drinking water from a

PUBLIC DRINKING WATER SYSTEM



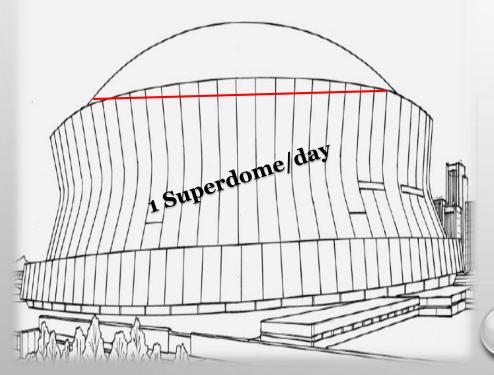
1.2 million miles

\$US 1 Trillion


(over the next two decades)

(over the next two decades)

> 50% of water systems are 50+ years or older



(4.12 M people on public drinking water)

93% - groundwater 7% - surface water

746,000,000 gal/day 31,000,000 gal/hr. 1,295,139 gal/min. 21,585 gal/sec.

Rural Water Infrastructure Committee (RWIC)

- Governor's initiative to address failing water systems
- Committee includes all funding agencies
- Other members: LMA, police jury, Gov office, GOHSEP
- Initially looked at 10 most distressed systems
- SB 170 (2019) proposed to formalize the RWIC
- Fiscal administrators

ACT 292 (2013) New Design Standards

- Water committee (WC) public meetings was created; info posted at: www.dhh.la.gov/watercommittee
- Comprised of LDH staff, stakeholders and design professionals from the drinking water community
- December 2016, WC (using 2012 ten-state standards) finalized the LA design standards
- August 1, 2018 Effective date of design standards

Design Standards for Water Works

Changes for <u>new construction of PWS infrastructure</u>:

- Standby power for any community and NC system serving a hospital
- 2 sources (interconnections count) for community and NC systems serving a hospital
- MPA testing for new ground water sources
- Weighing scales for chlorine gas
- 10-day chemical supply
- Overfeed protection in lieu of day tanks (except for fluoride)
- Housing of chlorine gas feed and storage
- Pressure tanks must meet ASME or LDH-approved alternate
- 20 PSI minimum pressure
- Pressure filters filtration rate up to 6 gal/min/sqft.

What about Existing Systems?

- ~657 Sans Surveys in FY18
- Significant deficiencies noted problem with a pathway to contamination, adversely affect water quality, etc.
- Examples:
 - Holes in casing
 - Chemicals do not meet standards (NSF/AWWA)
 - Physical connections with non-potable sources
 - No cross connection control program
 - Not using a certified lab or correct test method for sample testing
 - Lack of permit prior to constructing or modifying infrastructure
 - Operating without a duly certified operator
 - Unlocked gate/fence around facilities
 - Critical system component in poor condition or defective and indicative of failure or imminent failure
 - Leaks due to defective materials, improper jointing, corrosion, settling, impacts, freezing, etc.

New Significant Deficiencies Effective 8/1/18

- Standby power required for community and NC serving a hospital; a dedicated portable or in-place auxiliary source is acceptable
- Flood protection critical community water supply facilities shall be protected to the 100-year flood elevation;
- Secondary source required for community and NC serving a hospital. Connection to another public water supply of sufficient capacity or providing an LDH-approved annual public notice to customers may be acceptable
- Minimum system pressure to 20 psi.

Deficiencies	2017 Citations	2018 Citations	
Pathway for Contamination/Water Source	108	249	
Cross Connection Control/ Backflow Protection	61	139	
Maintenance or Repair	57	77	
Security	49	65	
Sample Tap	23	64	
Cross Connection/ Non-potable Source	20	47	
Pathway for Contamination/ Water Storage	24	46	
Critical System Component Failure/Defective	17	34	
Leaks in System Components	11	34	

Contaminant Regulations

Primary MCLs

- Enforceable
- Limits contaminants that adversely affect public health
- Includes bacteria (*E. Coli*) and chemicals (arsenic, atrazine, benzene, uranium, etc.)
- Acute vs. Chronic

Secondary MCLs

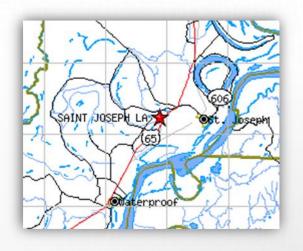
- NOT Enforceable
- Refers to aesthetic quality (taste and odor)
- Includes iron, pH, corrosivity, total dissolved solids, manganese, etc.
- Most water complaints are due to SMCL exceedances

2018 Violation Breakdown for Community Water Systems (~1,000)				
COUNT	VIOLATION CODE	VIOLATION	PARAMETER	
638	02	MCL, LRAA	TOTAL TRIHALOMETHANES (TTHM)	
208	02	MCL, LRAA	TOTAL HALOACETIC ACIDS (HAA5)	
100	CT	5% DS BELOW MIN 0.5 - 2 MONTHS CONSEC (GW)	CHLORINE	
19	02	MCL, AVERAGE	ARSENIC	
12	СТ	5% DS BELOW MIN 0.5 - 2 MONTHS CONSEC (GW)	CHLORAMINE	
8	46	INADEQUATE DBP PRECURSOR REMOVAL	CARBON, TOTAL (TOC)	

Iron And Manganese Control

Fe & Mn Levels	> SMCL & <= 3xSMCL	> 3xSMCL	Total		
# PWS	156	301	457		
# PWSs with treatment	69	102*	171		
# PWSs without treatment	87	126	213		
*sequestration not included (73 PWS sequester)					
Cost Estimate Scenarios	> SMCL & <= 3xSMCL	> 3xSMCL	Total		
Removal Costs - All PWS*		\$1.1B*			
Removal Costs - PWSs without removal treatment	\$465M**	\$571M	\$1.04B		
Removal Costs - PWSs with removal treatment	NA	\$586M			
Sequestering Costs – PWS without treatment	\$185K	NA	\$185K		
*Regardless of PWS current treatment					
**If removal is required (due to customer complaints and/or ineffective chemical treatment.					

Monitoring equipment - water systems will be required to monitor for iron and/or manganese at the system. The estimated cost for the equipment to monitor is \$1,400.00.



FLINT, MICHIGAN

- April 2014 changes source from Detroit to Flint River
- August 2014 E. Coli/boil advisory
- October 2014 Flint General Motors stops using water due to rusting car parts
- December 2014 disinfection byproducts violation
- February 2015 EPA informs Michigan officials of lead problem
- August 2015 20% of 120 samples exceeded 15 ppb
- October 2015 purchase from Detroit again
- Late 2016 lead 90th percentile is below 15 ppb

ST. JOSEPH, LOUISIANA

- December 2016 Governor proclaimed emergency
- LDH tasked with collecting lead and copper from every home
- 438 samples collected from homes, businesses and schools
 - 23.1% exceed AL for lead
 - Highest value was 1810 ppb
 - 38 sites > 50 ppb; 101 sites > 15 ppb
 - 90+% collection rate
- Water system completely reconstructed ~\$9M
 - Do not drink water hauled for several months
 - Distribution and treatment plant; zinc orthophosphate
 - Currently system on increased monitoring

Lead And Copper Rule

- Rule sets action levels (AL); not mcls
- Most systems monitor every 3 years
 - New source or treatment changes prompts increased monitoring.
- Sampling kits are provided. First draw samples collected by customers from **INSIDE** taps (kitchen or bathroom sinks).
- Systems with <u>2</u> 90th percentile AL exceedances required to install corrosion control treatment.

Lead And Copper Rule cont.

- Exceeding the lead and copper ALs requires system to:
 - Monitor every 6 months
 - Monitor source water for lead and copper;
 - Monitor water quality parameters
 - Issue public education lead materials
- Systems must notify customers of their lead results within 30 days of receipt regardless of system level.
- Flint incident elevated concern of lead in drinking water; increased EPA, media and activist attention; EPA is asking states to re-evaluate rule implementation.
- LCR long term revisions expected in 2019.

ACT 632 (2018)

• Requires lead testing of 12 public primary schools constructed prior to 1986. <u>Effective 8/1/18</u>

2018 Schools Tested	2019 Schools Tested
Barkdull Faulk Elem, Monroe	Roseland Montessori, Roseland
Bayou Blue Elem, Houma	Tallulah Elem, Tallulah
Bernard Terrace Elem, BR	Palmetto Elem, Palmetto
Cherokee Elem, Alexandria	Live Oak Elem, NOLA
Covington Elem, Covington	
Creswell Elem, Shreveport	
Drew Elem, West Monroe	
Dwight Eisenhower, NOLA	
Harahan Elem, Harahan	
Loranger Elem, Loranger	
Prairie Elem, Lafayette	
Prien Lake Elem, Lake Charles	

*No Lead Exceedances to date

*WIIN Act – voluntary testing for daycares and schools statewide in 2019

Naegleria fowleri (Nf) Amoeba

2011: 2 people died from *Naegleria fowleri* (Nf) in DeSoto Parish and St. Bernard Parish. (Both cases-adult using a neti-pot)

- Nf was not detected in samples collected from water distribution systems.
- Nf was detected in samples from plumbing fixtures (*i.e.* household taps, shower, bathtub faucet, etc.).

2013: 2nd death in St. Bernard Parish from Nf infection. (Case - child using a slip-n-slide)

- New sampling method used.
- CDC tests confirmed presence of the Nf amoeba in water distribution systems.
- Nf detected in areas with low to no chlorine residuals.

Minimum Disinfection Rule

Develop/maintain a monitoring plan for TC/Chlorine sites using the MPP

- Effective 2/1/14 PWS must:
 - Maintain levels in storage tanks and <u>at all points in the</u> <u>distribution system at all times</u>:
 - o.5 mg/l of free chlorine; or
 - 0.5 mg/l of chloramine residual (measured as total chlorine) for systems that use chloramines
 - Monitor:
 - <u>25% more monitoring</u> required for disinfectant residual concentration (chlorine or chloramine).
 - <u>50% more sites</u> required for total coliform and chlorine monitoring.
- Effective 3/1/14 PWS using Chloramine systems must have a Nitrification Control Plan

Final Rule – Minimum Disinfection

- By March 20, 2016, systems must issue public notice when disinfectant residuals < 0.5 mg/L in over 5% of measurements taken each month for 2 consecutive months.
- By January 1, 2017, chloramine systems must submit a revised nitrification control plan that includes:
 - Measure/record free ammonia weekly at point of entry
 - Measure/record nitrite quarterly and in response to an action level trigger within the distribution system at sites prone to nitrification (storage tanks, low flow areas)
 - Report monitoring results if system fails to meet the minimum disinfectant level.

Naegleria Fowleri Surveillance Program

- LDH conducts sampling during the warm water months for Nf amoeba in drinking water.
- Target PWS based on compliance history with the minimum disinfection standard.
- Other factors considered include source water type (ground water vs. surface water), disinfection type (chloramines vs. free chlorine) and total coliform bacteria compliance history.
- Amoeba sampling has confirmed the Nf amoeba in 9 PWS, several with multiple occurrences.

Naegleria fowleri amoeba Detections in Louisiana Public Water Systems*				
Sample Date	Public Water System	Parish		
9/6/13, 6/24/15, & 7/24/15	St Bernard Parish Waterworks	St. Bernard		
9/27/13	Desoto Parish Water Works District 1	Desoto		
8/12/14	St John Water District 1	St. John		
8/25/14	Ebarb Wwks Dist # 1 - Aimwell Area	Sabine		
7/14/15	Ascension Consolidated Utility District 1	Ascension		
8/5/15, 6/20/17, 5/29/18**	Schriever Water Treatment Service Area	Terrebonne		
8/19/15, 6/20/17	North Monroe Et Al Water System	Ouachita		
9/19/2018	Sligo Water System Incorporated	Bossier		
10/2/2018	City Of Bossier Water System	Bossier		
*Does not include detections in raw (untreated) water.				
**Samples collected by the PWS				

Unregulated Contaminant Monitoring (UCMR)

- Detections must be reported in the CCR.
- Large PWS (>10k pop) and a selected group of small PWS (≤10k pop) will conduct assessment monitoring:
 - 10 cyanotoxins for 4 consecutive months during March 2018 Nov 2020 (SW systems only)
 - 20 chemical contaminants: SW 4 consecutive quarters and GW 2 quarters during MP of Jan 2018 Dec 2020 for:
 - 2 metals (germanium and manganese); 8 pesticides and 1 pesticide manufacturing byproduct; 3 brominated haloacetic acids (HAAS) & TOC and bromide; 3 alcohols; and 3 semivolatiles.
- Samples collected at entry point(s) to the distribution system (EPTDS) for all contaminant except for the HAAS taken in the distribution system and toc and bromide taken at the source.
- EPA is notifying PWS when MN >300 ppb (10-day HA for infants).

Per- And Polyfluoroalkyl Substances (PFAS)

- Over 4,000 PFAS may have been manufactured and used in a variety of industries worldwide since the 1940s (OECD 2018, *guelfo et al.* 2018). PFOA and PFOS 2 of the most well-known and prevalent PFAS chemicals.
- Under UCMR3, 87 PWSS monitored for PFAs in LA from 2013-2015.
 - No detections above minimum reporting limits (below) in LA
 - However, eurofins reported that LA had 1-9 PWSS with 1 PFAs detection > 5 ng/l (ppt)
- EPA set a lifetime health advisory (HA) for PFPs and PFOA at 70 ng/l (individual and combined).
- Will be monitored again in ucmr5. EPA will move forward with the maximum contaminant level (MCL) process for PFOA and PFOS; may regulate a broader class.
- At least 5 states have a PFOA/PFOS standard lower than the ha. ~12 states use the HA.

PFAS Compounds		MRL¹ ug/L (ppt)	HA ug/L (ppt)	California & New Jersey*	Massachusetts & Vermont	Minnesota
perfluorobutane sulfonic acid	PFBS	0.09 (90)				
perfluoroheptanoic acid	PFHpA	0.01 (10)				
perfluorohexane sulfonic acid	PFHxS	0.03 (30)				
perfluorononanoic acid	PFNA	0.02(20)		13*		
perfluorooctanoic acid	PFOA	0.02(20)	$0.07(70)^2$	14	20	35
perfluorooctane sulfonic acid	PFOS	0.04 (40)	$0.07(70)^2$	13	20	27
¹EPA Method 537		² Combined		Units are ppt (ng/L) unless indicated otherwise.		

2018 Regular Session

ACT 292 - (eff. 8/1/18) requires community systems to:

- Maintain record of complaints and associated corrective actions for 5 years
- Attend a training course for customer/public service/ relations as required by LDH
- Implement a flushing program as directed by LDH

ACT 590 - (eff. 8/1/18) retail food establishments are not required

to meet part XII unless they meet the PWS definition.



WHAT ABOUT MY WATER QUALITY???

www.ldh.la.gov/SafeDrinkingWater

www.ldh.la.gov/drinkingwaterwatch

Questions??

Drinking Water Watch: www.ldh.la.gov/drinkingwaterwatch

John.Williams@la.gov 504-599-0112