

E

ž

245-403

MOLEAER

CONFIDENTIAL

5-17-25

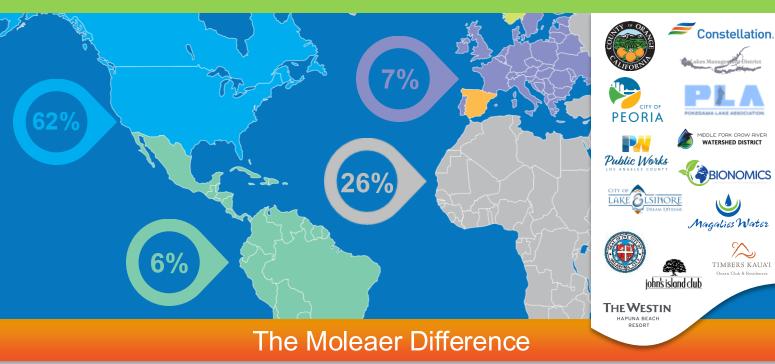
Cross Lake Nanobubble Implementation Plan

Table of Contents

About Moleaer

The Problem & Your Goals

Our Proposed Solution


Treatment Strategy

Project Budget

Over 4,000 Nanobubble Installations

650+ Nanobubble Installations in Waterbodies & Waterways

- Leader in nanobubble science and it's applications
- Largest R&D and Application Development teams with over 15 PhDs:
 - Investigating nanobubbles and their impacts in various applications
 - Applying prescriptive solutions with robust monitoring plans
- Largest NB treatment installation and customer base globally

Surface Water Team

Dr. Denise Devotta Senior Limnologist

Chris Stephan Global Director of Surface Water

Clint Hanson Business Development Manager, Western US

Shane Hoyt Limnologist

Jenn Fisher Surface Water Sr. Marketing Manager

Jon Morales Business Development Manager, Central US

Your Waterbody: Cross Lake

Challenges

- Extraordinary high rates of anoxic release rates (2014 TMDL Table 5 pg. 35 Cross Lake Management Plan)
- Very high Internal loading
- Phosphorus levels consistently exceeding MPCA water quality standards (Standard <40 ug/l current average 104 ug/l)
- High levels of algae leading to limited water clarity and odor, which limits recreation
- Lake residents noticing declining water quality, fishing is worse over past few years and hurting property values

Details

Surface Area: 938 acres Littoral Area: 456 acres Shore length: 13 miles Volume: Average Depth:14 ft Max Depth: 32 ft

The Problem: Nutrient Loading & Anoxia Fuel Waterbody Impairment

50% of Waterbodies Globally are Impaired, Impacting Communities & Aquatic Ecology

Increased Internal Nutrient Loading

External Nutrient Loading

Anoxia (Low to No DO)

Outcomes

- Fish Kills
- Muck
 - Accumulation
- Foul Odors

Decomposition of Large Quantities of Algae Consume Available Oxygen

BROW MELE

- Excessive Algae
- Poor Water Clarity
- & Quality
- Large Fluctuations in DO

Your Waterbody: Cross Lake

Goals

- 1. Reduce internal loading
- 2. Reduce number of algae blooms
- 3. Improve water clarity
- 4. Improve lake recreation

Success Indicators

- Increased oxygen levels and ORP in areas of anoxia fig. 18.
- ✓ Increased secchi disk readings
- Reduced muck thickness measured via sludge judge and harder sediment composition measured via Biobase
- ✓ Reduced phosphorus concentrations in water column

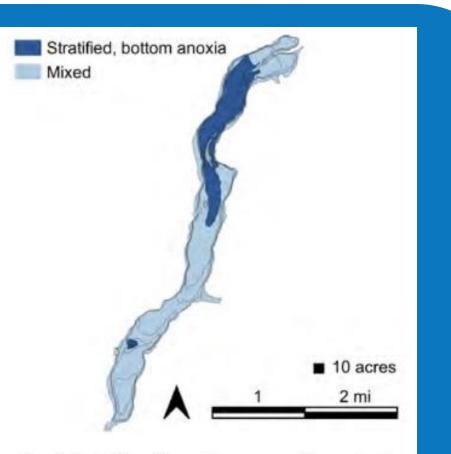


Fig. 18. Estimation of areas on Cross Lake that seasonally stratify and might be classified as dimictic. Areas marked "mixed" likely act as polymictic zones.

The Solution: Moleaer Nanobubble Treatment Enhances Oxic Conditions & Increases Resiliency to Restore Waterbodies

Nanobubbles

Oxygen

Outcomes

- No Fish Kills
- Reduced Muck
- Improved Fish Habitat Quality
- No Foul Odors

(Increased DO at All Depths, Especially Bottom)

External Nutrient Loading

Reduced Internal Nutrient Loading

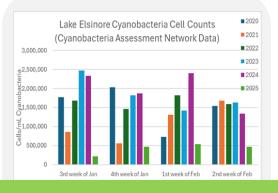
Reduced Algae Growth

- Improved Water Clarity
- & Quality
- Small Fluctuations in DO

Decomposition of smaller quantities of algae, leaving more oxygen available in the water column, especially at lake bottom

Visible & Data-Driven Results in Diverse Waterbodies

Tadd Lake

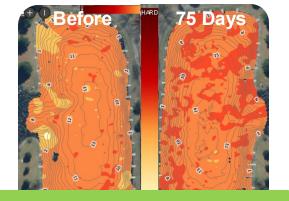

Problem:

- Algal blooms & odor
- Poor water clarity
- Unable to use
 recreationally

Results:

Compared to Control Lake:

- > 2x clearer
- 2x higher over bottom DO
- ~ 4x lower orthophosphate levels
- > 4x less total algae loads


Lake Elsinore

Problem:

- Lake closures due to HABs
- Poor clarity & high nutrient loading
- Inefficient, outdated aeration system

Results:

- 50-90% reduction in earlyseason cyanobacteria
- Up to 7,000% reduction in turbidity
- Highest water clarity reported

Lake Arrowhead Marina

Problem:

- Algal blooms & poor water clarity
- High muck accumulation

Results:

- DO levels were 50% higher than control
- Reduced muck and increased depth by 1' (30 cm)
- Water clarity improved by 2-3' (61-91 cm) in first 30 days

Problem:

 H2S formation causing foul odors & displaced people

Results:

- Eliminated H₂S formation and foul odors
- 3000 people returned home
- Increased dissolved oxygen over 15 mile canal

CONFIDENTIAL Copyright © 2025 Moleser. All tademarks stated herein are the property of their espective company. All rights reserved. This document is confidential and contains proprietay information of Moleser Inc. Neither this document nor any of the information contained herein may be reprodued, redistributed or disdosed under any circumstances willout the express written permission of Moleser Inc.

How Nanobubble Treatment Benefits Waterbodies

Nanobubbles Create and Enhance Aerobic Conditions, Especially at Depth Enable Natural Lake Processes & Increase Lake Resiliency

Accelerate Muck Digestion

- Improve sediment hardness
- Reduce sediment oxygen demand over time
- Reduce need for dredging

Mitigate Nutrient Levels

Reduce internal nutrient loading

Reduce Algae & HABs

- Less nutrients to fuel algae
- Increased ORP which promotes breakdown of algal toxins

Improve Water Clarity

- Reduce blue-green algae dominance
- Promote increased species diversity throughout aquatic food web

Reduce Fish Kill

- Improve and sustain dissolved oxygen levels for fish health
- Reduce muck and improves fish habitat quality for spawning and feeding

Eliminate or Reduce Foul Odors

 Eliminate or greatly reduce H₂S, MIB and geosmin levels that cause foul odors and off-flavor compounds

Reduce Coliforms

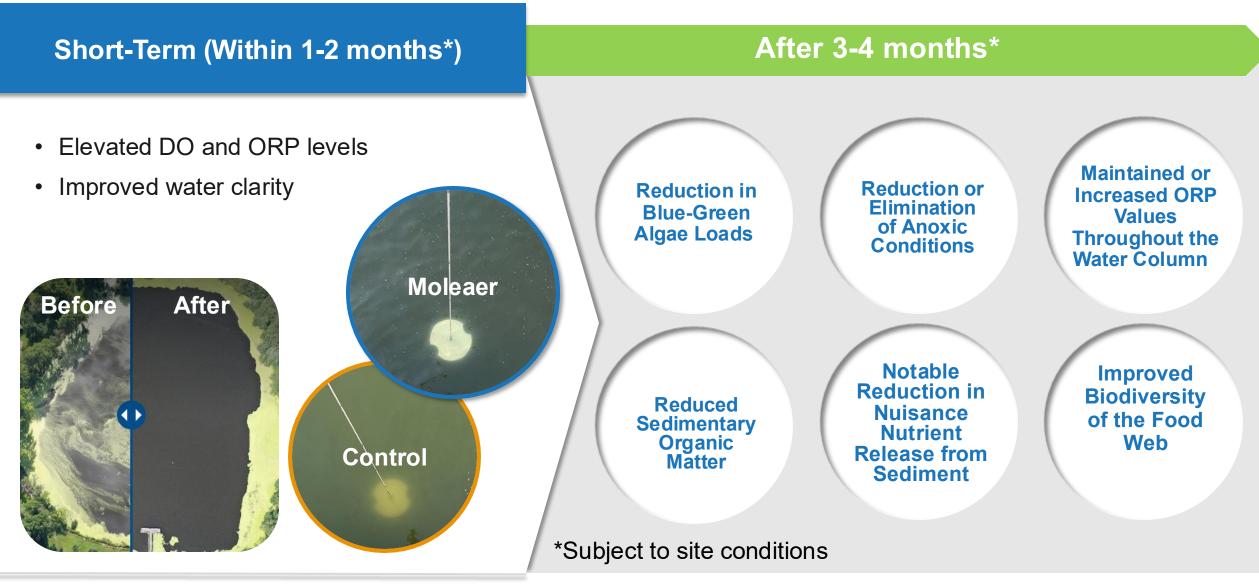
- Proven to reduce coliform and *E. coli* loads without harsh chemicals
- Reduce potential health risks

How We Measure Success: Your Monitoring Plan

Moleaer Staff Taking Water Quality Samples

Customized Monitoring Plans to Track Progress

Up to 30 parameters measured including:


- Real-time water quality sensors
- Vertical profiling
- Depth discrete water and sediment grab samples
- BioBase® Sediment hardness mapping

To track changes in:

- Water and sediment chemistry
- Biology (phytoplankton and zooplankton speciation and enumeration)
- Muck depth and spatial extent
- Sediment nutrient release rates

Goals: What You Can Expect from Moleaer Nanobubble Treatment

Cross Lake: Whole Lake Nanobubble Treatment Strategy

- Detail steps and methods for getting this done, including overview of product selection process, installation requirements and proposed monitoring (next slide)
- We chose these treatment locations due to stratified areas of anoxia identified in the Cross Lake Management Plan. Wenck estimated 218 acres of anoxia present in the lake
 - The prescribed treatment proposes locating nanobubble generators in two locations to distribute nanobubbles to priority areas

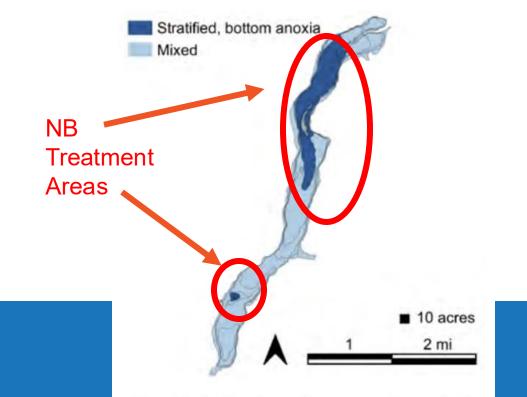
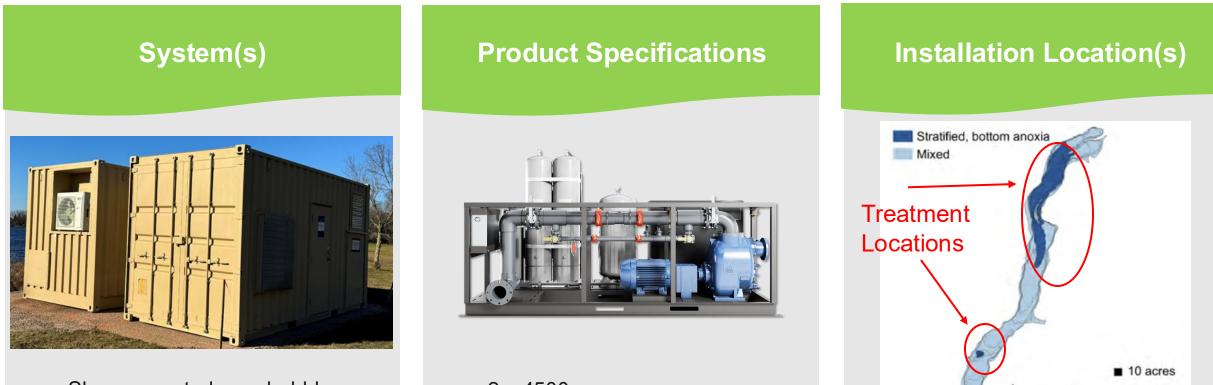



Fig. 18. Estimation of areas on Cross Lake that seasonally stratify and might be classified as dimictic. Areas marked "mixed" likely act as polymictic zones.

Option 1: Moleaer Nanobubble Full Lake Treatment

- Shore mounted nanobubble generator systems with dock mounted piping
- 2 x Moleaer container mounted nanobubble systems

- 2 x 4500 gpm
- 2 x 106# O2/hr
- Moleaer Trinity L6 Nanobubble Generators

Fig. 18. Estimation of areas on Cross Lake that seasonally stratify and might be classified as dimictic. Areas marked "mixed" likely act as polymictic zones.

2 mi

Option 1- Budget- Capital Purchase

Whole Lake Treatment- 2 systems

- Moleaer and 3rd party finance options
- All costs, including operating costs are eligible for financing

Cross Lake Container Plan					
Trinity L6 O2 Nanobubble System					
Equipment Purchase			\$1	,662,000	
Installation			\$	158,000	
Estimated Annual Service Costs- 1st year			\$	112,500	
TOTAL PURCHASE, INSTALL AND 1 YR SERVICE			\$1	,932,500	
Capital Purchase, including			\$1	,662,000	
Trinity L6 O2 Nanobubble System	2	\$ 800,000	\$1	,600,000	Moleaer- Complete System
Freight In	2	\$ 6,000	\$	12,000	Estimate
Monitoring buoys	2	\$ 25,000	\$	50,000	
Installation, including			\$	158,000	
Crane-Offloading Containers	1	\$ 3,000	\$	3,000	Customer- Budgetary
Site work-	1	\$ -	\$	-	Customer- Budgetary
Electrical Supply/Construction	2	\$ 30,000	\$	60,000	Customer- Budgetary
Container piping	2	\$ 30,000	\$	60,000	Estimate
Moleaer on site commissioning 2 tech x 10 days	10	\$ 3,500	\$	35,000	Moleaer- Budgetary
Labor to install	1	\$ -	\$	-	Customer- Budgetary
Annual Costs			\$	112,500	
Daily Checks				0	Customer
Service Visits	3	\$ 3,500	\$	10,500	Moleaer- Budgetary
Electrical cost, monthly	6	\$ 17,000	\$	102,000	customer- Estimated

Option 1- Budget- Lease to Own

Whole Lake Treatment- 2 systems

- Up to 60 months lease to own term
- As low as 24 month minimum term
- Can include all installation and operating costs
- Purchase option at any point during lease to own term

BEG OF MONTH	MONTHLY RENT	PURCHASE PRICE
Effective Date	\$45,980	\$1,672,000
1	\$45,980	\$1,644,133
2	\$45,980	\$1,616,267
3	\$45,980	\$1,588,400
4	\$45,980	\$1,560,533
5	\$45,980	\$1,532,667
6	\$45,980	\$1,504,800
7	\$45,980	\$1,476,933
8	\$45,980	\$1,449,067
9	\$45,980	\$1,421,200
10	\$45,980	\$1,393,333
11	\$45,980	\$1,365,467
12	\$45,980	\$1,337,600

Option 2: Roadmap Moleaer Nanobubble Lake Treatment

- Shore mounted nanobubble generator systems with dock mounted piping
- Begin with one Moleaer container mounted nanobubble system

- 1 x 4500 gpm
- 1 x 106# O2/hr
- Moleaer Trinity L6 Nanobubble Generators

Fig. 18. Estimation of areas on Cross Lake that seasonally stratify and might be classified as dimictic. Areas marked "mixed" likely act as polymictic zones.

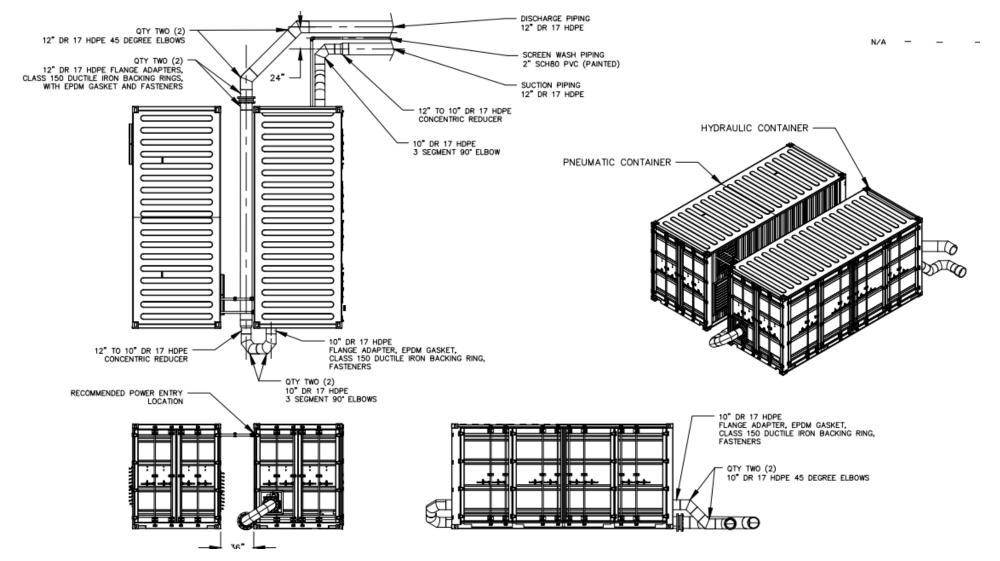
Option 2- Budget- Capital Purchase

Roadmap to whole lake treatment-1 system

- This approach looks to phase treatment by installing one container in North Cross Lake and later install in South Cross Lake
- Moleaer and 3rd party finance options
- All costs, including operating costs are eligible for financing

Cross Lake Road Map Container Plan					
Trinity L6 O2 Nanobubble System					
Equipment Purchase			\$	856,000	
Installation			\$	80,500	
Estimated Annual Service Costs- 1st year			\$	61,500	
TOTAL PURCHASE, INSTALL AND 1 YR SERVICE			\$	998,000	
Capital Purchase, including			\$	856,000	
Trinity L6 O2 Nanobubble System	1	\$ 800,000	\$	800,000	Moleaer- Complete System
Freight In	1	\$ 6,000	\$	6,000	Estimate
Monitoring buoys	2	\$ 25,000	\$	50,000	
Installation, including			\$	80,500	
Crane-Offloading Containers	1	\$ 3,000	\$	3,000	Customer- Budgetary
Site work-	1	\$ -	\$	-	Customer- Budgetary
Electrical Supply/Construction	1	\$ 30,000	\$	30,000	Customer- Budgetary
Container piping	1	\$ 30,000	\$	30,000	Estimate
Moleaer on site commissioning 2 tech x 5 days	5	\$ 3,500	\$	17,500	Moleaer- Budgetary
Labor to install	1	\$ -	\$	-	Customer- Budgetary
Annual Costs			\$	61,500	
Daily Checks				0	Customer
Service Visits	3	\$ 3,500	\$	10,500	Moleaer- Budgetary
	6	\$ 8,500	L		customer- Estimated

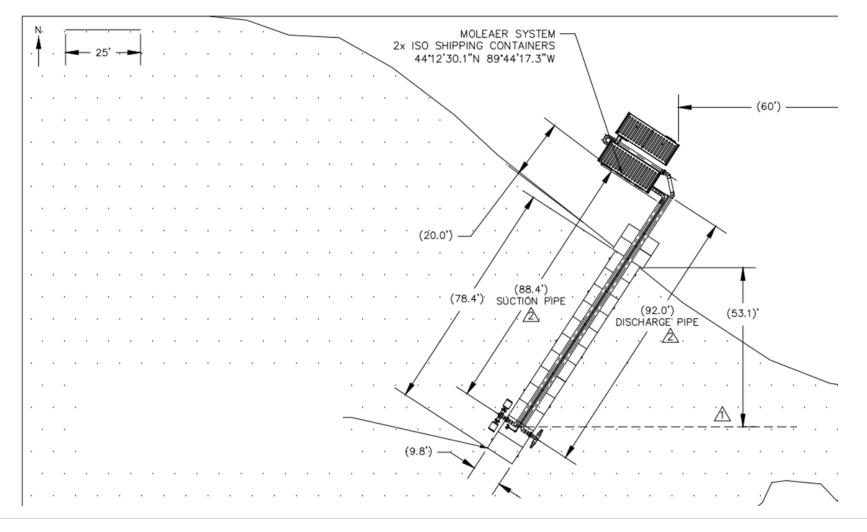
Option 2- Budget- Lease to Own


Roadmap to whole lake treatment- 1 system

- Up to 60 months lease to own term
- As low as 24 month minimum term
- Can include all installation and operating costs
- Purchase option at any point during lease to own term

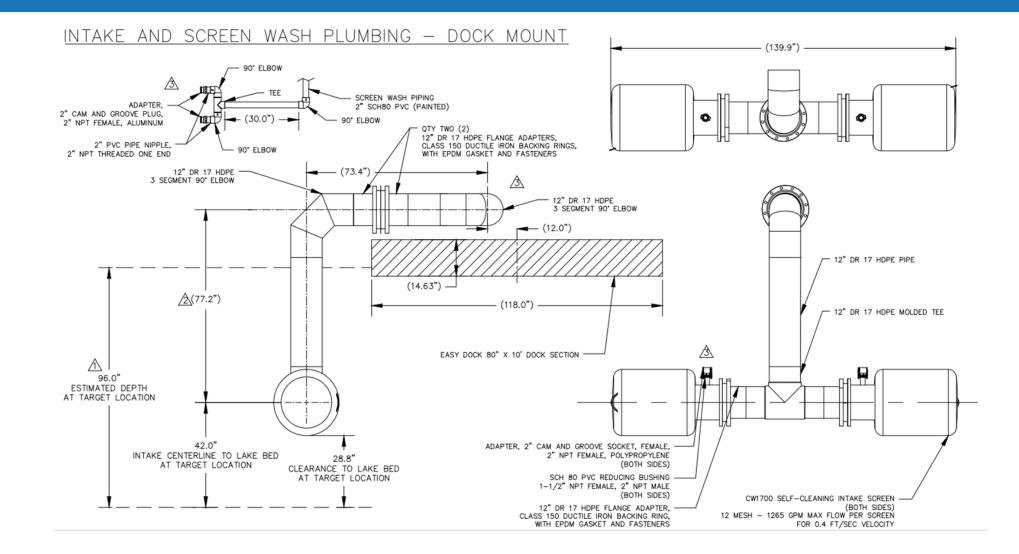
BEG OF MONTH	MONTHLY RENT	PURCHASE PRICE
Effective Date	\$22,990	\$836,000
1	\$22,990	\$822,067
2	\$22,990	\$808,133
3	\$22,990	\$794,200
4	\$22,990	\$780,267
5	\$22,990	\$766,333
6	\$22,990	\$752,400
7	\$22,990	\$738,467
8	\$22,990	\$724,533
9	\$22,990	\$710,600
10	\$22,990	\$696,667
11	\$22,990	\$682,733
12	\$22,990	\$668,800

GAD (General Arrangement Drawing) Containers



CONFIDENTIAL | Copyright © 2025 Moleaer. All trademarks stated herein are the property of their respective company. All rights reserved. This document is confidential and contains proprietay information of Moleaer hc. Neither this document nor any of the information contained herein may be reprodued, redistributed or disclosed under any circumstances without the express written permission of Moleaer hc.

GAD (General Arrangement Drawing) Piping on Dock


<u>SITE PLAN VIEW - DOCK MOUNT</u>

CONFIDENTIAL | Copyright © 2025 Moleaer. All trademakes stated herein are the property of their respective company. All rights reserved. This document is confidential and contains proprietay information of Moleaer hc. Neither this document nor any of the information contained herein may be reproduced, redistributed or disdosed under any circumstances without the express written permission of Moleaer hc.

GAD (General Arrangement Drawing) Intake Screen

Finance Options

Finance Options

- Capital Purchase
 - 3rd party finance options
- Lease to Own
 - o Up to 60 month
 - Minimum term of 12 months
 - Can purchase at any point during lease period
- NaaS (Nanobubbles as a Service)
 - Moleaer provides all but electrical
 - $\circ\,$ No purchase option

Sustainable, Proven Solution to Solve Your Challenges

Achieve Your Goals...

Problem: Eutrophic lake that is impaired for nutrients, has poor water clarity and excessive toxic algal blooms

Goals: Improved water clarity, quality and reduced accumulated organics that will allow for increased recreation and property values Solution: Moleaer nanobubble treatment targeting the anoxic zone and internal loading that is the root cause of the water quality challenges that are plaguing the lake

...with the Leader in Nanobubble Technology

- ✓ Largest installation and customer base
- ✓ Dedicated surface water specialists and team for your project
- ✓ Largest R&D and Application
 Development teams
- Backed by science through rigorous independent research

www.moleaer.com

Thank You! MOLEAER

Appendix

Case Studies

Lake Elsinore, California

From Closure to Clarity

About the Waterbody

- Surface Area: 3,311 acres (1334 ha)
- Max Depth: 24 ft (7.3 m)
- Volume: 30K acre-feet (37 million m³)
- Receives 6.5M GPD (24k m³) of treated effluent

Challenges

- Recurrent lake closures due to HABs
- Poor clarity & high nutrient loading
- Economic impacts for community
- Inefficient, outdated aeration system

Results: (1) 2,400 GPM (545 m³/hr) & (2) 4,500 GPM (1022 m³/hr) Nanobubble Barges

- Significant reduction (50-90%) in early-season cyanobacteria levels
- Up to 7,000% reduction in turbidity (highest water clarity reported in 2 Years)
- Elevated DO sustained at critical depth, > 2,000 meters from nearest nanobubble unit

MOLEAER[®]

Oct 2024-Jan 2025

Tadd Lake, Minnesota

Pilot: Major Improvements Compared to Control

About the Waterbody

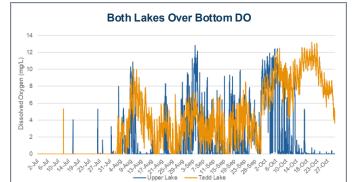
- Surface Area: 10 acres (4 ha)
- Max Depth: 8 ft (2.4 m)
- Volume: 50-acre-feet (61,714 m³)
- Terminal lake, connected to Upper Lake (surface area: 25 acres (0.1 km²)

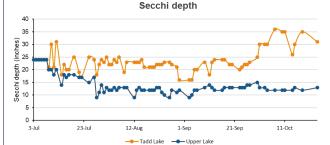
Challenges

- Poor water clarity
- Excess algae growth and odor issues
- Invasive aquatic plant proliferation
- Unable to use recreationally
- Legacy poor water quality issues

Results: 1,000 GPM (227 m³/hr) Trailer

Compared to Control Lake:


- > 2x clearer
- 2x higher over bottom DO
- ~ 4x lower orthophosphate levels
- > 4x less total algae loads


Nanobubble Pilot:

- July 2 Oct 24, 2024
 - Upper Lake: Control site

	> 3 mg/L (fish struggle)	> 1 mg/L (fish die)
Tadd	65%	88%
Upper	25%	25%

ADVANCING NANOBUBBLE TEC

Lake Arrowhead, Wisconsin

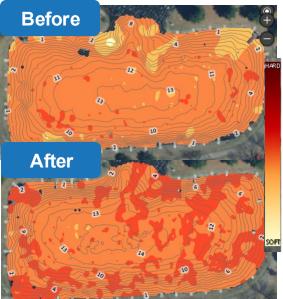
Pilot Marina Shows Remarkable Results in 75 Days

About the Waterbody

- Marina Surface Area: 2 acres (0.8 ha)
- Lake Surface Area: 300 acres (121 ha)
- Flowing Lake System: 900 acres (364 ha)


Challenges

- Excessive algae and very poor water clarity
- High muck accumulation
- Stagnant area of lake with poor circulation
- Legacy poor water quality issues


Results: 1000 GPM (227 m³/hr) Trailer

- DO levels were 50% higher than control
- Increased depth by 1' (30 cm)
- Water clarity improved by 2-3' (61-91 cm)

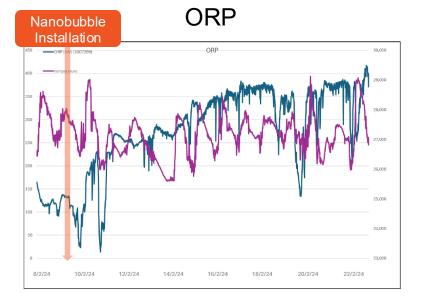
Hartbeespoort Dam, South Africa

Success in South African Dam Spurs Community

About the Waterbody

- Surface Area: >2,000 ha
- Max Depth: 30 m (84 ft)
- Average Depth: 9.8 m (65 ft)
- Volume: 192,800,000 m³ (51B gal)
- Ret Time: 6 mo to 1 yr

Challenges


- Poor water clarity and legacy of poor quality
- Excessive algae growth
- Invasive aquatic plant proliferation
- Unable to use recreationally
- Odor issues

Results: 2,400 GPM (550 m³/hr) Trailer

- Nutrient reduction (Ammonium, Orthophosphate)
- COD increase
- Significant bottom muck digestion in treatment zone
- Reduced nutrient flux in treatment zone and outfall
- Improved resilience against incoming nutrient load
- Cyanobacteria, Microcystin & *E. coli* reductions in treatment area & outfall



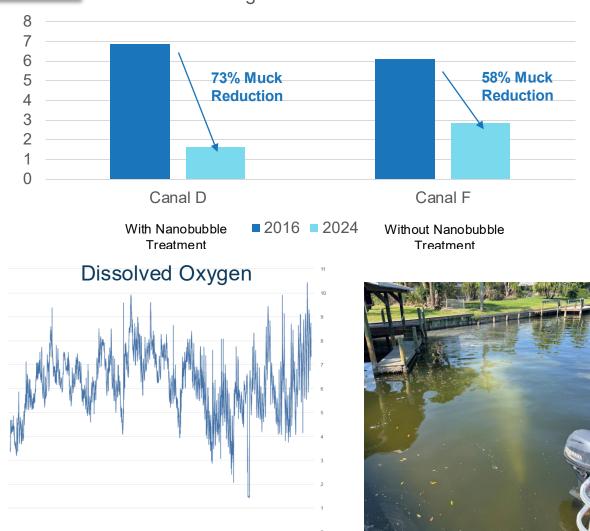
Dissolved Oxygen

CONFIDENTIAL Copyright © 2025 Moleaer. All trademarks stated herein are the property of their respective company. All rights reserved. This document is confidential and contains proprietary information of Moleaer Inc. Neither this document nor any of their information contained herein may be reproduced, redistributed or disdosed under any circumstances without the express written permission of Moleaer Inc.

Satellite Beach, Florida

Better Muck Reduction Over Control

About the Waterbody


- Surface Area: 1.5 acres (0.6 ha)
- Brackish water

Challenges

- Thick muck
- Poor water quality

Results: Clear 150 nanobubble generator

- Average 73% reduction in muck in the pilot canal, a 15% improvement over the control
- Elevated dissolved oxygen in the water column and at the sediment-water interface

Tranquility Bay, South Dakota

Significant Algae Reduction = Happy Locals

About the Waterbody

- Surface Area: 5.92 acres (2.4 ha)
- Long, narrow bay, part of Big Stone Lake (+12,000 acres, ~4900 ha)

Challenges

- Excess algal blooms and aquatic weeds
- Poor clarity

Results: Neo nanobubble trailer

- Significant water clarity improvements
- Visibly reduced algal blooms
- Reduced aquatic weed growth
- Better fishing for locals

AFTER MOLEAER

Tidal Stormwater Channel, California

3,000 Locals Return Home in Urban Community

About the Waterbody

 15.7-mile (25 km) brackish, tidal stormwater canal apart of 133 sq mile (344 sq km) watershed

Challenges

- Low oxygen levels in water channel
- Hydrogen sulfide (H₂S) gas production
- Rotten egg smell, displayed 3,000 ppl

Results:

- Eliminated H₂S formation, foul odors and people returned home
- Increased dissolved oxygen
- Digested organics (i.e. "muck")

2022 Water Project of the Year Distinction

- 50,000 GPM (11k m³/hr) treatment capacity equaling 60M gallons (227M liters/day) of water per day treated
- Dates of Treatment: October
 2021 March 2022

Greenways Golf Course, Soet River, South Africa

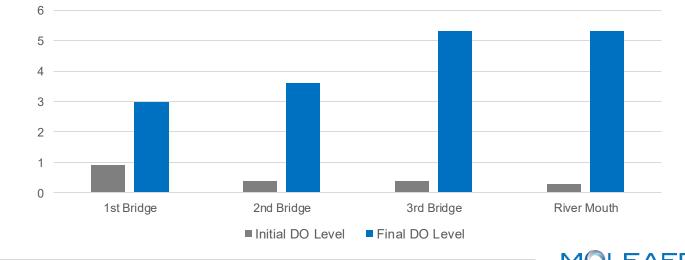
Odor Elimination for Local Community

About the Waterbody

- Length: 300 m (984 ft)
- Depth: 51 cm (20 in)
- River with tidal influence

Challenges

- Incoming river flow with high levels of pollution
- Foul odors from hydrogen sulfide (H₂S) formation
- High turbidity


Results: (2) Clear nanobubble generators

- Increased DO by up to 1600%
- Increased ORP levels to 220 mV
- Reduced water turbidity by 89%
- Decreased COD by 68%
- Eliminated foul odors from H2S

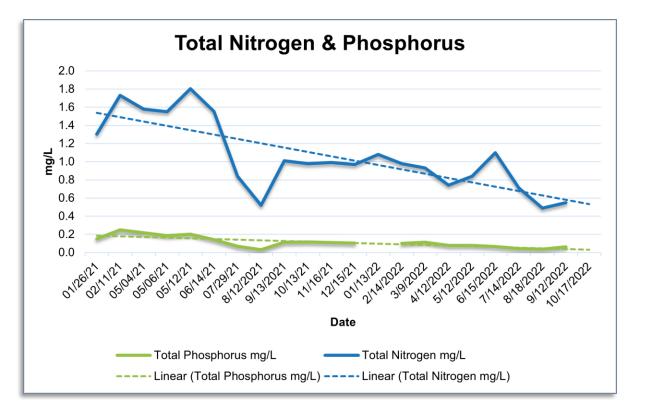
DO Levels (mg/L)

CONFIDENTIAL Copyright © 2025 Moleaer. All trademakes stated herein are the property of their respective company. All rights reserved. This document is confridental and contained prevent is on of Moleaer hc. Neither this document nor any of their normation contained herein may be reprodueed, redistributed or disdosed under any circumstances without the express written permission of Moleaer hc. Neither this document nor any of their normation contained herein may be reprodueed, redistributed or disdosed under any circumstances without the express written permission of Moleaer hc. Neither this document nor any of their normation contained herein may be reprodueed, redistributed or disdosed under any circumstances without the express written permission of Moleaer hc. Neither this document nor any of their normation contained herein may be reprodueed, redistributed or disdosed under any circumstances without the express written permission of Moleaer

Community Lake, Florida

Significant Reductions in Nutrients that Fuel Algae

About the Waterbody


- 1.1 acres (0.45 ha)
- 6-acre feet (7,401 m³)

Challenges

- High nutrients, eutrophication
- Algae and poor clarity

Results: Clear 150 nanobubble generator

- Reduced Total Nitrogen (-96%) and Phosphorus levels (-59%)
- Improved water clarity
- Less maintenance effort

Westin Hapuna Beach Resort Koi Pond, Hawaii

About the Waterbody

• Koi pond at resort

Challenges


- Potential for odors
- Poor clarity

Results: Kingfisher Nanobubble Generator

- Improved clarity
- Better experience for resort guests
- Chemical-free solution
- Improved plant and fish health

"We have been using Moleaer's nanobubble generator here at the Westin Hapuna Beach Resort since March 2022, and it has been a game changer! **We have been absolutely thrilled with the improvements to the health of the plants and fish.** After just a short time, the clarity in the pond increased dramatically which has translated into a better experience for our Resort guests, and the fact that it is an all-natural treatment is an added bonus!"

- Marguerite Heap, Hotel Manager THE WESTIN

Private Quarry Lake, Minnesota

Algae Control & Muck Reduction

About the Waterbody

30-acre feet (37,004 m³)

Challenges

 Emergency, short-term deployment for algae and muck

Results: 1,000 GPM nanobubble trailer with oxygen and ozone generators, 3-day turnover

- Improved water clarity within weeks
- Firmer sediment
- Reduced muck and algae

"Before nanobubbles, the water volume was so full of algae with algae on the top. After a week, the water color changed from green to brown as the algae died and started to decompose."

– Vance Walgrave, Those Blasted Things, Lake Owner

Private Golf Club, Florida

Algae Control on the 19th Hole

About the Waterbody

- 2.87 acres (1.2 ha)
- 14.35-acre feet (17,700 m³)

Challenges

- Excessive algae in golf course ponds
- Foul odors

Results: Clear 150 & Kingfisher nanobubble generators

- Reduced algae growth
- Improved water clarity
- Eliminated foul odors

"Nanobubble technology is a sustainable and chemical-free tool for lake managers to utilize to restore lake health for our clients. By getting at the root cause of common lake issues, we can naturally improve water quality, allowing our clients to enjoy their lakes and ponds once again."

- Rick Anderson, the owner of Aquatic Balance

The Sands Coastal Community Lake, Fort Pierce, FL

Locals Enjoy HOA Community Lake

About the Waterbody

- 15 surface acres (6 ha)
- 150-acre feet (185,022 m³)
- Max depth: 20 ft (6 m)

Challenges

- Fish kill
- Poor water clarity

Results: Clear 150 nanobubble generator

- Eliminated fish kills
- Reduced midge fly outbreaks
- Better water quality and clarity
- Improved discharge quality into surrounding ecosystems

Private Trout Pond, Tomah, WI

About the Waterbody

Private pond for recreation and fishing

Challenges

Annual algae blooms

Results: Clear 50 nanobubble generator

- Water clarity improvement
- Algae bloom reduction
- Reduced gill lice parasites in trout

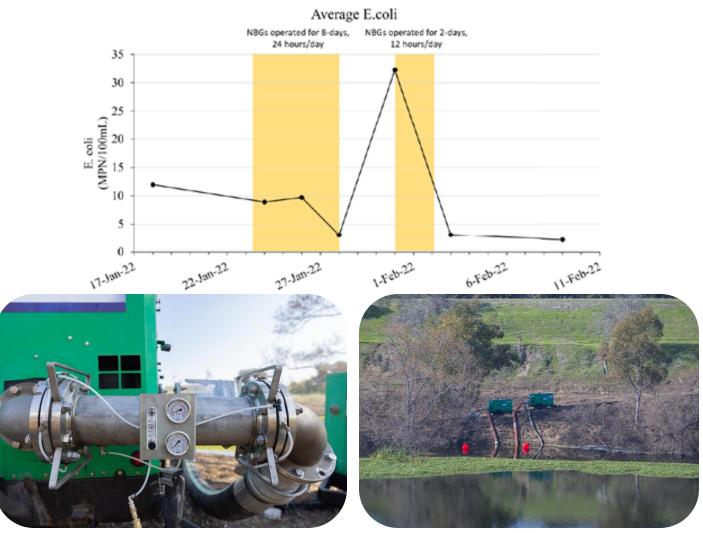
"The results from the nanobubbles were much faster than I would have expected. As a chemical engineer who specifies equipment as part of my job, I am also impressed with the quality of the design and build of the generator. I am happy with my local technical representative, with Moleaer as a company and with my results. The trout are healthier and the water quality is fantastic. I'm thrilled with all of it. The investment was worth every penny."

– Gregory Eirschele, Lake Owner

Stormwater Basin, California

Coliform Control in Urban Stormwater Basin

About the Waterbody


- 25 surface acres (10 ha)
- Max depth: 100 ft (30 m)

Challenges

- Foul odors
- Microbial contamination
- Poor water quality

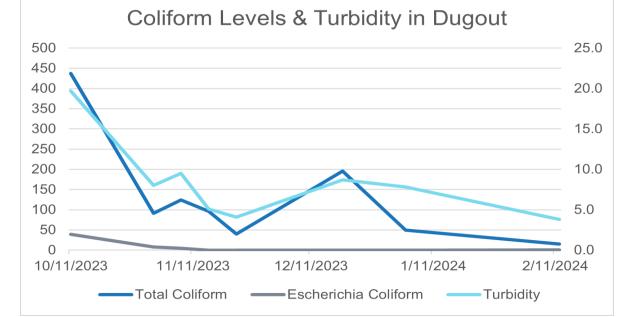
Results

- Increased DO from 0.5 to 4.4 mg/L at sediment
- Increased sediment ORP from -260 to +160 mV
- Reduced coliforms up to 75% in 8 days

Retention Ponds for Cattle, Canada

About the Waterbody

 Ponds called "dugouts" used for cattle drinking water and farmland irrigation


Challenges

- Microbial contamination
- Poor water quality

Results

- Significant *E. coli* and total Coliform reductions
- Improved water clarity
- Tangible reduction in cattle ailments (bloating, nervous diseases)

Coliform Control for Better Water Quality

Supporting Information

Harmful Algal Blooms are a Growing Concern in Freshwater Bodies

Globally, Over 100,000 Lakes Experienced HABs, More at Risk

What are HABs?

- Occur when algae grow out of control and produce toxins
- Cyanobacteria (blue-green algae) is most common type of algae that causes HABs

Impacts

- Animal, fish deaths and human sickness
- Reduced recreation opportunities
- Lake and beach closures
- Tourism and property value deterioration
- Taste and odor issues in drinking water

Conditions Favoring HABs

- Excess nutrients
- Warm temperatures and stagnant water

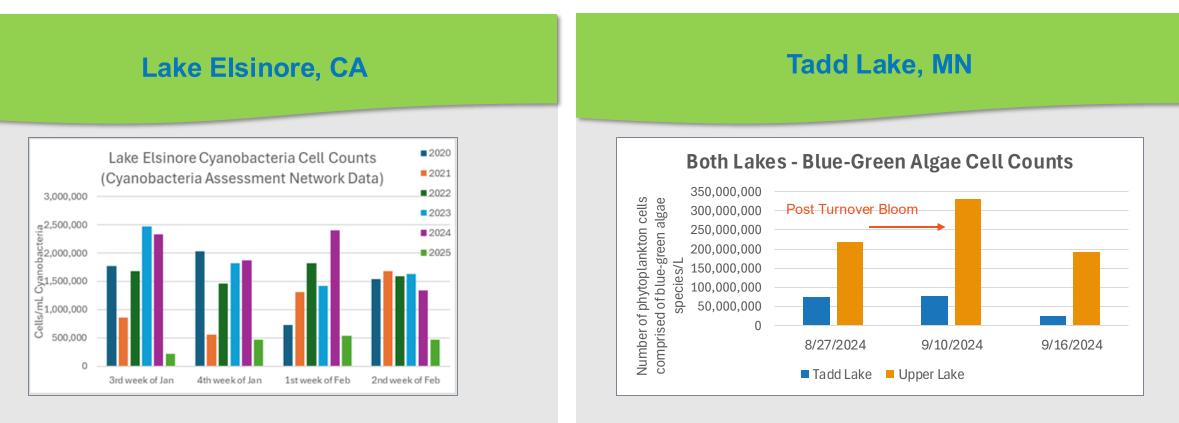
How Nanobubble Technology Reduces HABs & Mitigates Algal Toxin Levels

Mitigate Nutrient Levels

- Reduce internal nutrient loading
- Less nutrients to fuel algae
 growth

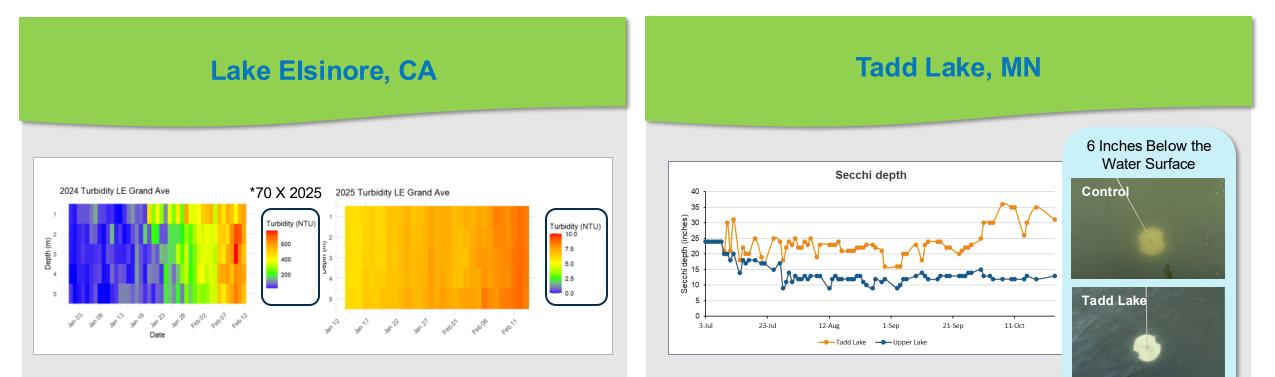
Increase & Sustain Elevated DO

 Enhances and maintains oxic conditions, even when water temperatures rise


Increase ORP

- Increased ORP promotes
 breakdown of algal toxins
- Less toxin load in water and lower potential for toxins to become airborne

Prescriptive Solutions: Reduced Algae & HABs

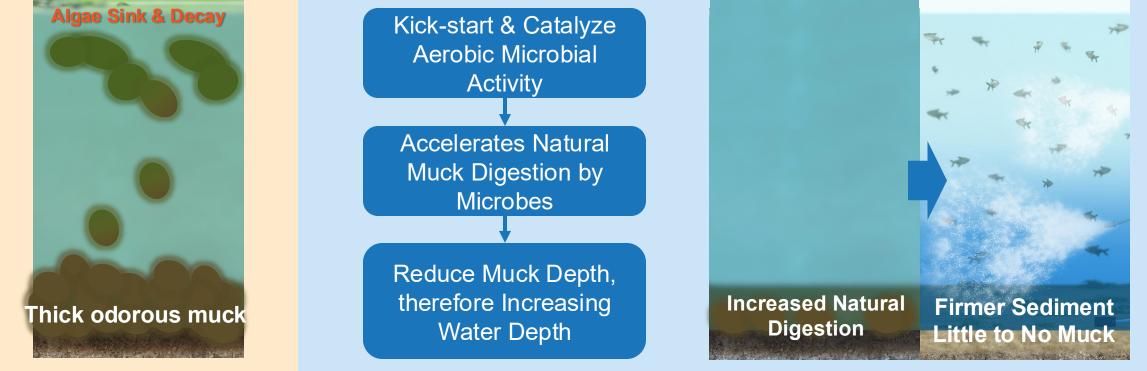

Cyanobacterial Cell Count Assessments

 50-90% reduction in early-season cyanobacterial growth Tadd Lake > 4x less total algae loads than Upper Lake (control)

Prescriptive Solutions: Improved Water Clarity Secchi Disc Readings & Turbidity

- Up to 7,000% reduction in turbidity
- Highest water clarity reported in 2 years

> 2 times clearer than control lake

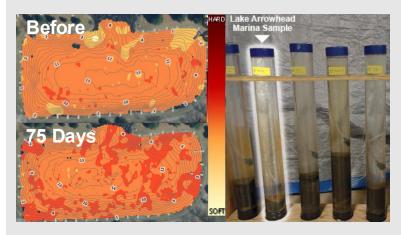


How Moleaer Nanobubble Technology Reduces Muck

The Muck Challenge

Anaerobic Conditions Limit Aerobic Muck Digestion, Resulting in Muck Accumulation

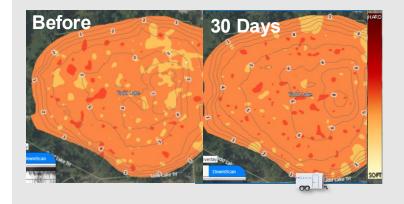
Enter Nanobubble Technology Increase Dissolved Oxygen in Water Column & at Lake Bottom


As time elapses with Nanobubble Treatment

Prescriptive Solutions: Reduce Muck

Results from Biobase® Sediment Hardness Mapping

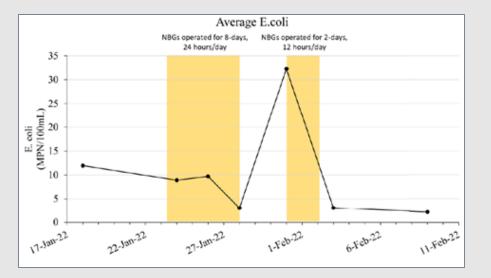
Lake Arrowhead Marina, WI


- Increased depth 1 ft (30 cm)
- Water clarity improved by 2-3 ft (61-91 cm)

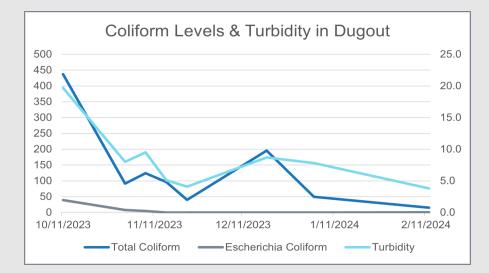
Lake Elsinore, CA

- ~ 95% reduction in area occupied by muck at lake bottom
- Water clarity increased by ~ 2 ft (60 cm)

Tadd Lake, MN



- ~ 90% reduction in area occupied by muck at lake bottom
- 2x clearer water than in control lake


Prescriptive Solutions: Reduced Coliforms Results from Coliform Counts

Stormwater Basin, CA

- Increased DO from 0.5 to 4.4 mg/L at sediment
- Increased sediment ORP from -260 to +160 mV
- Reduced coliforms up to 75% in 8 days

Cattle Retention Ponds, Canada

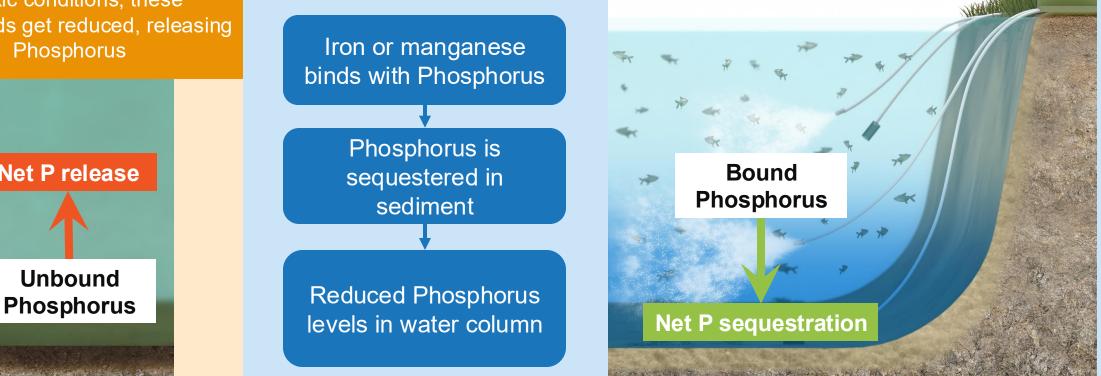
- Significant E. coli and total Coliform reductions
- Improved water clarity
- Tangible reduction in cattle ailments (bloating, nervous diseases)

How Moleaer Nanobubble Technology Mitigates Nutrients

Mainly Chemically Mediated

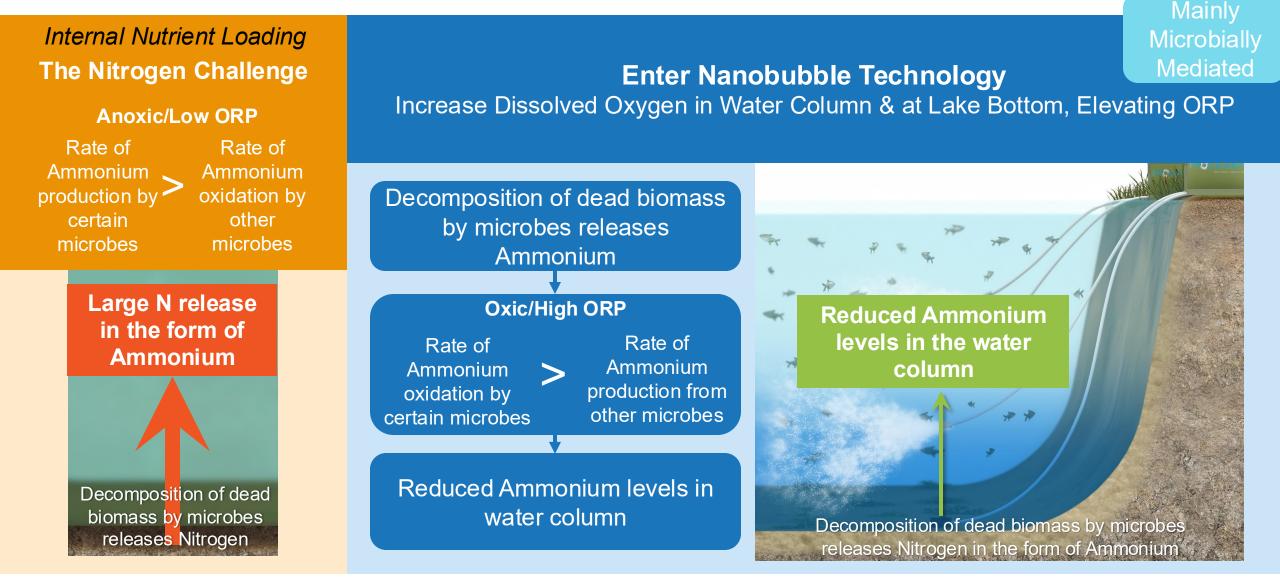
 The Phosphorus Challenge
 Under oxic conditions,

 Phosphorus is bound to iron or
 manganese in sediments. Under

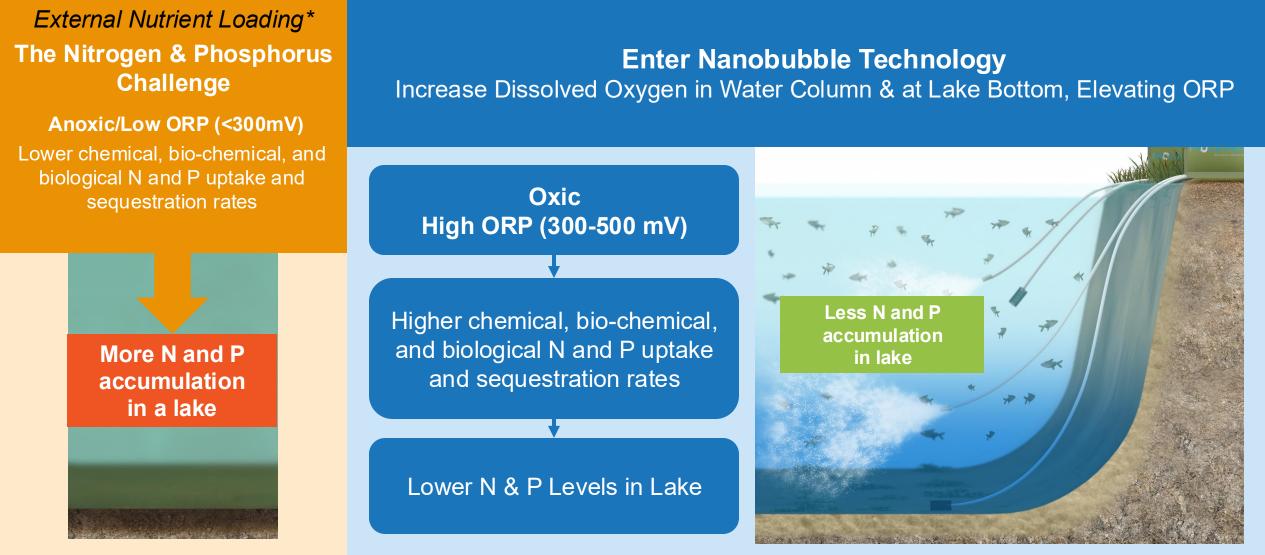

 anoxic conditions, these
 compounds get reduced, releasing

 Phosphorus
 bi

 Net P release
 bi


Internal Nutrient Loading

Enter Nanobubble Technology Increase Dissolved Oxygen in Water Column & at Lake Bottom, Elevating ORP



How Moleaer Nanobubble Technology Mitigates Nutrients

How Moleaer Nanobubble Technology Mitigates Nutrients

*Once external loading enters the lake, recent research suggests NB treatment can lessen the impacts of it

Other Benefits of Nanobubble Treatment in Drinking Water Sources

Reduce MIB & Geosmin Reduce Mercury Certain anaerobic microbes convert inorganic mercury Enhance oxidation and volatilization of MIB and to bioavailable mercury (methylmercury) geosmin Accelerate microbial activity to naturally degrade NBs create aerobic conditions that cause these microbes to become dormant or die off MIB and geosmin This reduces the quantity of bioavailable mercury that Reduce growth of algae that produce MIB and enters water column geosmin **Improve Water Quality Reduce Manganese** Oxygenate water column to help convert soluble Reduce variation in overall raw water quality overall • manganese to less soluble form that precipitates out for downstream water treatment

Reduce costs by keeping influent water quality • consistent under external loading nutrient events (e.g. rainfall events), requiring less adjustments to coagulant dosing

- of the water column
- Increase redox potential, minimizing manganese release from bottom sediments into water column

fidential and contains proprietary information of Moleaer Inc. Neither this document nor any of the information contained herein may be reproduced, redistributed of