EMC TEST REPORT For

Defiro Media Production S.R.L

Infrared thermometer

Test Model: DEF-TSV1

Additional Model No.: Please Refer to Page 9

Prepared for : Defiro Media Production S.R.L

Address : Pipera no. 1/VII, Loc. Voluntari, Jud, Ilfov,

Romania, CP 077190

Prepared by : Shenzhen LCS Compliance Testing Laboratory

Ltd.

Address : Room 101, 201, Building A and Room 301,

Building C, Juji Industrial Park, Yabianxueziwei,

Shajing Street, Bao'an District, Shenzhen,

Guangdong, China

Tel : (+86)755-82591330 Fax : (+86)755-82591332 Web : www.LCS-cert.com

Mail : webmaster@LCS-cert.com

Date of receipt of test sample : May 19, 2020

Number of tested samples : 1

Serial number : Prototype

Date of Test : May 19, 2020 ~ May 25, 2020

Date of Report : May 26, 2020

TEST REPORT

EN 60601-1-2: 2015

Medical electrical equipment -- Part 1-2: General requirements for basic safety and essential performance - Collateral standard: Electromagnetic compatibility - Requirements and tests

Report Reference No.: LCS200519007AE

Date Of Issue May 26, 2020

Testing Laboratory Name: Shenzhen LCS Compliance Testing Laboratory Ltd.

Xixiang Street, Bao' an District, Shenzhen, Guangdong,

China

Testing Location/ Procedure...: Full application of Harmonised standards

Partial application of Harmonised standards

Other standard testing method

Applicant's Name Defiro Media Production S.R.L

Address Pipera no. 1/VII, Loc. Voluntari, Jud, Ilfov, Romania, CP

077190

Test Specification:

Standard EN 60601-1-2: 2015

EN 61000-3-2: 2014 EN 61000-3-3: 2013

Test Report Form No...... LCSEMC-1.0

TRF Originator...... Shenzhen LCS Compliance Testing Laboratory Ltd.

Master TRF Dated 2011-03

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. is acknowledged as copyright owner and source of the material. SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test Item Description.......: Infrared thermometer

Trade Mark N/A

Test Model...... DEF-TSV1

Ratings DC5V

Result Positive

Compiled by:

Supervised by:

JasonDen

Mia Huang/ File administrators

Mio Huang

Jason Deng / Technique principal

Gawin Liang Manager

EMC -- TEST REPORT

Test Report No. : LCS200519007AE May 26, 2020 Date of issue

Test : DEF-TSV1 Model..... EUT.....:: Infrared thermometer Applicant.....:: Defiro Media Production S.R.L Address...... : Pipera no. 1/VII, Loc. Voluntari, Jud, Ilfov, Romania, CP 077190 Telephone.....: : / Fax.....:: : / **Guangzhou Leisure Auto Safety Technology** Manufacturer.....:: Co..ltd Address.....: Rm605, #350-7, Xingangzhong RD. ,Haizhu District, Guangzhou, China Telephone.....: : / Fax.....:: : / **Guangzhou Leisure Auto Safety Technology** Factory.....:: Co.,ltd Address...... : Rm605, #350-7, Xingangzhong RD., Haizhu District, Guangzhou, China Telephone.....: : / Fax.....:: : /

Test Result according to the standards on page 8:

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Revision History

Revision	Issue Date	Revisions	Revised By
000	May 26, 2020	Initial Issue	Gavin Liang

TABLE OF CONTENT

Test Report Description	Page
EMC TEST REPORT	
TABLE OF CONTENT	
1. SUMMARY OF STANDARDS AND RESULTS	6
2. GENERAL INFORMATION	
3. MEASURING DEVICE AND TEST EQUIPMENT	9
4. POWER LINE CONDUCTED EMISSION MEASUREMENT	11
5. RADIATED EMISSION MEASUREMENT	14
PASS	15
6. HARMONIC CURRENT EMISSION MEASUREMENT	17
PASS	17
7. VOLTAGE FLUCTUATION AND FLICKER MEASUREMENT	18
8. ELECTROSTATIC DISCHARGE IMMUNITY TEST	19
9. RF FIELD STRENGTH SUSCEPTIBILITY TEST	
PASS	
Please refer to the following page	23
10. ELECTRICAL FAST TRANSIENT/BURST IMMUNITY TEST	
11. SURGE IMMUNITY TEST	28
12. INJECTED CURRENTS SUSCEPTIBILITY TEST	
13. MAGNETIC FIELD SUSCEPTIBILITY TEST	34
14. VOLTAGE DIPS AND INTERRUPTIONS TEST	
15. PHOTOGRAPH	40
16 EXTERNAL AND INTERNAL PHOTOS OF THE FLIT	44

1. SUMMARY OF STANDARDS AND RESULTS

1.1.Description of Standards and Results

The EUT have been tested according to the applicable standards as referenced below.

EMISSION (EN 60601-1-2: 2015)						
Description of Test Item	Standard	Limits	Results			
Conducted disturbance at mains terminals	CISPR 11: 2016	Class B	PASS			
Conducted disturbance at telecommunication port	CISPR 11: 2016	Class B	N/A			
Radiated disturbance	CISPR 11: 2016	Class B	PASS			
Harmonic current emissions	EN 61000-3-2: 2014	Class A	N/A			
Voltage fluctuations & flicker	EN 61000-3-3: 2013		PASS			
IMMUNITY (EN 60601-1-2: 2015)						
Description of Test Item	Basic Standard	Performance Criteria	Results			
Electrostatic discharge (ESD)	EN 61000-4-2: 2009/ IEC 61000-4-2:2008	PASS	PASS			
Radio-frequency, Continuous radiated disturbance	EN 61000-4-3: 2006+A2: 2010/ IEC 61000-4-3:2010	PASS	PASS			
Electrical fast transient (EFT)	EN 61000-4-4: 2012// IEC 61000-4-4:2012	PASS	PASS			
Surge (Input a.c. power ports)	EN 61000-4-5: 2014+A1: 2017/	PASS	PASS			
Surge (Telecommunication ports)	IEC 61000-4-5:2017	PASS	N/A			
Radio-frequency, Continuous conducted disturbance	EN 61000-4-6: 2014/ IEC 61000-4-6:2013	PASS	PASS			
Power frequency magnetic field	EN 61000-4-8: 2010/ IEC 61000-4-8:2009	PASS	PASS			
Voltage dips,>95% reduction		PASS	PASS			
Voltage dips,>60% reduction	EN 61000-4-11: 2004+A1: 2017/	PASS	PASS			
Voltage dips, 30% reduction	IEC 61000-4-11:2020	PASS	PASS			
Voltage interruptions>95%	<u> </u>	PASS	PASS			
N/A is an abbreviation for Not Applica	ble.					

Test mode:		
Mode 1	ON	Record

Report No.: LCS200519007AE

2. GENERAL INFORMATION

2.1.Description of Device (EUT)

EUT : Infrared thermometer

Trade Mark : N/A

Test Model : DEF-TSV1

Model Lists : DEF-TSV2

Model Declaration PCB board, structure and internal of these model(s) are

the same, So no additional models were tested

Power Supply : DC5V

2.2. Description of Support Device

Name	Manufacturers	M/N	S/N
Adapter	OPPO	OP52KAUH	

2.3. Description of Test Facility

Site Description

EMC Lab. : FCC Registration Number. is 254912.

Industry Canada Registration Number. is 9642A.

ESMD Registration Number. is ARCB0108. UL Registration Number. is 100571-492.

TUV SUD Registration Number. is SCN1081.

TUV RH Registration Number. is UA 50296516-001.

NVLAP Registration Code is 600167-0.

2.4. Statement of the Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. To CISPR 16 – 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the LCS quality system acc. To DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

2.5. Measurement Uncertainty

Test	Parameters	Expanded Uncertainty (Ulab)	Expanded Uncertainty (Ucispr)
Conducted Emission	Level accuracy (9kHz to 150kHz) (150kHz to 30MHz)	± 2.63 dB ± 2.35 dB	± 3.8 dB ± 3.4dB
Power Disturbance	Level accuracy (30MHz to 300MHz)	± 2.90dB	± 4.5 dB
Electromagnetic Radiated Emission (3-loop)	Level accuracy (9kHz to 30MHz)	± 3.60 dB	± 3.3 dB
Radiated Emission	Level accuracy (9kHz to 30MHz)	± 3.68 dB	N/A
Radiated Emission	Level accuracy (30MHz to 1000MHz)	± 3.48 dB	± 5.3 dB
Radiated Emission	Level accuracy (above 1000MHz)	± 3.90 dB	± 5.2 dB
Mains Harmonic	Voltage	± 0.510%	N/A
Voltage Fluctuations & Flicker	Voltage	± 0.510%	N/A

⁽¹⁾ Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus.

⁽²⁾ The reported expanded uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor of k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

3. MEASURING DEVICE AND TEST EQUIPMENT

3.1.Conducted Disturbance

Item	Test Equipment	Manufacturer	Model No	Serial No.	Last Cal.
1	EMI Test Software	AUDIX	E3	/	N/A
2	EMI Test Receiver	R&S	ESPI	101840	2019-06-11
3	Artificial Mains	R&S	ENV216	101288	2019-06-12
4	10dB Attenuator	SCHWARZBECK	MTS-IMP-136	261115-001-00 32	2019-06-11

3.2. Radiated Disturbance (Electric Field)

Item	Test Equipment	Manufacturer	Model No	Serial No.	Last Cal.
1	EMI Test Software	AUDIX	E3	/	N/A
2	3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	2019-06-12
3	Positioning Controller	MF	MF-7082	/	2019-06-12
4	By-log Antenna	SCHWARZBECK	VULB9163	9163-470	2019-07-25
5	Horn Antenna	SCHWARZBECK	BBHA 9120D	9120D-1925	2019-07-01
6	EMI Test Receiver	R&S	ESR 7	101181	2019-06-12
7	RS SPECTRUM ANALYZER	R&S	FSP40	100503	2019-11-14
8	AMPLIFIER	QuieTek	QTK	CHM/0809065	2019-11-14
9	RF Cable-R03m	Jye Bao	RG142	CB021	2019-06-12
10	RF Cable-HIGH	SUHNER	SUCOFLEX 106	03CH03-HY	2019-06-12

3.3. Harmonic Current

Item	Test Equipment	Manufacturer	Model No	Serial No.	Last Cal.
1	Power Analyzer Test System	Voltech	PM6000	20000670053	2019-06-12

3.4. Voltage fluctuation and Flicker

Item	Test Equipment	Manufacturer	Model No	Serial No.	Last Cal.
1	Power Analyzer Test System	Voltech	PM6000	20000670053	2019-06-12

3.5. Electrostatic Discharge

Item	Test Equipment	Manufacturer	Model No	Serial No.	Last Cal.
1	ESD Simulator	SCHLODER	SESD 230	604035	2019-06-13

3.6.RF Field Strength Susceptibility

Item	Test Equipment	Manufacturer	Model No	Serial No.	Last Cal.		
1	RS Test Software	Tonscend	/	/	N/A		
2	ESG Vector Signal Generator	Agilent	E4438C	MY42081396	2019-11-14		
3	3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	2019-06-12		
4	RF POWER AMPLIFIER	OPHIR	5225R	1052	NCR		
5	RF POWER AMPLIFIER	OPHIR	5273F	1019	NCR		
6	Stacked Broadband Log Periodic Antenna	SCHWARZBEC K	STLP 9128	9128ES-145	NCR		
7	Stacked Mikrowellen LogPer Antenna	SCHWARZBEC K	STLP 9149	9149-484	NCR		
8	Electric field probe	Narda S.TS./PMM	EP601	611WX80208	2020-03-24		
Note	Note: NCR means no calibration requirement						

3.7. Electrical Fast Transient/Burst

Item	Test Equipment	Manufacturer	Model No	Serial No.	Last Cal.
1	Immunity Simulative Generator	EM TEST	UCS500 M4	0101-34	2019-06-11

3.8.Surge

Item	Test Equipment	Manufacturer	Model No	Serial No.	Last Cal.
1	Immunity Simulative Generator	EM TEST	UCS500 M4	0101-34	2019-06-11

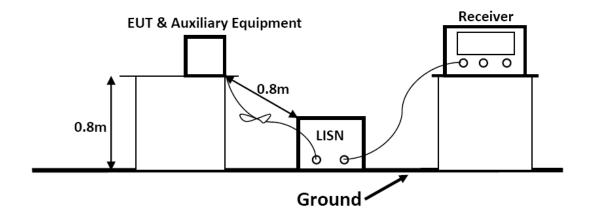
3.9. Conducted Susceptibility

Item	Test Equipment	Manufacturer	Model No	Serial No.	Last Cal.
1	Simulator	FRANKONIA	CIT-10/75	A126A1195	2019-06-11
2	CDN	FRANKONIA	CDN-M2+M3	A2210177	2019-06-11
3	6dB Attenuator	FRANKONIA	DAM25W	1172040	2019-06-11

3.10. Power Frequency Magnetic Field Susceptibility

Item	Test Equipment	Manufacturer	Model No	Serial No.	Last Cal.
1	Power frequency mag-field generator System	EVERFINE	EMS61000-8K	906003	2019-06-11

3.11.Voltage Dips


Item	Test Equipment	Manufacturer	Model No	Serial No.	Last Cal.
1	Voltage dips and up generator	3CTEST	VDG-1105G	EC0171014	2019-06-11

3.12. Voltage Short Interruptions

Item	Test Equipment	Manufacturer	Model No	Serial No.	Last Cal.
1	Voltage dips and up generator	3CTEST	VDG-1105G	EC0171014	2019-06-11

4. POWER LINE CONDUCTED EMISSION MEASUREMENT

4.1.Block Diagram of Test Setup

4.2.Test Standard

EN 60601-1-2: 2015 (CISPR 11: 2016)

Power Line Conducted Emission Limits (Class B)

Frequency			у	Limit (dBμV)		
(MHz)				Quasi-peak Level	Average Level	
	0.15	~	0.50	66.0 ~ 56.0 *	56.0 ~ 46.0 *	
	0.50	~	5.00	56.0	46.0	
	5.00	~	30.00	60.0	50.0	

NOTE1-The lower limit shall apply at the transition frequencies.

NOTE2-The limit decreases linearly with the logarithm of the frequency in the range 0.15MHz to 0.50MHz.

4.3.EUT Configuration on Test

The following equipments are installed on Conducted Emission Measurement to see

EN 55011 requirements and operating in a manner which tends to maximize its emission characteristics in normal application.

4.4. Operating Condition of EUT

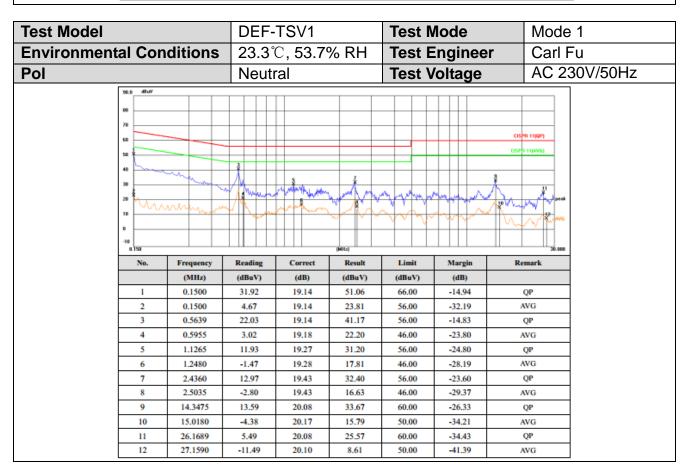
- 4.4.1. Setup the EUT as shown on Section 4.1.
- 4.4.2. Turn on the power of all equipments.
- 4.4.3.Let the EUT work in measuring mode (1) and measure it.

4.5.Test Procedure

The EUT is put on the plane 0.8m high above the ground by insulating support and connected to the AC mains through Line Impedance Stability Network (L.I.S.N). This provided 50-ohm coupling impedance for the tested equipments. Both sides of AC line are investigated to find out the maximum conducted emission according to the EN 55011 regulations during conducted emission measurement.

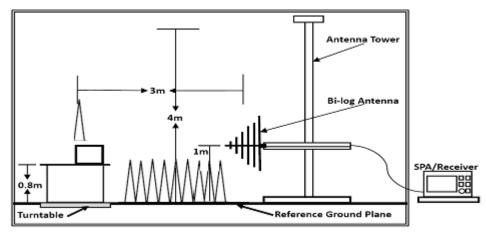
The bandwidth of the field strength meter is set at 9kHz in 150kHz~30MHz and 200Hz in 9kHz~150kHz.

The frequency range from 150kHz to 30MHz is investigated


4.6.Test Results

PASS.

The test result please refer to the next page.


Test Model	DEF-TSV1	Test Mode	Mode 1
Environmental Conditions	23.3℃, 53.7% RH	Test Engineer	Carl Fu
Pol	Line	Test Voltage	AC 230V/50Hz
50.0 48W/ 60 70			15PR 1199F9

-10 0.150				(Militz)			30.000
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1500	35.31	19.14	54.45	66.00	-11.55	QP
2	0.1500	7.92	19.14	27.06	56.00	-28.94	AVG
3	0.5639	21.56	19.14	40.70	56.00	-15.30	QP
4	0.5775	4.09	19.16	23.25	46.00	-22.75	AVG
5	2.4360	14.99	19.43	34.42	56.00	-21.58	QP
6	2.8950	-3.97	19.46	15.49	46.00	-30.51	AVG
7	11.5665	8.28	19.82	28.10	60.00	-31.90	QP
8	11.8500	-3.80	19.85	16.05	50.00	-33.95	AVG
9	14.3340	10.12	20.08	30.20	60.00	-29.80	QP
10	14.8830	-3.41	20.15	16.74	50.00	-33.26	AVG
11	25.9395	8.72	20.08	28.80	60.00	-31.20	QP
12	27.1590	-8.42	20.10	11.68	50.00	-38.32	AVG

5. RADIATED EMISSION MEASUREMENT

5.1.Block Diagram of Test Setup

Below 1GHz

5.2. Measuring Standard

EN 60601-1-2: 2015(CISPR 11: 2016)

5.3. Radiated Emission Limits

EN 55011 Limits:

All emanations from a class B device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified below:

Limits for radiated disturbance Below 1GHz

FREQUENCY	DISTANCE	FIELD STRENGTHS LIMIT
(MHz)	(Meters)	(dBμV/m)
30 ~ 230	3	42-35
230 ~ 1000	3	42

Note:(1)The smaller limit shall apply at the combination point between two frequency bands.

(2) Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the EUT.

5.4.EUT Configuration on Test

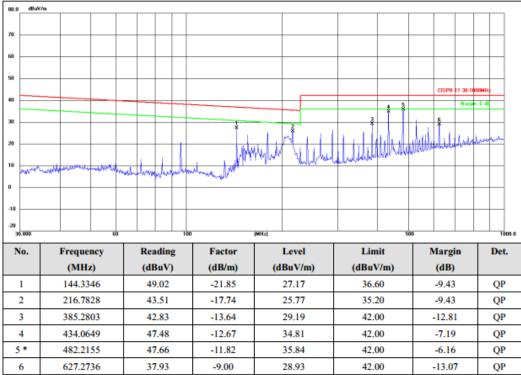
The EN 55011 regulations test method must be used to find the maximum emission during radiated emission measurement.

5.5. Operating Condition of EUT

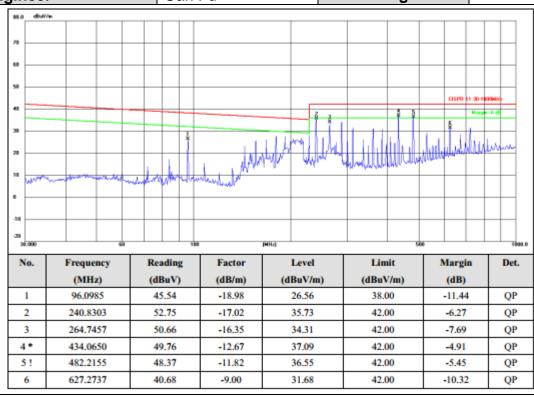
- 5.5.1. Turn on the power.
- 5.5.2. After that, let the EUT work in test mode (1) and measure it.

5.6.Test Procedure

The EUT is placed on a turntable, which is 0.8 meter high above the ground. The turntable can rotate 360 degrees to determine the position of the maximum emission level. The EUT is set 3 meters away from the receiving antenna, which is mounted on a antenna tower. The antenna can be moved up and down from 1 to 4 meters to find out the maximum emission level. By-log antenna is used as a receiving antenna. Both horizontal and vertical polarization of the antenna is set on test.

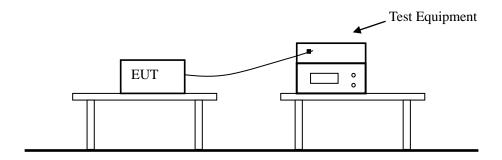

The bandwidth of the Receiver is set at 120kHz. The frequency range from 30MHz to 1000MHz is investigated.

5.7.Test Results


PASS.

The test result please refer to the next page.

Test Model	DEF-TSV1	Test Mode	Mode 1
Environmental Conditions	24.6℃, 54.1% RH	Detector Function	Quasi-peak
Pol	Vertical	Distance	3m
Test Engineer	Carl Fu	Test Voltage	AC 230V/50Hz



Test Model	DEF-TSV1	Test Mode	Mode 1
Environmental Conditions	24.6℃, 54.1% RH	Detector Function	Quasi-peak
Pol	Horizontal	Distance	3m
Test Engineer	Carl Fu	Test Voltage	AC 230V/50Hz

6. HARMONIC CURRENT EMISSION MEASUREMENT

6.1.Block Diagram of Test Setup

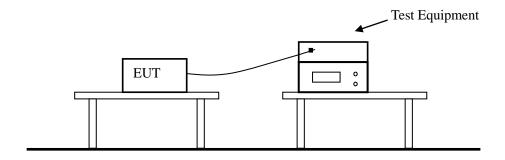
6.2.Test Standard

EN 61000-3-2: 2014

6.3. Operation Condition of EUT

Same as Section 3.4, except the test setup replaced as Section 6.1.

6.4.Test Results


PASS.

The test result please refer to the next page.

Because the power of EUT is less than 75W, according to standard EN 61000-3-2, harmonic current is unnecessary to test.

7. VOLTAGE FLUCTUATION AND FLICKER MEASUREMENT

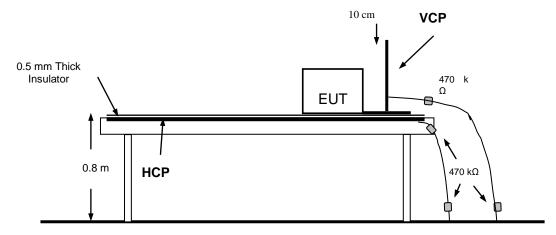
7.1.Block Diagram of Test Setup

7.2. Measuring Standard

EN 61000-3-3: 2013

7.3. Operation Condition of EUT

Same as Section 3.4, except the test setup replaced as Section 7.1.


7.4.Test Results

PASS.

Test Model	DEF-TSV1	-	Test Engineer	Carl Fu
	Notes:			
PASS	Measurement method - Voltage			
	Pst	dc (%)	dmax (%)	d(t) > 3.3%(ms)
Limit	1.000	3.300	4.000	500
Reading 1	0.089	0.008	0.128	0

8. ELECTROSTATIC DISCHARGE IMMUNITY TEST

8.1.Block Diagram of Test Setup

Ground

8.2.Test Standard

EN 60601-1-2: 2015 (EN 61000-4-2: 2009, Severity Level: 4 / Air Discharge: ±15KV, Level: 4 / Contact Discharge: ±8KV)

8.3. Severity Levels and Performance Criterion

8.3.1. Severity level

Level	Test Voltage Contact Discharge (KV)	Test Voltage Air Discharge (KV)
1.	±2	±2
2.	±4	±4
3.	±6	±8
4.	±8	±15
Х	Special	Special

8.3.2.Performance Criterion: Pass

8.4.EUT Configuration on Test

The configuration of EUT is listed in Section.3.

8.5. Operating Condition of EUT

Same as conducted emission measurement, which is listed in Section 3.4. Except the test set up replaced by Section 8.1.

8.6.Test Procedure

8.6.1.Air Discharge

This test is done on a non-conductive surface. The round discharge tip of the discharge electrode shall be approached as fast as possible to touch the EUT. After each discharge, the discharge electrode shall be removed from the EUT. The generator is then re-triggered for a new single discharge and repeated 10 times for each pre-selected test point. This procedure shall be repeated until all the air discharge completed.

8.6.2.Contact Discharge

All the procedure shall be same as Section 8.6.1. Except that the tip of the discharge electrode shall touch the EUT before the discharge switch is operated.

8.6.3.Indirect Discharge For Horizontal Coupling Plane

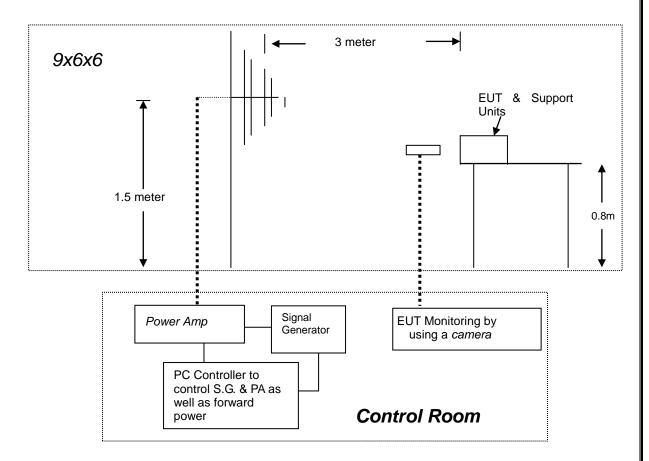
At least 10 single discharges (in the most sensitive polarity) shall be applied at the front edge of each HCP opposite the center point of each unit (if applicable) of the EUT and 0.1m from the front of the EUT. The long axis of the discharge electrode shall be in the plane of the HCP and perpendicular to its front edge during the discharge.

8.6.4. Indirect Discharge For Vertical Coupling Plane

At least 10 single discharge (in the most sensitive polarity) shall be applied to the center of one vertical edge of the coupling plane. The coupling plane, of dimensions 0.5m X 0.5m, is placed parallel to, and positioned at a distance of 0.1m from the EUT. Discharges shall be applied to the coupling plane, with this plane in sufficient different positions that the four faces of the EUT are completely illuminated.

8.7.Test Results

PASS.


Please refer to the following pages

Electrostatic Discharge Test Results				
Standard	☑IEC 61000-4-2 ☑ EN 610	☑IEC 61000-4-2 ☑ EN 61000-4-2		
Applicant	Defiro Media Production S.R.L	Defiro Media Production S.R.L		
EUT	Infrared thermometer	Temperature	22.8℃	
M/N	DEF-TSV1	Humidity	53.2%	
Criterion	Pass	Pressure	1021mbar	
Test Mode	Mode 1	Test Engineer	Carl Fu	
Test Voltage	AC 230V/50Hz			

			Air D	ischarge			
		Test L	evels.			Results	
Test Points	± 2KV	± 4KV	± 8KV	± 15KV	Passe d	Fail	Performance Criterion
Front				\boxtimes			□A ⊠B
Back				\boxtimes	\boxtimes		□A ⊠B
Left				\boxtimes	\boxtimes		\square A \boxtimes B
Right		\boxtimes			\square		\square A \boxtimes B
Тор		\boxtimes	\boxtimes				□A ⊠B
Bottom		\boxtimes	\boxtimes	\boxtimes			□A ⊠B
			Contact	Dischar	ge		
		Test L	evels			Resu	lts
Test Points	± 2 kV	±4 kV	±6 kV	±8 kV	Passed	Fail	Performance Criterion
Front		\boxtimes	\boxtimes		\boxtimes		□A ⊠B
Back		\boxtimes	\boxtimes	\boxtimes	\boxtimes		□A ⊠B
Left		\boxtimes	\boxtimes		\boxtimes		□A ⊠B
Right		\boxtimes					□A ⊠B
Тор		\boxtimes					□A ⊠B
Bottom		\boxtimes		\boxtimes			□A ⊠B
	Di	scharge	To Hori	zontal C	oupling P	lane	
		Test L	evels			Resu	Its
Side of EUT	± 2	kV	± 4	l kV	Passed	Fail	Performance Criterion
Front	\geq			\boxtimes	\boxtimes		□A ⊠B
Back				\boxtimes	\boxtimes		□A ⊠B
Left				\boxtimes	\boxtimes		\square A \boxtimes B
Right	\geq			\boxtimes			□A ⊠B
	Discharge To Vertical Coupling Plane						
Test Levels Results							
Side of EUT	± 2	kV	± 4	l kV	Passed	Fail	Performance Criterion
Front				\boxtimes			□A ⊠B
Back	\triangleright			\boxtimes			□A ⊠B
Left	\triangleright			\boxtimes			□A ⊠B
Right				\boxtimes	\boxtimes		□A ⊠B

9. RF FIELD STRENGTH SUSCEPTIBILITY TEST

9.1.Block Diagram of Test

9.2.Test Standard

EN 60601-1-2: 2015

(EN 61000-4-3: 2006+A2: 2010 Severity Level: 3, 10V / m)

9.3. Severity Levels and Performance Criterion

9.3.1. Severity Levels

Level	Field Strength (V/m)
1.	1
2.	3
3.	10
X.	Special

9.3.2.Performance Criterion: Pass

9.4.EUT Configuration on Test

The configuration of the EUT is same as Section 3.

9.5. Operating Condition of EUT

Same as radiated emission measurement, which is listed in Section 4.4, except the test setup replaced as Section 9.1.

9.6.Test Procedure

The EUT are placed on a table, which is 0.8 meter high above the ground. The EUT is set 3 meters away from the transmitting antenna, which is mounted on an antenna tower. Both horizontal and vertical polarization of the antenna is set on test. Each of the four sides of the EUT must be faced this transmitting antenna and measured individually.

In order to judge the EUT performance, a CCD Recording is used to monitor its screen.

All the scanning conditions are as following:

	Condition of Test	Remark
1.	Fielded Strength	10V/m (Severity Level 3)
2.	Radiated Signal	Unmodulated
3.	Scanning Frequency	80 MHz to 2.7GHz
4.	Sweep time of radiated	0.0015 Decade/s
5.	Dwell Time	3 Sec.

9.7.Test Results

PASS.

Please refer to the following page.

10 V/m

Pass

Criterion

Test Mode	Mode 1		Test Engineer	Carl Fu
Frequency Range	80 MHz to 2.7GHz		Test Voltage	AC 230V/50Hz
Modulation	□None □ Pulse		☑AM 1KHz 80	0%

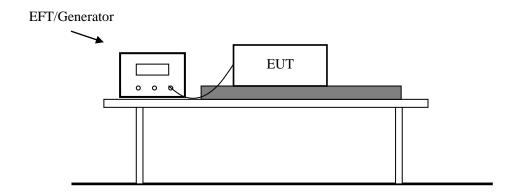
Steps 1%

	Horizontal	Vertical
Front	PASS	PASS
Right	PASS	PASS
Rear	PASS	PASS
Left	PASS	PASS

Test Equipment:

Field Strength

1. Signal Generator: 2031 (MARCONI)


Power Amplifier: 500A100 & 100W/1000M1 (A&R)
 Power Antenna: 3108 (EMCO) & AT1080 (A&R)

4. Field Monitor: FM2000 (A&R)

Note:

10. ELECTRICAL FAST TRANSIENT/BURST IMMUNITY TEST

10.1.Block Diagram of Test Setup

10.2.Test Standard

EN 60601-1-2: 2015

(EN 61000-4-4: 2012, Severity Level, Level 3: 2KV)

10.3. Severity Levels and Performance Criterion

10.3.1. Severity level

	Open Circuit Output Test Voltage ±10%		
Level	On Power Supply	On I/O (Input/Output) Signal	
	Lines	data and control lines	
1.	0.5 KV	0.25 KV	
2.	1 KV	0.5 KV	
3.	2 KV	1 KV	
4.	4 KV	2 KV	
X	Special	Special	

10.3.2.Performance Criterion: Pass

10.4.EUT Configuration on Test

The configuration of EUT is listed in Section 3

10.5. Operating Condition of EUT

- 10.5.1. Setup the EUT as shown in Section 10.1.
- 10.5.2. Turn on the power of all equipments.
- 10.5.3.Let the EUT work in test mode (1) and measure it.

10.6.Test Procedure

The EUT is put on the table, which is 0.8 meter high above the ground. This reference ground plane shall project beyond the EUT by at least 0.1m on all sides and the minimum distance between EUT and all other conductive structure, except the ground plane beneath the EUT, shall be more than 0.5m.

10.6.1. For input and output AC power ports:

The EUT is connected to the power mains by using a coupling device, which couples the EFT interference signal to AC power lines. Both polarities of the test voltage should be applied during compliance test and the duration of the test is 2 mins.

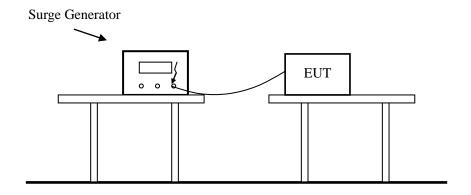
10.6.2. For signal lines and control lines ports: No I/O ports. It's unnecessary to test.

10.6.3. For DC output line ports: It's unnecessary to test.

10.7.Test Results

PASS.

Please refer to the following page.


Electrical Fast Transient/Burst Test Results			
Standard	☑ IEC 61000-4-4 ☑ EN 61000-4-4		
Applicant	Defiro Media Production S.R.L		
EUT	Infrared thermometer	Temperature	22.8℃
M/N	DEF-TSV1	Humidity	53.2%
Test Mode	Mode 1	Criterion	Pass
Test Engineer	Carl Fu	Test Voltage	AC 230V/50Hz

Line	Test Voltage	Result (+)	Result (-)
L	2KV	PASS	PASS
N	2KV	PASS	PASS
PE			
L-N	2KV	PASS	PASS
L-PE			
N-PE			
L-N-PE			
Signal Line			
I/O Cable			

Note:

11. SURGE IMMUNITY TEST

11.1.Block Diagram of Test Setup

11.2.Test Standard

EN 60601-1-2: 2015

(EN 61000-4-5: 2014+A1: 2017, Severity Level: Line to Line: Level 2, 1.0KV, Line

to Earth: Level 3, 2.0KV)

11.3. Severity Levels and Performance Criterion

11.3.1. Severity level

Severity Level	Open-Circuit Test Voltage (KV)
1	0.5
2	1.0
3	2.0
4	4.0
*	Special

11.3.2.Performance Criterion: Pass

11.4.EUT Configuration on Test

The configuration of EUT is listed in Section 3

11.5. Operating Condition of EUT

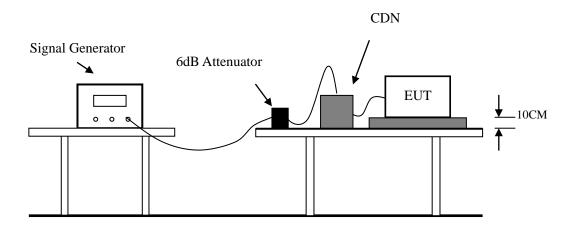
- 11.5.1. Setup the EUT as shown in Section 11.1.
- 11.5.2. Turn on the power of all equipments.
- 11.5.3.Let the EUT work in test mode (1) and measure it.

11.6.Test Procedure

- 1) Set up the EUT and test generator as shown on Section 11.1.
- 2) For line to line coupling mode, provide a 1.0 KV 1.2/50us voltage surge (at open-circuit condition) and 8/20us current surge to EUT selected points.
- 3) At least 5 positive and 5 negative (polarity) tests with a maximum 1/min repetition rate are conducted during test.
- 4) Different phase angles are done individually.
- 5) Record the EUT operating situation during compliance test and decide the EUT immunity criterion for above each test.

11.7.Test Results

PASS.


Please refer to the following page.

Surge Immunity Test Result			
Standard	☑IEC 61000-4-5 ☑ EN 61000-4-5		
Applicant	Defiro Media Production S.R.L		
EUT	Infrared thermometer	Temperature	22.8℃
M/N	DEF-TSV1	Humidity	53.2%
Test Mode	Mode 1	Criterion	Pass
Test Engineer	Carl Fu	Test Voltage	AC 230V/50Hz

Location	Polarity	Phase Angle	Number of Pulse	Pulse Voltage (KV)	Result
	+	0°	5	1.0	PASS
	+	90°	5	1.0	PASS
	+	180°	5	1.0	PASS
	+	270°	5	1.0	PASS
L-N	-	0°	5	1.0	PASS
	-	90°	5	1.0	PASS
	-	180°	5	1.0	PASS
	-	270°	5	1.0	PASS
L-PE					
N-PE					
Signal Line					
Note			ı		

12. INJECTED CURRENTS SUSCEPTIBILITY TEST

12.1.Block Diagram of Test Setup

12.2.Test Standard

EN 60601-1-2: 2015

(EN 61000-4-6: 2014, Severity Level: Level 2, 3V (rms), Level 3, 10V (rms))

12.3. Severity Levels and Performance Criterion

12.3.1.Severity level

Level	Field Strength (V)		
1	1		
2	3		
3	10		
Х	Special		

12.3.2.Performance Criterion: Pass

12.3.3.

12.4.EUT Configuration on Test

The configuration of EUT is listed in Section 3

12.5. Operating Condition of EUT

- 12.5.1. Setup the EUT as shown in Section 12.1.
- 12.5.2. Turn on the power of all equipments.
- 12.5.3.Let the EUT work in test mode (1) and measure it.

12.6.Test Procedure

- 12.6.1. Set up the EUT, CDN and test generators as shown on Section 12.1.
- 12.6.2. Let the EUT work in test mode and measure it.
- 12.6.3. The EUT are placed on an insulating support 0.1m high above a ground reference plane. CDN (coupling and decoupling device) is placed on the ground plane about 0.3m from EUT. Cables between CDN and EUT are as short as possible, and their height above the ground reference plane shall be between 30 and 50 mm (where possible).
- 12.6.4. The disturbance signal described below is injected to EUT through CDN.
 - 12.6.5. The EUT operates within its operational mode(s) under intended climatic conditions after power on.
 - 12.6.6. The frequency range is swept from 150kHz to 80MHz using 3V signal level, and with the disturbance signal 80% amplitude modulated with a 1kHz sine wave.
 - 12.6.7. The rate of sweep shall not exceed 1.5*10-3decades/s. where the frequency is swept incrementally; the step size shall not exceed 1% of the start and thereafter 1% of the preceding frequency value.
 - 12.6.8. Recording the EUT operating situation during compliance testing and decide the EUT immunity criterion.

12.7.Test Results

PASS.

Please refer to the following page.

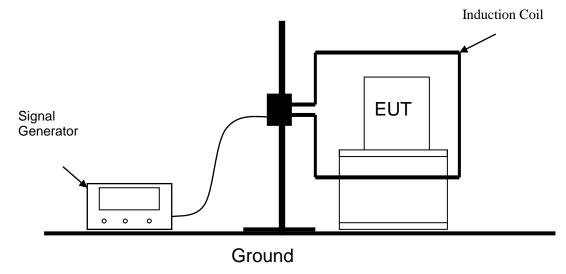
Injected Currents Susceptibility Test Results **Standard** ☑ IEC 61000-4-6 ☑ EN 61000-4-6 Defiro Media Production S.R.L **Applicant EUT** Infrared thermometer **Temperature** 23.7℃ M/N **DEF-TSV1** 53.4% **Humidity Test Mode** Mode 1 Criterion **Pass** Carl Fu AC 230V/50Hz **Test Engineer Test Voltage**

Frequency Range (MHz)	Injected Position	Strength (Unmodulated)	Criterion	Result
0.15~80 (outside ISM bands)	AC Mains	3V	Α	PASS
0.15~80 in ISM bands)	AC Mains	10V	А	PASS

Remark:

1. Modulation Signal:1kHz 80% AM

2. Measurement Equipment:


Simulator: CWS 500 (SWITZERLAND EMTEST)
CDN : ☑CDN-M2 (SWITZERLAND EMTEST)
□CDN-M3 (SWITZERLAND EMTEST)

3. The ISM (industrial, scientific and medical) bands between 150kHz and 80MHz are 6,765 MHz to 6,795 MHz; 13,553 MHz to 13,567 MHz; 26,957 MHz to 27,283 MHz; and 40,66 MHz to 40,70 MHz.

Note:

13. MAGNETIC FIELD SUSCEPTIBILITY TEST

13.1.Block Diagram of Test Setup

13.2.Test Standard

EN 60601-1-2: 2015

(EN 61000-4-8: 2010, Severity Level: Level 4, 30A / m)

13.3. Severity Levels and Performance Criterion

12.3.1. Severity Levels

Level	Field Strength (A/m)		
1	1		
2	3		
3	10		
4	30		
5	100		
X	Special		

13.3.2.Performance Criterion: Pass

13.4.EUT Configuration on Test

The configuration of the EUT is same as Section 3

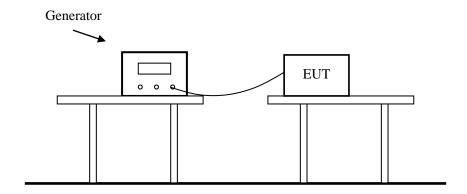
13.5.Test Procedure

The EUT is placed in the middle of a induction coil (1*1m), under which is a 1*1*0.1m (high) table, this small table is also placed on a larger table, 0.8 m above the ground. Both horizontal and vertical polarization of the induction coil is set on test, so that each side of the EUT is affected by the magnetic field. Also can reach the same aim by change the position of the EUT.

13.6.Test Results

PASS.

Please refer to the following page.


Magnetic Field Immunity Test Result				
Standard	☑IEC 61000-4-8 ☑ EN 61000-4-8			
Applicant	Defiro Media Production S.R.L			
EUT	Infrared thermometer	Temperature	22.6℃	
M/N	DEF-TSV1	Humidity	54.2%	
Test Mode	Mode 1	Criterion	Pass	
Test Engineer	Carl Fu	Test Voltage	AC 230V/50Hz	

Test Level (A/M)	Testing Duration	Coil Orientation	Criterion	Result
3	5 mins	X	А	PASS
3	5 mins	Y	А	PASS
3	5 mins	Z	А	PASS

Note:

14. VOLTAGE DIPS AND INTERRUPTIONS TEST

14.1.Block Diagram of Test Setup

14.2.Test Standard

EN 60601-1-2: 2015 (EN 61000-4-11: 2004+A1: 2017)

14.3. Severity Levels and Performance Criterion

14.3.1. Severity level

Test Level	Voltage dip and short	Duration	
(%UT)	interruptions	(in period)	
	(%UT)		
	100	0.5	
U	100	0.5	
70	30	25	
0	100	250	

13.3.2.Performance Criterion: Pass

14.4.EUT Configuration on Test

The configuration of EUT is listed in Section 3.

14.5. Operating Condition of EUT

- 14.5.1. Setup the EUT as shown in Section 14.1.
- 14.5.2. Turn on the power of all equipments.
- 14.5.3.Let the EUT work in test mode (1) and measure it.

14.6.Test Procedure

- 1) Set up the EUT and test generator as shown on Section 14.1.
- 2) The interruptions are introduced at selected phase angles with specified duration.
- 3) Record any degradation of performance.

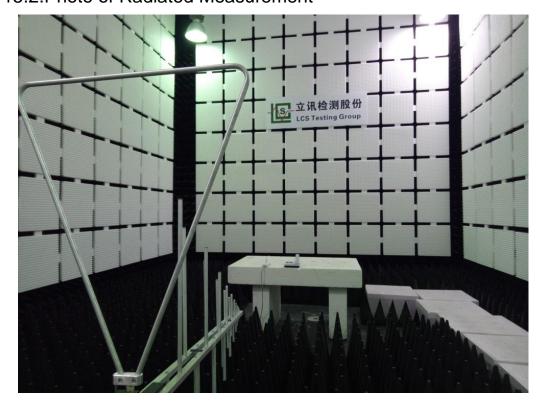
14.7.Test Results

PASS.

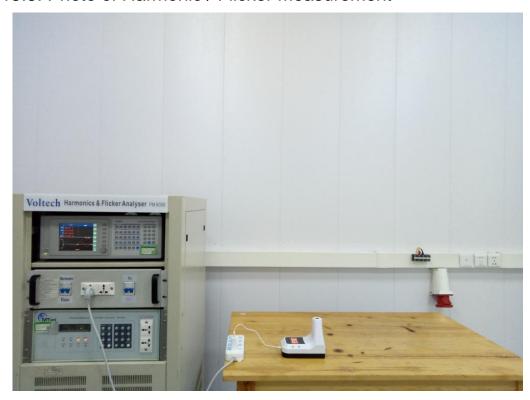
Please refer to the following page.

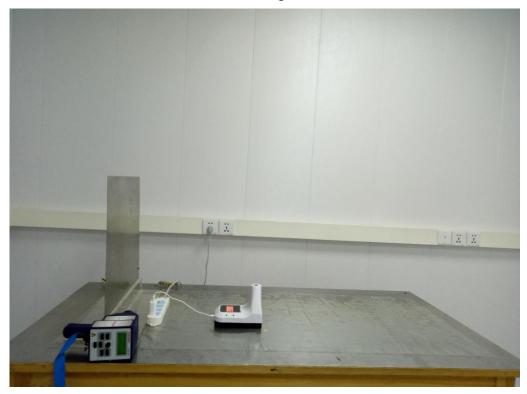
Voltage Dips And Interruptions Test Results				
Standard	☑IEC 61000-4-11 ☑ EN 61000-4-11			
Applicant	Defiro Media Production S.R.L			
EUT	Infrared thermometer	Temperature	23.2℃	
M/N	DEF-TSV1	Humidity	53.1%	
Test Mode	Mode 1	Criterion	Pass	
Test Engineer	Carl Fu	Test Voltage	AC 230V/50Hz	

Test Level % U _T	Voltage Dips & Short Interruptions % U _T	Duration (in periods)	Criterion	Result
<5	>95	0.5P	В	PASS
40	60	5	В	PASS
70	30	25P	В	PASS
<5	>95	250P	С	PASS


Note:

15. PHOTOGRAPH

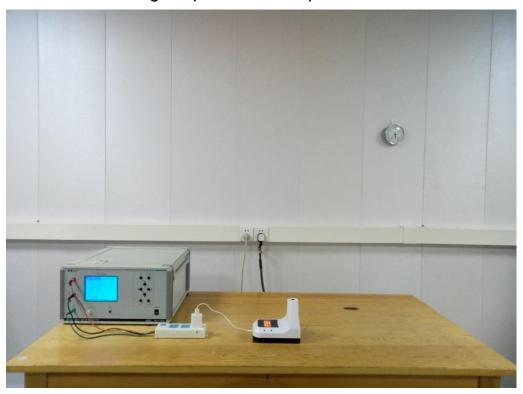



15.2.Photo of Radiated Measurement

15.3. Photo of Harmonic / Flicker Measurement

15.4.Photo of Electrostatic Discharge Test

15.5. Photo of Injected Currents Susceptibility Test


15.6. Photo of Electrical Fast Transient/Burst Test & Surge Immunity Test

15.7. Photo of Magnetic Field Immunity Test

15.8.Photo of Voltage Dips and Interruptions Test

16. EXTERNAL AND INTERNAL PHOTOS OF THE EUT

Fig. 1

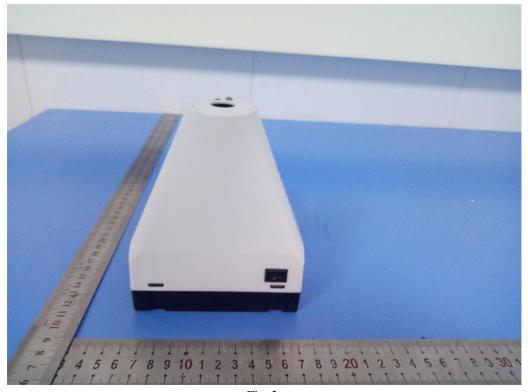


Fig. 2

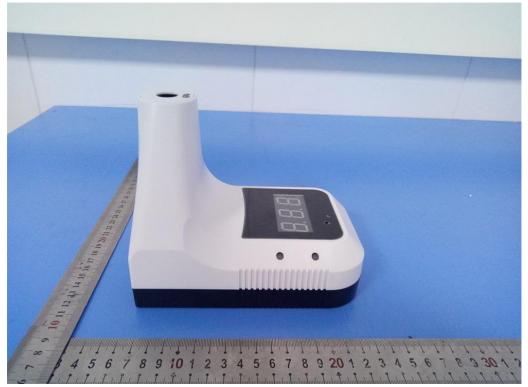


Fig. 3

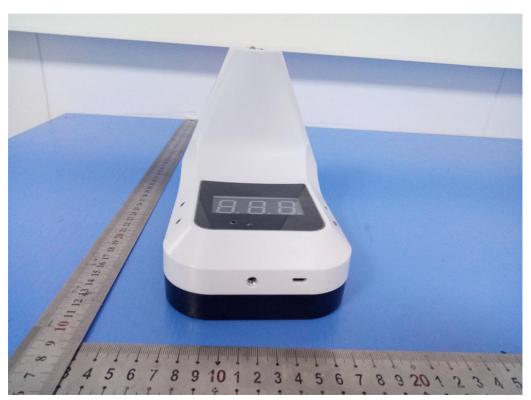


Fig. 4

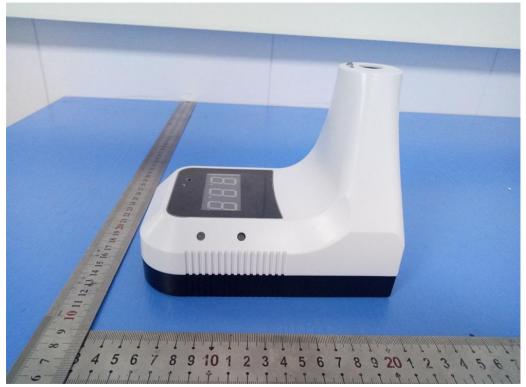


Fig. 5



Fig. 6

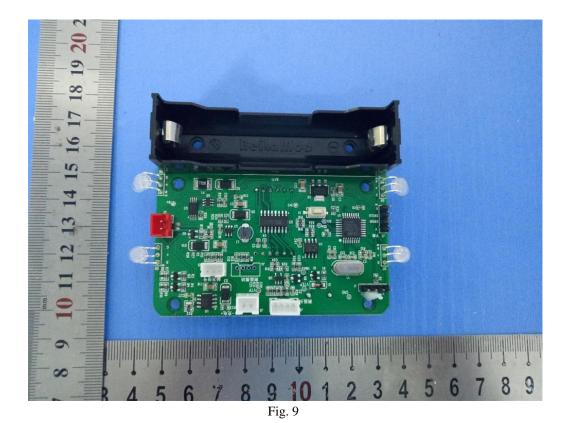
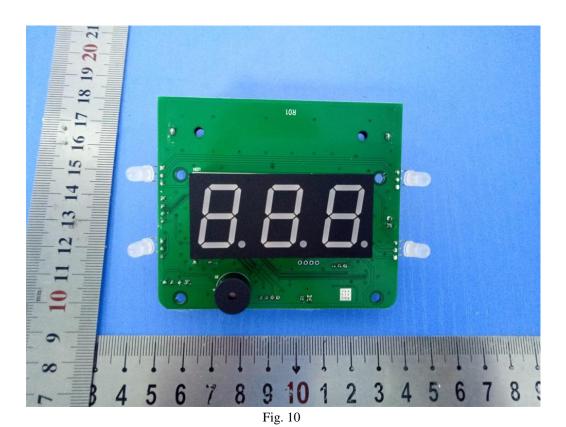




Fig. 7

Fig. 8



Fig. 11

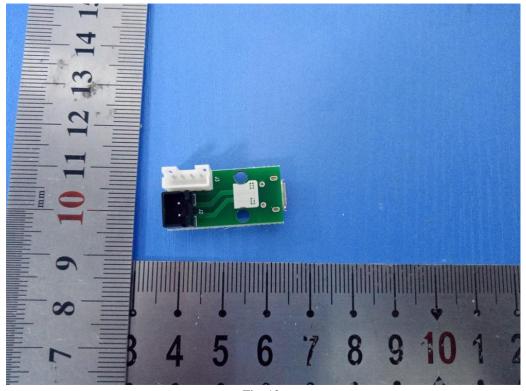


Fig. 12

----- THE END OF TEST REPORT -----