--First I'm going to query a sample of all the tables and look for my primary and forgin keys

SELECT * FROM browse LIMIT 5; SELECT * FROM checkout LIMIT 5; SELECT * FROM purchase LIMIT 2;

-This returns the data for all three tables like the one below:

user_id	browse_date	item_id
336f9fdc-aaeb-48a1-a773-e3a9354 42d45	2017-12-20	3
336f9fdc-aaeb-48a1-a773-e3a9354 42d45	2017-12-20	22

-Next I'm going to join these tables using aliases for simplicity and limit the view to 50

select distinct b.browse_date, b.user_id, c.user_id IS NOT NULL AS 'is_checkout', p.user_id IS NOT NULL AS 'is_purchase' from browse as b left join checkout as c on b.user_id = c.user_id left join purchase as p on c.user_id = p.user_id limit 3;

browse_date	user_id	is_checkout	is_purchase
2017-12-20	336f9fdc-aaeb-48a1-a773- e3a935442d45	0	0
2017-12-20	4596bb1a-7aa9-4ac9-989 6-022d871cdcde	0	0
2017-12-20	2fdb3958-ffc9-4b84-a49d- 5f9f40e9469e	1	1

–Next I will use a with clause to add aggregates to calculate the number of browsers, checkouts, and purchases as well as the percentages of browsers to checkout and checkout to purchases.

WITH funnels AS (SELECT DISTINCT b.browse_date, b.user id, c.user_id IS NOT NULL AS 'is_checkout', p.user_id IS NOT NULL AS 'is_purchase' FROM browse AS 'b' LEFT JOIN checkout AS 'c' **ON** c.user id = b.user id LEFT JOIN purchase AS 'p' **ON** p.user id = c.user id) SELECT COUNT(*) as 'num browse', sum(is_checkout) as 'num_checkout', sum(is_purchase) as 'num_purchase', 1.0 * SUM(is_checkout) / COUNT(user_id) as 'browse_to_checkout', 1.0 * SUM(is purchase) / SUM(is checkout) as 'checkout to purchase' FROM funnels;

num_browse	num_checkout	num_purchase	browse_to_checkout	checkout_to_purchase
775	183	163	0.236129032258065	0.890710382513661

-Finally we can select browse_date and group and order by that to get a more in depth look at the daily level.

WITH funnels AS (SELECT DISTINCT b.browse_date, b.user_id, c.user id IS NOT NULL AS 'is checkout', p.user_id IS NOT NULL AS 'is_purchase' FROM browse AS 'b' LEFT JOIN checkout AS 'c' **ON** c.user id = b.user id LEFT JOIN purchase AS 'p' **ON** p.user id = c.user id) SELECT DISTINCT browse date, COUNT(*) AS 'num browse', SUM(is_checkout) AS 'num_checkout', SUM(is purchase) AS 'num purchase', 1.0 * SUM(is checkout) / COUNT(user id) AS 'browse to checkout', 1.0 * SUM(is purchase) / SUM(is checkout) AS 'checkout to purchase' **FROM** funnels **GROUP BY** browse date ORDER BY browse_date;

-Our query returned the following view, from this we can see that our conversions went from 80% on 12-20 to 94% on 12-23

browse_date	num_browse	num_checkout	num_purchase	browse_to_checkout	checkout_to_purcha se
2017-12-20	100	20	16	0.2	0.8
2017-12-21	150	33	28	0.22	0.848484848484849
2017-12-22	250	62	55	0.248	0.887096774193548
2017-12-23	275	68	64	0.24727272727272727	0.941176470588235