

Intercondylar Notch Becomes Steeper After Transphyseal Anterior Cruciate Ligament Reconstruction in Skeletally Immature Knees

Yoan Bourgeault-Gagnon, Leo A. Pinczewski, Jefferson James Co, Lucy J. Salmon, Justin P. Roe North Sydney Orthopaedic and Sports Medicine Centre & The Mater Hospital

MATER HOSPITAL ST VINCENT'S

Background:

- Incidence of anterior cruciate ligament (ACL) injury surgical reconstruction in the paediatric population has increased in recent decades¹⁻³.
- Early surgery is progressively more accepted as the preferred approach, because of the reported higher rates of secondary meniscal and chondral damage, and poorer functional results with non-operative treatment^{4,5}.
- Transphyseal techniques are commonly used, with rare reported major growth disturbances, but unclear incidence of subtler morphologic impacts, which may affect rerupture risks.

Purpose:

Compare mid-term postoperative knee morphology between the operated and contralateral knees.

Methods:

- within-subject **Design**: Retrospective, matched case-control (Level III).
- **Population**: Skeletally immature patients having undergone an arthroscopic anatomic single-bundle transphyseal ACL reconstruction (allograft ≈ 88 %).
- **Imaging**: Weight-bearing EOS scans ≥ 9 mo postop.
- Measurements: α-angle, MPTS, mHKA, leg length (two fellow-trained surgeons; ICC ≥ 0.75).
- Analysis: Wilcoxon signed-rank; α-angle subanalyses by Tanner stage and sex.

Results:

- 25 skeletally immature children
 - 72 % male
 - Mean age 11.8 y (range 8.3 to 15.0)
 - Tanner 1 (52%), 2 (20%) and 3 (28%)
 - Time to surgery: median 1.5 months (IQR = 1.7)
- Time from surgery to EOS: median 2.1 y (IQR = 3.4)

Table 1. Radiological Measures on the Surgical and Contralateral Limbs

	Operated Knee	Control Knee	Δ (Op – Ctrl)	p
α-angle (°),	36.6 (6.6)	39.9 (5.3)	-3.3 (1.7)	0.002*
mean (SD)				
Medial Posterior	9.1 (3.4)	9.5 (2.6)	-0.5 (0.9)	0.527
Tibial Slope (°),				
mean (SD)				
Coronal Alignment (°),	-1.8	-1.9	-0.4 (0.7)	0.288
median (IQR) **	(-3.3 to -0.3) [‡]	(-3.4 to -0.5) [‡]		
Leg Length (cm),	84.2 (7.6)	84.0 (7.3)	0.2 (2.1)	0.092
mean (SD)				

<u>Legend</u>: SD, Standard deviation; IQR, Interquartile range;

*Statistically significant

** negative value represents valgus alignment

[‡]Non-parametric variables

Since there was one non-parametric variable, all p-values were calculated with a Wilcoxon Signed Rank Test

Figure 1. Distribution of the Difference in α -angle Between Surgical Knees and Controls

- Sex effect: Median $\Delta \alpha$ -angle male -5.0° vs female +0.6° (p = 0.009).
- Tanner effect: Trend to larger $\Delta \alpha$ -angle in Tanner 1-2 (-4.9°) vs Tanner 3 (-0.5°), p = 0.074.
- Growth disturbance: One (4 %) 10-year-old male with asymptomatic 5.4° coronal side-to-side difference in alignment (mHKA); no corrective surgery required.

Figure 2. 9-Year-Old Male Case

Conclusion

- Transphyseal ACLR produces a 3 to 4° verticalization of Blumensaat's line (smaller α-angle) after close to 2 years.
- Tibial slope, coronal alignment, and limb length remain statistically unchanged.
- Greater notch-roof change in boys, suggests residual growth modulates remodeling.
- The observed α-angle change equals the magnitude previously linked to lower ACL-injury risk.
- Long-term radiological surveillance during growth remains warranted.

References:

¹Brodeur PG, Licht AH, Modest JM, et al. Epidemiology and Revision Rates of Pediatric ACL Reconstruction in New York State. Am J Sports Med. 2022;50(5):1222-1228. doi:10.1177/03635465221074694

²Shaw L, Finch CF. Trends in Pediatric and Adolescent Anterior Cruciate Ligament Injuries in Victoria, Australia 2005–2015. Int J Environ Res Public Health 2017 Vol 14 Page 599. 2017;14(6):599. doi:10.3390/IJERPH14060599

³Tepolt FA, Feldman L, Kocher MS. Trends in Pediatric ACL Reconstruction from the PHIS Database. *J Pediatr Orthop*. 2018;38(9):e490-e494. doi:10.1097/BPO.00000000001222

⁴James EW, Dawkins BJ, Schachne JM, et al. Early Operative Versus Delayed Operative Versus Nonoperative Treatment of Pediatric and Adolescent Anterior Cruciate Ligament Injuries: A Systematic Review and Meta-analysis. Am J Sports Med. 2021;49(14):4008-4017.