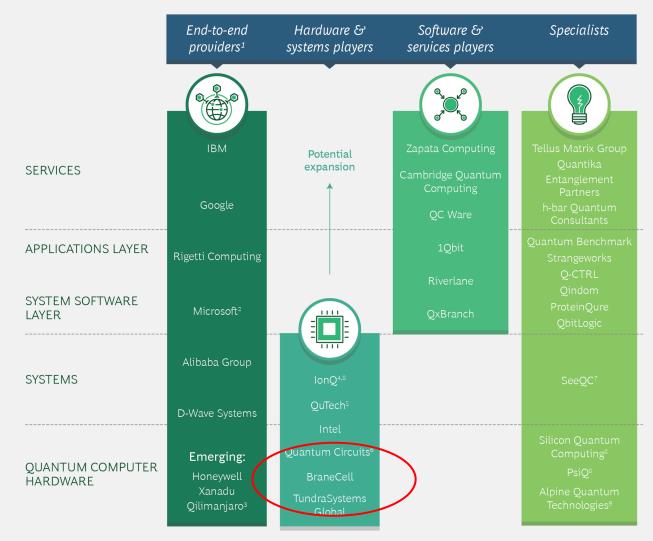
BraneCell

Molecular Qubits:


Quantum AI, Processing and Communications

12/02/2025

Copyright BraneCell,-2025

Info@BraneCell.com

EXHIBIT 1 | Companies Assume Four Roles Across Layers of the Stack in the Quantum Computing Ecosystem

Sources: Quantum Computing Report (quantum computing report .com); BCG analysis.

Established Brand

(10 years of development)

Early Patents

(incl. 2012, prior to competition)

Experienced Team

(credentialed and practical)

Edge-capable (molecular) Qubits

(quantum-advantaged AI, QPU, QSDC)

¹Based on player's ambition with varying levels of maturity and service activities.

²Multiple technologies in the labs with focus on topological qubits.

³Qilimanjaro is a spinoff from the University of Barcelona.

⁴AWS is invested in IonQ.

⁵QuTech was founded by TU Delft and TNO, and has collaborations with Intel and Microsoft.

⁶Quantum Circuits (qci) is a spinoff from Yale University.

⁷SeeQC is a subsidiary of Hypres.

⁸Vision to become end-to-end provider.

⁹Alpine Quantum Technologies (AQT) is a spinoff from University of Innsbruck.

Chip Product Features: QM L[†], QPU, QSDC

0 gap

Edge quantum advantage

- -Ambient operation
- -Smaller footprint

10⁻²

Lower Fab invest cost

Decentralizes fab | private fab | gentler on the environment

< 10⁻³ seconds

Fast decision processes

Potential Reservoir-QNN (AI) signatures

1st

Invented new qubit

Extraordinary opportunity

10⁻²

Decreased AI power consumption

-No chip heat-up

-Exponential speedup

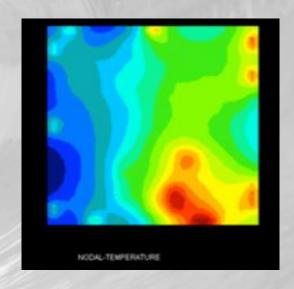
\$ 400 Billion

Market @ 19 % CAGR

Al Chips | quantum processing | communications markets.

[†] QML= quantum Machine Learning | QPU = Quantum Processing Unit

The Problems with today's Al and Quantum Chips


A

- 1. Excessive heat up and internal temperature gradients lowering (40 %) chip life in 24/7 cloud use
- 2. Excessive cost to invest in a new fabrication facility
- 3. Oligopoly of manufacturers
- 4. Energy consumption while Al Chips in use, ultimately hurts nature and people

/

Quantum Chips

- 1. Single photon gate operations are delicate
- 2. Cold temperatures or large footprints (not edge) are often needed
- 3. Specific applications provide exponential speedup (many apps not accessible)

Conventional AI Chip internal local heating

Solved by Molecular Qubits

Our molecular qubits operating particularly in correlated-topological (or

quantum-gate) mode solves the challenges and

expands the markets.

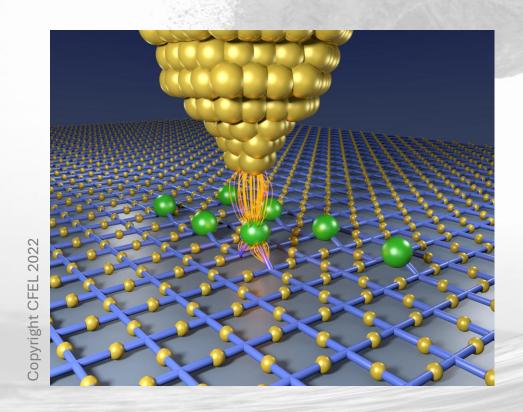
Quantum Machine Learning (QML) and BraneCell

Unlike semiconductor-based AI, BraneCell's QNN, QML hardware:

- Better information density [1]
- Non-self-heating QNN [4]
- Potentially much-lower power consumption
- May train quicker [IBM, 2]
- Al with quantum combination is better. [Microsoft, Xanadu, IonQ, 2025 Congressional Reports [5]]
- Our approach may circumvent vanishing gradient issue [3]
- Low investment for a Fab facility
- Inter-Al-chip communications by BraneCell qubit QSDC
- Gate-based QPU possible
- Quantum reservoir neural network, may provide quantum automata signatures

BraneCell

Warmer than Quantum


BraneCell Approx. 110 X smaller		
Node + Interconnect Feature Size		
	Interconnect + Node (nm²)	BraneCell shrinkage (improved density)
BraneCell	9	1
3 nm, Samsung	1,010	1/ 112
5nm, Classical	1,530	1/ 171

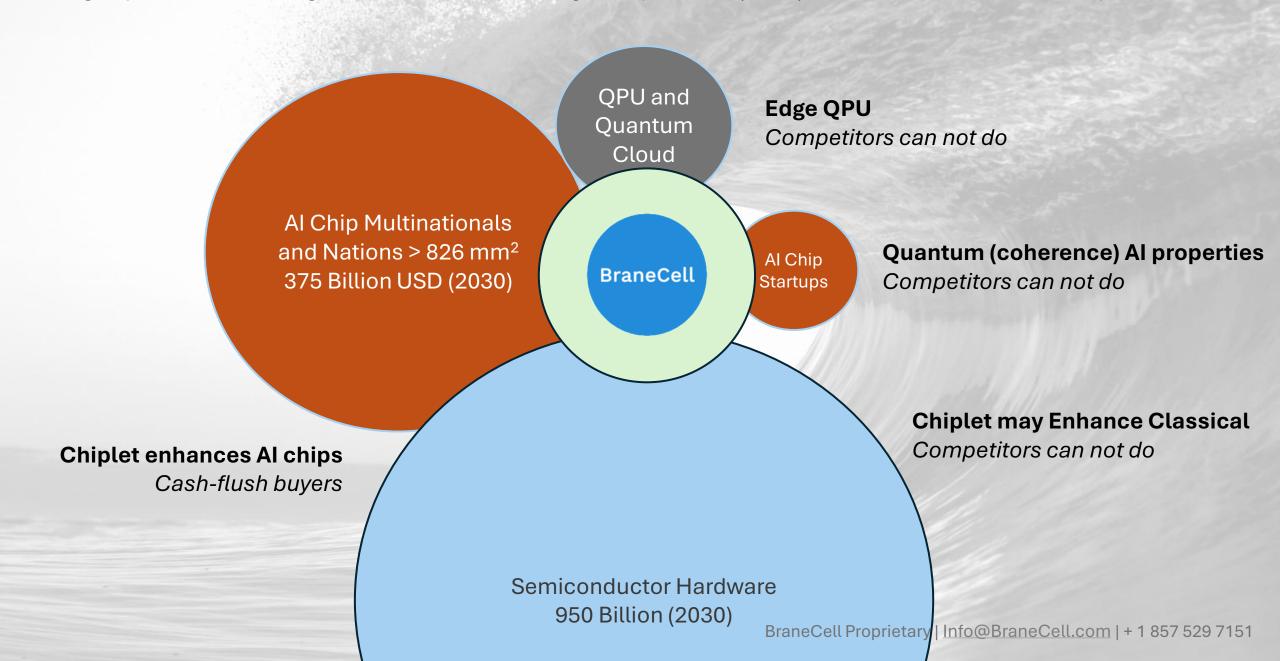
-We can fit our complete quantum network on their chip replacing only 2 of their transistors.
-We have quantum properties at ambient temperature.

New Class of Material for Quantum Information Processing BraneCell Our Materials: Low Cost Abundant in the USA No disposal issues No heat degradation Quantum biomimetic. BraneCell Proprietary

We will Onshore the Neural Network Fab at 1/100th CAPEX

Surface of molecular placement

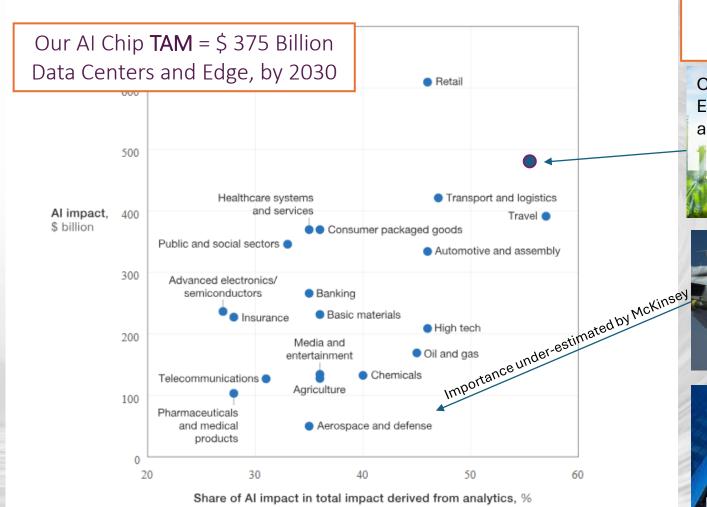
Development of the newest methods in Atomically Precise


Manufacturing (APM) changes the game of chip fabrication,

from a > \$ 8 Billion CAPEX to a < \$ 80 Million Fab facility (at
same \$/chip, lower throughput per facility). Such Fabs can be

distributed/decentralized and application-specific, tailor-made

quantum AI chips. This is the frontier of AI chip manufacturing.


Taking a portion of existing markets and expanding the quantum (QPU), AI and semiconductor chip markets.

Markets: Big Revenue and Big CAGR

Bran<u>eCell</u>

Artificial intelligence (AI) has the potential to create value across sectors.

NLP \$ 49.4 Billion, CAGR 25.7

Chemical, Refineries, Essential Assets, Classical and Sustainable.

McKinsey&Company | Source: McKinsey Global Institute analysis

BraneCell

Info@BraneCell.com | +1 857 529 7151 **HUBZone**

> Dr. Lauren Sammes Dr. Christopher Papile and BraneCells (team)

For qualified investors only.

Quantum and Al

Den Haag

Award-1

Award-2

Seminar series <u>Universität Düsseldorf</u>

Copyright BraneCell, -2025

Proprietary Starter PDF

Links-1

Links-2

Links-3

Links-4

www.BraneCell.com