BIOCYPHER

Technical Guide and Protocol Specification

DNA-Based Data Encoding for Secure Communication and Long-Term Storage

BioCypher Project
Protocol Version 1.0
Open Protocol Specification

December 21, 2025

Abstract

BioCypher is an open-source application and protocol for encoding digital data into DNA
sequences. This technical guide provides comprehensive documentation for implementing,
deploying, and extending the BioCypher protocol. The system supports three encoding
modes optimized for different use cases: basic binary-to-DNA mapping, nanopore sequencing
optimization, and AES-256 encryption. BioCypher enables secure communication through
biological carriers, long-term archival storage, and surveillance-resistant information transfer.

Document Information

Version: 1.0
Status: Formal Specification
License: Open Protocol

Repository: https://github.com/SampleBias/biocypher

https://github.com/SampleBias/biocypher

BioCypher Technical Guide v1.0

Contents
I Introduction and Architecture 6
1 Introduction 6
1.1 What is BioCypher? o . o e 6
1.2 Protocol Philosophy 6
1.3 Use Cases o v v v i i e 6
1.3.1 Secure Communication e 6
1.3.2 Long-Term Archival, 6
1.3.3 Distributed Backup 6
1.3.4 Steganographic Applications 6
1.3.5 Space Exploration o 7
1.4 System Requirements L 7
1.4.1 For Encoding e 7
1.4.2 For Decoding e 7
2 Protocol Architecture 7
2.1 System Overview L L e 7
2.2 DataFlow e e 8
2.2.1 Encoding Pipeline 8
2.2.2 Decoding Pipeline 8
2.3 Protocol Versioning L 8
IT Encoding Modes and Specifications
3 Encoding Mode Overview
4 Binary-to-DNA Mapping
4.1 Standard Mapping Table
4.2 Mapping Properties 10
4.3 Encoding Rules 10
4.4 Decoding Rules e 10
5 Basic Mode Specification 10
5.1 OVerviewo e e e e e 10
5.2 Encoding Algorithm 11
5.3 Decoding Algorithm 11
5.4 Format Specification 12
5.5 Examples 12
5.6 Performance Characteristics 12
6 Nanopore Mode Specification 12
6.1 OVerview e e e e 12
6.2 Triplet Encoding Lo 13
6.3 Error Correction Scheme 13
6.4 Parity Bits L 14
6.5 Sequence Optimization L L L 14
6.5.1 GC Content Balancing L. 14
6.5.2 Homopolymer Detection oo 14

BioCypher Technical Guide v1.0

6.6
6.7
6.8
6.9

Padding Mechanism
Marker Sequences
Complete Nanopore Encoding Algorithm
Complete Nanopore Decoding Algorithm
6.10 Format Specification
6.11 Performance Characteristics

7 Secure Mode Specification

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8

7.9

Overview
Cryptographic Specification
Encryption Process
Serialization Format
Complete Secure Encoding Algorithm
Complete Secure Decoding Algorithm
Password Requirements
Security Considerations
7.8.1 Key Derivation
7.8.2 Randomness
7.8.3 Data Integrity
Format Specification
7.10 Performance Characteristics

III Implementation and Validation

8 Error Handling

8.1
8.2

Error Taxonomy
Error Handling Strategies
8.2.1 Recoverable Errors
8.2.2 Cryptographic Errors

9 Validation and Testing

9.1

9.2

9.3

Sequence Validation
9.1.1 DNA Base Validation
9.1.2 Nanopore-Specific Validation
Test Vectors
9.2.1 Basic Mode Test Vectors.
9.2.2 Nanopore Mode Test Vectors
9.2.3 Secure Mode Test Vectors
Unit Test Suite

10 Conformance Levels

10.1 Level 1: Basic Conformance
10.2 Level 2: Nanopore Conformance
10.3 Level 3: Secure Conformance
10.4 Level 4: Full Conformance

IV Practical Application and Deployment

BioCypher Technical Guide v1.0

11 Installation and Setup

11.1 Reference Implementation . . .
11.2 Installation Methods
11.2.1 From Source
11.2.2 Using pip
11.3 Dependencies

12 Command-Line Interface

12.1 Basic Usage
12.1.1 Encoding
12.1.2 Decoding

12.2 Analysis and Validation

13 Python API

13.1 Basic Usage
13.2 Advanced API Usage

14 Integration with DNA Synthesis
14.1 Synthesis Workflow

14.2 Synthesis Provider Integration

14.3 Recommended Synthesis Providers

15 Integration with Nanopore Sequencing
15.1 Oxford Nanopore MinION Workflow

15.2 MinKNOW Integration

16 Physical Transport Methods

16.1 Bacterial Carrier Protocol . . .
16.2 Plant Seed Carrier Protocol . .

17 Security Best Practices

17.1 Operational Security
17.2 Threat Model

17.2.1 Adversary Capabilities
17.3 Future Security Enhancements

V Protocol Extensions and Development

18 Extending the Protocol
18.1 Community Extension Process

18.2 Example Extensions

18.2.1 Compression Extension

18.2.2 Checksum Extension . .

19 Contributing to BioCypher

19.1 Development Setup
19.2 Contribution Guidelines

20 Performance Optimization

20.1 Profiling
20.2 Optimization Strategies

34
34
34
34
34
34

35
35
35
35
35

36
36
36

37
37
37
37

37
37
38

39
39
40

40
40
41
41
41

42

42
42
42
42
43

44
44
44

0 BioCypher Technical Guide v1.0

21 Reference Documentation 46
21.1 API Documentation e 46
21.2 Protocol Specification Updates 47

22 Roadmap 47
22.1 Short-Term (6 months) L 47
22.2 Medium-Term (12 months) Lo 47
22.3 Long-Term (244 months) 47

A Glossary 48

B Mathematical Notation 48

C References 48

D License 48

E Contact Information 49

F Acknowledgments 49

1 BioCypher Technical Guide v1.0

Part 1
Introduction and Architecture

1 Introduction

1.1 What is BioCypher?

BioCypher is both an application and an open protocol for encoding digital information into
DNA sequences. Unlike traditional digital storage, DNA-based encoding offers:

e Unprecedented Storage Density: 215 petabytes per gram (theoretical)

Extreme Longevity: Data stability for thousands of years

Surveillance Resistance: Physical carriers bypass digital interception

e No Power Requirements: DNA requires no electricity for storage

Biological Compatibility: Integration with living organisms

1.2 Protocol Philosophy

BioCypher is designed as an open protocol, meaning:

1. Interoperability: Any compliant implementation can encode/decode BioCypher se-
quences

2. Transparency: All encoding algorithms and cryptographic methods are publicly docu-
mented

3. No Vendor Lock-In: Multiple implementations can coexist
4. Community Extensibility: Protocol can be extended through community proposals

5. Scientific Rigor: All methods are based on peer-reviewed research

1.3 Use Cases

1.3.1 Secure Communication

Encode messages into DNA, embed in biological carriers (bacteria, plants, living tissue), transport
physically, and decode at destination. Bypasses digital surveillance entirely.

1.3.2 Long-Term Archival

Store critical data (cultural heritage, scientific knowledge, personal records) in DNA format for
multi-generational preservation.

1.3.3 Distributed Backup

Replicate encoded DNA across multiple geographic locations and biological substrates for
redundancy.

1.3.4 Steganographic Applications

Hide data within natural-appearing DNA sequences (genomic steganography).

2 BioCypher Technical Guide v1.0

1.3.5 Space Exploration

Include biological archives in interstellar missions for knowledge preservation across cosmic
timescales.

1.4 System Requirements
1.4.1 For Encoding
e Computer with BioCypher application or compatible implementation

e Text editor or data source

e DNA synthesis service (e.g., IDT, Twist Bioscience) or access to synthesis equipment

1.4.2 For Decoding

e DNA sequencing capability (Oxford Nanopore MinION recommended)
e Computer with BioCypher application

e DNA extraction capabilities (if decoding from carriers)

2 Protocol Architecture

2.1 System Overview
The BioCypher protocol consists of four primary layers:

Application Layer
(User Interface, File I/0, Message Management)

Encoding Layer
(Mode Selection, Binary Conversion, Optimization)

DNA Mapping Layer
(Binary-to-DNA Translation, Error Correction)

Physical Layer
(Synthesis, Storage, Transport, Sequencing)

Figure 1: BioCypher Protocol Stack

BioCypher Technical Guide v1.0

Algorithm 1 BioCypher Encoding Pipeline

. Input: Text message M, mode mode, optional password P

: Output: DNA sequence D

1

2

3

4: if mode = secure and P is provided then
5: M <+ AES_Encrypt(M, P)

6: M < Base64_Encode(M)

7. end if
8
9

: B < Text_To_Binary(M)
10:
11: if mode = nanopore then
122 B <« Add_Parity Bits(B)
13: B «+ Apply_Error_Correction(B)
14: D <« Triplet_Encode(B)
15: D < Optimize_For_Nanopore(D)
16: D < Add-Markers(D)
17: else if mode = secure then
18: D <« Binary_To_.DNA(B)
19: D <+ Add_Markers(D)
20: else
21: D «+ Binary_To_ DNA(B)
22: end if
23:
24: return D

> basic mode

2.2 Data Flow

2.2.1 Encoding Pipeline
2.2.2 Decoding Pipeline
2.3 Protocol Versioning

BioCypher uses semantic versioning: MAJOR.MINOR.PATCH

e MAJOR: Incompatible protocol changes

e MINOR: Backward-compatible functionality additions

¢ PATCH: Backward-compatible bug fixes

Current version: 1.0.0

BioCypher Technical Guide v1.0

Algorithm 2 BioCypher Decoding Pipeline

NN N N KN o e e e e s s e
e 29 © 0 o gk W o

Input: DNA sequence D, mode mode, optional password P

Output: Text message M

if mode € {nanopore, secure} then
D < Remove_Markers(D)
end if

if mode = nanopore then
D <+ Remove_Padding(D)
B < Triplet_Decode(D)
B « Apply_Error_Correction(B)
B < Check_Parity(B)

. else

B < DNA _To_Binary(D)

: end if
: M <« Binary_To_Text(B)

. if mode = secure and P is provided then

M < Base64_Decode(M)
M <« AES Decrypt(M, P)

: end if

: return M

Part 11
Encoding Modes and Specifications

3

Encoding Mode Overview

BioCypher supports three encoding modes, each optimized for specific use cases:

4

Mode Use Case Markers Error Correction
basic Simple encoding, max density No No
nanopore Sequencing optimization Yes Yes
secure Encrypted storage Yes No

Table 1: BioCypher Encoding Modes

Binary-to-DNA Mapping

4.1 Standard Mapping Table

The fundamental encoding used in Basic and Secure modes:

BioCypher Technical Guide v1.0

4.2

Binary Pair DNA Base Chemical Name

00 A Adenine
01 T Thymine
10 C Cytosine
11 G Guanine

Table 2: Standard Binary-to-DNA Mapping

Mapping Properties

This mapping was chosen for:

Simplicity: Direct 2-bit to 1-base correspondence
Efficiency: 2 bits per nucleotide = 4 characters per byte
Universality: Uses only standard DNA bases

Reversibility: Unambiguous bidirectional mapping

Encoding Rules

. Binary strings are processed in 2-bit pairs
. If binary length is odd, pad with 0 before final pair
. Output is concatenated DNA sequence

. No delimiters between bases in basic mode

Decoding Rules

. Each DNA base maps to a 2-bit binary pair

. Invalid bases (not A, T, C, G) are skipped with warning
. Binary string is chunked into 8-bit bytes

. Each byte is converted to ASCII character

. Non-printable characters are filtered (optional)

5 Basic Mode Specification

5.1

Overview

Basic mode provides the simplest encoding: direct binary-to-DNA conversion with no overhead.
This mode is optimal for:

Maximum storage density

Simple encoding/decoding workflows

e Applications where error correction is handled externally

e Testing and validation

10

0 ~J O U i W N -

0 ~J O U i W N —

BioCypher Technical Guide v1.0

5.2

Encoding Algorithm

def

encode_basic(message: str) -> str:
nmnn

Encode message to DNA using basic mode.

Args:
message: Input text message

Returns:
DNA sequence (string of A, T, C, G)
Convert message to binary
binary = ’’.join(format (ord(char), ’08b’) for char in message)

Map binary pairs to DNA bases
dna_map = {’00’: ’A’, ’01’: °T’>, ’10’: ’C’, ’11°’: ’G’}
dna = ’°’

for i in range(0, len(binary), 2):
pair = binary[i:i+2]
if len(pair) == 2:
dna += dna_map [pair]
else: # 0dd length, pad with O
pair += 0’
dna += dna_map[pair]

return dna

5.3

Listing 1: Basic Mode Encoding

Decoding Algorithm

def

decode_basic(dna: str) -> str:

Decode DNA sequence to message using basic mode.

Args:
dna: DNA sequence (A, T, C, G)

Returns:
Decoded text message
Map DNA bases to binary
binary_map = {’A’: ’°00’, °T’: °01’, ’C’: ’10’, ’G’: *11°}
binary = 7’

for base in dna.upper ():
if base in binary_map:
binary += binary_map [base]
else:
Skip invalid bases
continue

Convert binary to text
message = ’’

11

24
25
26
27
28
29
30
31

BioCypher Technical Guide v1.0

for i in range(0, len(binary), 8):
byte = binary[i:i+8]
if len(byte) ==
ascii_val = int(byte, 2)
if 0 <= ascii_val <= 255:
message += chr(ascii_val)

return message

Listing 2: Basic Mode Decoding

5.4 Format Specification

Basic Mode Format

[DNA Sequence]

Components:
e No start/stop markers
e No padding or delimiters

e Raw DNA sequence only

5.5 Examples

Input Binary DNA
"A" 01000001 TAAA
"Hi" 01001000 01101001 TAAATAAA TATA

"DNA" 01000100 01001110 01000001 TAAATAGC TAACATAA TAAA

Table 3: Basic Mode Examples

5.6 Performance Characteristics

Encoding Speed: O(n) where n is message length

e Decoding Speed: O(m) where m is DNA sequence length

Memory Usage: O(n) for both encoding and decoding

Storage Efficiency: 4 DNA bases per character (optimal)

6 Nanopore Mode Specification

6.1 Overview

Nanopore mode optimizes DNA sequences for Oxford Nanopore sequencing technology. This
mode addresses specific challenges in nanopore sequencing:

e Homopolymer Errors: Consecutive identical bases cause signal compression

12

6 BioCypher Technical Guide v1.0

e GC Content Bias: Extreme GC ratios affect translocation speed
e Secondary Structures: Hairpins and G-quadruplexes impede sequencing

e Read Dropouts: Missing data requires redundancy

6.2 Triplet Encoding

Nanopore mode uses triplet encoding (3 bits — 3 bases) instead of binary pairs:

Binary Triplet DNA Triplet Properties

000 ATC No homopolymers, balanced GC
001 ATG No homopolymers, balanced GC
010 ACT No homopolymers, balanced GC
011 ACG No homopolymers, high GC

100 TAG No homopolymers, balanced GC
101 TAC No homopolymers, balanced GC
110 TCG No homopolymers, high GC

111 TCA No homopolymers, balanced GC

Table 4: Nanopore Triplet Encoding Table

Important Note

Triplet encoding eliminates all homopolymer runs by design. Each triplet contains exactly
3 different bases or carefully controlled alternation.

6.3 Error Correction Scheme

Nanopore mode implements triple redundancy error correction:

Algorithm 3 Triple Redundancy Encoding
: Input: Binary string B
Output: Error-corrected binary string Beorrected

for each bit b in B do

Bcorrected <~ Bcorrected +b+b+0
end for
return Bcorrected

Algorithm 4 Triple Redundancy Decoding

: Input: Error-corrected binary string B.oyrected
: Output: Corrected binary string B

1
2
3:
4: for each triplet (b1, b2,bs) in Beorrected dO
5: majority < most_common(by, by, b3)

6 B < B + majority
7: end for
8: return B

13

O© 00 O U s W N —

© 00 O U s W N+~

6 BioCypher Technical Guide v1.0

This scheme can correct single-bit errors within each triplet:
e 000 — 0 (correct)
e 100 — 0 (single error corrected)

e 110 — 1 (two errors, incorrect majority)

6.4 Parity Bits

Each character (8 bits) gets an additional parity bit for error detection:

def add_parity(binary: str) -> str:
"""Add parity bit to each 8-bit chunk."""
result = 7’
for i in range(0, len(binary), 8):
byte = binary[i:i+8]
if len(byte) ==
parity = str(byte.count(’1’) % 2) # Even parity
result += byte + parity # 9 bits total
return result

Listing 3: Parity Bit Addition
During decoding, parity is checked:
e If parity matches: Accept byte

o If parity fails: Reject byte or flag error

6.5 Sequence Optimization
6.5.1 GC Content Balancing

Optimal GC content for nanopore sequencing: 40-60%

def calculate_gc_content(dna: str) -> float:
"""Calculate GC percentage."""
gc_count = dna.count(’G’) + dna.count(’C?’)
return (gc_count / len(dna)) * 100 if len(dna) > 0 else 0.0

def is_gc_balanced(dna: str) -> bool:
"""Check if GC content is in optimal range.
gc = calculate_gc_content (dna)
return 40.0 <= gc <= 60.0

Listing 4: GC Content Calculation

If GC content is outside range, padding is added to balance.

6.5.2 Homopolymer Detection

Banned patterns (detected via regex):
e AA+ (2+ consecutive A)
e TT+ (2+ consecutive T)

e CC+ (2+ consecutive C)

14

6 BioCypher Technical Guide v1.0

e GG+ (2+ consecutive G)
e ATATAT (repetitive alternating)

e GCGCGC (repetitive GC dinucleotides)

1| import re

2

3| def has_homopolymers (dna: str) -> bool:
4 """Check for problematic homopolymer runs."""
5) patterns = [

6 r’AA+’, # 2+ consecutive A
7 r’TT+7, # 2+ consecutive T
8 9 C0¢? ¢ # 2+ consecutive C
9 r’GG+’, # 2+ consecutive G
10 r’ (AT){3,}’, # Repetitive AT

11 r’(GC){3,}’ # Repetitive GC

12]

13

14 for pattern in patterns:

15 if re.search(pattern, dna):

16 return True

17 return False

Listing 5: Homopolymer Detection

6.6 Padding Mechanism

If optimization is needed (GC imbalance or homopolymers), padding is added:

1/ def generate_padding(dna: str) -> str:

2 nnn

3 Generate padding to balance GC content.

4

) Padding uses a repeating pattern designed to:

6 - Balance GC content

7 - Avoid homopolymers

8 - Be easily identifiable for removal

9 nnn

10 padding_pattern = "ATCATGACTACG"

11 padding_length = max (6, len(dna) // 10)

12

13 # Repeat pattern to reach desired length

14 repeats = (padding_length // len(padding_pattern)) + 1
15 padding = (padding_pattern * repeats) [:padding_length]
16

17 return padding

Listing 6: Padding Generation
Padding format:
[padding] TACGTA [core sequence] TACGTA [padding]

Where TACGTA is the padding delimiter.

15

6 BioCypher Technical Guide v1.0

Marker Type Sequence

Start Marker ATCGATCG (8 bases)
Stop Marker CGATATCG (8 bases)

Padding Delimiter TACGTA (6 bases)

Table 5: Nanopore Mode Markers

6.7 Marker Sequences

Nanopore mode uses standardized markers:
These markers were chosen to:

e Be easily identifiable
e Avoid homopolymers
e Be unlikely to occur naturally in data

e Have balanced GC content

6.8 Complete Nanopore Encoding Algorithm

def encode_nanopore(message: str, error_correction: bool
nnn
Encode message using nanopore-optimized mode.
Args:
message: Input text
error_correction: Enable triple redundancy
Returns:
Nanopore-optimized DNA sequence
nmnn
Step 1: Convert to binary with parity
binary = ’°
for char in message:
byte = format (ord(char), ’08b’)
parity = str(byte.count(’1’) % 2)
binary += byte + parity # 9 bits per char
Step 2: Apply error correction if emnabled
if error_correction:
corrected = ’°’
for bit in binary:
corrected += bit * 3 # Triple each bit
binary = corrected
Step 3: Pad to multiple of 3
while len(binary) % 3 != 0:
binary += ’0’
Step 4: Triplet encoding
triplet_map = {
>000’: ’ATC’, ’001’: ’ATG’, ’010’: ’ACT’, ’011°:

16

= True)

>ACG”,

-> str

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
93
o4
95

00 ~J O U i W N -

24
25
26
27

BioCypher Technical Guide v1.0

>100°’: °’TAG’, ’101’: °TAC’, ’110°’: ’TCG’, ’111’: ’TCA’

dna = ’’

for i in range(0, len(binary), 3):
triplet = binary[i:i+3]
dna += triplet_mapl[triplet]

Step 5: Check optimization needs
needs_optimization = (
has_homopolymers (dna) or
not is_gc_balanced (dna)

if needs_optimization:
padding = generate_padding(dna)
delimiter = "TACGTA"
dna = padding + delimiter + dna + delimiter + padding

Step 6: Add markers
dna = "ATCGATCG" + dna + "CGATATCG"

return dna

6.9

Listing 7: Complete Nanopore Encoding

Complete Nanopore Decoding Algorithm

def

decode_nanopore (dna: str, error_correction: bool = True) -> str:
nmnn

Decode nanopore-optimized DNA sequence.

Args:
dna: DNA sequence with markers
error_correction: Expect triple redundancy

Returns:
Decoded text message

Step 1: Remove markers

if dna.startswith ("ATCGATCG"):
dna = dna([8:]

if dna.endswith("CGATATCG"):
dna = dnal[:-8]

Step 2: Remove padding if present
delimiter = "TACGTA"

first_delim = dna.find(delimiter)
last_delim = dna.rfind(delimiter)

if first_delim !'= -1 and last_delim !'= -1 and first_delim !=
last_delim:

dna = dnal[first_delim + 6:last_delim]

Step 3: Triplet decoding
triplet_map_reverse = {

17

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
o4
95
56
57
58
99
60
61
62
63
64

BioCypher Technical Guide v1.0

>ATC’: ’000’, ’ATG’: ’001’, ’ACT’: °010’, ’ACG’: ’011°’,
>TAG’: ’100’, ’TAC’: ’101°, ’TCG’: ’110’, ’TCA’: 111’
3
binary = 7’

for i in range(0, len(dna), 3):
triplet = dnal[i:i+3]
if triplet in triplet_map_reverse:
binary += triplet_map_reverse[triplet]

Step 4: Apply error correction if enabled
if error_correction:
corrected = 7’
for i in range(0, len(binary), 3):
group = binary[i:i+3]

if len(group) == 3:
Majority vote
ones = group.count(’1’)
corrected += ’1’ if ones >= 2 else ’0’
binary = corrected

Step 5: Convert binary to text with parity check
message = ’’
for i in range(0, len(binary), 9):
chunk = binary[i:i+9]
if len(chunk) == 9:
data_bits = chunk[0:8]
parity_bit = chunk [8]

Check parity
expected_parity = str(data_bits.count(’1’) % 2)
if parity_bit == expected_parity:
ascii_val = int(data_bits, 2)
if 0 <= ascii_val <= 255:
message += chr(ascii_val)

return message

Listing 8: Complete Nanopore Decoding

18

7 BioCypher Technical Guide v1.0

6.10 Format Specification

Nanopore Mode Format

Without Padding;:

ATCGATCG [Core Sequence] CGATATCG

With Padding:

ATCGATCG [Padding] TACGTA [Core Sequence] TACGTA [Padding] CGATATCG

Components:

Start marker: ATCGATCG (always present)

Padding delimiter: TACGTA (only if padding added)

Core sequence: Triplet-encoded data

Stop marker: CGATATCG (always present)

6.11 Performance Characteristics

e Encoding Speed: O(n) with higher constant than basic mode

e Decoding Speed: O(m) with error correction overhead

Memory Usage: O(3n) due to triple redundancy

Storage Efficiency: 3 DNA bases per bit (with error correction)

Error Correction Capability: Single-bit errors within triplets

7 Secure Mode Specification

7.1 Overview

Secure mode combines AES-256-CBC encryption with DNA encoding for cryptographically
secure data storage. This mode is designed for:

e Highly sensitive information
e Data requiring confidentiality over decades
e Multi-party secure communication

e Compliance with security standards (FIPS 140-2)

7.2 Cryptographic Specification

Important Note

All cryptographic parameters follow NIST recommendations and industry best practices.
The 100,000 PBKDEF?2 iterations provide strong protection against brute-force attacks
while maintaining reasonable performance.

19

7 BioCypher Technical Guide v1.0

Parameter Value/Algorithm
Encryption Algorithm AES-256-CBC

Key Size 256 bits (32 bytes)

Block Size 128 bits (16 bytes)

IV Size 128 bits (16 bytes)

Salt Size 128 bits (16 bytes)

Key Derivation PBKDF2-HMAC-SHA256
KDF Iterations 100,000

Padding Scheme PKCS#7

Random Number Generator os.urandom() (CSPRNG)

Table 6: Secure Mode Cryptographic Parameters

7.3 Encryption Process

Algorithm 5 Secure Mode Encryption
Input: Message M, password P
Output: Encrypted data structure

salt < random_bytes(16)

iv < random_bytes(16)

key < PBKDF2(P, salt, 100000, 32)

ciphertext < AES256_CBC_Encrypt(M, key, iv)

© P NPT w

FE.salt <+ salt
FE.iv < w
. E.ciphertext < ciphertext

— = =
[v

: return E

—_
w

7.4 Serialization Format

Encrypted data is serialized before DNA encoding;:

Offset Length Field

0-1 2 bytes Salt length (big-endian uint16)

2-17 16 bytes Salt

18-19 2 bytes IV length (big-endian uint16)

20-35 16 bytes IV

36-39 4 bytes Ciphertext length (big-endian uint32)
40+ Variable Ciphertext

Table 7: Secure Mode Serialization Format

1| import struct

2

3| def serialize_crypto_data(salt, iv, ciphertext):
4 nun

) Serialize cryptographic data for DNA encoding.

20

[=)

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

00 3 O O i W N+~

I e
B W - OO

Returns bytes in format:

[salt_len(2)][salt(16)][iv_len(2)][iv(16)][ct_len(4)][ciphertext (n)

]

nmnn

salt_len = struct.pack(’>H’, len(salt)) # 2-byte big-endian
iv_len = struct.pack(’>H’, len(iv)) # 2-byte big-endian
ct_len = struct.pack(’>I’, len(ciphertext)) # 4-byte big-endian

return salt_len + salt + iv_len + iv + ct_len + ciphertext

def deserialize_crypto_data(data):

Deserialize cryptographic data from bytes.

Returns (salt, iv, ciphertext)
nmnn

offset = 0

Extract salt

salt_len = struct.unpack(’>H’, dataloffset:offset+2]) [0]
offset += 2

salt = data[offset:offset+salt_len]

offset += salt_len

Extract IV

iv_len = struct.unpack(’>H’, dataloffset:offset+2]) [0]
offset += 2

iv = datal[offset:offset+iv_len]

offset += iv_len

Extract ciphertext

ct_len = struct.unpack(’>I’, dataloffset:offset+4]) [0]
offset += 4

ciphertext = dataloffset:offset+ct_len]

return salt, iv, ciphertext

Listing 9: Crypto Data Serialization

7.5 Complete Secure Encoding Algorithm

from Crypto.Cipher import AES

from Crypto.Protocol.KDF import PBKDF2
from Crypto.Random import get_random_bytes
import base64

def encode_secure(message: str, password: str) -> str:
nmnn
Encode message using secure mode with AES-256-CBC.
Args:
message: Plaintext message

password: Encryption password

Returns:

21

BioCypher Technical Guide v1.0

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
ol
92
93

00 ~J O U i W N -

BioCypher Technical Guide v1.0

def

DNA sequence containing encrypted data
Step 1: Generate cryptographic materials
salt = get_random_bytes (16)
iv = get_random_bytes (16)

Step 2: Derive key from password

key = PBKDF2(
password.encode (’utf-8’),
salt,
dkLen=32, # 256 bits
count=100000, # Iterations
hmac_hash_module=None # Default SHA-256

Step 3: Encrypt message

cipher = AES.new(key, AES.MODE_CBC, iv)
padded_message = pad_pkcs7 (message.encode(’utf-8’))
ciphertext = cipher.encrypt(padded_message)

Step 4: Serialize crypto data
crypto_data = serialize_crypto_data(salt, iv, ciphertext)

Step 5: Base64 encode

crypto_string = base64.b64encode(crypto_data).decode(’ascii’)

Step 6: DNA encode using basic mode
dna = encode_basic(crypto_string)

Step 7: Add markers
dna = "ATCGATCG" + dna + "CGATATCG"

return dna

pad_pkcs7 (data: bytes) -> bytes:

"""Apply PKCS#7 padding."""

padding_length = 16 - (len(data) % 16)

padding = bytes([padding_length] * padding_length)
return data + padding

7.6

Listing 10: Secure Mode Encoding

Complete Secure Decoding Algorithm

def

decode_secure(dna: str, password: str) -> str:
nmnn

Decode secure mode DNA sequence.

Args:
dna: DNA sequence with encrypted data
password: Decryption password

Returns:

Decrypted plaintext message
nnn

Step 1: Remove markers

22

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

7 BioCypher Technical Guide v1.0

if dna.startswith("ATCGATCG") :
dna = dnal[8:]

if dna.endswith ("CGATATCG") :
dna = dnal:-8]

Step 2: DNA decode using basic mode
crypto_string = decode_basic (dna)

Step 3: Base64 decode
crypto_data = base64.b64decode(crypto_string)

Step 4: Deserialize crypto data
salt, iv, ciphertext = deserialize_crypto_data(crypto_data)

Step 5: Derive key from password
key = PBKDF2(
password.encode (’utf-87’),
salt,
dkLen=32,
count=100000

Step 6: Decrypt
cipher = AES.new(key, AES.MODE_CBC, iv)
padded_plaintext = cipher.decrypt(ciphertext)

Step 7: Remove PKCS#7 padding
plaintext = unpad_pkcs7 (padded_plaintext)

return plaintext.decode(’utf-8’)

def unpad_pkcs7(data: bytes) -> bytes:
"""Remove PKCS#7 padding."""
padding_length = datal[-1]
return datal[:-padding_lengthl

Listing 11: Secure Mode Decoding

7.7 Password Requirements

Strong passwords are critical for security. Weak passwords can be brute-forced despite
strong encryption.

Recommended password policy:

e Minimum Length: 12 characters (16+ recommended)

e Character Classes: Uppercase, lowercase, digits, special characters
e Avoid: Dictionary words, common patterns, personal information

e Entropy: Minimum 60 bits (80+ recommended)

23

N =

7 BioCypher Technical Guide v1.0

import re
def validate_password_strength(password: str) -> tuplel[bool, str]:
nun

Validate password meets security requirements.

Returns (is_valid, message)

if len(password) < 12:

return False, "Password must be at least 12 characters"
checks = {

>uppercase’: r’[A-Z]°,

>lowercase’: r’[a-z]’,

’digit’: r’[0-9]°,
>special’: r’["A-Za-z0-9]°

for name, pattern in checks.items():
if not re.search(pattern, password):
return False, f"Password must contain {name} character"

Check for common patterns
common_patterns = [’12345°, ’password’, ’qwerty’, ’abc’]
password_lower = password.lower ()
for pattern in common_patterns:
if pattern in password_lower:
return False, "Password contains common pattern"

return True, "Password meets requirements"

Listing 12: Password Strength Validation

7.8 Security Considerations
7.8.1 Key Derivation
PBKDF2 with 100,000 iterations provides:

e Protection against dictionary attacks
e Computational cost for attackers

e Reasonable performance (j 1 second on modern hardware)

7.8.2 Randomness

All random values (salt, IV) use cryptographically secure random number generator:

import os
salt = os.urandom(16) # Uses /dev/urandom on Unix

7.8.3 Data Integrity

While AES-CBC provides confidentiality, it does not provide authentication. Future versions

may include HMAC for integrity verification.

24

7 BioCypher Technical Guide v1.0

7.9 Format Specification

Secure Mode Format

ATCGATCG [Base64-encoded encrypted data in DNA] CGATATCG

Components:
e Start marker: ATCGATCG (always present)
e Core sequence: Encrypted data (salt + IV + ciphertext)

e Stop marker: CGATATCG (always present)

7.10 Performance Characteristics

e Encryption Time: O(n + k) where k is KDF cost (dominant)

Decryption Time: O(n + k) where k is KDF cost (dominant)

Memory Usage: O(n) for plaintext/ciphertext

Storage Overhead: 40 bytes (salt + IV + padding) + Base64 expansion (33%)

e KDF Time: 500ms-1s per encode/decode on modern CPU

25

8 BioCypher Technical Guide v1.0

Part 111
Implementation and Validation

8 Error Handling

8.1 Error Taxonomy

BioCypher defines standardized error codes for interoperability:

Error Code Severity Description
INVALID_SEQUENCE Error DNA sequence contains invalid bases
MISSING_MARKERS Error Required markers not found
DECODE_FAILED Error Unable to decode sequence
ENCRYPTION_ERROR Error Cryptographic operation failed
PASSWORD_REQUIRED Error Secure mode requires password
PASSWORD_WEAK Warning Password doesn’t meet strength re-
quirements
CHECKSUM_MISMATCH Error Parity or integrity check failed
GC_IMBALANCE Warning GC content outside optimal range
HOMOPOLYMER DETECTED Warning Homopolymer runs detected
SEQUENCE_TO0_SHORT Error Sequence length below minimum

Table 8: BioCypher Error Codes

8.2 Error Handling Strategies
8.2.1 Recoverable Errors

Some errors can be handled gracefully:

def decode_with_error_handling(dna: str, mode: str) -> tuplel[str,

1:

Decode DNA with comprehensive error handling.

Returns (decoded_message, warnings)
nnn

warnings = []

Clean input
dna = dna.upper () .strip()
dna = ’’.join(c for ¢ in dna if ¢ in ’ATCG’)

Check for invalid bases (already removed)
if len(dna) ==
raise ValueError ("INVALID_SEQUENCE: No valid DNA bases")

Mode-specific validation
if mode in [’nanopore’, ’secure’]:

list

if not (dna.startswith("ATCGATCG") and dna.endswith("CGATATCG")

):
warnings .append ("MISSING_MARKERS: Markers not found,
attempting decode anyway")

26

21
22
23
24
25

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

=
— O © 00 O O Wi~

—_

9 BioCypher Technical Guide v1.0

Check GC content
gc_content = calculate_gc_content (dna)
if not (20 <= gc_content <= 80):
warnings .append (f"GC_IMBALANCE: GC content {gc_content:.1f}%
outside range")

Attempt decode

try:
if mode == ’basic’:
message = decode_basic(dna)
elif mode == ’nanopore’:
message = decode_nanopore (dna)
elif mode == ’secure’:
message = decode_secure (dna, password)
else:

raise ValueError (f"Unknown mode: {model}")
return message, warnings

except Exception as e:
raise ValueError (£"DECODE_FAILED: {str(e)l}")

Listing 13: Recoverable Error Handling

8.2.2 Cryptographic Errors

Cryptographic errors must be handled carefully to avoid leaking information:

def decode_secure_safe(dna: str, password: str) -> str:
nnn

Decode secure mode with safe error handling.

Never reveals whether password is correct or data is corrupt.
nmnn
try:
return decode_secure(dna, password)
except Exception as e:
Generic error - don’t leak info about failure cause
raise ValueError ("DECRYPTION_FAILED: Unable to decrypt data")

Listing 14: Secure Error Handling

Never expose detailed error messages for cryptographic failures. Generic errors prevent
information leakage to attackers.

9 Validation and Testing

9.1 Sequence Validation
9.1.1 DNA Base Validation

27

0 ~J O U i W N -

9 BioCypher Technical Guide v1.0

def validate_dna_sequence(dna: str) -> tuplel[bool, list]:

Validate DNA sequence.

Returns (is_valid, errors)
nmnn

errors = []

Check for empty sequence

if len(dna) == O0:
errors.append ("Empty sequence")
return False, errors

Check for invalid characters
valid_bases = set(’ATCGatcg’)
invalid_chars = set(dna) - valid_bases
if invalid_chars:
errors.append(f"Invalid bases: {invalid_chars}")

Check length constraints
if len(dna) > 1000000: # 1M bases

errors.append ("Sequence exceeds maximum length")

return len(errors) == 0, errors

Listing 15: DNA Sequence Validation

9.1.2 Nanopore-Specific Validation

def validate_nanopore_sequence (dna: str) -> tuple[bool, list]:

Validate sequence for nanopore sequencing.

Returns (is_valid, warnings)
nnn

warnings = []

Check markers

if not dna.startswith("ATCGATCG"):
warnings.append ("Missing start marker")

if not dna.endswith ("CGATATCG"):
warnings.append ("Missing stop marker")

Check GC content
gc = calculate_gc_content (dna)
if not (40 <= gc <= 60):
warnings.append (£"GC content {gc:.1f}% outside optimal range")

Check homopolymers
if has_homopolymers (dna):
warnings .append ("Homopolymer runs detected")

Check length alignment

core = dnal[8:-8] if len(dna) > 16 else dna
if len(core) % 3 !'= 0:

28

27
28
29

00 ~J O UL i~ W N

BioCypher Technical Guide v1.0

warnings.append ("Sequence not aligned to triplet boundary")

return True, warnings # Warnings don’t prevent use

Listing 16: Nanopore Validation

9.2 Test Vectors
9.2.1 Basic Mode Test Vectors

Input Binary Expected DNA

A" 01000001 TAAA

"B" 01000010 TAAAC

"Hi" 01001000 01101001 TAAATAAATATA

" " (space) 00100000 ACAA

"123" 00110001 00110010 00110011 AGCAAT AGCATC AGCATG

Table 9: Basic Mode Test Vectors

9.2.2 Nanopore Mode Test Vectors

Due to randomized padding and optimization, nanopore mode test vectors focus on structure:

def test_nanopore_roundtrip():
"""Test nanopore encoding/decoding roundtrip."""
test_cases = [
"Hello",
"BioCypher Protocol v1.0",
"The quick brown fox jumps over the lazy dog",
"r1e#$c&x () _+-=[1{};’:,.<>?/" # Special chars
]
for message in test_cases:
encoded = encode_nanopore (message, error_correction=True)
Verify structure
assert encoded.startswith("ATCGATCG"), "Missing start marker"
assert encoded.endswith("CGATATCG"), "Missing stop marker"
Verify no homopolymers
assert not has_homopolymers (encoded), "Homopolymers detected"
Verify GC content
gc = calculate_gc_content (encoded)
assert 20 <= gc <= 80, f"GC content {gc} out of range"
Roundtrip decode
decoded = decode_nanopore (encoded, error_correction=True)
assert decoded == message, f"Roundtrip failed: {message} != {
decodedl}"

Listing 17: Nanopore Test Vector Validation

29

0 3 O U i W N

9 BioCypher Technical Guide v1.0

9.2.3 Secure Mode Test Vectors

Secure mode uses randomized salt/IV, so test vectors verify structure and properties:

def test_secure_mode ():

"""Test secure mode encryption/decryption."""

message = "Top Secret Message"

password = "StrongP@sswOrd123!"

Encode

encoded = encode_secure (message, password)

Verify structure
assert encoded.startswith("ATCGATCG"), "Missing start marker"
assert encoded.endswith("CGATATCG"), "Missing stop marker"

Verify DNA validity
core = encoded[8:-8]
assert all(c in °’ATCG’ for c in core), "Invalid DNA bases"

Decode with correct password
decoded = decode_secure (encoded, password)

assert decoded == message, "Decryption failed"

Verify wrong password fails

try:
wrong_decode = decode_secure (encoded, "WrongPassword")
assert False, "Should have failed with wrong password"
except:

pass # Expected failure

Listing 18: Secure Mode Test

9.3 Unit Test Suite

A complete implementation should include:

1. Encoding Tests:

e ASCII character coverage (32-126)
e Extended characters and Unicode handling
e Empty strings and edge cases

e Maximum length sequences
2. Decoding Tests:

e Valid sequences
e Sequences with invalid bases
e Truncated sequences

e Sequences without markers
3. Roundtrip Tests:
e Encode then decode yields original

e All three modes

30

10 BioCypher Technical Guide v1.0

e Various message lengths
4. Error Correction Tests:

e Introduce single-bit errors
e Verify correction in nanopore mode

e Test correction limits (2+ bit errors)
5. Cryptographic Tests:

e Password strength validation

Encryption/decryption roundtrip

¢ Wrong password detection

Salt/IV uniqueness
6. Performance Tests:

e Encoding speed benchmarks
e Decoding speed benchmarks

e Memory usage profiling

10 Conformance Levels

The BioCypher protocol defines four conformance levels for implementations:

10.1 Level 1: Basic Conformance

Required Features:
e Support Basic Mode encoding
e Support Basic Mode decoding
e Implement standard binary-to-DNA mapping
e Handle ASCII text (printable range 32-126)
e Skip invalid DNA bases during decoding
Validation:
e Pass all basic mode test vectors

e Roundtrip encode/decode correctly

10.2 Level 2: Nanopore Conformance

Required Features:
e All Level 1 requirements
e Support Nanopore Mode encoding

e Support Nanopore Mode decoding

31

10 BioCypher Technical Guide v1.0

Implement triplet encoding table

Support error correction (triple redundancy)
e Handle nanopore markers

e Support padding removal

e Parity bit checking

Validation:

e Pass nanopore mode roundtrip tests

e Verify homopolymer avoidance

e Demonstrate error correction

10.3 Level 3: Secure Conformance

Required Features:
e All Level 1 requirements
e Support Secure Mode encoding
e Support Secure Mode decoding
e Implement AES-256-CBC encryption
e Implement PBKDF2-HMAC-SHA256 (100,000 iterations)
e Password strength validation
e Handle secure mode markers
e Proper cryptographic error handling
Validation:
e Pass secure mode roundtrip tests
e Verify encryption with test vectors

e Demonstrate wrong password detection

10.4 Level 4: Full Conformance

Required Features:
e All Level 1, 2, and 3 requirements

e Comprehensive error handling

Complete validation suite

Performance optimization

Statistics and analysis

32

10

BioCypher Technical Guide v1.0

e Documentation compliance

Validation:

e Pass all test vectors

e Complete unit test suite (;90% coverage)

e Performance benchmarks meet standards

33

12 BioCypher Technical Guide v1.0

Part IV
Practical Application and Deployment

11 Installation and Setup

11.1 Reference Implementation

The official BioCypher reference implementation is available at:

https://github.com/syndicate-labs/biocipher

11.2 Installation Methods
11.2.1 From Source

Clone repository
git clone https://github.com/syndicate-labs/biocipher.git
cd biocipher

Install dependencies
pip install -r requirements.txt

0 O U s W N+~

Install BioCypher
pip install -e

—_
=]

11| # Verify installation
12| biocipher --version

Listing 19: Installation from Source

11.2.2 Using pip

pip install biocipher

1

2

3|# Verify

4| biocipher --version

Listing 20: Installation via pip

11.3 Dependencies

Package Version Purpose

Python 3.8+ Runtime environment
pycryptodome 3.15+ AES encryption
numpy 1.20+ Numerical operations
click 8.0+ CLI interface

Table 10: BioCypher Dependencies

34

https://github.com/syndicate-labs/biocipher

O © 00O U= W

—_

13 BioCypher Technical Guide v1.0

12 Command-Line Interface

12.1 Basic Usage
12.1.1 Encoding

Basic mode

biocipher encode --mode basic --input message.txt --output sequence.
fasta

Nanopore mode with error correction

biocipher encode --mode nanopore --error-correction \
--input message.txt --output sequence.fasta

Secure mode with password

biocipher encode --mode secure --password "MyPassword123!" \
--input secret.txt --output encrypted.fasta

Pipe input

echo "Hello World" | biocipher encode --mode basic

Listing 21: CLI Encoding Examples

12.1.2 Decoding

Basic mode

biocipher decode --mode basic --input sequence.fasta

Nanopore mode

biocipher decode --mode nanopore --error-correction \
--input sequence.fasta --output decoded.txt

Secure mode

biocipher decode --mode secure --password "MyPassword123!" \
--input encrypted.fasta --output secret.txt

Listing 22: CLI Decoding Examples

12.2 Analysis and Validation

Validate DNA sequence
biocipher validate --input sequence.fasta

Analyze GC content and properties
biocipher analyze --input sequence.fasta

Check for homopolymers
biocipher check-homopolymers --input sequence.fasta

Calculate statistics
biocipher stats --input sequence.fasta

Listing 23: Analysis Commands

35

0 3 O Ui W N -

e e T e T e S Uy Sy S S
OO UL WD R OO

0 ~J O UL i W N -

13 BioCypher Technical Guide v1.0

13 Python API

13.1 Basic Usage

from biocipher import encode, decode

Basic encoding

message = "Hello, BioCypher!"

dna = encode (message, mode=’basic’)
print (£"DNA: {dnal}")

Basic decoding
decoded = decode(dna, mode=’basic’)

print (f"Decoded: {decodedl}")

Nanopore encoding with error correction
dna_nanopore = encode(message, mode=’nanopore’, error_correction=True)

Secure encoding

dna_secure = encode(message, mode=’secure’, password=’MyPassword!’)
decoded_secure = decode (dna_secure, mode=’secure’, password=’MyPassword
1)

Listing 24: Python API Examples

13.2 Advanced API Usage

from biocipher import BioCypher
from biocipher.validators import validate_sequence
from biocipher.analyzers import analyze_sequence

Create BioCypher instance
bc = BioCypher ()

Encode with custom settings

dna = bc.encode(
message="Secret data',
mode=’nanopore’,
error_correction=True,
optimize_gc=True,
redundancy=5

Validate sequence
is_valid, errors = validate_sequence (dna, mode=’nanopore’)
if not is_valid:

print (f"Validation errors: {errors}")

Analyze sequence

stats = analyze_sequence (dna)

print (£"GC Content: {stats[’gc_content’]:.1£f3}%")
print (f"Length: {stats[’length’]} bases")

print (f"Homopolymers: {stats[’homopolymer_count’]}")

Decode with error handling
try:

36

30
31
32
33

0 3 O U i W N —

DO = = e e e e e
O © 00O Ui WD = OO

15 BioCypher Technical Guide v1.0

decoded = bc.decode(dna, mode=’nanopore’, error_correction=True)
print (f"Successfully decoded: {decodedl}")

except Exception as e:
print (f"Decoding failed: {el}")

Listing 25: Advanced API

14 Integration with DNA Synthesis

14.1 Synthesis Workflow
1. Encode Message: Use BioCypher to generate DNA sequence

2. Validate Sequence: Check for synthesis compatibility
3. Format for Synthesis: Export in FASTA or vendor-specific format
4. Submit to Vendor: Send to DNA synthesis service

5. Receive Synthesized DNA: Obtain physical DNA (plasmid, oligo, etc.)

14.2 Synthesis Provider Integration

from biocipher import BioCypher
from biocipher.export import export_fasta, export_genbank

bc = BioCypher ()
dna = bc.encode("Important data", mode=’nanopore’)

Export as FASTA for synthesis
fasta = export_fasta(
sequence=dna,

name="BioCypher_Message_001",
description="BioCypher encoded message"

)

with open(’for_synthesis.fasta’, ’w’) as f:
f.write(fasta)

Example FASTA output:

>BioCypher_Message_001 BioCypher encoded message

ATCGATCGATCATGACTACGTAGATCATGACTACGATCATGACTACG

ATCATGACTACGATCATGACTACGCGATATCG

Listing 26: Export for Synthesis

14.3 Recommended Synthesis Providers
15 Integration with Nanopore Sequencing

15.1 Oxford Nanopore MinlON Workflow
1. DNA Extraction: Extract DNA from carrier using DNeasy or similar kit

2. Quality Control: Quantify DNA (NanoDrop/Qubit), aim for 1-5 pg

37

00 ~J O U i W N -

W W WWRNDNINDNDNNDNDNDNNRF =
W OO0 TR WNEHFHEO OO Uk WN OO

15 BioCypher Technical Guide v1.0

Provider Max Length Turnaround Cost/base
IDT 3 kb 5-10 days $0.07-0.10
Twist Bioscience 10 kb 7-14 days $0.07-0.09
GenScript 5 kb 10-15 days $0.09-0.12
Eurofins 2 kb 5-10 days $0.08-0.11

Table 11: DNA Synthesis Providers (approximate as of 2025)

3. Library Preparation: Use Rapid Sequencing Kit (10 min) or Ligation Kit (1 hr)
4. Load Flow Cell: Prime MinlON flow cell, load library

5. Run Sequencing: Start run via MinKNOW software

6. Real-Time Basecalling: Monitor for target sequences

7. Extract FASTQ: Export sequenced reads

8. Decode: Use BioCypher to decode DNA sequences

15.2 MinKNOW Integration

from biocipher import BioCypher
from Bio import SeqIO0O # Biopython for FASTQ parsing

bc = BioCypher ()

Parse FASTQ file from MinKNOW
fastq_file = "sequencing_run_001.fastq"
found_sequences = []

for record in SeqIO.parse(fastq_file, "fastq"):
sequence = str(record.seq)

Check if sequence has BioCypher markers

if "ATCGATCG" in sequence and "CGATATCG" in sequence:
Extract BioCypher sequence
start = sequence.find ("ATCGATCG")
end = sequence.find("CGATATCG", start) + 8
biocipher_seq = sequencel[start:end]

Attempt decode
try:
message = bc.decode(
biocipher_seq,
mode=’nanopore’,
error_correction=True

)

found_sequences . append ({
’read_id’: record.id,
’sequence’: biocipher_seq,
‘message’: message

1))

print (f"Decoded from {record.id}: {messagel}")
except Exception as e:

38

34
35
36
37
38
39

16 BioCypher Technical Guide v1.0

print (f"Failed to decode {record.id}: {e}")

Save results

import json

with open(’decoded_messages.json’, ’w’) as f:
json.dump (found_sequences, f, indent=2)

Listing 27: Process MinKNOW Output

16 Physical Transport Methods

16.1 Bacterial Carrier Protocol

Bacterial Spore Transport

Materials:

Bacillus subtilis 168 (non-pathogenic)

High-copy plasmid with BioCypher sequence

Sporulation medium

Sterile vials or filter paper

Protocol:
1. Transform bacteria with plasmid
2. Culture 24h at 37°C
3. Induce sporulation (48-72h)
4. Heat-kill vegetative cells (80°C, 20 min)
5. Lyophilize spores or air-dry on filter paper
6. Package for transport

Recovery:
1. Germinate spores in LB medium (2-4h)
2. Extract plasmid DNA
3. Sequence using MinION

4. Decode with BioCypher

39

17 BioCypher Technical Guide v1.0

16.2 Plant Seed Carrier Protocol

Plant Seed Transport

Materials:
e Arabidopsis thaliana or tobacco
e Agrobacterium with BioCypher sequence in T-DNA
e Growth facilities
Protocol:
1. Floral dip transformation
2. Grow T1 generation plants
3. Select transformants
4. Collect seeds (stable integration)
5. Package seeds for transport
Recovery:
1. Germinate seeds
2. Extract genomic DNA
3. PCR amplify BioCypher region
4. Sequence amplicon

5. Decode with BioCypher

17 Security Best Practices

17.1 Operational Security

1. Password Management:
e Use password manager for secure mode passwords
e Never store passwords in plain text

e Use unique passwords per message

e Consider passphrase generation (diceware)

2. Data Handling:

Securely delete plaintext after encoding
e Wipe temporary files
e Use encrypted filesystems when possible

e Clear terminal history if sensitive

3. Physical Security:

40

17 BioCypher Technical Guide v1.0

Protect synthesized DNA samples

Secure transport containers

Destroy carriers after decoding if sensitive

Consider tamper-evident packaging

4. Operational Practices:

Verify DNA sequence integrity before synthesis

Use multiple redundant encodings for critical data

Maintain operational security during transport

e Document chain of custody if needed

17.2 Threat Model
17.2.1 Adversary Capabilities

BioCypher secure mode protects against:
e Passive Surveillance: Interception of DNA carriers
e Sequence Analysis: Adversary can sequence DNA
e Computational Attacks: Brute-force and dictionary attacks
BioCypher does NOT protect against:
e Coercion: Physical threats to reveal password
e Endpoint Compromise: Malware on encoding/decoding system
e Side-Channel Attacks: Timing, power analysis, etc.

¢ Quantum Computers: AES-256 may be vulnerable to Grover’s algorithm

17.3 Future Security Enhancements

Proposed for future protocol versions:
¢ Authenticated Encryption: Add HMAC for integrity verification
e Post-Quantum Cryptography: Integrate lattice-based or hash-based algorithms
e Multi-Party Encryption: Support for threshold cryptography

e Steganographic Improvements: Better hiding in natural sequences

41

00 ~J O U =~ W N

11
12
13
14

18 BioCypher Technical Guide v1.0

Part V
Protocol Extensions and Development

18 Extending the Protocol

18.1 Community Extension Process

BioCypher is an open protocol designed for community extension. The formal process:

1. Proposal Submission:

e Submit BioCypher Improvement Proposal (BIP)
e Include rationale, specification, and test vectors

e Post to GitHub discussions or mailing list
2. Community Review:

e Open discussion period (minimum 30 days)
e Technical review by maintainers

e Public comment and feedback
3. Implementation:

e Reference implementation in official codebase
e Comprehensive test suite

e Documentation updates
4. Adoption:

e Merged into next protocol version
e Announced to community

e Backward compatibility maintained when possible

18.2 Example Extensions
18.2.1 Compression Extension

Add data compression before encoding:

import zlib
import base64

def encode_compressed(message: str, mode: str = ’basic’) -> str:
"""Encode with compression for better storage efficiency."""
Compress
compressed = zlib.compress(message.encode(’utf-8’), level=9)

Base64 encode (for DNA encoding)
b64 = base64.b6dencode (compressed) .decode(’ascii’)

DNA encode
dna = encode (b64, mode=mode)

42

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

© 00 ~J O Ui W N -

19 BioCypher Technical Guide v1.0

Add compression marker
return "ATCGATCG_COMPRESSED_" + dna

def decode_compressed(dna: str, mode: str = ’basic’) -> str:
"""Decode compressed sequence."""
Remove compression marker
if dna.startswith("ATCGATCG_COMPRESSED_"):
dna = dna[20:]

DNA decode
b64 = decode (dna, mode=mode)

Base64 decode
compressed = base64.b64decode (b64)

Decompress
message = zlib.decompress (compressed).decode(’utf-8’)

return message

Listing 28: Compression Extension Example

18.2.2 Checksum Extension
Add CRC32 checksums for integrity:

import struct
import binascii

def encode_with_checksum(message: str, mode: str = ’basic’) -> str:
"""Add CRC32 checksum for integrity verification."""
Calculate checksum
checksum = binascii.crc32(message.encode(’utf-8’))

Prepend checksum (4 bytes)
data = struct.pack(’>I’, checksum) + message.encode(’utf-87)

Encode to DNA
return encode (data.decode(’latin-1’), mode=mode)

def decode_with_checksum(dna: str, mode: str = ’basic’) -> str:
"""Decode and verify checksum."""
Decode
data = decode(dna, mode=mode) .encode(’latin-1")

Extract checksum and message
checksum_stored = struct.unpack(’>I’, datal[:4]) [0]
message_bytes = datal[4:]

Verify
checksum_calculated = binascii.crc32(message_bytes)
if checksum_stored != checksum_calculated:

raise ValueError ("CHECKSUM_MISMATCH")

return message_bytes.decode(’utf-87)

Listing 29: Checksum Extension

43

0 3 O O s W N+~

I I N I N R N T N S T T T e
Uik W N OO0 Utk WNhEFEOO

19 BioCypher Technical Guide v1.0

19 Contributing to BioCypher

19.1 Development Setup

Clone repository
git clone https://github.com/syndicate-labs/biocipher.git
cd biocipher

Create virtual environment
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate

Install development dependencies
pip install -r requirements-dev.txt

Install pre-commit hooks
pre-commit install

Run tests
pytest tests/ -v

Check code coverage
pytest --cov=biocipher --cov-report=html

Run linter
flake8 biocipher/

Format code
black biocipher/

Listing 30: Development Environment Setup

19.2 Contribution Guidelines
1. Code Quality:
e Follow PEP 8 style guide
e Maintain test coverage ;90%

e Add docstrings to all public functions

e Type hints for function signatures
2. Testing:

e Write unit tests for new features
e Include integration tests
e Add test vectors for new encoding modes

e Test edge cases and error conditions
3. Documentation:

e Update README for user-facing changes
e Add technical documentation for new features

e Include examples and use cases

44

20 BioCypher Technical Guide v1.0

e Update protocol specification if needed
4. Pull Request Process:

e Create feature branch from main
e Write clear commit messages
e Reference related issues

e Request review from maintainers

20 Performance Optimization

20.1 Profiling

1| import cProfile

2| import pstats

3| from biocipher import encode, decode

4

5|# Profile encoding

6| def profile_encoding():

7 message = "A" x 10000 # 10KB message

8 for _ in range (100):

9 encode (message, mode=’nanopore’, error_correction=True)
10

11| # Run profiler

12| cProfile.run(’profile_encoding()’, ’encode_stats’)
13

14|# Analyze results

15|p = pstats.Stats(’encode_stats’)

16| p.sort_stats(’cumulative’)

17|p.print_stats (10) # Top 10 functions

Listing 31: Performance Profiling

20.2 Optimization Strategies

1. Algorithmic Improvements:

e Use lookup tables for encoding/decoding
e Batch process sequences

e Parallelize independent operations
2. Data Structure Optimization:

e Use bytearray for mutable binary data
e Preallocate buffers when size is known

e Avoid string concatenation in loops
3. Caching:

e Cache encryption keys (PBKDF?2 is expensive)
e Memoize frequently computed values

e Use LRU cache for pure functions

45

00 ~J O UL i~ W N

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

© 00 3 O U W N —

21 BioCypher Technical Guide v1.0

from functools import lru_cache

Cache triplet mapping for faster lookups
@lru_cache (maxsize=8)
def get_triplet_map():

return {
’000’: ’ATC’, ’°001°: ’ATG’, ’010°’: ’ACT’, ’011°:
>’100°’: °’TAG’, ’101’: ’TAC’, ’>110°’: °’TCG’, ’111°’:
}

def encode_nanopore_optimized (message: str) -> str:
"""Optimized nanopore encoding."""
Preallocate buffer
binary_length = len(message) * 9 # 9 bits per char
binary = bytearray(binary_length)

Use cached triplet map
triplet_map = get_triplet_map()

Build binary representation

offset = 0

for char in message:
byte = format (ord(char), ’08b’)
parity = str(byte.count(’1’) % 2)
chunk = byte + parity

for bit in chunk:
binary [offset] = ord(bit)
offset += 1

Convert to DNA using list comprehension

dna_parts = [
triplet_map[binary[i:i+3].decode(’ascii’)]
for i in range(0, len(binary), 3)

return ’’.join(dna_parts)

>ACG”,
>TCA”’

Listing 32: Optimized Encoding

21 Reference Documentation

21.1 API Documentation

Complete API documentation is generated from source code docstrings using Sphinx:

Install Sphinx
pip install sphinx sphinx-rtd-theme

Build HTML documentation
cd docs/
make html

View documentation
open _build/html/index.html

46

22 BioCypher Technical Guide v1.0

Listing 33: Build Documentation

21.2 Protocol Specification Updates

This document represents Protocol Version 1.0. Updates follow semantic versioning:

e Major Version: Breaking changes to encoding format
e Minor Version: New features, backward compatible

e Patch Version: Bug fixes, clarifications

22 Roadmap

22.1 Short-Term (6 months)

e Implement compression extension

Add integrity checking (HMAC)

e Improve nanopore optimization algorithms

Expand test vector coverage

Performance optimizations

22.2 Medium-Term (12 months)

e Post-quantum cryptography integration

Multi-mode hybrid encoding

Advanced steganography features

Web-based encoder/decoder

Mobile applications (i0S/Android)

22.3 Long-Term (24+ months)
e Hardware integration (MinION direct support)

Distributed storage protocol

Blockchain-based verification

Al-powered sequence optimization

e Space mission integration

47

D BioCypher Technical Guide v1.0

A Glossary

AES Advanced Encryption Standard - Symmetric encryption algorithm
Base64 Binary-to-text encoding scheme

Basecalling Converting nanopore current signals to DNA sequences
Flow Cell Consumable containing nanopores for sequencing

GC Content Percentage of guanine and cytosine bases
Homopolymer Run of consecutive identical nucleotides

PBKDF2 Password-Based Key Derivation Function 2

Triplet Three-nucleotide sequence

B Mathematical Notation

Symbol Meaning

M Message (plaintext)

D DNA sequence

B Binary representation

E Encrypted data

P Password

n Message length (characters)
m DNA sequence length (bases)
O(n) Big-O complexity notation

C References
1. NIST FIPS 197: ” Advanced Encryption Standard (AES)”
2. RFC 2898: "PKCS #5: Password-Based Cryptography Specification Version 2.0”
3. RFC 4648: "The Basel6, Base32, and Base64 Data Encodings”
4. Oxford Nanopore Technologies: ”Nanopore Sequencing Accuracy”
5. Church et al. (2012): ”Next-Generation Digital Information Storage in DNA”, Science

6. Goldman et al. (2013): ”Towards practical, high-capacity, low-maintenance information
storage in synthesized DNA”, Nature

D License

BioCypher Protocol Specification and Reference Implementation are released under the MIT
License:

48

F BioCypher Technical Guide v1.0

MIT License
Copyright (c) 2025 BioCypher Project

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

E Contact Information

Resource Location

Project Website https://syndicate-labs.io/biocipher

GitHub Repository https://github.com/syndicate-labs/biocipher
Documentation https://docs.syndicate-labs.io

Email contact@syndicate-labs.io

Matrix Chat #biocypher:matrix.org

F Acknowledgments

BioCypher builds upon decades of research in DNA data storage, cryptography, and nanopore
sequencing. We acknowledge:

e The DNA data storage research community
e Oxford Nanopore Technologies for sequencing innovation
e The open-source cryptography community

e All contributors to the BioCypher project

49

https://syndicate-labs.io/biocipher
https://github.com/syndicate-labs/biocipher
https://docs.syndicate-labs.io

BioCypher Technical Guide v1.0

BioCypher Technical Guide v1.0
Open Protocol for DNA-Based Data Encoding

Remember the Game Genie.

20

	I Introduction and Architecture
	Introduction
	What is BioCypher?
	Protocol Philosophy
	Use Cases
	Secure Communication
	Long-Term Archival
	Distributed Backup
	Steganographic Applications
	Space Exploration

	System Requirements
	For Encoding
	For Decoding

	Protocol Architecture
	System Overview
	Data Flow
	Encoding Pipeline
	Decoding Pipeline

	Protocol Versioning

	II Encoding Modes and Specifications
	Encoding Mode Overview
	Binary-to-DNA Mapping
	Standard Mapping Table
	Mapping Properties
	Encoding Rules
	Decoding Rules

	Basic Mode Specification
	Overview
	Encoding Algorithm
	Decoding Algorithm
	Format Specification
	Examples
	Performance Characteristics

	Nanopore Mode Specification
	Overview
	Triplet Encoding
	Error Correction Scheme
	Parity Bits
	Sequence Optimization
	GC Content Balancing
	Homopolymer Detection

	Padding Mechanism
	Marker Sequences
	Complete Nanopore Encoding Algorithm
	Complete Nanopore Decoding Algorithm
	Format Specification
	Performance Characteristics

	Secure Mode Specification
	Overview
	Cryptographic Specification
	Encryption Process
	Serialization Format
	Complete Secure Encoding Algorithm
	Complete Secure Decoding Algorithm
	Password Requirements
	Security Considerations
	Key Derivation
	Randomness
	Data Integrity

	Format Specification
	Performance Characteristics

	III Implementation and Validation
	Error Handling
	Error Taxonomy
	Error Handling Strategies
	Recoverable Errors
	Cryptographic Errors

	Validation and Testing
	Sequence Validation
	DNA Base Validation
	Nanopore-Specific Validation

	Test Vectors
	Basic Mode Test Vectors
	Nanopore Mode Test Vectors
	Secure Mode Test Vectors

	Unit Test Suite

	Conformance Levels
	Level 1: Basic Conformance
	Level 2: Nanopore Conformance
	Level 3: Secure Conformance
	Level 4: Full Conformance

	IV Practical Application and Deployment
	Installation and Setup
	Reference Implementation
	Installation Methods
	From Source
	Using pip

	Dependencies

	Command-Line Interface
	Basic Usage
	Encoding
	Decoding

	Analysis and Validation

	Python API
	Basic Usage
	Advanced API Usage

	Integration with DNA Synthesis
	Synthesis Workflow
	Synthesis Provider Integration
	Recommended Synthesis Providers

	Integration with Nanopore Sequencing
	Oxford Nanopore MinION Workflow
	MinKNOW Integration

	Physical Transport Methods
	Bacterial Carrier Protocol
	Plant Seed Carrier Protocol

	Security Best Practices
	Operational Security
	Threat Model
	Adversary Capabilities

	Future Security Enhancements

	V Protocol Extensions and Development
	Extending the Protocol
	Community Extension Process
	Example Extensions
	Compression Extension
	Checksum Extension

	Contributing to BioCypher
	Development Setup
	Contribution Guidelines

	Performance Optimization
	Profiling
	Optimization Strategies

	Reference Documentation
	API Documentation
	Protocol Specification Updates

	Roadmap
	Short-Term (6 months)
	Medium-Term (12 months)
	Long-Term (24+ months)

	Glossary
	Mathematical Notation
	References
	License
	Contact Information
	Acknowledgments

