

Question #1: What "Merv" rating should I use?

MERV, the acronym for <u>Minimum-Efficiency Reporting Value</u>, is a measure of the efficiency with which filters remove particles of specific sizes. The test protocol for determining MERV ratings is described in **ASHRAE Standard 52.2-2007**, "Method of Testing General Ventilation Air-Cleaning Devices for Removal Efficiency by Particle Size."

High Efficiency Filters Explained

The impact that the Covid-19 virus has had on the world is unmeasurable and its reach into so many different aspects of our lives is both far and wide. One of the areas of HVAC that has been brought to the forefront is filtration. The SARS-Cov2 virus is approximately .1-.3 microns in size, but since the virus doesn't travel in the air by itself the expelled respiratory droplets are approximately 1 micron in size. MERV 8 filters are only 20% effective at capturing particles in the 1-3 micron range while MERV 13 filters are at least 85% effective at capturing particles in the 1-3 micron range. MERV 14 are effective at capturing at least 90% in the 1-3 micron range and the higher you go the more filtering ability. Below in Figure 1 is a filter application guide and as can be seen the standard MERV-1 through 12 filters are not very effective for smaller particles.

ASHRAE recommends using MERV 13 filters with MERV 14 being preferred but there are things that need to be taken in to account before any filter change is made. Increasing filter efficiency increases the static pressure drop in the system which can affect airflow, which in turn can increase energy usage or worse; it can cause equipment operation issues and unit failures.

MERV Std 52.2	Intended Dust Spot Efficiency Std 52.1 ⁽¹⁾	Average Arrestance	Particle Size Ranges	Typical Applications	Typical Filter Type
1-4	<20%	60 to 80%	> 10.0 µm	Residential/Minimum Light Commercial/ Minimum Minimum Equipment Protection	Permanent / Self Charging (passive) Washable / Metal, Foam / Synthetics Disposable Panels Fiberglass / Synthetics
5 - 8	<20 to 60%	80 to 95%	3.0-10.0 μm	Industrial Workplaces Commercial Better / Residential Paint Booth / Finishing	Pleated Filters Extended Surface Filters Media Panel Filters
9-12	40 to 85%	>90 to 98%	1.0-3.0 μm	Superior/Residential Better/Industrial Workplaces Better/Commercial Buildings	Non-Supported / Pocket Filt / Rigid Box Rigid Cell / Cartridge V-Cells
13 - 16	70 - 98%	>95 to 99%	0.30-1.0 μm	Smoke Removal General Surgery Hospitals & Health Care Superior/ Commercial Buildings	Rigid Cell / Cartridge Rigid Box / Non-Supported / Pocket Filter V-Cells

Question #2: Will a MERV 13 filter work with my York HVAC system?

Study #1

Article: *Residential AC Filters (pdf)* by John Proctor, *ASHRAE Journal*, October 2012

The Air Conditioning Contractors of America (ACCA) protocols for HVAC design <u>assume a pressure drop of 0.10 inches of water column (i.w.c.) across the filter</u>. (Keep that number, 0.1 i.w.c., in mind as a reference point. I'll be coming back to it.) If a system is designed with a standard filter for that pressure drop, the pressure drop with a pleated filter of the same size will most likely be higher.

In addition, poorly designed and installed duct systems already have external static pressures that are too high. <u>The typical furnace or air handler is rated for 0.5 i.w.c. but many run much higher pressure</u>. David Richardson of the National Comfort Institute says that in the testing they've done, the average system is running at about <u>0.82 i.w.c</u>.

Result: In the California study, Proctor et al. found that the pressure drop across the filter in 34 HVAC systems was **<u>0.28 i.w.c</u>**. That's nearly <u>three times what ACCA</u> <u>protocols assume</u>. It's also more than half of the rated external static pressure for the whole system.

Hz	Voltago							
	voltage	HP	PF	Motor Type				
60	115	1/2	0.9	PSC (Induction Motor)				
High	Speed			TESP	0.3	0.5	0.7	0.9
				CFM	1345	1261	1158	1038
				Watts	700	667	628	576
				Amps	6.69	6.47	6.1	5.71
				RPM	906	951	997	1029
60	115	1/2	0.6	ECM (Constant Airflow)				-
3 Ton				TESP	0.3	0.5	0.7	0.9
				CFM	1246	1250	1234	1230
				Watts	308	368	423	485
				Amps	4.81	5.64	6.39	7.22
				RPM	848	927	993	1065
				% Improvement ECM vs. PS	с			
				ECM (Constant Airflow)				
				TESP	0.3	0.5	0.7	0.9
				CFM			6%	16%
				Watts		-45%	-33%	-16%

1	со	IL					COOLING	G	
UNIT MODEL	MODEL	MIDTU	CFM RANGE	STAGE	RATED	NET	МВН	eccp 1	
	MODEL	WIDTH	(WIINWAA.)		CFM	TOTAL	SENS.	SEER '	EEK
VVT24P24S		17.5	525 - 725	1	600	19.3	14.7	15.00	21.25
1/1240213	CF/CIWI/CU24D	17.5	600 - 1000	2	800	22.8	18.2	15.00	12.75
VYT24B21S	CE/CM/CU30B	17.5	525 - 725	1	600	19.5	14.8	15.00	21.60
171240213	CI/CIVI/COSOD	17.5	600 - 1000	2	800	23.4	18.3	15.00	13.00
VVT24P21S	CE/CM/CU26P	17.5	525 - 725	1	600	19.5	15.0	15.25	21.65
1/1240213	CF/CW/C030D	17.5	600 - 1000	2	800	23.6	18.5	13.23	13.00
VYT24B21S	CE/CM/CL//2C	21.0	525 - 725	1	600	19.7	14.8	15 50	22.00
17(1240215	01/011/00420	21.0	600 - 1000	2 <	800	23.8	18.8	10.00	13.25

Airflow is KEY to comfort and efficiency

4.5 X CFM X Delta Enthalpy = Total Cooling BTU's

1.08 X CFM X Delta Temperature = Sensible BTU's

				High/L	ow Speed	Cooling	and Heat	Pump CFI	N				
Cool Top AD LT 2	AVC18B		AVC24B		AVC	30B	AVC	36B	AVC36C		AVC42C		
coor rap	ADJ Tap-	High	Low	High	Low	High	Low	High	Low	High	Low	High	Low
Α	В	810	527	1022	562	1060	731	1350	878	1350	878	1596	1037
В	В	675	439	795	437	1013	658	1238	804	1238	804	1400	910
Α	A	720	468	900	495	1000	650	1200	780	1200	780	1425	926
В	A	600	390	700	385	900	585	1100	715	1100	715	1250	813
А	С	630	410	783	431	875	569	1050	683	1050	683	1268	824
С	В	534	347	766	421	844	548	1125	731	1125	731	1344	874
В	С	525	341	609	335	788	512	963	626	963	626	1113	723
D	В	450	293	568	312	703	457	900	585	900	585	1120	728
С	A	475	309	675	371	750	488	1000	650	1000	650	1200	780
D	A	400	260	500	275	625	406	800	520	800	520	1000	650
С	С	416	270	587	323	656	427	875	569	875	569	1068	694
D	С	350	228	435	239	547	355	700	455	700	455	890	579

Overview-How is ductwork sized?

(This is not going to be a duct design class)

- Ductwork is sized using a duct calculator
- To use a calculator, you need a Friction Rate
- The calculator matches Friction Rate to a required CFM for a duct size
- The size can be either round or square duct
- Where does the Friction Rate come from?

/anual D Worksheet
Step 1) Manufacturer's Blower Data External static pressure (ESP) = IWC Cfm =
Step 2) Component Pressure Losses (CPL)
Direct expansion refrigerant coil Electric resistance heating coil Hot water coil Heat exchanger Low efficiency filter High or mid-efficiency filter Electronic filter Humidifier Supply outlet Return grille Balancing damper UV lights or other component
Total component losses (CPL) IWC
Step 3) Available Static Pressure (ASP)
ASP = (ESP - CPL) = () = IWC
YORK

Air Device Press	sure Losses	S			
		Coil R	Resistance	(IWC)	
	- ALANA	Cfm	Dry	Wet	
		1,000	0.11	0.18	
	A DEE	1,200	0.15	0.26	
		1,400	0.22	0.35	
		1,600	0.28	0.46	
		Cfm 1,000 1,200 1,400 1,600		IWC 0.06 0.08 0.12 0.15	
		Heat	er Resist	Ince	
	THE	Cfm		IWC	
	CONTRACTOR OF THE OWNER	1 000		0.00	
		1,000		0.09	
	-	1,200		0.13	
	L	1,200		0.13 0.18	

Friction Rate Calculation

ESP from Product Data	+ 0.60
Evaporator coil	- 0.27
(Use wet pressure drop)	
Volume damper	- 0.03
Supply register	- 0.03
Return grille	- 0.03
Filter	0
Static remaining	+ 0.24

The complete list of losses are shown in the ACCA Manual D worksheet.

Zero is used for filters only if the equipment airflow data is taken with the filter installed.

*** YORK**°

Correcting The Friction Rate

- Longest supply run = 60 feet
- Longest return run = 40 feet
- But, all the fitting total to 75 feet
- Therefore, we have 175 feet of duct
 - Using our previous FR of 0.24
 - .24 x (100/175) = .137
 - New FR is 0.137 (for Supply and Return)

Correcting The Friction Rate

- Longest supply run = 60 feet
- Longest return run = 30 feet
- But, all the fitting total to 275 feet
- Therefore, we have 365 feet of duct
 - Using our previous FR of 0.24
 - 100/365 = .27
 - .24 x .27 = .0648
 - New FR is 0.0648 (for Supply and Return)

THAT'S a LONG WAY from the Ole .1 used on the ductulator.

3.5	Ton H	IP Sys	tem g	oing	out on high	pres	sure	switc	h		
Th	s is th	e filte	r that	was	in the syste	m	•				
As	c me h	iow w	e fixe	d the	system						
		1						k	1		E
ME 1	RV (µm) PSE D (%)	0.30-1.0 40	1.0-3.0 74	3.0-10 80	Airflow Rate (CFM) Débit d'air (pi³/min) Initial Resistance (IWC) Résistance initiale (IWC)	410 0.09	615 0.16	820 0.23	1025 0.32	1390* 0.48	*Max Rated Airflow *Débit d'air nominal max 44
			3-		R. P.		Y-			Α,	1
₩ Y		RK	®								31

Consider what happens when you expand the filter from 1" wide to 4" wide; now you are able to use more media and create a less restrictive filter that still meets the Merry 13 or higher that consumers desire. Below in **Figure 6**, you see that the pressure drops (Merry 13 data outlined in red) across a list of cfm is much lower than the pressure drops of the 1" wide variety. This lowered pressure drop results in better airflow and easier blower operation.

Figure 6													
	Initial Airflow Resistance (inches w.c.)												
Queina		Airflow (CFM)											
Series	600	800	1000	1200	1400	1600	1800	2000					
M11PAC20252	.04	.06	.08	.11	.13	.16	.19	.22					
M11PAC20202	.07	.10	.14	.19	.25	N/A	N/A	N/A					
M11PAC16252	.05	.07	.09	.12	.15	.19	.22	.27					
M13PAC20252	.06	.09	.12	.16	.20	.25	.30	.35					
M13PAC20202	.09	.13	.18	.23	N/A	N/A	N/A	N/A					
M13PAC16252	.06	.09	.13	.17	.22	.26	.31	.37					

