AIR FILTRATION 2023

FACTORY DIRECT

Question \#1:

What "Merv" rating should I use?

MERV, the acronym for Minimum-Efficiency Reporting Value, is a measure of the efficiency with which filters remove particles of specific sizes. The test protocol for determining MERV ratings is described in ASHRAE Standard 52.2-2007, "Method of Testing General Ventilation Air-Cleaning Devices for Removal Efficiency by Particle Size."

High Efficiency Filters Explained

The impact that the Covid-19 virus has had on the world is unmeasurable and its reach into so many different aspects of our lives is both far and wide. One of the areas of HVAC that has been brought to the forefront is filtration. The SARS-Cov2 virus is approximately .1-. 3 microns in size, but since the virus doesn't travel in the air by itself the expelled respiratory droplets are approximately 1 micron in size. MERV 8 filters are only 20% effective at capturing particles in the 1-3 micron range while MERV 13 filters are at least 85% effective at capturing particles in the 1-3 micron range. MERV 14 are effective at capturing at least 90% in the $1-3$ micron range and the higher you go the more filtering ability. Below in Figure 1 is a filter application guide and as can be seen the standard MERV-1 through 12 filters are not very effective for smaller particles.

ASHRAE recommends using MERV 13 filters with MERV 14 being preferred but there are things that need to be taken in to account before any filter change is made. Increasing filter efficiency increases the static pressure drop in the system which can affect airflow, which in turn can increase energy usage or worse; it can cause equipment operation issues and unit failures.
*YORK

Question \#2:
 Will a MERV 13 filter work with my York HVAC system?

股 YORK

Study \#1

Article: Residential AC Filters ($p d f$) by John Proctor, ASHRAE Journal, October 2012

The Air Conditioning Contractors of America (ACCA) protocols for HVAC design assume a pressure drop of 0.10 inches of water column (i.w.c.) across the filter. (Keep that number, o. 1 i.w.c., in mind as a reference point. I'll be coming back to it.) If a system is designed with a standard filter for that pressure drop, the pressure drop with a pleated filter of the same size will most likely be higher.

In addition, poorly designed and installed duct systems already have external static pressures that are too high. The typical furnace or air handler is rated for 0.5 i.w.c. but many run much higher pressure. David Richardson of the National Comfort Institute says that in the testing they've done, the average system is running at about o. 82 i.w.c.

Result: In the California study, Proctor et al. found that the pressure drop across the filter in 34 HVAC systems was $\mathbf{o . 2 8} \mathbf{i . w . c .}$ That's nearly three times what ACCA protocols assume. It's also more than half of the rated external static pressure for the whole system.

Donate About Us Links Advertise CoI

SEARCH WEBSITE

The Home Performance Magazine
Home Performance \quad Business Development
Departments
Issues
Blog

Home , Issues

ARTICLE
Is There a Downside to High-MERV Filters?
The new high-MERV filters extract an energy penalty.
BY DAVID SPRINGER

November 02, 2009
Filters were originally conceived to protect heating and cooling equipment-for example, to prevent large particles from clogging the air passages of coils. The old familiar fiberglass filters do a fair job of protecting equipment but do little to enhance indoor air cualitv. Over the

A version of this article appears in the November/December 20

股 YORK

Figure 2. The graph shows a trend toward decreasing air flow when the blower was powered with a PSC motor. Note the wide variation in air flow for the different MERV 8 filters. Very little air flow variation was seen when the PSC motor was replaced with an ECM motor.

Sources of Pressure Drop

*YORK

	EC	M -	erf	rm	ance					
						SC v	Con	nt A	low	
		Voltage			Motor Type					
	60	115	1/2	0.9	PSC (Induction Motor)					
	High	Speed			TESP	0.3	0.5	0.7	0.9	
					CFM	1345	1261	1158	1038	
					Watts	700	667	628	576	
					Amps	6.69	6.47	6.1	5.71	
					RPM	906	951	997	1029	
	60	115	1/2	0.6	ECM (Constant Airflow)					
	3 Ton				TESP	0.3	0.5	0.7	0.9	
					CFM	1246	1250	1234	1230	
					Watts	308	368	423	485	
					Amps	4.81	5.64	6.39	7.22	
					RPM	848	927	993	1065	
					\% Improvement ECM vs. PS					
					ECM (Constant Airflow)					
					TESP	0.3	0.5	0.7	0.9	
					CFM			6\%	16\%	
					Watts		-45\%	-33\%	-16\%	
										13

UNIT MODEL	COIL		CFM RANGE (MIN.-MAX.)	STAGE	COOLING				
	MODEL	WIDTH			RATED CFM	NET MBH		SEER ${ }^{1}$	EER
						TOTAL	SENS.		
YXT24B21S	CF/CM/CU24B	17.5	525-725	1	600	19.3	14.7	15.00	21.25
			600-1000	2	800	22.8	18.2		12.75
YXT24B21S	CF/CM/CU30B	17.5	525-725	1	600	19.5	14.8	15.00	21.60
			600-1000	2	800	23.4	18.3		13.00
YXT24B21S	CF/CM/CU36B	17.5	525-725	1	600	19.5	15.0	15.25	21.65
			600-1000	2	800	23.6	18.5		13.00
YXT24B21S	CF/CM/CU42C	21.0	525-725	1	600	19.7	14.8	15.50	22.00
			600-1000	2	800	23.8	18.8		13.25

Airflow is KEY to comfort and efficiency

4.5 X CFM X Delta Enthalpy = Total Cooling BTU's
1.08 X CFM X Delta Temperature $=$ Sensible BTU's

TABLE 16: Air Flow Data (CFM) ${ }^{1}$

High/Low Speed Cooling and Heat Pump CFM													
Cool Tap	ADJ Tap ${ }^{2}$	AVC18B		AVC24B		AVC30B		AVC36B		AVC36C		AVC42C	
		High	Low										
A	B	810	527	1022	562	1060	731	1350	878	1350	878	1596	1037
B	B	675	439	795	437	1013	658	1238	804	1238	804	1400	910
A	A	720	468	900	495	1000	650	1200	780	1200	780	1425	926
B	A	600	390	700	385	900	585	1100	715	1100	715	1250	813
A	C	630	410	783	431	875	569	1050	683	1050	683	1268	824
C	B	534	347	766	421	844	548	1125	731	1125	731	1344	874
B	C	525	341	609	335	788	512	963	626	963	626	1113	723
D	B	450	293	568	312	703	457	900	585	900	585	1120	728
C	A	475	309	675	371	750	488	1000	650	1000	650	1200	780
D	A	400	260	500	275	625	406	800	520	800	520	1000	650
C	C	416	270	587	323	656	427	875	569	875	569	1068	694
D	C	350	228	435	239	547	355	700	455	700	455	890	579

\% YORK

Overview-How is ductwork sized?

(This is not going to be a duct design class)

- Ductwork is sized using a duct calculator
- To use a calculator, you need a Friction Rate
- The calculator matches Friction Rate to a required CFM for a duct size
- The size can be either round or square duct
- Where does the Friction Rate come from?

Friction Rate

- The equipment delivers a specific CFM at a given External Static Pressure (ESP)
- Other losses external to the equipment are subtracted from the ESP
- Known as Device Pressure Losses
- The static remaining after all other losses are subtracted from the ESP is the Friction Rate (FR) for duct sizing
- But...

Manual D Worksheet

Step 1) Manufacturer's Blower Data
External static pressure $(E S P)=$ \qquad IWC Cfm = \qquad

Step 2) Component Pressure Losses (CPL)
Direct expansion refrigerant coil
Electric resistance heating coil
Hot water coil
Heat exchanger
Low efficiency filter
High or mid-efficiency filter
Electronic filter
Humidifier
Supply outlet
Return grille
Balancing damper
UV lights or other component

Total component losses (CPL) \qquad IWC

Step 3) Available Static Pressure (ASP)
$\mathrm{ASP}=(\mathrm{ESP}-\mathrm{CPL})=($ \qquad $-$ \qquad) $=$ \qquad IWC

Air Device Pressure Losses

Friction Rate Calculation

ESP from Product Data	+0.60
Evaporator coil (Use wet pressure drop)	-0.27
Volume damper	-0.03
Supply register	-0.03
Return grille	-0.03
Filter	0
Static remaining	+0.24

The complete list of losses are shown in the ACCA Manual D worksheet.

Zero is used for filters only if the equipment airflow data is taken with the filter installed.

What Is Total Effective Length?

- The length of the longest individual supply and return run
- Plus the equivalent length (in feet) of each fitting and duct connection along the path
- Fittings affect the flow of air
- They must be figured into the system losses
- The sum of these two sets of numbers is used to adjust the friction rate number

登 MOM

How Fittings Affect Airflow

- Fittings are assigned an Equivalent Length (EL)
- EL is the airflow loss equal to the same amount of straight duct
- Losses are friction losses from the duct system
- The EL of each fitting adds to the Total Equivalent Length of the duct system
- Linear length + EL of each fitting $=$ TEL of duct system
- The longer the duct, the more resistance to airflow
- More resistance = less CFM
- High EL fittings also add to turbulence in the duct system

Current Manual D - EL

Current Manual D - EL

WYORK

How TEL Affects Duct Sizing

- TEL is used to determine the Friction Rate for Duct sizing
- The duct sizes in the calculator are based on a TEL of 100 feet of duct
- For duct systems with TEL greater than 100 feet, the Friction Rate must be corrected for a new Friction Rate

Correcting The Friction Rate

- Longest supply run = 60 feet
- Longest return run $=40$ feet
- But, all the fitting total to 75 feet
- Therefore, we have 175 feet of duct
- Using our previous FR of 0.24
- $.24 \times(100 / 175)=.137$
- New FR is 0.137 (for Supply and Return)

\% YORK

Correcting The Friction Rate

- Longest supply run $=60$ feet
- Longest return run = 30 feet
- But, all the fitting total to 275 feet
- Therefore, we have 365 feet of duct
- Using our previous FR of 0.24
- 100/365 = . 27
- . $24 \times .27=.0648$
- New FR is 0.0648 (for Supply and Return)

THAT'S a LONG WAY from the Ole .1 used on the ductulator.

Correcting The Friction Rate

Step 4) Total Effective Length (TEL)

Supply-side TEL + Return-side TEL $=($ \qquad $+$ \qquad) = \qquad Feet

Step 5) Friction Rate Design Value (FR)

FR value from friction rate chart $=$ \qquad IWC/100

Question \#2:

Will a MERV 13 filter work with my York HVAC system?

Now you realize this isn't an easy question and it can't be answered easily....

3.5 Ton HP System going out on high pressure switch

This is the filter that was in the system.......

Ask me how we fixed the system \qquad

MERV	$\begin{aligned} & (\mu \mathrm{m}) \\ & \mathrm{PSE} \end{aligned}$	$\begin{gathered} 0.30-1.0 \\ 40 \end{gathered}$	$\begin{gathered} 1.0-3.0 \\ 74 \end{gathered}$	$\begin{gathered} 3.0-10 \\ 80 \end{gathered}$	Airflow Rate (CFM) Débit d'air (pi3/min) Initial Resistance (IWC) Résistance initiale (IWC)	410	615	820	1025	1390*	Max Rated Artiow
10						0.09	0.16	0.23	0.32	0.48	-Débit d'air nominal max

Consider what happens when you expand the filter from 1 " wide to 4 " wide; now you are able to use more media and create a less restrictive filter that still meets the Merv 13 or higher that consumers desire. Below in Figure 6, you see that the pressure drops (Mery 13 data outlined in red) across a list of cfm is much lower than the pressure drops of the 1 " wide variety. This lowered pressure drop results in better airflow and easier blower operation.

Figure 6								
Initial Airflow Resistance (inches w.c.)								
Seri	Airflow (CFM)							
Seri	600	800	1000	1200	1400	1600	1800	2000
M11PAC20252	. 04	. 06	. 08	. 11	. 13	. 16	. 19	22
M11PAC20202	. 07	. 10	. 14	. 19	.25	N/A	N/A	N/A
M11PAC16252	. 05	. 07	. 09	. 12	. 15	. 19	. 22	27
M13PAC20252	. 06	. 09	. 12	. 16	20	.25	. 30	. 35
M13PAC20202	. 09	. 13	. 18	. 23	N/A	N/A	N/A	N/A
M13PAC16252	. 06	. 09	. 13	. 17	. 22	. 26	. 31	. 37

	The York Affinity Hybrid air cleaner equates to a Merv 16 (since it's a hybrid of media and a Mery 16. When you using 450 fpm as the guideline, we see that the Affinity filter has a pressure drop of only . 13 iwc .
漞 YO	RK

So What Do I Do?

- Take an external static pressure measurement with current clean filter.
- Is there any room in the reading to add additional restriction?
- Is it possible to increase the width of the filter?
- Is it possible to increase overall size of the filter?
- Is it possible to alter "easy to access" ductwork to decrease restriction to allow for additional filter restriction.

*YORK

Calculate Mechanical Room Fittings EL

Calculate Mechanical Room Fittings EL

Top View

Front View
梁 YORK
Fitting EL $=170 \mathrm{ft}$

Calculate Mechanical Room Fittings EL

Calculate Mechanical Room Fittings EL

Questions?

