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Problems
1. Suppose that a, b and c are nonzero real numbers satisfying the two inequalities:{

a < b < c,

ab > bc > ca.

For each variable, determine whether it is positive, negative, or if there is not enough informa-
tion to tell.

2. Find all positive integers n that satisfy the following property: there exist two (not necessarily
distinct) positive divisors of n which sum to another positive divisor of n.

3. The Fibonacci sequence is defined as follows: F1 = F2 = 1 and Fn+2 = Fn+1+Fn for all positive
integers n. Prove that the sum of any three or more consecutive numbers in the Fibonacci
sequence is not in the Fibonacci sequence.

(For example, 5, 8, 13 and 21 are the fifth through eighth Fibonacci numbers. Indeed, their
sum, 5 + 8 + 13 + 21 = 47, is not a Fibonacci number.)

4. In convex pentagon ABCDE, assume that △ABC ∼ △EDC and that lines AC and BD are
perpendicular. Prove that lines AE and BC are perpendicular.

A

B

C

D

E

5. Let n be a positive integer. Suppose we randomly roll a fair six-sided die until we roll n
consecutive even numbers (e.g. 2, 4, 4, 6, 2, . . . ) in a row. Find the expected number of rolls
in terms of n.

6. Show that the product of any four consecutive positive integers plus one is a multiple of 25 if
and only if none of the four integers is a multiple of 5.

7. In△ABC, letG andO be the centroid and circumcenter respectively. Given that ̸ AGO = 90◦,
determine all possible values of GA

BC
.

(The centroid of a triangle is the point where its three medians meet. The circumcenter of a
triangle is the center of the circle passing through its three vertices.)
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8. Professional basketball player Jordan Smith wants to improve his free throw percentage (num-
ber made divided by number of attempts) from 75% to above 85% by the end of the season.
Show that if this occurs, then there must exist a time during the season when his free throw
percentage was exactly 80%.

9. Farley notices that 63 can be written as the sum of three positive perfect cubes, namely
33 + 43 + 53, and that 73 can be written as the sum of four positive perfect cubes, namely
13 + 13 + 53 + 63. Help Farley prove that, in fact, for any integer i ≥ 3, there exists a perfect
cube that can be written as the sum of i positive perfect cubes.

10. Six circles are drawn such that no circle’s center is inside any other circle. Show that no point
in the plane lies inside all six circles.
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Solutions

Problem 1:

Suppose that a, b and c are nonzero real numbers satisfying the two inequalities:{
a < b < c,

ab > bc > ca.

For each variable, determine whether it is positive, negative, or if there is not enough infor-
mation to tell.

We determine the signs of the three variables, step-by-step:

• To determine the sign of c: since a < b, we have that b−a > 0; in other words, b−a is positive.
Also, since bc > ca, we have c(b − a) > 0. Since we already know b − a is positive, it follows

that c is positive .

• To determine the sign of b: since a < c, we have that c−a > 0; in other words, c−a is positive.
Also, since ab > bc, we have that b(c− a) < 0. Since we already know that c− a is positive, it

follows that b is negative .

• To determine the sign of a: we already know b is negative, and since a < b, it follows that
a is negative . (Alternatively, we could repeat similar reasoning as we used to determine the

sign of b and c.)

Remark: An example of a triple (a, b, c) that satisfies the conditions in the problems is (−2,−1, 1).
For a correct solution, including a valid example is not required.

Problem 2:

Find all positive integers n that satisfy the following property: there exist two (not necessarily
distinct) positive divisors of n which sum to another positive divisor of n.

The answer is even integers n . As with any “find all” problem, there are two parts to this

problem: showing that any even number satisfies the property and showing that any odd number
fails the property.

• Proving that evens work: if n is even, then 2 divides n by definition. Obviously, 1 divides n,
and since 1 + 1 = 2, n satisfies the property.

• Proving that odds fail: if n is odd, all of its divisors are odd. So if we take two divisors of n
and add them, we will always get an even number. This cannot be a divisor of n, so we are
guaranteed that the condition fails for all odd n.
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Problem 3:

The Fibonacci sequence is defined as follows: F1 = F2 = 1 and Fn+2 = Fn+1 + Fn for all
positive integers n. Prove that the sum of any three or more consecutive numbers in the
Fibonacci sequence is not in the Fibonacci sequence.

Lemma: for any integer i ≥ 3, we have

F1 + F2 + · · ·+ Fi−2 = Fi − 1.

Proof: We will prove this with induction on i.

• Base case: when i = 3, our lemma is indeed true: F1 = F3 − 1 since F1 = 1 and F3 = 2.

• Inductive step: we assume that our lemma is true for some value k − 1 ≥ 3, and we will use
this to show that our lemma is also true for k. Our assumption is that

F1 + F2 + · · ·+ Fk−3 = Fk−1 − 1.

If the above is true, we can add Fk−2 to both sides:

F1 + F2 + · · ·+ Fk−3 + Fk−2 = Fk−1 + Fk−2 − 1 = Fk − 1.

The above equation is what we wanted to show in our inductive step, so the proof of the lemma
is complete.

Now, we will show what the problem asks us: if i and j are positive integers and i < j − 1, then
the sum of the consecutive Fibonacci numbers

Fi + Fi+1 + · · ·+ Fj

is not a Fibonacci number. (The i < j − 1 condition is equivalent to ensuring our sum contains at
least 3 numbers, as the problem states.)

This is true since

Fj+1 = Fj−1 + Fj

< Fi + Fi+1 + · · ·+ Fj ≤
F1 + F2 + · · ·+ Fj = Fj+2 − 1.

In other words, the sum Fi+Fi+1+ · · ·+Fj lies strictly between the consecutive Fibonacci numbers
Fj+1 and Fj+2, so it is certainly not a Fibonacci number.
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Problem 4:

In convex pentagon ABCDE, assume that △ABC ∼ △EDC and that lines AC and BD are
perpendicular. Prove that lines AE and BC are perpendicular.

Solution A:

A

B

C

D

E

H
G

Let H be the orthocenter of △BCD, and let G be the intersection of lines DH and CE.
Claim: We have △CBH ∼ △CDG.
Proof: We have

̸ CBH = 90◦ − ̸ BCD = ̸ CDG,

since H is the orthocenter. (More specifically, if we extend line BH to meet line CD at X, △BXC
is a right triangle, implying that ̸ CBH and ̸ BCD are complementary. Similar reasoning shows
that ̸ BCD and ̸ CDG are complementary.)

We also have
̸ HCB = ̸ GCD,

since the problem gives us △ABC ∼ △EDC.
Therefore, triangles CBH and CDG are similar by angle-angle similarity.
From △CBH ∼ △CDG and △ABC ∼ △EDC, it follows that(

CH

CB

)
=

(
CG

CD

)
(
CH

CB

)(
CB

CA

)
=

(
CG

CD

)(
CD

CE

)
(
CH

CA

)
=

(
CG

CE

)
,

which implies that HG ∥ AE. Since H is the orthocenter of △BCD, by definition, HG is perpen-
dicular to BC. Therefore, AE is perpendicular to BC as well.
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Solution B :

A

B

C

D

E

Xℓ

Let X be the intersection of AC and BD. We will show this problem statement is true even
when ABCDE is concave.

Let T represent the following two-step transformation:

1. A counterclockwise rotation about C by ̸ BCA, followed by

2. A dilation about C by a factor of CA
CB

.

Because of the similarity condition, it follows that T (D) = E.
Note that T is only defined only based on A, B, C. Suppose we fix points A, B, C while varying

D along line BX; define E as T (D). Then, E will also vary along a fixed line ℓ; in particular, E
always lies on T (BX).

To determine exactly what the line ℓ is, we just need to find two possible locations for E, since
those two points will determine line ℓ:

• If we set D as the reflection of B over X, then by symmetry, E = A. Therefore, A lies on ℓ.

• If we set D to coincide with point B, then E is the reflection of A over line BC.

Since ℓ passes through A and the reflection of A over line BC, it follows that ℓ is perpendicular to
line BC. Since E and A both lie on ℓ, it follows that lines EA and BC are perpendicular.
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Problem 5:

Let n be a positive integer. Suppose we randomly roll a fair six-sided die until we roll n
consecutive even numbers (e.g. 2, 4, 4, 6, 2, . . . ) in a row. Find the expected number of rolls
in terms of n.

Rolling an even number happens with probability 1
2
, so we will replace the die in the problem

with a coin that lands heads or tails – we want to know how many flips it would take (on average)
until we got n heads in a row.

Firstly, we must show that this average value is finite. Consider an alternate situation, where we
will only stop flipping if the previous n coins were all heads and if the number of total flips we’ve
made is a multiple of n. The probability that any chunk of n coins is all heads is 1

2n
, and so by

a well known formula, on average, it takes n · 2n flips to stop flipping. The expected value in the
problem should be less than the expected value in this alternate situation, so it is certainly finite.

Now, let e be the expected number of flips it would take us. We consider n scenarios:

• When we start flipping, there is a 1
2
chance that our first flip is a tails. After that one tail, we

start fresh again, and on average it will take e more flips to get a string of n heads, for a total
of 1 + e flips on average.

• There is a 1
4
chance that our first two flips are HT. After these two flips, our streak is ruined

– we start fresh and it will take e more flips to get a string of n heads, for a total of 2 + e flips
on average.

• There is a 1
8
chance that our first three flips are HHT. After these three flips, our streak is

ruined – we start fresh and it will take e more flips to get a string of n heads, for a total of
3 + e flips on average.

• The pattern continues. . .

• There is a 1
2n

chance that our first n flips are n− 1 heads followed by a tail. After these flips,
our streak is ruined – we start fresh and it will take e more flips to get a string of n heads, for
a total of n+ e flips on average.

• There is a 1
2n

chance that our first n flips are all heads, in which case we’re done and we took
n flips.

Taking the weighted average of the items in this list should give us e by definition. So, we have

e =
e+ 1

2
+

e+ 2

4
+ · · ·+ e+ n

2n
+

n

2n

e

2n
=

1

2
+

2

4
+

3

8
+ · · ·+ n

2n
+

n

2n

e = 1 · 2n−1 + 2 · 2n−2 + · · ·+ n · 20 + n

=
(
20
)
+
(
20 + 21

)
+ · · ·+

(
20 + 21 + · · ·+ 2n−1

)
+ n

=
(
21 − 1

)
+
(
22 − 1

)
+ · · ·+ (2n − 1) + n

= 21 + 22 + · · ·+ 2n

= 2n+1 − 2 .
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Problem 6:

Show that the product of any four consecutive positive integers plus one is a multiple of 25 if
and only if none of the four integers is a multiple of 5.

Let n be an odd integer. We can represent our four consecutive integers as

n− 3

2
,
n− 1

2
,
n+ 1

2
,
n+ 3

2
.

These integers are all not multiples of 5 if and only if n is a multiple of 5.
Their product plus one is equal to

(n− 3)(n− 1)(n+ 1)(n+ 3)

16
+ 1 =

(n2 − 1)(n2 − 9) + 16

16
=

n4 − 10n2 + 25

16
=

(
n2 − 5

4

)2

,

which is also a multiple of 5 if and only if n is a multiple of 5. Therefore, the two assertions in the
problem are equivalent.

Problem 7:

In △ABC, let G and O be the centroid and circumcenter respectively. Given that ̸ AGO =
90◦, determine all possible values of GA

BC
.

A

B C

G

M

O

D

Let M be the midpoint of BC and let D be the intersection of ray AM with the circumcircle
of △ABC. Since G is the foot from O to chord AD, it follows that AG = GD. It’s a well known
property of the centroid that AG : GM = 2 : 1. Since GD = GM +MD, it follows that

AG : GM : MD = 2 : 1 : 1.

We have from power of a point that

BC2

4
= BM ·MC = AM ·MD =

(
3

2
· AG

)(
1

2
· AG

)
=

3AG2

4
,

so GA2

BC2 = 1
3
. Square rooting both sides of this, it follows that

GA

BC
=

√
3

3
.
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Problem 8:

Professional basketball player Jordan Smith wants to improve his free throw percentage (num-
ber made divided by number of attempts) from 75% to above 85% by the end of the season.
Show that if this occurs, then there must exist a time during the season when his free throw
percentage was exactly 80%.

Consider the integer quantity

T = (# hits)− 4 · (# misses).

When Jordan has a 75% accuracy rate, T is less than 0; when Jordan has an 85% accuracy rate,
T is greater than 0. Consider the shot Jordan scores which makes T nonnegative for the first time.
Since this shot increases T by exactly 1, the nonnegative number that T becomes must be 0. When
T = 0, Jordan has exactly an 80% hit rate, so we are done.

Problem 9:

Farley notices that 63 can be written as the sum of three positive perfect cubes, namely
33 + 43 + 53, and that 73 can be written as the sum of four positive perfect cubes, namely
13 + 13 + 53 + 63. Help Farley prove that, in fact, for any integer i ≥ 3, there exists a perfect
cube that can be written as the sum of i positive perfect cubes.

We prove this problem with induction on i.

• Base cases: i = 3, 4. These are given to us in the problem: we have 63 = 33 + 43 + 53 and that
73 = 13 + 13 + 53 + 63.

• Inductive step: i → i + 2. Suppose n3 can be written as the sum of i perfect cubes. Then,
27n3 can also be written as the sum of i perfect cubes since we multiply each perfect cube from
before by 27. Now, we have that

(6n)3 = 27n3 + (4n)3 + (5n)3,

and since 27n3 can be written as the sum of i perfect cubes, (6n)3 can be written as the sum
of i+ 2 perfect cubes. This completes our inductive step.

Problem 10:

Six circles are drawn such that no circle’s center is inside any other circle. Show that no point
in the plane lies inside all six circles.

Assume, for the sake of contradiction, that there is a point P that lies inside of all six circles.
Let the centers of the circles be labelled A, B, C, D, E and F in clockwise order. One of the six
angles ̸ AOB, ̸ BOC, . . . , ̸ FOA must be less than or equal to 60◦ (since the six angles sum to
360◦); without loss of generality, assume ̸ AOB ≤ 60◦ and that OA ≥ OB. We will show that the
circle centered at A contains point B.

Let ra be the radius of the circle centered at A; since this circle contains O, it follows that
ra ≥ OA. In a triangle, the longest side is opposite the largest angle – since in △AOB, ̸ AOB ≤
60◦, it follows that AB cannot be the strictly longest side of the triangle. So, AB ≤ OA. So,
ra ≥ OA ≥ AB, implying that the circle centered at A contains point B; this is a contradiction, so
it follows that no point can lie in all six circles.
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