Sinapine: Nature's Multi-Purpose Compound

M.S. Sujith Kumar*, Ibandalin Mawlong, Reema Rani and Babli Mog¹

ICAR-Directorate of Rapeseed Mustard Research, bhartpur321303, Rajasthan

¹ICAR-Directorate of Cashew Research, Puttur, Karnataka

*Corresponding Author: sujithkumaragri@gmail.com

Sinapine hydrogen sulfate is a natural compound found in mustard plants (genus Brassica) and belongs to the class of phenolic compounds known as sinapates. It is primarily found in the seeds and leaves of mustard plants, including Indian mustard (Brassica juncea) and brown mustard (Brassica nigra). Sinapine hydrogen sulfate, also known as sinapine or sinapoylcholine, is a conjugate of choline and sinapic acid. It is typically present in mustard seeds as a salt form, with hydrogen sulfate (sulfate) being the most common counterion.

Characteristics features

Chemical Structure

Sinapine hydrogen sulfate has the chemical formula $C_20H_{23}NO_6S$ and a molar mass of approximately 413.46 g/mol. It consists of a choline molecule esterified with sinapic acid and a sulfate group.

Biological Role

Sinapine is involved in the defense mechanisms of mustard plants. It plays a role in protecting the seeds against pathogens, pests, and environmental stressors. It has antimicrobial and antifungal properties, which help in seed protection.

Health Benefits

Sinapine has gained attention for its potential health benefits. It exhibits antioxidant properties, which can help neutralize harmful free radicals and protect against oxidative damage in the body. Additionally, sinapine may have anti-inflammatory and anticancer properties, although further research is needed to fully understand its effects on human health

Food and Industrial Applications

Sinapine is predominantly present in mustard seeds, and its content can vary among different mustard varieties. In the food industry, mustard seeds are commonly used as a spice, condiment, or as a source of mustard oil. Sinapine may contribute to the flavor and aroma of mustard products.

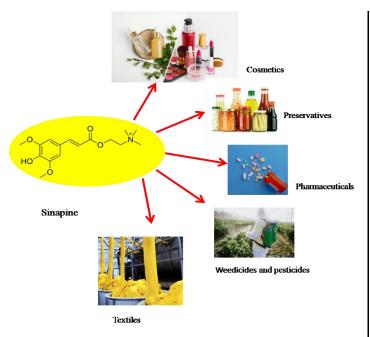
Distribution of Sinapine in oilseeds brassica

It's important to note that these are general estimates, and the actual sinapine content may vary among different cultivars and growing conditions. Additionally, sinapine levels can be influenced by various factors such as agronomic practices, geographic location, and seed developmental stage.

Brassica napus (rapeseed/canola): Sinapine content in rapeseed can range from approximately 0.1% to 2% of the seed weight, with some cultivars having higher levels.

Brassica juncea (Indian mustard): Indian mustard seeds generally have higher sinapine content compared to rapeseed. Sinapine levels in Indian mustard can range from about 1% to 3% of the seed weight.

Brassica rapa (turnip rape): Sinapine content in turnip rape can vary, but it is generally lower compared to rapeseed and Indian mustard. The estimated range is around 0.1% to 1% of the seed weight.


Brassica carinata (Ethiopian mustard): Ethiopian mustard seeds are known to have relatively higher sinapine content compared to some other Brassica species. The estimated range is around 1% to 3% of the seed weight

Brassica nigra (black mustard): Black mustard seeds typically have higher sinapine content compared to other Brassica species. The estimated range is around 1% to 3% of the seed weight.

Brassica hirta (white/yellow mustard): White/yellow mustard seeds generally have lower sinapine content compared to black mustard. The estimated range is around 0.5% to 1.5% of the seed weight.

Brassica campestris (field mustard): Sinapine content in field mustard can vary, but it is generally lower compared to black mustard. The estimated range is around 0.5% to 1.5% of the seed weight.

Outline on the value products of sinapine

Selected references

Uzunova, M., Stefanova, V., & Georgieva, V. (2015). Study on the chemical composition of rapeseed (Brassica napus L.) seed meal from Bulgarian cultivars. Journal of Agricultural Science and Technology, 17(3), 653-662

Singh, S., Singh, P., & Sharma, T. R. (2014). Biological Activities of Sinapine Derivatives: A Review. International Journal of Food Properties, 17(6), 1180-1193.

Kumar, D., Singh, S., Chakrabarty, D., & Trivedi, P. K.
(2019). Sinapine: A Promising Bioactive
Compound with Medicinal Properties. In
Medicinal Plants: Utilization and Conservation
(pp. 47-65). Springer

Table 1: Value added products of Sinapine

Value added products		References
	Sinapine is utilized in	Lee, S.Y. et al. (2015). Effect of
	cosmetic formulations for its	sinapine on melanogenesis in
Cosmetic Industry	skin-brightening and anti-	B16F10 melanoma cells. Biological
	aging effects.	and Pharmaceutical Bulletin, 38(3),
		405-411.
Food and Beverage Industry	Sinapine is used as a natural	Wei, H. et al. (2017). Antioxidant
	antioxidant and	and antimicrobial activities of
	antimicrobial agent in food	sinapine extracted from Brassica
	preservation and packaging.	napus L. Journal of Food Science
		and Technology, 54(3), 604-611.
Pharmaceutical Industry	Sinapine exhibits potential	Wang, T. et al. (2013). Sinapine, a
	therapeutic effects, including	potential anti-inflammatory agent,
	anti-inflammatory,	attenuates colon inflammation in a
	anticancer, cardioprotective,	mouse model of acute colitis. Food
	and neuroprotective	and Chemical Toxicology, 59, 533-
	properties.	541
Agricultural Industry	Sinapine can be used as a	Zhu, Z. et al. (2015). Allelopathic
	biopesticide or allelopathic	effects of sinapine on the
	compound to control weed	germination and growth of wheat
	growth and protect crops	(Triticum aestivum) and radish
	from pests.	(Raphanus sativus). Pesticide
		Biochemistry and Physiology, 118,
		9-14.
Textile Industry	Sinapine can be used as a	X. et al. (2019). Dyeing properties
	natural dye for textile	and fastness of sinapine extracted
	coloring due to its yellowish-	from rapeseed meal. Textile
	brown colour.	Research Journal, 89(2), 283-293.

* * * * * * * *

